单片机课程设计---步进电机正反转设计
单片机课程设计(论文)-开关控制步进电机正反转
绪论步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
在数控机床、医疗器械、仪器仪表、机器人以及其他自动设备中得到了广泛应用,我们使用的计算机外围的一些设备,如软驱、打印机、扫描仪等其运动部件的控制都采用了步进电机。
常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。
它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。
这种步进电机的应用最为广泛。
目录1 设计目的 (3)2 硬件电路设计及描述 (4)2.1确定元器件的型号及参数 (4)2.1.1 AT89C51 单片机 (4)2.1.2 ULN2003芯片 (6)2.2 步进电机 (7)2.2.1 永磁式步进电机 (7)2.2.2 步进电机原理以及原理图 (10)2.2.3 功能说明 (11)2.2.4步进电机的静态指标术语 (11)2.2.5 步进电机动态指标及术语: (12)3 程序设计 (13)3.1 编程 (13)3.2 流程图 (14)3.3 程序清单 (15)3.3.1 代码详解 (17)3.3.2 程序分析 (17)4 参考文献 (18)5 结束语 (19)1 设计目的步进电机若加入适当的脉冲信号时,转子则会以一定的步数转动。
如果加入连续的脉冲信号,步进电机就会连续转动,转动的角度与脉冲频率成正比,正、反转可由脉冲的顺序来控制。
本程序通过K1、K2和K3三个按钮开关控制步进电机转动和改变转向,电动机使用1-2相激磁,编程时采用制表的方法。
正转和反转的脉冲信号频率是相通的,但由于使用激磁方式不一样,反转使用了1-2相激磁法,故反转速度为正转的一半。
单片机课程设计步进电机正反转
单片机课程设计课题:单片机控制步进电机正反转设计系别:物理与电气工程学院专业:电气工程与其自动化姓名:陈玉琦(组长)学号:1411540指导老师:陈永超目录一.设计目的··4二.设计要求··4三.总体设计思路··4四.硬件设计··51 系统复位电路··52 系统时钟电路··63 系统电机与驱动部分··74 系统的显示电路··8五.软件设计··91 主程序的设计··92 显示子程序的设计··10六.整体电路图··14七.电路仿真··15八.设计总结··16附录··18参考文献··21步进电机正反转设计一、设计目的目的:系统地运用已学的理论知识解决实际问题的能力和查阅资料的能力。
培养一定的自学能力和独立分析问题、解决问题的能力,能通过独立思考、查阅工具书、参考文献,寻找解决方案;任务:完成所选题目的分析与设计,达到技术性能要求。
提交正式课程设计总结报告一份。
二、设计要求:1.具有速度和转向设定功能。
2.设置开始、停止以与正反转键。
3.转速以与转向由数码管显示。
三、总体设计思路方案与思路因为步进电机的控制是通过脉冲信号来控制的,将电脉冲信号转变为角位移或线位移的开环控制元件。
所以怎样产生这个脉冲信号和产生怎样的信号是电机控制的关键。
用软件控制单片机产生脉冲信号,通过单片机的P1口输出脉冲信号,因为所选电机是两相的,所以只需要P1口的低四位P1.0~P1.3分别接到电机的四根电线上。
可以通过调整输出脉冲的频率来调整电机的转速,通过改变输入脉冲的顺序来改变转动方向,P0口接LED数码管,可以显示当前的电机转速和转向,设置复位键可使正在转动的电机停止转动,大概可分为如下图所示的几部分。
单片机课程设计-单片机控制步进电机
单片机课程设计-单片机控制步进电机单片机课程设计单片机控制步进电机一、引言在现代自动化控制领域,步进电机以其精确的定位和可控的转动角度,成为了众多应用场景中的关键组件。
而单片机作为一种灵活、高效的控制核心,能够实现对步进电机的精确控制,为各种系统提供了可靠的动力支持。
本次课程设计旨在深入研究如何利用单片机来有效地控制步进电机,实现特定的运动需求。
二、步进电机的工作原理步进电机是一种将电脉冲信号转换为角位移或线位移的开环控制电机。
它由定子和转子组成,定子上有若干个磁极,磁极上绕有绕组。
当给绕组依次通电时,定子会产生磁场,吸引转子转动一定的角度。
通过控制通电的顺序和脉冲数量,可以精确地控制电机的转动角度和速度。
三、单片机控制步进电机的硬件设计(一)单片机的选择在本次设计中,我们选用了常见的_____单片机。
它具有丰富的引脚资源、较高的运算速度和稳定的性能,能够满足控制步进电机的需求。
(二)驱动电路为了驱动步进电机,需要使用专门的驱动芯片或驱动电路。
常见的驱动方式有全桥驱动和双全桥驱动。
我们采用了_____驱动芯片,通过单片机的引脚输出控制信号来控制驱动芯片的工作状态,从而实现对步进电机的驱动。
(三)接口电路将单片机的引脚与驱动电路进行连接,需要设计合理的接口电路。
接口电路要考虑信号的电平匹配、抗干扰等因素,以确保控制信号的稳定传输。
四、单片机控制步进电机的软件设计(一)控制算法在软件设计中,关键是确定控制步进电机的算法。
常见的控制算法有脉冲分配法和步距角细分法。
脉冲分配法是根据电机的相数和通电顺序,按照一定的时间间隔依次输出控制脉冲。
步距角细分法则是通过在相邻的两个通电状态之间插入中间状态,来减小步距角,提高电机的转动精度。
(二)程序流程首先,需要对单片机进行初始化设置,包括引脚配置、定时器设置等。
然后,根据用户的输入或预设的运动模式,计算出需要输出的脉冲数量和频率。
通过定时器中断来产生控制脉冲,并按照预定的顺序输出到驱动电路。
步进电机正反转设计单片机课程设计
单片机课程设计题目:步进电机的正反向设计。
系:电气与电子工程系专业:名称:学生编号讲师:设计目的1.增强对单片机的感性认识,加深对单片机理论的理解;2.掌握单片机的一些功能模块的应用,如定时器/计数器、中断、片外存储器、I/O口、A/D、D/A、串口通信等。
3.了解和掌握单片机应用系统软硬件的设计过程、方法和实现;4.了解步进电机控制的基本原理,实现电机的正反转驱动控制,掌握控制步进电机旋转的编程方法。
二。
设计要求1、具有速度和转向设定功能;2.将启动和停止按钮设置为与正反转相关联;3.转速由带旋转方向的数码管显示(本设计采用LCD12864)。
三。
总设计步进电机是一种将电脉冲转化为角位移的数字控制执行机构。
它把电脉冲信号转换成角位移,即当给定一个脉冲信号时,步进电机就会转动一个角度,所以非常适合单片机控制。
