数列中的不等式问题
数列绝对值不等式
数列绝对值不等式数列是数学中一个重要的概念,它是由一串有顺序的数字组成的序列。
在数列的研究中,绝对值不等式是一种常见的数学问题。
本文将介绍数列绝对值不等式及其性质,并通过例题来解释其应用。
一、数列绝对值不等式的定义和性质数列绝对值不等式是指在一个数列中由绝对值组成的不等式。
数列绝对值不等式常见的形式有以下几种:1. |an|≤a,其中a为实数。
2. |an|≥a,其中a为正实数。
3. |an±bn|≤a,其中a为实数。
4. |an±bn|≥a,其中a为正实数。
在数列绝对值不等式中,|an|表示数列中的第n个数的绝对值,a和b为实数。
根据不等式的性质,我们可以得出以下结论:1. 若|an| ≤ a,则 -a ≤ an ≤ a。
2. 若|an| ≥ a,则an ≤ -a 或an ≥ a。
二、解决数列绝对值不等式的方法解决数列绝对值不等式的关键是确定数列中每个数的取值范围。
以下是一些常用的解题方法:1. 分情况讨论法当数列中的每个数的取值范围不同时,可以采用分情况讨论的方法。
具体步骤如下:(1)根据数列中每个数的绝对值大小,给出每个数的取值范围。
(2)将取值范围代入绝对值不等式中,得出每个数的取值范围。
(3)将每个数的取值范围整合起来,得出整个数列的取值范围。
2. 取最大值和最小值法当数列中每个数的取值范围相同时,可以通过取最大值和最小值的方法求解。
具体步骤如下:(1)根据数列中每个数的绝对值大小,确定每个数的取值范围。
(2)将取最大值和最小值代入绝对值不等式中,得出每个数的取值范围。
(3)将每个数的取值范围整合起来,得出整个数列的取值范围。
三、例题解析为了更好地理解数列绝对值不等式的求解过程,我们来看几个例题。
例题1:已知数列an=3n-2,试求满足绝对值不等式|an+2|≤5的n的取值范围。
解析:首先,我们根据数列an=3n-2,求得数列中每个数的取值。
当 n = 1 时,a1 = 3(1) - 2 = 1;当 n = 2 时,a2 = 3(2) - 2 = 4;当 n = 3 时,a3 = 3(3) - 2 = 7;...根据数列中每个数的取值,我们可以判断出:an+2 = 3(n + 2) - 2 = 3n + 4接下来,我们将an+2代入绝对值不等式中,得到:|3n + 4| ≤ 5根据绝对值不等式的性质,我们可以得到以下两种情况:1. 3n + 4 ≤ 5,即3n ≤ 1,解得n ≤ 1/3;2. -(3n + 4) ≤ 5,即 -3n ≤ 9,解得n ≥ -3。
求解数列不等式证明问题的方法
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
数列中的不等式(许兴华)
数列中的不等式数列中的不等式是高考中的一个重要内容。
本文介绍用“放缩法”证明数列中的不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
1. 裂项放缩(即先放缩后裂项或先裂项再放缩)若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例1已知n ∈N*,求n 2n131211<…++++。
证明:因为122121nn nn n n n =++-=--<(),则11213+++…<()()…()<++-+-++--=-1122123221212nn n n n 所以原不等式成立。
例2 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< , 综合知结论成立。
2. 公式放缩(利用基本不等式、二项式定理放缩)利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。
例3已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n nn f 。
证明:由题意知)12)(1()12(212211)111()1221(112121)(+++-=+-+=+--+-=+-+-=+-n n n n n n n n n n n n n n n f 又因为*N n ∈且3≥n ,所以只须证122+>n n,又因为,1n 21n 2)1n (n n 1C C C C C )11(2nn 1n n2n 1n 0n n n +>+++-++=+++++=+=- 所以1)(+>n nn f 。
数列中的不等式的证明
数列中的不等式的证明证明数列中的不等式的一般方法:1.数学归纳法:①直接应用数学归纳法:这是由于数学归纳法可以用来证明与正整数相关的命题,当然也包括与正整数相关的不等式(即数列不等式);②加强命题后应用数学归纳法:直接应用数学归纳法并不能证明所有数列不等式,有些数列不等式必须经加强后才能应用数学归纳法证出.2.放缩法:①单项放缩:将数列中的每一项(通项)进行相同的放缩;②裂项放缩:将数列中的每一项裂开放缩成某两项之差;③并项放缩:将数列中的两项合并放缩成一项;④舍(添)项放缩:将数列中的某些项舍去或添加;⑤排项放缩:将数列中的项进行排序(即确定数列的单调性),从而求出数列中项的最值,达到证明不等式的目的,能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然; ⑥利用基本不等式放缩:例如平均数不等式也可在数列不等式的证明中起作用.一、直接应用数学归纳法证明1.已知函数ax x x f +-=3)(在)1,0(上是增函数. )1(求实数a 的取值集合A(2)当a 中取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+且)1,0(1∈=b a ,b 为常数,试比较n n a a 与1+的大小(3)在(2)的条件下,问是否存在正实数c 使10<-<c a n 对一切+∈N n 恒成立?2. (2007.全国1理第22题)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,….(1)求{}n a 的通项公式;(2)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…43n n b a -<≤,123n =,,,…. 3.已知012)2(112=++++++n n n n a a a a ,211-=a 求证:(1)01<<-n a (2)122->n n a a (3)}{12-n a 递增.4.(2004.辽宁理科高考第21题) 已知函数223)(x ax x f -=的最大值不大于61,又当.81)(,]21,41[≥∈x f x 时 (1)求a 的值; (2)设.11.),(,21011+<∈=<<++n a N n a f a a n n n 证明 5.(2005.重庆理科高考第22题)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a n n n 且. (1)用数学归纳法证明:)2(2≥≥n a n ;(2) 已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….6. (2007.