步进电机具有控制简单、定位准确的特点。
随着科学技术的发展,它将在许多领域得到广泛应用。
针对传统脉冲系统便携性差的问题,提出了一种用微机控制系统代替脉冲发生器和脉冲分配器,通过软件产生控制脉冲。
通过软件编程,可以任意设定步进电机的速度、旋转角度、旋转次数和运行状态。
简化控制电路,降低生产成本,提高系统的运行效率和灵活性。
步进电机的角位移与输入脉冲数严格成正比。
因此,当它旋转一次时,没有累积误差,具有良好的跟随性。
由步进电机和驱动电路组成的开环数控系统非常简单、廉价、可靠。
同时还可以形成高性能的闭环数控系统,具有角度反馈功能。
步进电机动态响应快,启停容易,正反转,速度可变。
速度可以在相当宽的范围内平滑调节,低速时仍能保证高扭矩。
步进电机只能用脉冲电源运行,不能直接用交流电源和DC电源。
步进电机有振荡和失步现象,必须对控制系统和机械负载采取相应的措施。
步进电机本身噪声大,振动大,带惯性负载能力差。
步进电机是自动控制系统中常用的执行元件。
步进电机的输入信号是脉冲电流,脉冲电流可以将输入的脉冲信号转换成步进角位移或线位移,所以步进电机可以看作是一个串行的数模转换器。
单片机正反转课程设计
单片机正反转课程设计一、课程目标知识目标:1. 让学生理解单片机的基本工作原理,掌握单片机正反转电路的设计与实现方法。
2. 使学生掌握单片机编程中涉及的指令、语法和逻辑,并能运用C语言编写简单的正反转控制程序。
3. 帮助学生了解正反转控制在实际应用中的重要性,如自动化、机器人等领域。
技能目标:1. 培养学生动手搭建单片机正反转电路的能力,提高实践操作技能。
2. 培养学生运用编程软件(如Keil)进行单片机程序编写、调试和下载的能力。
3. 提高学生分析问题、解决问题的能力,使其能够针对实际问题设计合适的单片机控制系统。
情感态度价值观目标:1. 激发学生对单片机及电子制作的兴趣,培养其主动探究、创新实践的精神。
2. 培养学生团队协作、沟通交流的能力,使其在合作中共同解决问题,增进同学间的友谊。
3. 通过课程学习,使学生认识到科技对社会发展的积极作用,增强其社会责任感和使命感。
本课程针对高年级学生,在学生已具备一定电子基础和编程能力的基础上,通过本课程的学习,旨在提高学生的实际动手能力、编程思维和创新能力。
课程性质为实践性较强的综合设计课程,要求学生在理论学习与实践操作相结合的过程中,达到预定的学习目标。
通过分解课程目标为具体的学习成果,便于后续教学设计和评估的实施。
二、教学内容1. 理论部分:(1)单片机基本原理:介绍单片机的组成、工作原理和功能特点。
(2)C语言编程基础:回顾C语言基本语法、数据类型、运算符、控制语句等,为单片机编程打下基础。
(3)单片机I/O口编程:讲解如何通过编程控制I/O口的高低电平输出,实现正反转控制。
(4)正反转电路设计:介绍正反转电路的基本原理和设计方法。
2. 实践部分:(1)搭建正反转电路:指导学生动手搭建单片机正反转电路,包括电源、单片机、电机驱动模块等。
(2)编写程序:引导学生运用所学C语言知识,编写实现电机正反转的程序。
(3)程序下载与调试:教授学生如何将编写好的程序下载到单片机中,并进行调试。
单片机课程设计--单片机控制步进电机
单片机课程设计题目:单片机控制步进电机班级:电信设计任务书摘要:本次课业设计是利用单片机技术知识设计一个步进电机控制系统,本次课业设计用到的关键元器件有STC89C52单片机,ULN2003驱动芯片,五线四相步进电机,由52单片机驱动ULN2003,进而驱动步进电机进行正转反转。
关键词:步进电机;52单片机;ULN2003。
目录一、引言 ............................... 错误!未定义书签。
二、总体方案 (6)三、硬件设计 (7)四、软件设计 (10)五、调试 (13)六、总结 (13)七、参考文献 (13)元件清单 (14)一、引言步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。
此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。
步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。
基于单片机原理的步进电机的正反转程89397460
电机控制课程设计报告书题目基于单片机原理的步进电机的正反转目录目录 (1)摘要 (1)1.概述 (2)1.1课程设计的任务和要求 (2)1.2设计思路框架 (3)1.3设计方案的模块解释 (3)2.系统硬件设计 (3)2.1单片机最小系统原理介绍 (3)2.1.1 AT89C51的工作原理 (4)2.1.2复位电路的工作原理 (7)2.1.3晶振电路的工作原理 (8)2.2电机驱动电路原理介绍 (9)3.系统软件设计 (10)3.1系统流程图 (10)3.2系统程序分析 (11)4.调试过程与结果 (19)5.总结与体会 (20)6.参考资料 (21)7.附录 (22)摘要介绍了步进电机正反转控制原理及其接口驱动控制电路,编制了基于MCS-51单片机的步进电机正反转控制的子程序,并应用wave软件进行了仿真。
证明在并行口控制中,可以利用软件实现环行脉冲分配,实现程序较简单,同时还可以节省硬件投资。
结合单片机控制步进电动机的实际工作环境,从提高控制系统运行的可靠性角度,讨论了实际应用的软件抗干扰技术。
关键词单片机;步进电机;正反转控制1.概 述1.1课程设计的任务和要求电机控制课程设计是考察学生利用所学过的电机控制专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。
最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。
本次设计考核的能力主要有:专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。
项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT 汇报与口头表达能力。
电气与自动化系统的设计与实际应用能力。
单片机(微机)原理课程设计 步进电机正反转 2秒内加减速程序
30转每分钟正转ORG 0000H;起始地址LJMP MAIN;长跳转到mainORG 001BH;定时器1中断入口LJMP ZD;跳转到中断指令ORG 002FH;随便给一个数MAIN: MOV SP,#6FH;给堆栈赋地址MOV SCON,#00H;串口工作于方式0MOV TMOD,#15H;定时器1工作于方式1,计数器0工作于方式1MOV TH0,#00H;计数器的高8位为零MOV TL0,#00H;计数器的低8位为零MOV TH1,#3CH;即十位数的60MOV TL1,#0B0H;即十位数的176,定时器1赋初值,3CB0H的值为15536,65536-15536=50000,一个机器周期为1us,十六进制为3CB0;定时50ms,计数器0计数MOV R7,#20;循环计数20次共定时1sMOV P1,#00H;以正传为例MOV 30H,#01HMOV 31H,#02HMOV 32H,#04HMOV 33H,#08HMOV 34H,#08HMOV 35H,#04HMOV 36H,#02HMOV 37H,#01HSETB EA;允许中断SETB ET1;允许定时器/计数器1中断SETB TR1;启动定时器1SETB TR0;启动计数器0START: MOV R0,#30HMOV R6,#4LOOP1: MOV A,@R0MOV P1,ALCALL DELAYINC R0DJNZ R6,LOOP1SJMP STARTZD: MOV TH1,#3CHMOV TL1,#0B0HDJNZ R7,HHMOV A,TL0MOV TL0,#00HMOV B,#5MUL ABMOV B,#3DIV AB;计算转速,存于A中LCALL BCDLCALL DISPLAYMOV R7,#20HH: RETIDELAY: MOV R5,#50;150000/(50*100)=30r/minDE1: MOV R4,#100DE2: DJNZ R4,DE2DJNZ R5,DE1RETBCD: MOV B,#100DIV ABMOV 78H,AMOV A,#10XCH A,BDIV ABMOV 79H,AMOV 7AH,BRETDISPLAY:MOV R3,#3MOV R1,#7AHMOV DPTR,#TABLELOOP3: MOV A,@R1MOVC A,@A+DPTRMOV SBUF,ADEC R1LOOP4: JNB TI,LOOP4CLR TIDJNZ R3,LOOP3RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH 30转每分钟反转反转只需把START子程序中第一句话的#30H改为#34H即可2秒内加减速ORG 0000H;起始地址LJMP MAIN;长跳转到mainORG 001BH;定时器1中断入口LJMP ZD;跳转到中断指令ORG 002FH;随便给一个数MAIN: MOV SP,#6FH;给堆栈赋地址MOV R2,#2MOV SCON,#00H;串口工作于方式0MOV TMOD,#15H;定时器1工作于方式1,计数器0工作于方式1MOV TH0,#00H;计数器的高8位为零MOV TL0,#00H;计数器的低8位为零MOV TH1,#3CH;即十位数的60MOV TL1,#0B0H;即十位数的176,定时器1赋初值,3CB0H的值为15536,65536-15536=50000,一个机器周期为1us,十六进制为3CB0;定时50ms,计数器0计数MOV R7,#20;循环计数20次共定时1sMOV P1,#00H;以正传为例MOV 30H,#01HMOV 31H,#02HMOV 32H,#04HMOV 33H,#08HMOV 34H,#08HMOV 35H,#04HMOV 36H,#02HMOV 37H,#01HSETB EA;允许中断SETB ET1;允许定时器/计数器1中断SETB TR1;启动定时器1SETB TR0;启动计数器0START: MOV R0,#30HMOV R6,#4LOOP1: MOV A,@R0MOV P1,ALCALL DELAYINC R0DJNZ R6,LOOP1SJMP STARTZD: MOV TH1,#3CHMOV TL1,#0B0HDJNZ R7,HHMOV A,TL0MOV TL0,#00HMOV B,#5MUL ABMOV B,#3DIV AB;计算转速,存于A中LCALL BCDLCALL DISPLAYMOV R7,#20DJNZ R2,HHMOV R2,#1HH: RETIDELAY: MOV R5,#200MOV A,#2SUBB A,R2MOV B,#180MUL ABMOV R5,AMOV A,#200SUBB A,R5MOV R5,ADE1: MOV R4,#100DE2: DJNZ R4,DE2DJNZ R5,DE1RETBCD: MOV B,#100DIV ABMOV 78H,AMOV A,#10XCH A,BDIV ABMOV 79H,AMOV 7AH,BRETDISPLAY:MOV R3,#3MOV R1,#7AHMOV DPTR,#TABLELOOP3: MOV A,@R1MOVC A,@A+DPTRMOV SBUF,ADEC R1LOOP4: JNB TI,LOOP4CLR TIDJNZ R3,LOOP3RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH。
单片机课程设计步进电机
单片机课程设计-步进电机江南大学物联网工程学院课程设计报告课程名称:单片机原理及应用设计题目:基于单片机的步进电机控制器设计班级:姓名:学号:指导教师:评分:年月日基于单片机的步进电机控制器设计摘要:本设计是用80C52单片机作为核心部件进行逻辑控制及信号产生,用单片机技术和C 语言编程设计来进行步进电机的控制。
通过人手动按开关实现步进电机的启动与停止、步进电机的正转反转,加速及减速等功能,此外还有LCD 数码管进行实时显示功能。
同时本文也通过了proteus软件的仿真,在仿真结果中能看出近似真实的效果。
经过proteus仿真,结果表明,系统实现了要求。
该系统电路简单,可靠性强,运行稳定。
关键词:步进电机单片机LCD proteus 仿真1课题主要研究内容和要求本设计采用单片机80C52来作为整个步进电机控制系统的运动控制核心部件。
所选的步进电机是四相五线的,由于步进电机需要高功率驱动,单片机不能与步进电机直接相连,因此我们需要采用了电机驱动芯片ULN2003连接步进电机和单片机。
为了显示步进电机转速,我用数码管来显示速率。
再加上一些独立按键来实现步进电机调速、改变转向的功能。