全国2理第21题)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数.7. (2005.辽宁卷第19题)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(1)用数学归纳法证明12)13(--≤n nn b ; (2)证明.332<n S 8.(2004.重庆理第22题)设数列{}n a 满足).3,2,1(,1,211 =+==+n a a a a nn n 12)1(+>n a n 证明对一切正整数n 成立;的大小,与,判断令1)3,2,1(,)2(+==n n n n b b n n a b 并说明理由.二、应用单项放缩或数学归纳法或排项放缩或基本不等式证明9.(2007重庆理科高考第21题)已知各项均为正数的数列{n a }的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++=(1)求{n a }的通项公式;(2)设数列{n b }满足1)12(=-n b n a ,并记n T 为{n b }的前n 项和,求证:*2),3(log 13N n a T n n ∈+>+10.求证:),1(212)1211()511)(311(∙∈>+>-+++N n n n n11.求证:11(11)(1)(1))432n N n ∙+++>∈-12. 求证:)(1212642)12(531∙∈+<⨯⨯⨯⨯-⨯⨯⨯N n n n n 13.已知2,1≥>n a ,且+∈N n ,求证)1(1a a n aa n n ->-三、应用裂项放缩证明14. 已知)(x f y =,1)1(=-f ,对任意实数y x ,满足:3)()()(-+=+y f x f y x f(1)当N n ∈时求)(n f 的表达式(2)若11=b ,)1(1-+=+n f b b n n ,求n b(3)求证当+∈N n 时4711121<+++n b b b 15.(2006年全国卷I 第22题)设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+)(+∈N n , (1)求首项1a 与通项n a ;(2)设2nn n T S =)(+∈N n ,证明:132n i i T =<∑. 16. 已知+∈N n ,求证:3)11(2<+≤n n. 17. 定义数列如下:*+∈+-==N n a a a a n n n ,1,2211,求证:(1)对于*∈N n 恒有n n a a >+1成立。
数列不等式
数列不等式数列不等式是数学中最基础的概念之一,也是解决特定问题的基本技术之一。
它能够帮助人们了解数学直觉,构建可操作的数学模型,以及深入挖掘生活中的数学关系。
一般地,数列不等式表示一个或多个等号组成的不等式,通常是以两两等式相结合的形式出现,即:若X1≤X2≤X3≤ (X)则,X1+X2+X3+…+Xn≤n(X1+Xn)2数学研究者经常使用这类不等式来描述给定的数列的范围,以及这些数列的几何发展情况。
例如,某数列的前n项和可以用如下变量替代:Sn=X1+X2+X3+ (X)这些变量可作为连续的函数。
通过不等式的方式来描述这些函数,通常可以提出一定的结论,甚至可以形成一个系统的数学研究体系。
不等式可以用来描述给定的数列和函数,例如可以利用不等式提出如下结论:若给定函数f(x)满足f(x)≤a,则f(x1)+f(x2)+…+f(xn)≤na2此外,如果f(x)的导函数的值存在,不等式往往用来描述导函数的大小或值的确定性。
例如,若函数f(x)的导函数g(x)存在,可以提出如下结论:若g(x)≤g1,则f(x1)+f(x2)+…+f(xn)≤ng1n不等式用来描述函数的空间形状和时间发展也是如此。
比如,有一类函数叫做凸函数,它以特定的形式出现:f(x)≤f(x1)+f′(x1)(xx1)其中,f′(x1)是函数f(x)在x1点处的导函数。
上述不等式可用来表示函数f(x)的单调性和凸性。
此外,不等式可以用来解释随机事件的发生,特别是事件的概率关系。
例如,假设有A、B、C三次事件,看作A事件概率P(A),B事件概率P(B),C事件概率P(C)。
那么根据不等式的概念,可以推出: P(A∪B∪C)≤P(A)+P(B)+P(C)这个不等式说明,A、B和C三个事件同时发生的概率一定比分别发生的概率之和要小。
数列不等式在各个学科领域都有着重要的作用,尤其是经济学、金融学、管理学等社会科学。
它能够有效地提升模型的效率,模拟实际发生事件的过程,开发更为实用的决策策略。
数列与不等式结合典型题
数列与不等式结合典型题1.已知数列}{n a 中,),3,2,1(0 =>n a n ,其前n 项和为n S ,满足*,)1(N n a p S p n n ∈-=-,10≠>p p 且. 数列}{n b 满足.log 1n p n a b -=(Ⅰ)求数列}{n a 、}{n b 的通项n n b a 与; (Ⅱ)若n nn n T a b c p ,,21==记为数列}{n c 的前n 项和,求证:.40<<n T2.已知定义在(-1,1)上的函数)1,1(,,1)21()(-∈=y x f x f 且对满足时,有).1()()(xyyx f y f x f --=-(I )判断)1,1()(-在x f 的奇偶性,并证明之; (II )令)}({,12,21211n nn n x f x x x x 求数列+==+的通项公式; (III )设T n 为数列})(1{n x f 的前n 项和,问是否存在正整数m ,使得对任意的34,-<∈*m T N n n 有成立?若存在,求出m 的最小值;若不存在,则说明理由.3.(本小题满分14分)设函数)0()(22>-+=a a x x x f(Ⅰ)求)()(1x f x f -的反函数及定义域;(Ⅱ)若数列}{,),(,3}{111n n n n n n n b aa aa b a f a a a a 求设满足+-===-+的通项公式;(Ⅲ)S n 表示{b n }的前n 项和,试比较S n 与87的大小. 4.(本小题满分14分)已知数列.)11(2,2:}{211n n n a na a a +==+满足 (1)求数列}{n a 的通项公式;(2)设n n C Bn An b 2)(2⋅++=,试推断是否存在常数A ,B ,C ,使对一切*∈N n 都有n n n b b a -=+1成立?说明你的理由;(3)求证:.2)22(2221+⋅+-≥+++n n n n a a a5. 设函数f (x )=22-ax x (a ∈N*), 又存在非零自然数m, 使得f (m )= m , f (– m )< –m1成立.(1) 求函数f (x )的表达式;(2) 设{a n }是各项非零的数列, 若)...(41)1(21n n a a a a f +++=对任意n ∈N*成立, 求数 列{a n }的一个通项公式;(3) 在(2)的条件下, 数列{a n }是否惟一确定? 