这样就构成了一个基本的步进电机控制系统。
系统的具体功能和要求如下:1、电机转速可以平稳控制;2、通过键盘和显示器可以设置电机的转速;3、能显示电机的运动趋势;2所需仪器设备所需器件备注所需器件备注STC89C52一片12M晶振一个单片机ULN2003驱一片按键五个动芯片八位共阳数一片异步电机一个码管芯片不同阻值电若干+5V电源一个阻30pF电容两个3系统总体设计本设计的硬件电路包括独立按键控制模块、步进电机驱动模块、数码管显示模块和单片机最小系统四部分。
单片机最小系统由时钟电路和复位电路组成,保证单片机正常运行;独立按键控制模块由开关和按键组成,当按下按键时,该系统就按照该按键控制的功能运作;显示模块主要是为了显示电机的工作状态和转速;驱动电路主要是对单片机输出的脉冲进行功率放大,从而驱动电机转动。
单片机课程设计-正反转可控的步进电机
正反转可控的步进电机1 引言本课程设计目的是为了进一步掌握单片机系统,加强对系统设计和应用能力的培养而开设的综合设计训练环节。
本系统用51单片机和ULN2003A电机驱动芯片并加入控制按钮来实现步进电机的正、反转控制。
2 设计方案及原理步进电机可以对旋转角度和转动速度进行高精度的控制。
作为控制执行部件,广泛应用于自动控制和精密仪器等领域。
例如在仪器仪表、机床设备以及计算机的外围设备中(如打印机和绘图仪),常有对精确的、可控制的回转源的需要。
在这种情况下,使用步进电机最为理想。
2.1 步进电机控制步进电机两个相邻磁极之间的夹角为60°,线圈绕过相对的两个磁极构成一相。
此外各磁极上还有5个分布均匀的锯形小齿。
电机转子上没有绕组。
当某相绕组通电时,响应的两个磁极就分别形成N-S极,产生磁场,并与转子形成磁路。
如果这是定子的小齿与转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子齿与定子齿对齐,从而使步进电机向前“走”一步。
如果通过单片机按顺序给绕组施加有序的脉冲电流,就可以控制电机的转动,从而进行了数字到角度的转换。
转动的角度大小与施加的脉冲数成正比,转动的速度与脉冲频率成正比,而转动方向则与脉冲的顺序有关。
2.2 步进电机驱动方式步进电机常用的驱动方式是全电压驱动,即在电机移步与锁步时都加载额定电压。
为防止电机过流及改善驱动特性需加限流电阻。
由于步进电机锁步时,限流电阻要消耗掉大量的功率。
因此,限流电阻要有较大功率容量,并且开关管也要有较高的负载能力。
步进电机也可以使用软件方法,即使用单片机实现,这样不但简化了电路,同时降低了成本。
使用单片机以软件方式驱动步进电机,不但可以通过编程方法在一定范围之内自由的设定步进电机的转速,往返转动的角度以及转动次数等;还可以方便灵活的控制步进电机的运行状态,以满足不同用户的需求。
因此常把单片机步进电机控制电路称之为可编程步进电机控制驱动器。
最新单片机课程设计步进电机启动停止正反转
单片机课程设计步进电机启动停止正反转单片机课程设计报告步进电机控制设计姓名:黄盛海 201030480108詹志勋 201030480125郑榕生 201030480128 班级: 10车辆工程1班指导老师:李震姜晟日期: 2012.6.18~6.20 华南农业大学工程学院摘要:步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,它的的驱动电路根据控制信号工作,控制信号由单片机产生。
本次课程设计主要采用AT89S52芯片,用汇编语言编写出电机的正转、反转、加速、减速、停止程序,通过单片机、电机的驱动芯片ULN2003以及相应的按键实现以上功能,并且步进电机的工作状态要用相应的发光二极管显示出来。
控制系统主要由硬件设计和软件设计两部分组成。
其中,硬件设计包括单片机的最小系统模块、电源模块、控制模块、步进电机ULN2003A驱动模块、彩灯显示模块5个功能模块的设计。
并且通过仿真控制系统对硬件、软件进行了调试和改善,实现了上述功能。
本系统具有智能性、实用性及可靠性的特点。
关键词:步进电机单片机电脉冲驱动系统汇编语言目录1、课程设计目的及要求 (4)2、整体系统分析 (4)3、硬件系统分析 (6)4、软件系统分析 (10)5、调试结果 (10)6、结论 (11)7、参考文献 (12)附一:源程序 (12)1. 课程设计目的及要求1.1 课程设计目的①增进对单片机的感性认识,加深对单片机理论方面的理解;②掌握单片机的内部功能模块的应用,如定时器/计数器、中断、存贮器、I/O口、A/D转换等;③了解和掌握单片机应用系统的软硬件设计过程及实现方法。
1.2 课程设计要求①设计一个步进电机控制器,要求用多个按键控制电机的启动/停止、加速、减速、反转等控制功能;②用彩灯显示电机的转动状态,如加速就控制彩灯快速闪烁,减速则控制彩灯慢速闪烁等。
2. 整体系统分析2.1步进电机控制工作原理步进电机实际上是一个数字\角度转换器,也是一个串行的数\模转换器。
单片机课程设计单片机控制步进电机
单片机课程设计单片机控制步进电机单片机课程设计:单片机控制步进电机单片机(Microcontroller)是一种集成了中央处理器、存储器和输入/输出接口的微型计算机。
而步进电机(Stepper Motor)是一种将电脉冲信号转换为机械角位移的电磁设备。
在单片机课程设计中,控制步进电机是一项常见的任务。
本文将介绍如何使用单片机来控制步进电机,并展示一个基于单片机的课程设计实例。
一、步进电机的原理及特点步进电机是一种将电脉冲信号转换为机械位移的设备,其主要特点包括精密定位、易控制、低成本、没有超额负荷等。
步进电机通常由定子和转子组成,定子上的绕组通电产生磁场,而通过改变绕组通电的顺序和时序,可以实现步进电机的运动控制。
二、单片机控制步进电机的原理为了实现对步进电机的控制,我们需要使用单片机来产生相应的控制信号。
步进电机通常由一个驱动器和若干相继续组成。
单片机通过发出适当的信号给驱动器,进而控制电机的运动。
具体而言,单片机需要控制步进电机的相序、步数和速度。
1. 步进电机的相序控制步进电机的相序控制是通过依次激活不同相继的绕组,实现转子的转动。
单片机通过输出对应的高低电平信号给驱动器,从而控制绕组的激活顺序。
常见的步进电机驱动方式包括全步进和半步进。
2. 步进电机的步数控制步进电机的步数控制是通过控制单片机输出的脉冲数,来实现电机的旋转角度。
根据电机的分辨率和精度需求,我们可以设定单片机输出的脉冲数,从而控制电机的步进角度。
3. 步进电机的速度控制步进电机的速度控制是通过调节单片机输出脉冲信号的频率来实现的。
频率越高,电机转动的速度越快;频率越低,则电机转动的速度越慢。
单片机可以通过定时器等方式产生相应的脉冲频率来控制步进电机的转速。
三、基于单片机的步进电机控制课程设计实例下面将展示一个基于单片机的步进电机控制课程设计实例,该设计基于C语言编程,使用Keil软件进行开发。
设计要求:设计一个步进电机控制系统,使步进电机以设定的转速顺时针旋转一定圈数,并能逆时针旋转一定圈数。
单片机控制步进电机课程设计
目录第1章总体设计方案 (1)1.1课程设计的内容和要求 (1)1.2课程设计原理 (1)1.3课程设计思路 (2)1.4实验环境 (3)第2章详细设计方案 (4)2.1实现方法 (4)2.2模块设计 (5)2.2.1 步进电机的驱动 (5)2.2.2 按键电路设计 (5)2.2.3 时钟产生及复位电路 (6)2.3主程序流程图图 (7)第3章调试及结果分析 (8)3.1调试步骤及方法 (8)3.2实验结果及分析 (8)参考文献 (9)附录1(源程序) (10)附录2(系统原理图) (14)附录3(器件清单) (15)第1章总体设计方案1.1 课程设计的内容和要求一、课程设计内容:步进电机是一种将电脉冲转换成角位移或线位移的电磁机械装置,也是一种能把输出解析为唯一增量和输入数字脉冲对应的驱动器件。
步进电机具有快速启动、停止的能力,精度高、控制方便,因此,在工业上得到了广泛应用。
利用单片机控制一个步进电机,而且要满足如下技术指标:(1)开始通电时,步进电机停止转动。
(2)单片机分别接按键开关K1、K2和K3,用来控制步进电机的转向,要求如下:当按下K1时,步进电机正转。
当按下K2时,步进电机反转。
当按下K3时,步进电机停止转动。
步进电机的工作方式有单四拍、双四拍、单双八拍。
二、课程设计要求:1. 独立完成课程设计任务;2. 通过老师当场验收;3. 交出完整的课程设计报告。
1.2课程设计原理步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调整节拍的目的。
本次设计是采用步进电机28BYJ48型四相八拍电机,电压为DC5V—DC12V。
当对步进电机施加一系列连续不断的控制脉冲时,它可以连续不断地转动。
步进电机正反转设计
单片机课程设计课题:步进电机正反转设计系别:电气与电子工程系专业:自动化姓名:学号:河南城建学院2010年12 月29日成绩评定·一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。
二、评分评分项目设计报告评分答辩评分平时表现评分合计(100分)任务完成情况(20分)课程设计报告质量(40分)表达情况(10分)回答问题情况(10分)工作态度与纪律(10分)独立工作能力(10分)得分课程设计成绩评定班级姓名学号成绩:分(折合等级)指导教师签字年月日一、 设计目的1.了解单片机的基本控制原理;2.熟悉单片机的步进电机驱动程序设计和调试3.学习并提高单片机应用系统设计调试水平二、 设计要求设计一个单片机控制的步进电机,实现其正反转。
利用单片机的P1口驱动步进电机,通过外部开关电路驱动正反转切换,将软、硬件有机的结合起来,使得系统能够正确的工作实现预期的设计现象。
三、 总体设计1. 主要原理框图图1 2.工作原理1).K0的闭合实现步进电机的停止和运行;2).当步进电机停止后才能对其进行正反转切换,即:K1闭合, K0,K2断开,步进电机正转;K2闭合,K0K1断开,步进电机反转。
四、各部分电路设计1.外部控制电路时钟电路开关输入电路单片机89C 52步进电机通过外部开关K0 ,K1和K2的开关状态来达到对单片机输入信号,进入单片机的程序从而对步进电机进行控制图22.晶振电路及单片机控制电路晶振提供时钟信号;保证单片机的正单片机程序的正常运行;图33.步进电机步进电机的相绕组的通电方式有多种,通常为单拍方式、双拍方式和单双拍方式。
本课程设计采用四相八拍通电方式。
图4五、整体电路图图5六、设计总结1、设计过程中遇到的问题及解决方法在设计此步进电机正反转的课程设计过程中遇到了不少问题,其中最主要的是如下问题,最后都一一解决。
1)由于本人能力的有限,真的不知道如何编写程序。
到图书馆查阅有关这个设计个向相关设计,到书中查找并研究程序,但是当把程序编译进已经做好的Proteus仿真设计后,程序仍然不能运行。
单片机步进电机课程设计
单片机步进电机课程设计一、课程目标知识目标:1. 理解单片机的基本原理,掌握步进电机的控制方法;2. 学会使用编程软件编写程序,实现对步进电机的控制;3. 了解步进电机在自动化设备中的应用。
技能目标:1. 能够独立完成单片机与步进电机的硬件连接;2. 能够编写程序,实现步进电机的正反转、速度调节等功能;3. 能够分析并解决步进电机控制过程中出现的问题。
情感态度价值观目标:1. 培养学生对单片机及步进电机控制技术的兴趣,提高学生的动手实践能力;2. 培养学生团队协作精神,学会与他人共同解决问题;3. 增强学生对我国自动化产业的了解,激发学生的爱国情怀。
课程性质:本课程为实践性较强的课程,旨在让学生通过动手实践,掌握单片机与步进电机的控制技术。
学生特点:学生具备一定的电子基础和编程知识,对单片机和步进电机有一定的了解。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,培养学生的实际操作能力和创新精神。
在教学过程中,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 单片机基础理论:回顾单片机的组成、工作原理,重点掌握I/O口控制、定时器/计数器等功能;相关教材章节:第一章 单片机概述,第三章 单片机硬件结构。
2. 步进电机原理:学习步进电机的结构、工作原理,了解步进电机的参数及选型;相关教材章节:第六章 步进电机原理及其应用。
3. 硬件连接与编程:学习单片机与步进电机的硬件连接方法,掌握步进电机驱动器的使用,编写控制程序;相关教材章节:第四章 单片机I/O接口技术,第七章 步进电机驱动器及其应用。
4. 步进电机控制实践:设计实际控制电路,实现对步进电机的正反转、速度调节等功能;相关教材章节:第八章 单片机步进电机控制系统设计。
5. 故障分析与调试:学习步进电机控制过程中可能出现的故障及解决方法,提高学生的实际操作能力;相关教材章节:第九章 单片机控制系统故障分析与调试。