请给出判断, 并予以证明6. 已知函数)3(1)(b ax f x-=的图象过点A (1,2)和B (2,5). (1)求函数)(x f 的反函数)(1x f -的解析式;(2)记*)(,3)(1N n a n f n ∈=-,试推断是否存在正数k ,使得12)11()11)(11(21+≥+++n k a a a n对一切*N n ∈均成立?若存在,求出k 的最大值;若不存在,说明理由.卷二一、选择题:(每小题5分,共50分)1、数列95,74,53,32,1的一个通项公式n a 是( ) A 、12+n n B 、12-n n C 、32-n n D 、32+n n2、已知等比数列{}n a 的公比为正数,且24282a a a =,11=a 则=2a ( )A 、2B 、2C 、22D 、213、已知等差数列{}n a 前n 项和为n S 且0>n a 已知02564=-+a a a 则=9S ( )A 、17B 、18C 、19D 、204、已知)1,0(,21∈a a ,记21a a M =,121-+=a a N 则M 与N 的大小关系( ) A 、M<N B 、M>N C 、M=N D 、不确定5、若011<<b a ,则下列不等式:bc a c c b c a b a ab b a 22)4(,)3(,)2(,)1(<+>+><+中正确的是( )A 、(1)(2)B 、(2)(3)C 、(1)(3)D 、(3)(4)6、不等式1213≥--x x 的解集是 ( ) A 、⎭⎬⎫⎩⎨⎧≤≤243x x B 、⎭⎬⎫⎩⎨⎧<≤243x x C 、⎭⎬⎫⎩⎨⎧≤>432x x x 或 D 、{}2<x x7、设n S 是等差数列{}n a 的前n 项和,若59355,9a Sa S ==则( )A 、 1B 、 1-C 、 2D 、 128、在的条件下,,00>>b a 三个①22b a b a ab +≤+,②,2222b a b a +≤+ ③b a b a a b +≥+22,其中正确的个数是( )A 、0B 、1C 、2D 、39、目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A 、3,12min max ==z zB 、,12max =z z 无最小值C 、z z ,3min =无最大值D 、z 既无最大值,也无最小值10、在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A 、11<<-aB 、20<<aC 、2321<<-a D 、2123<<-a 二、填空题:(每小题5分,共25分)11、等比数列{}n a 公比,0>q 已知n n n a a a a 6,1122=+=++,则{}n a 的前4项和=4S ___________12、等比数列{}n a 的前n 项和n S ,又2132S S S +=,则公比=q ___________ 13、若0>x ,0>y 且12=+y x ,则xy 的最大值为___________14、实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则W=x y 1-的取值范围是_____________15、关于x 的不等式211(1)0(0)x a x a a a a-++++<>的解集为 三、解答题:16、(本小题满分12分)等比数列{}n a 中,已知16,241==a a ,(1)求数列{}n a 的通项公式;(2)若53,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S .17、(本小题满分12分)已知数列{}n a 的前n 项和248n S n n =-(1) 求数列{}n a 的通项公式 ; (2) 求n S 的最大或最小值.18、(本小题满分12分)已知向量)sin ,2(cos θθn n a n =,),)(sin 2,1(*N n n b n ∈=θ若n n a C =·n n b 2+,(1)求数列{}n C 的通项公式; (2)求数列{}n C 的前n 项和n S .19、(本小题满分12分)在数列{}n a 中,n n n a a a 22,111+==+(1)设12-=n nn a b ,证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S .20、(本小题满分13分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元. (Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以 46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?21、(本小题满分14分)已知数列{}n a 满足:1112,2--==n n a a a , ,4,3,2=n ,(1) 求证:数列⎭⎬⎫⎩⎨⎧-11n a 为等差数列; (2) 求数列{}n a 的通项公式; (3)令∑=+=ni i i n a a T 11,求证:43+<n T n.答案卷一1.解:(I )1=n 时,.10.0)1()1(1111=⇒>=-⇒-=-a p a p a p a p 由 1分 当,)1(2n n a p S p n -=-≥ ①,)1(11++-=-n n a p S p ②由②-①,有,)1(11++-=-n n n a a a p 2分从而,.111pa a a pa n n n n =⇒=++∴数列}{n a 是以1为首项,p1为公比的等比数列.∴1)1(-=n n pa .∴.)1(1)1(log 1log 11n n pa b n p n p n =--=-=-=-(II )当21=p 时,.21-==n n n n n a b c 1分 ∵.0.0>∴>n n T c 12102232221-++++=n n n T , ③ n n n nn T 221222121121+-+++=∴- . ④由③-④,得n n n nT 221212121211210-++++=-.22222122211)21(11n n n n nn n n +-=--=---=-.2241-+-=∴n n nT 1分.40.4,0221<<∴<∴>+∴-n n n T T n1分2.解:(I )令0)0(,0===f y x 得。
有关数列中不等式问题的几种常见处理方法
有关数列中不等式问题的几种常见处理方法在高中数学的教学中,数列中的不等式证明是数列知识与不等式知识的交汇,经研究发现这类问题主要从考查等差数列、等比数列的基本知识入手,侧重考查证明不等式的常用方法,对这个问题的归纳探究完善,能帮助学生构建一个很好的思维框架。