单片机课设步进电机控制正反转
单片机课程设计报告设计题目:步进电机控制系统学院自动化与信息工程学院专业电气工程及其自动化班级姓名学号指导教师王水鱼2010 年秋季学期平时(10%)任务完成(30%)答辩(30%)课设报告(30%)总评成绩目录1.设计目的 (2)2.设计的主要内容和要求 (2)3.题目及要求功能分析 (2)4.设计方案 (5)4.1 整体方案 (5)4.2 具体方案 (5)5.硬件电路的设计 (6)5.1 硬件线路 (6)5.2 工作原理 (7)5.3 操作时序 (8)6. 软件设计 (8)6.1 软件结构 (8)6.2 程序流程 (9)6.3 源程序清单 (9)7. 系统仿真 (9)8. 使用说明 (10)9. 设计总结 (10)参考文献 (11)附录 (12)步进电机的控制1.设计目的(1)熟悉单片机编程原理。
(2)熟练掌握51单片机的控制电路和最小系统。
(3)单片机基本应用系统的设计方法。
2.设计的主要内容和要求(1)查阅资料,了解步进电机的工作原理。
(2)通过单片机给参数控制电机的转动。
(3)通过按钮控制启停及反转。
(4)其他功能。
3.题目及要求功能分析步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。
三相单、双六拍步进电机的结构和工作原理:三相单、双六拍步进电机通电方式:这种方式的通电顺序是:U-U V-V-VW-W-WU-U或为U-UW-W-WV-V-VU-U。
按前一种顺序通电,即先接通U相定子绕组;接着是U、V两相定子绕组同时通电;断开U相,使V相绕组单独通电;再使V、W两相定子绕组同时通电;W 相单独通电;W、U两相同时通电,并依次循环。
单片机课程设计报告 电机正反转
C51课程设计报告设计课题:正反转可控的直流电动机设计要求:按下K1时可使直流电动机正转,按下K2时可使直流电动机反转,按下K3按钮时停止,在进行相应的操作时,对应LED 将被点亮。
设计目的:通过这次课程设计,进一步巩固我们对单片机编程的掌握,自己学会调试;同时向老师反映我们学习中不足的地方经过调试,最终得到如下程序:#include<reg51.h>sbit K1=P3^0; //正转开关sbit K2=P3^1; //反转开关sbit K3=P3^2; //停止开关sbit P1_0=P1^0;sbit P1_1=P1^1;sbit D1=P0^0;sbit D2=P0^1;sbit D3=P0^2; //端口位定义void main(){P1_0=0; P1_1=0; D3=0;while(1){if(K1==0) //按下正转按钮K1{while(K1==0); //等待K1按下结束,即断开K1P1_1=0; P1_0=1; //禁止反转,启动正转D2=1;D3=1; D1=0; //关闭反转指示灯D2与停止指示灯D3,点亮正转指示灯D1}else if(K2==0) //按下反转按钮K2{while(K2==0); //等待K2按下结束,即断开K2P1_0=0;P1_1=1; //禁止正转,开始反转D1=1;D3=1;D2=0; //关闭穤正转指示灯D1与停止指示灯D3,点亮反转指示灯D2}else if(K3==0) //按下停止按钮K3{while(K3==0); //等待K3按下结束,即断开K3P1_0=0; P1_1=0; //停止正转与反转D1=1; D2=1; //关闭正转与反转指示灯D1与D2D3=0; //点亮停止指示灯D3}}附图学习心得与体会:这次课程设计让我们进一步掌握了单片机编程,并且对以前所学的知识再进行熟识与整理。
这个程序的编写还很顺利,关键在于直流电动机控制电路的搭建,(如上图所示);当A点为低电平时,Q3,Q2截止,Q7,Q1导通,电机左端呈现高电平;当B点为高电平时,Q8,Q4截止,Q6,Q5导通,电机右端呈现低电平,因此当A为0,B为1时,电机正转。
单片机控制步进电机的正反转
单片机控制步进电机的正反转单片机控制步进电机的正反转最近好长一段时间没有来51hei单片机网了,接近考试的日子越来越近,开始把时间转到考试的准备上了,这两天回过头来想想,应该有快半个月对单片机的学习没有什么进展了,不过我一直坚信,单片机学习的路上,只要你肯坚持,只要你肯吃苦、肯付出,再难的关也不是问题,当然,最近也深深地体会到,学习单片机如果有一个好的老师作为指导,那学起来就不用那么费劲了,不过也没有关系,很多东西,条件不好的时候,就需要自己去改变,去想想其它的法子。
这两天开始研究单片机与步进电机的控制问题,感觉真的很好玩,步进电机在工业的很多地方都有很大的应用,比如流水线的运转,智能小车,系统定位都有很大的用处。
也是一个核心的技术。
步进电机的控制主要是由单片机IO口高低电平的控制以及输出脉冲来控制其转速,达到了一种数模转换的效果。
让单片机以并行二进制数转换成并行脉冲序列,并实现方向控制。
只要是脉冲在步进电机允许的范围之内,每个脉冲将使步进电机转动一个固定的步距角度,根据步距角的大小及实际走的步数,只要知道初始位置,便可以根据计算知道其最终位置了。
步进电机转动时的驱动的电流比较大,所以在使用单片机控制的时候,要在中间加一个放大电路,或者加上一些常用的放大电流的芯片,比如人们很经常用的一个芯片ULM2003.只有这样才能够使步进电机转动,不然会因为电流太小而实现不了效果。
下面把实际效果拿出来分享下:程序如下:#include <reg52.h>#define uchar unsigned char#define uint unsigned intuchar num[]={0x01,0x02,0x04,0x08};void delay(uint z){uint a;for(a=0;a<z;a++);}void main(){uchar i;uint j;for(j=0;j<2045;j++){{ P1=num[i];delay(1200);i++;if(i==4)i=0; }}while(1);}其中,z控制转速,j控制转的圈数,由计算和调试得出当j=2045时,步进电机走的圈数为1圈,这样,我们要步进电机走多少圈时,可以在里面嵌套一个程序,达到我们要电机转多少圈的目的。
基于单片机原理的步进电机的正反转程设计报告
基于单片机原理的步进电机的正反转程设计报告步进电机是一种电动机,能够精确地控制旋转角度和位置,广泛应用于工业和自动化控制系统中。
本篇报告将介绍基于单片机原理的步进电机的正反转程设计。
步进电机是一种特殊的电动机,每次输入一个脉冲信号,电机就会转动一个固定的角度,称为步距角。
步进电机的控制原理是通过改变相序对电机进行控制,根据不同的相序,电机可以实现正转或反转。
步进电机的正反转程设计涉及到两个方面,一是电机的控制电路,二是单片机的编程控制。
首先,电机的控制电路是步进电机正反转程设计的关键。
常见的控制电路有两种:全桥驱动电路和双H桥驱动电路。
全桥驱动电路由四个开关管组成,通过对不同开关管的开关控制,可以激活不同的相序,实现电机的正反转。
双H桥驱动电路由两个H桥组成,通过对H桥的开关控制,可以激活不同的相序,实现电机的正反转。
根据实际需求和控制方式选择适合的电机控制电路。
其次,单片机的编程控制是步进电机正反转程设计的关键。
单片机可以通过输出脉冲信号控制电机的正反转和转动速度。
编程时需要设置好脉冲信号的频率和方向,可以通过调节脉冲信号的频率来控制电机的转动速度,通过改变脉冲信号的方向来控制电机的正反转。
在步进电机的正反转程设计中,还可以考虑加入其他功能,如限位检测、位置控制等。
限位检测可以通过加入限位开关来实现,当电机转动到限位位置时,限位开关会触发信号,单片机可以根据信号做出相应的处理。
位置控制可以通过加入编码器等位置传感器来实现,单片机可以根据传感器反馈的信号准确控制电机的位置。
最后,步进电机的正反转程设计需要进行实际的调试和测试。
在实际调试和测试中,需要根据预设的参数和要求,进行电机的正反转程测试和性能评估。
根据实际测试结果,可以对设计进行优化和改进,以达到更好的性能和可靠性。
总之,基于单片机原理的步进电机的正反转程设计是一个复杂而关键的任务,需要综合考虑电机控制电路和单片机编程控制两个方面。
在设计过程中,需要理解步进电机的工作原理和控制原理,结合实际需求和要求进行设计和调试,最终实现电机的可靠正反转程控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机课程设计课题:步进电机正反转设计系别:电气与电子工程系专业:姓名:学号指导老师:2013年01月09日一设计目的1、增进对单片机的感性认识,加深对单片机理论方面的理解;2、掌握单片机的内部功能模块的应用,如定时器/计数器、中断、片内外存贮器、I/O口、A/D、3;4、掌握控制步进电机转动的编程方法。
二设计要求1、具有速度和转向设定功能;2、设置开始、停止以及正反转健;3、转速以及转向有数码管显示(本设计使用的为LCD12864)。
三、总体设计步进电机是一种将电脉冲转化为角位移的数字控制执行机构。
它将电脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机具有控制简便、定位准确等特点。
随着科学技术的发展,在许多领域将得到广泛的应用。
鉴于传统的脉冲系统移植性不好,本文提出微机控制系统代替脉冲发生器和脉冲分配器,用软件的方法产生控制脉冲,通过软件编程可以任意设定步进电机的转速、旋转角度、转动次数和控制步进电机的运行状态。
以简化控制电路,降低生产成本,提高系统的运行效率和灵活性。
步进电机的角位移与输入脉冲数严格成正比,因此,当它转动一周后,没有累计误差,具有良好的跟随性。
由步进电机与驱动电路组成的开环数控系统,既非常简单、廉价,又非常可靠。
同时,它也可以与角度反馈环节组成高性能的闭环数控系统。
步进电机的动态响应快,易于起停、正反转及变速。
速度可在相当宽的范围内平滑调节,低速下仍能保证获得大转矩。
步进电机只能通过脉冲电源供电才能运行,它不能直接使用交流电源和直流电源。
步进电机存在振荡和失步现象,必须对控制系统和机械负载采取相应的措施。
步进电机自身的噪声和振动较大,带惯性负载的能力较差。
步进电机是自动控制系统中常用的执行部件。
步进电机的输入信号为脉冲电流,它能将输入的脉冲信号转换为阶跃型的角位移或直线位移,因而步进电机可看作是一个串行的数/模转换器。
由于步进电机能够直接接受数字信号,而不需数/模转换,所以使用微机控制步进电机显得非常方便。
步进电机有以下优点:(1)通常不需要反馈就能对位置和速度进行控制;(2)位置误差不会积累;(3)与数组设备兼容,能够直接接收数字信号;(4)可以快速启停。
步进电机的品种规格很多,按照它们的结构和工作原理可以划分为磁阻式(也称反应式或变磁阻式)电机、混合式电机、永磁式电机和特种电机等四种主要型式。
步进电机不需位移传感器就可精确定位,所以在精确定位系统中应用广泛。
目前打字机、计算机外部设备、数控机床、传真机等设备中都使用了步进电机。
随着电子计算机技术的发展,步进电机必将发挥它的控制方便、控制准确的特点,在工业控制等领域取得更为广泛的应用。
本设计采用16 位单片机AT89C51对步进电机进行控制,通过I/O口输出的具有时序的方波作为步进电机的控制信号,信号经过驱动芯片驱动步进电机;同时,用触发按键来对电机的状态进行控制,并用128X64LCD显示电机的状态及转速。
因为步进电机的控制是通过脉冲信号来控制的,将电脉冲信号转变为角位移或线位移的开环控制元件。
所以怎样产生这个脉冲信号和产生怎样的信号是电机控制的关键。
用软件控制单片机产生脉冲信号,通过单片机的P1口输出脉冲信号,因为所选电机是两相的,所以只需要P0口的低四位P0.0-P0.3分别通过ULN2003A接到电机的五根电线上。
可以通过调整输出脉冲的频率来调整电机的转速,通过改变输入脉冲的顺序来改变转动方向,P2口和P3口接128X64LCD,可以显示当前的电机转速和转向,设置复位键可使正在转动的电机停止转动,大概可分为如下图所示的几部分。
注:由于此设计程序较复杂,在此没有列出程序的框图,程序框图详见软件设计。
四、主要器件介绍及电路设计4.1、步进电机4.1.1 步进电机概述步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
由于脉冲信号数与步距角的线性关系,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
4.1.2 步进电机的工作原理通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。
该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。
当定子的矢量磁场旋转一个角度。
转子也随着该磁场转一个角度。