1.比较法解决数列中的不等式证明问题例1 设等比数列的首项为,公比,求证:是单调递增数列.证明数列的通项公式为: ( ),∴ ,又∵ , >0,∴ ( ),∴ ( ).因此,数列是单调递增数列.注:比较法有时也可用平方作差、作商2.数学归纳法,是证明数列不等式的重要方法例2在数列中,,且 ( ),求证: ( ).证明当时,因,故不等式成立.假设不等式当时成立,即,当时,∵,即不等式当时也成立.∴对一切自然数,都有 ( ).注:凡与正整数相关的命题均可考虑用数学归纳法.3.利用函数解决数列中的不等式问题递推数列的通项公式和前项和可看成函数的表达式.如等差数列的通项公式,可视为关于的一次函数;前项和的公式,可视为关于的二次函数等等,利用这些函数的图像和单调性证不等式.1.放缩法解决数列中的不等式问题在不等式的证明中,常常用舍掉一些正(负)项或在分式中放大(或缩小)分母或分子这种证明方法,通常称为放缩法. 数列不等式证明中常用的放缩技巧:技巧一:对通项进行裂项便于采用裂项相消法裂项相消法,就是将分母进行适当放缩以便于加减相消,放缩时要根据理论要求把握好度,如果放缩的恰到好处,能取得意想不到的效果.常见的放缩方向:,, .技巧二:以某一不等关系为依据进行逐层递推放缩逐层递推法,就是根据题目要求建立起相邻两项的不等关系,利用逐层递推寻求各项与首项的不等关系,从而建立一个新的不等关系.技巧三:对分母进行恰当的放缩将复杂分母简化构造新的等比数列.技巧四:对通项进行变形创造裂项条件.技巧五:利用二项定理展开对通项进行整体放缩.根据数列的特征,运用二项式定理作适当放大或缩小,使某些数列不等式得到证明,又称不等式的这种证明方法为二项式法.技巧六:利用单调性放缩.在放缩时主要采用两种方法:① 构造数列② 构造函数技巧七:利用重要不等式放缩:① 均值不等式法② 利用有用结论其中重要不等式为:例3已知数列的前n项和满足: .③ 证明:对任意的整数,有 .分析③ 观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和.而左边=,如果我们把上式中的分母中的去掉,就可利用等比数列的前n项公式求和,由于-1与1的交替出现,容易想到将式中两项两相地合并起来并一起进行放缩,尝试知:,,因此,可将保留,再将后面的项两两组合后放缩,即可求和.这里需要对进行分类讨论.解③ 当为偶数( )时,<=<当是奇数( )时,为偶数,<所以对任意整数,有 .注:本题的解题关键是并项后进行适当的放缩.数列中的不等式问题是中学数学中的重要知识和数列中的难点,往往一道数列中的不等式题可以用多种方法解,而有时一种解法中又包含了好几种解法.深入挖掘和提炼数列不等式问题的解法,能更好的为中学数学教学服务.由于笔者的能力有限,总结以上四种常用方法,在今后教学中,还将继续完善。
数列中的不等式问题
( 2 ) 记 数 列 { a n } 的 前n 项 的 和 为s n , 当 t = } 时 , 试 证 明
S n < n + 7
0, S o =O
・ . .
顶点 的横坐标为
= 1 0 0 4 1
解析 ( 1 ) ‘ . ’ N曲线 C在点 P 处的切线与直线 A 平行
,
又’ . ‘ n ∈N ¥ . ・ . n = l O 0 4 1 0 0 5 ̄ - , j " , s 取最小值
. . ・
. .
此题 中的方法一 ,等差数列前 n项和 的最值可利用 性质求 出正负转折项求解 , ( 2 ) 问就直接表示出 a , S 解不 等式 。又 因为数列通项公式就相 当于函数解析式 ,所 以我们 也可 以 用 函数 的观点来研究数列 , 比如方法 二 , 等差数列 a Ⅱ 可看作 次 函数 , 等差数列 可看作二次 函数 , 利 用其单调性来研 究最值或利用 图象解不等式 。但 是要注意数列 只能看作是 自变量为正整数的函数 , 在解决问题 时要 注意这一特殊性 。
文 理 导 航2 0 1 2 I D
争 ) n 争 , a 广 争 是 常 数 . s n 是 n 的 二 次 函 数( d ≠ 0 ) ‘ . ’ s 一 :
・ ‘ .
存在点 P n ( x n , f ( x ) ) , 使得点 P 处的切线与直线 A 平行 。 ( 1 ) 证明 : { l o g , ( x 1 ) + 1 l 是等 比数列 ;
・ ‘
a
2 x n = 等, : 旦 。 由 - 1 ) + 1 , 得 x 1 = t
( x I 广1 )
( 2 ) a a l + ( n 一 1 ) d = d n + ( a 1 ~ d ) ‘ . ‘ d > 0 . 。 . a 是 n的 一 次 函数 S 2 0 0 9 = 0 . ・ . l D 十 S ∞ 0 9 = 1 0 即S 2 o l o = a 方程 S n = a 有两个实数解 n = l 和n = 2 0 1 0 a ≥S 的解 集 为 { n l 1 ≤n ≤2 0 1 0 , n∈ i N * l 点评 : 有关数列类 问题可 以利用 数列相关性质求解 , 如
数列不等式综合练习题
数列不等式综合练习题一、等差数列与不等式1. 已知等差数列{an}中,a1=1,a3=3,求满足不等式a_n > 0的最小正整数n。
2. 设等差数列{bn}的前n项和为Sn,若S4=8,S8=24,求满足不等式b_n < 5的最小正整数n。
3. 已知等差数列{cn}的公差为2,首项为1,求满足不等式c_n > 7的所有正整数n的个数。
二、等比数列与不等式1. 已知等比数列{dn}中,d1=2,d3=8,求满足不等式d_n < 64的所有正整数n。
2. 设等比数列{en}的前n项和为Tn,若T3=13,T6=121,求满足不等式e_n > 1的所有正整数n。
3. 已知等比数列{fn}的公比为1/2,首项为16,求满足不等式f_n < 1的所有正整数n的个数。
三、数列与不等式综合1. 已知数列{gn}的通项公式为gn = n^2 n + 1,求满足不等式gn > 10的所有正整数n。
2. 设数列{hn}的通项公式为hn = 3^n 2^n,求满足不等式hn < 100的所有正整数n。
3. 已知数列{kn}的通项公式为kn = 2n + 1,求满足不等式kn > 30的所有正整数n的个数。
四、数列不等式证明1. 证明:对于等差数列{an},若a1 > 0,公差d > 0,则数列中存在正整数n,使得an > 0。
2. 证明:对于等比数列{bn},若b1 > 1,公比q > 1,则数列中存在正整数n,使得bn > 1。
3. 证明:对于数列{cn},若cn = n^2 + n + 1,则数列中存在正整数n,使得cn > 100。
四、数列不等式证明(续)4. 证明:对于数列{dn},若dn = 2^n n^2,则存在正整数N,使得对于所有n > N,不等式dn > 0恒成立。
5. 证明:对于数列{en},若en = n! / 2^n,则存在正整数M,使得对于所有n > M,不等式en < 1恒成立。
数列中的不等式问题
龙源期刊网
数列中的不等式问题
作者:李芳芳
来源:《文理导航》2014年第05期
数列是自变量为正整数的函数,是反映自然规律的基本数学模型。
数列问题中蕴涵着丰富的数学思想方法,例如函数与方程、数形结合、分类讨论、等价转换等等,是高考考查考生数学综合素养的良好素材。
数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合。
其中数列与不等式的综合问题是考查的热点内容,该类问题具有命题操作过程简单,构造技巧强的特点。
考查方式主要有以下三种:
一是判断数列问题中的一些不等关系
典例1:设等差数列{an}的前n项的和为Sn,若a1
(1)求Sn的最小差及此时n的值;
(2)求n的取值集合,是an≥Sn.。
20道不等式组带解答过程
20道不等式组带解答过程篇一:不等式组是数学中非常重要的一个概念,用于求解具有不等性质的数列或不等式。
下面列出了20道不等式组题目,并附带解答过程。
1. 某项数列{a1, a2, a3, ...}的公差为2,首项为a1,求该数列的第10个数是多少?2. 已知数列{an}的前n项和为Sn,求数列{bn}的前n项和Sn"。
3. 某项数列{a1, a2, a3, ...}的前n项和为Sn,第n+1个数是a1,求数列{an}的前n+1个数是多少?4. 已知数列{an}的前n项和为Sn,求数列{bn}的前n+1项和Sn"。
5. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
6. 某项数列{an}的前n项和为Sn,第n+1个数是an+1,求数列{bn}的前n+2个数是多少?7. 已知数列{an}的前n项和为Sn,第n+1个数是an+2,求数列{bn}的前n+3个数是多少?8. 已知数列{an}的前n项和为Sn,第n+1个数是an+3,求数列{bn}的前n+4个数是多少?9. 已知数列{an}的前n项和为Sn,第n+1个数是an+4,求数列{bn}的前n+5个数是多少?10. 某项数列{an}的前n项和为Sn,第n+1个数是an+5,求数列{bn}的前n+6个数是多少?11. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
12. 已知数列{an}的前n项和为Sn,第n+1个数是an+6,求数列{bn}的前n+7个数是多少?13. 已知数列{an}的前n项和为Sn,第n+1个数是an+7,求数列{bn}的前n+8个数是多少?14. 某项数列{an}的前n项和为Sn,第n+1个数是an+8,求数列{bn}的前n+9个数是多少?15. 已知数列{an}的前n项和为Sn,第n+1个数是an+9,求数列{bn}的前n+10个数是多少?16. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
高考数学复习考点题型专题讲解12 数列中的不等式证明及放缩问题
高考数学复习考点题型专题讲解专题12 数列中的不等式证明及放缩问题数列中的不等式证明问题的常用放缩技巧(1)对1n2的放缩,根据不同的要求,大致有三种情况(下列n∈N*):1 n2<1n2-n=1n-1-1n(n≥2);1 n2<1n2-1=12⎝⎛⎭⎪⎫1n-1-1n+1(n≥2);1 n2=44n2<44n2-1=2⎝⎛⎭⎪⎫12n-1-12n+1(n≥1).(2)对12n的放缩,根据不同的要求,大致有两种情况(下列n∈N*):1 2n >1n+n+1=n+1-n(n≥1);1 2n <1n+n-1=n-n-1(n≥1).类型一关于数列项的不等式证明(1)结合“累加”“累乘”“迭代”放缩;(2)利用二项式定理放缩;(3)利用基本不等式或不等式的性质;(4)转化为求最值、值域问题.例1 设正项数列{a n }满足a 1=1,a n +1=a n +1a n(n ∈N *).求证:(1)2<a 2n +1-a 2n ≤3;(2)3n -13n -2≤a n +1a n ≤2n2n -1. 证明 (1)因为a 1=1及a n +1=a n +1a n(n ≥1),所以a n ≥1,所以0<1a 2n≤1.因为a 2n +1=⎝ ⎛⎭⎪⎫a n +1a n 2=a 2n+1a 2n +2, 所以a 2n +1-a 2n =1a 2n+2∈(2,3],即2<a 2n +1-a 2n ≤3.(2)由(1)得2<a 22-a 21≤3,2<a 23-a 22≤3,2<a 24-a 23≤3,⋮2<a 2n +1-a 2n ≤3,故2n <a 2n +1-a 21≤3n ,所以2n +1<a 2n +1≤3n +1, 即2n -1<a 2n ≤3n -2(n ≥2),而n =1时,也满足2n -1≤a 2n ≤3n -2, 所以2n -1≤a 2n ≤3n -2, 所以a n +1a n =1+1a 2n ∈⎣⎢⎡⎦⎥⎤3n -13n -2,2n 2n -1.即3n -13n -2≤a n +1a n ≤2n 2n -1. 训练1(2022·天津模拟)已知数列{a n }满足a n =n n -1a n -1-13n ·⎝ ⎛⎭⎪⎫23n(n ≥2,n ∈N *),a 1=49.(1)求数列{a n }的通项公式;(2)设数列{c n }满足c 1=12,c n +1=⎝ ⎛⎭⎪⎫23k +1a k·c 2n +c n ,其中k 为一个给定的正整数,求证:当n ≤k 时,恒有c n <1. (1)解 由已知可得:a n n =a n -1n -1-13⎝ ⎛⎭⎪⎫23n(n ≥2),即a n n -a n -1n -1=-13⎝ ⎛⎭⎪⎫23n, 由累加法可求得a n n =⎝ ⎛⎭⎪⎫a n n -a n -1n -1+⎝ ⎛⎭⎪⎫a n -1n -1-a n -2n -2+…+⎝ ⎛⎭⎪⎫a 22-a 11+a 11 =-13⎝ ⎛⎭⎪⎫23n-13⎝ ⎛⎭⎪⎫23n -1-…-13⎝ ⎛⎭⎪⎫232+49=⎝ ⎛⎭⎪⎫23n +1,即a n =n ⎝ ⎛⎭⎪⎫23n +1(n ≥2),又n =1时也成立,故a n =n ⎝ ⎛⎭⎪⎫23n +1(n ∈N *).(2)证明 由题意知c n +1=1kc 2n +c n ,∴{c n }为递增数列, ∴只需证c k <1即可. 当k =1时,c 1=12<1成立,当k ≥2时,c n +1=1k c 2n +c n<1kc n c n +1+c n ,即1c n +1-1c n>-1k,因此1c k =⎝ ⎛⎭⎪⎫1c k -1c k -1+…+⎝ ⎛⎭⎪⎫1c 2-1c 1+1c 1>-k -1k +2=k +1k ,∴c k <k k +1<1,∴当n ≤k 时,恒有c n <1. 类型二 对求和结论进行放缩对于含有数列和的不等式,若数列的和易于求出,则一般采用先求和再放缩的策略证明不等式.例2 已知数列{a n }满足a 1=2,(n +1)a n +1=2(n +2)a n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n 是数列{a n }的前n 项和,求证:S n <2a n . (1)解 法一 由题意得a n +1n +2=2·a nn +1, 又a 11+1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1是首项为1,公比为2的等比数列,所以a n n +1=2n -1,所以a n =(n +1)·2n -1(n ∈N *). 