每输入一个电脉冲,电动机转动一个角度前进一步。
它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。
改变绕组通电的顺序,电机就会反转。
所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。
图1是该四相反应式步进电机工作原理图。
图2 四相反应式步进电机工作原理图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。
单四拍与双四拍的步距角相等,但单四拍的转动力矩小。
八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c 所示:a单四拍 b双四拍 c八拍图3.步进电机工作时序波形图4.2 ULN2003ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,可用来驱动继电器。
它是双列16脚封装,NPN晶体管矩阵,最大驱动电压=50V,电流=500mA,输入电压=5V,适用于TTL COMS,由达林顿管组成驱动电路。
ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,它的输出端允许通过电流为200mA,饱和压降VCE 约1V左右,耐压BVCEO 约为36V。
用户输出口的外接负载可根据以上参数估算。
采用集电极开路输出,输出电流大,故可直接驱动继电器或固体继电器,也可直接驱动低压灯泡。
通常单片机驱动ULN2003时,上拉2K 的电阻较为合适,同时,COM引脚应该悬空或接电源。
ULN2003是一个非门电路,包含7个单元,但独每个单元驱动电流最大可达350mA.资料的最后有引用电路,9脚可以悬空。
比如1脚输入,16脚输出,你的负载接在VCC与16脚之间,不用9脚。
ULN2003的作用:ULN2003是大电流驱动阵列,多用于单片机、智能仪表、PLC、数字量输出卡等控制电路中。
可直接驱动继电器等负载。
输入5VTTL电平,输出可达500mA/50V。
ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。
该电路的特点如是: ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器。
ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。
ULN2003A引脚图及功能如下:图4 ULN2003A引脚图ULN2003 是高耐压、大电流、内部由七个硅NPN达林顿管组成的驱动芯片。
经常在以下电路中使用,作为:1、显示驱动2、继电器驱动3、照明灯驱动4、电磁阀驱动5、伺服电机、步进电机驱动等电路中。
ULN2003的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。
ULN2003 工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V 的电压,输出还可以在高负载电流并行运行。
ULN2003 的封装采用DIP—16 或SOP—16ULN2003A在各种控制电路中常用它作为驱动继电器的芯片,其芯片内部做了一个消线圈反电动势的二极管。
ULN2003的输出端允许通过IC 电流200mA,饱和压降VCE 约1V左右,耐压BVCEO 约为36V。
输出电流大,故可以直接驱动继电器或固体继电器(SSR)等外接控制器件,也可直接驱动低压灯泡。
ULN2003可以驱动7个继电器,具有高电压输出特性,并带有共阴极的续流二极管使器件可用于开关型感性负载。
每对达林顿管的额定集电极电流是500mA,达林顿对管还可并联使用以达到更高的输出电流能力。
ULN2003A中每对达林顿管的基极都串联有一个2.7kΩ的电阻,可直接与TTL或5V CMOS器件连接。
4.3 12864LCD12864A-1汉字图形点阵液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵,16*8=128,16*4=64,一行只能写8个汉字,4行;)、128个字符(8X16点阵)及64X256点阵显示RAM(GDRAM)。
4.3.1 主要技术参数和显示特性如下:电源:VDD 3.3V-5V(内置升压电路,无需负压);显示内容:128列× 64行(128表示点数)显示颜色:黄绿显示角度:6:00钟直视LCD类型:STN与MCU接口:8位或4位并行/3位串行配置LED背光多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等4.3.2 外形尺寸图:图5 12864LCD外形尺寸4.3.3 主要外形尺寸项目标准尺寸单位模块体积113.0×65.0×12.8 mm定位尺寸105.0×55.0 mm视域73.4×38.8 mm行列点阵数128×64 dots点距离0.52×0.52 mm点大小0.48×0.48 mm4.3.4 模块引脚说明引脚引脚名称方向功能说明号1 VSS - 模块的电源地2 VDD - 模块的电源正端3 V0 - LCD驱动电压输入端4 RS(CS) H/L 并行的指令/数据选择信号;串行的片选信号5 R/W(SID) H/L 并行的读写选择信号;串行的数据口6 E(CLK) H/L 并行的使能信号;串行的同步时钟7 DB0 H/L 数据08 DB1 H/L 数据19 DB2 H/L 数据210 DB3 H/L 数据311 DB4 H/L 数据412 DB5 H/L 数据513 DB6 H/L 数据614 DB7 H/L 数据715 PSB H/L 并/串行接口选择:H-并行;L-串行16 NC 空脚17 /RET H/L 复位低电平有效18 NC 空脚19 LED_A - 背光源正极(LED+5V)20 LED_K - 背光源负极(LED-OV)逻辑工作电压(VDD):4.5~5.5V电源地(GND):0V工作温度(Ta):0~60℃(常温) / -20~75℃(宽温)4.3.5 接口时序模块有并行和串行两种连接方法(时序如下):4.3.5.1 8位并行连接时序图图6 MPU写资料到模块图7 MPU从模块读出资料4.3.5.2 串行连接时序图图8 串行连接时序串行数据传送共分三个字节完成:第一字节:串口控制—格式 11111ABC。