法二 由题意得a n +1a n =2(n +2)n +1, 所以a n a 1=a n a n -1·a n -1a n -2·…·a 2a 1=2(n +1)n ·2n n -1·2(n -1)n -2·…·2×32=(n +1)·2n -2.因为a 1=2,所以a n =(n +1)·2n -1(n ∈N *).(2)证明 因为a n =(n +1)·2n -1,所以S n =2×20+3×21+4×22+…+n ·2n -2+(n +1)·2n -1,① 2S n =2×21+3×22+…+(n -1)×2n -2+n ×2n -1+(n +1)×2n ,② ②-①得S n =-2×20-(21+22+…+2n -1)+(n +1)×2n =n ·2n . 因为S n -2a n =n ·2n -(n +1)2n =-2n <0, ∴S n <2a n .训练2(2022·广州模拟)在各项均为正数的等比数列{a n }中,a 1=2,-a n +1,a n ,a n +2成等差数列.等差数列{b n }满足b 1=a 2+1,2b 5-3b 2=a 3-3. (1)求数列{a n },{b n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1(2n +1)b n 的前n 项和为T n ,证明:T n <16.(1)解 设等比数列{a n }的公比为q (q >0), 因为-a n +1,a n ,a n +2成等差数列, 所以2a n =a n +2-a n +1, 所以2a n =a n ·q 2-a n ·q . 因为a n >0,所以q 2-q -2=0, 解得q =2或q =-1(舍去), 又a 1=2,所以a n =2n (n ∈N *). 设等差数列{b n }的公差为d , 由题意,得b 1=a 2+1=5, 由2b 5-3b 2=a 3-3=5,得2(b 1+4d )-3(b 1+d )=-b 1+5d =-5+5d =5,解得d =2, 所以b n =b 1+(n -1)d =5+2(n -1)=2n +3(n ∈N *).(2)证明1(2n +1)b n =1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, 则T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=16-12(2n +3).因为n ∈N *,所以12(2n +3)>0,所以T n <16.类型三 对通项公式放缩后求和在解决与数列的和有关的不等式证明问题时,若不易求和,可根据项的结构特征进行放缩,转化为易求和数列来证明.例3(2022·济南模拟)在数列{a n }中,a 1=2,2na n +1=(n +1)·a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =a 2n16n 2-a 2n ,若数列{b n }的前n 项和是T n ,求证:T n <12.(1)解 由题知2na n +1=(n +1)a n , 所以a n +1n +1=12×a n n ,a 11=2, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,所以a n=n·22-n(n∈N*).(2)证明由(1)可知a n=n·22-n,所以b n=a2n16n2-a2n=14n-1=12n+1×12n-1,根据指数增长的特征知,对任意n∈N*,2n≥2n恒成立,所以22n≥(2n)2,即4n≥4n2.所以14n-1≤14n2-1=12⎝⎛⎭⎪⎫12n-1-12n+1,所以b n≤12⎝⎛⎭⎪⎫12n-1-12n+1,所以数列{b n}的前n项和T n ≤12⎝⎛⎭⎪⎫1-13+13-15+…+12n-1-12n+1=12⎝⎛⎭⎪⎫1-12n+1<12.训练3 已知数列{a n}的前n项和为S n,3a n=2S n+2n(n∈N*). (1)证明:数列{a n+1}为等比数列,并求数列{a n}的前n项和S n,(2)设b n=log3(a n+1+1),证明:1b21+1b22+…+1b2n<1.证明(1)∵3a n=2S n+2n,n∈N*,∴当n=1时,3a1=2S1+2,解得a1=2;当n≥2时,3a n-1=2S n-1+2(n-1),两式相减得a n=3a n-1+2,∴a n+1=3(a n-1+1),即an+1an-1+1=3,a1+1=3,∴数列{a n+1}是以3为首项,3为公比的等比数列,∴a n+1=3n,则a n=3n-1,∴S n=3+32+…+3n-n=3(1-3n)1-3-n=3n+12-n-32.(2)b n=log3(a n+1+1)=log33n+1=n+1,∵1b2n=1(n+1)2<1n(n+1)=1n-1n+1,∴1b21+1b22+…+1b2n<⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n-1n+1=1-1n+1<1.类型四求和后利用函数的单调性证明数列不等式若所证的数列不等式中有等号,常考虑利用数列的单调性来证明. 例4 已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=an+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.(1)解已知2a n-S n=1,令n=1,解得a1=1,当n≥2时,2a n-1-S n-1=1(n∈N*),两式相减得a n=2a n-1,∴数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n-1(n∈N*).(2)证明由(1)可得b n =an+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,∴T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=1-12n +1-1. ∵⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-12n +1-1是单调递增的数列, ∴1-12n +1-1∈⎣⎢⎡⎭⎪⎫23,1.∴23≤T n <1. 训练4 已知等差数列{a n }的公差d ≠0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求使不等式a n ≥0成立的最大自然数n ;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,求证:-1325≤T n ≤1225.(1)解 由题意,可知a 211=a 1·a 13, 即(a 1+10d )2=a 1·(a 1+12d ), ∴d (2a 1+25d )=0. 又a 1=25,d ≠0,∴d =-2,∴a n =-2n +27, ∴-2n +27≥0,∴n ≤13.5, 故满足题意的最大自然数为n =13. (2)证明1a n a n +1=1(-2n +27)(-2n +25)=-12⎝⎛⎭⎪⎫1-2n +27-1-2n +25, ∴T n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=-12⎣⎢⎡⎝ ⎛⎭⎪⎫125-123+⎝ ⎛⎭⎪⎫123-121+…⎦⎥⎤+⎝⎛⎭⎪⎫1-2n +27-1-2n +25 =-12⎝ ⎛⎭⎪⎫125-1-2n +25 =-150+150-4n .从而当n ≤12时,T n =-150+150-4n单调递增,且T n >0; 当n ≥13时,T n =-150+150-4n单调递增,且T n <0, ∴T 13≤T n ≤T 12,由T 12=1225,T 13=-1325,∴-1325≤T n ≤1225.一、基本技能练1.已知数列{a n }是等差数列,且a 2=3,a 4=7,数列{b n }的前n 项和为S n ,且S n =1-12b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,数列{c n }的前n 项和为T n ,求证:T n <2. (1)解 因为数列{a n }是等差数列,a 2=3,a 4=7, 设数列{a n } 的公差为d , 则⎩⎨⎧a 1+d =3,a 1+3d =7,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1(n ∈N *).对于数列{b n },S n =1-12b n (n ∈N *),当n =1时,b 1=1-12b 1,解得b 1=23;当n ≥2时,b n =S n -S n -1=⎝ ⎛⎭⎪⎫1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1,整理得b n =13b n -1,所以数列{b n }是首项为23,公比为13的等比数列,所以b n =23×⎝ ⎛⎭⎪⎫13n -1=23n (n ∈N *). (2)证明 由题意得c n =a n b n =2(2n -1)3n =4n -23n , 所以数列{c n }的前n 项和T n =23+632+1033+…+4(n -1)-23n -1+4n -23n ,则3T n =2+63+1032+…+4n -23n -1,两式相减可得2T n =2+43+432+…+43n -1-4n -23n =2+4×13⎝ ⎛⎭⎪⎫1-13n -11-13-4n -23n=4-4n +43n ,所以T n =2-2n +23n .所以T n <2.2.(2022·石家庄模拟)已知数列{a n }的前n 项和为S n ,a 1=3,a 2=4,S n +1+2S n -1=3S n -2(n ≥2).(1)证明:数列{a n-2}是等比数列,并求数列{a n}的通项公式;(2)记b n=2n-1anan+1,数列{b n}的前n项和为T n,证明:112≤T n<13.证明(1)当n≥2时,由S n+1+2S n-1=3S n-2可变形为S n+1-S n=2(S n-S n-1)-2,即a n+1=2a n-2,即a n+1-2=2(a n-2),所以an+1-2an-2=2(n≥2),又因为a1=3,a2=4,可得a1-2=1,a2-2=2,所以a2-2a1-2=2,所以数列{a n-2}是以1为首项,2为公比的等比数列,所以a n-2=2n-1,所以数列{a n}的通项公式为a n=2+2n-1(n∈N*).(2)由a n=2+2n-1,可得b n=2n-1anan+1=2n-1(2+2n-1)(2+2n)=12+2n-1-12+2n,所以T n=b1+b2+b3+…+b n=13-14+14-16+16-110+…+12+2n-1-12+2n=13-12+2n,因为12+2n>0,所以13-12+2n<13,即T n<13,又因为f(n)=13-12+2n,n∈N*,单调递增,所以T n≥b1=1(2+1)(2+2)=112,所以112≤T n <13.3.已知数列{a n }的前n 项和S n =n 2+n 2.(1)求{a n }的通项公式;(2)若数列{b n }满足对任意的正整数n ,b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2恒成立,求证:b n ≥4.(1)解 因为S n =n 2+n 2,所以当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n ,当n =1时,a 1=S 1=1满足a n =n , 所以{a n }的通项公式为a n =n (n ∈N *). (2)证明 因为b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2,所以当n ≥2时,b 1a 1·b 2a 2·b 3a 3·…·b n -1a n -1=n 2, 所以b n a n =(n +1)2n 2(n ≥2),又n =1时,b 1a 1=22=4,满足b n a n =(n +1)2n 2,所以对任意正整数n ,b n a n =(n +1)2n 2,由(1)得,a n =n , 所以b n =(n +1)2n=n 2+2n +1n=n +1n+2≥2n ·1n+2=4, 当且仅当n =1时,等号成立. 二、创新拓展练4.(2022·湖州质检)已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n 的前n 项和为T n ,求证:n4n +4<T n <12. (1)解∵4S n =a n a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2, ∴a 2=4,当n ≥2时,4S n -1=a n -1a n ,得4a n =a n a n +1-a n -1a n . 由题意知a n ≠0,∴a n +1-a n -1=4,∴数列{a n }的奇数项与偶数项分别为等差数列,公差都为4, ∴a 2k -1=2+4(k -1)=2(2k -1),a 2k =4+4(k -1)=2·2k ,∴该数列是等差数列,首项为2,公差为2. 综上可知,a n =2n ,n ∈N *.(2)证明∵1a 2n =14n 2>14n (n +1)=14⎝⎛⎭⎪⎫1n -1n +1, ∴T n =1a 21+1a 22+…+1a 2n >14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n4n +4.又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =1a 21+1a 22+…+1a 2n<12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.即得n4n +4<T n <12.。
专题09 数列中不等式恒成立问题【解析版】
第二章 数列与不等式专题09 数列中不等式恒成立问题【压轴综述】纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列中不等式恒成立问题,是数列不等式的综合应用问题的命题形式之一. 主要有两类:一是证明不等式恒成立,二是由不等式恒成立确定参数的值(范围). 以数列为背景的不等式恒成立问题,或不等式的证明问题,多与数列求和相联系,最后利用函数的单调性求解,或利用放缩法证明.本专题通过例题说明此类问题解答规律与方法.(1)数列与不等式的综合问题,如果是证明题,要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式,往往采用因式分解法或穿根法等.(2)如用放缩法证明与数列求和有关的不等式,一般有两种方法:一种是求和后再放缩;一种是放缩后再求和.放缩时,一要注意放缩的尺度,二要注意从哪一项开始放缩.【压轴典例】例1.(2019·浙江高考真题)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩, 则数列{}n a 的通项公式为22n a n =- .其前n 项和()()02212n n n S nn +-⨯==-.则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列,即:()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,据此有:()()()()()()()()2222121112121n n n n nn n n n b b n n n n n n b n n b b ++++=-++++++-+, 故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+. (2)结合(1)中的通项公式可得:2n C ==<=<=,则()()()12210221212n C C C n n n +++<-+-++--=例2. (2018·浙江高考模拟)数列满足,,……,(1)求,,,的值; (2)求与之间的关系式;(3)求证: 【答案】(1),,,;(2);(3)详见解析.【解析】 (1),,, ;(2)!;(3)证明:由(2)可知,所以. 所以时不等式成立,而时不等式显然成立,所以原命题成立.例3.(2019·河南高考模拟(理))已知数列}{nb 的前n 项和为nS,2n n S b +=,等差数列}{na 满足123b a =,157b a +=(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)证明:122313n n a b a b a b ++++<.【答案】(Ⅰ)1n a n =+,112n n b -⎛⎫= ⎪⎝⎭;(Ⅱ)详见解析.【解析】 (Ⅰ)2n n S b += ∴当1n =时,1112b S b ==- 11b ∴=当2n ≥时,1122n n n n n b S S b b --=-=--+,整理得:112n n b b -=∴数列{}n b 是以1为首项,12为公比的等比数列 112n n b -⎛⎫∴= ⎪⎝⎭设等差数列{}n a 的公差为d123b a =,157b a += 11346a d a d +=⎧∴⎨+=⎩,解得:121a d =⎧⎨=⎩()()112111n a a n d n n ∴=+-=+-⨯=+(Ⅱ)证明:设()212231111231222nn n n T a b a b a b n -⎛⎫⎛⎫=++⋅⋅⋅+=⨯+⨯+⋅⋅⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()23111112312222n n T n +⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋅⋅⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两式相减可得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅+-+⋅=-+⋅+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=- 332n n n T +=-即12231332n n n n a b a b a b -+++⋅⋅⋅+=-302nn +> 122313n n a b a b a b -∴++⋅⋅⋅+< 例4.(2016高考浙江理)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a-≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】 (I )由112n n a a +-≤得1112n n a a +-≤,故 111222n n n n n a a ++-≤,n *∈N , 所以11223111223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111222n -≤++⋅⋅⋅+ 1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n m n n n n m m nmnn n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤. ①否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则00340002log 23322244n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤.例5.(2019·河北石家庄二中高考模拟(理))已知等比数列{}n a 满足1,23428n n a a a a a +<++=,且32a +是24,a a 的等差中项.()1求数列{}n a 的通项公式;()2若1,2log n n n b a a = 12···+b n n S b b =++,对任意正整数n ,()10n n S n m a +++<恒成立,试求m 的取值范围.【答案】(1)2nn a =;(2)(],1-∞-.【解析】()1设等比数列{}n a 的首项为1a ,公比为q .依题意,有()32422a a a +=+,代入23428a a a ++=,得38a =.因此2420a a +=即有311220,8,q a q a q a q ⎧+=⎪⎨=⎪⎩,解得122q a =⎧⎨=⎩或11,232,q a ⎧=⎪⎨⎪=⎩ 又{}n a 数列单调递增,则122q a =⎧⎨=⎩故2nn a =.()2122log 2?2n n nn b n ==-, 232122232++2,n S n ∴-=⨯+⨯+⨯⋅⋅⋅⨯ ① ()23412122232122n n n S n n +-=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯,②-①②,得()23112122222?2?212n n n n n S n n ++-=+++⋅⋅⋅+-=-- 112?22n n n ++=--.()10n n S n m a +++<,11112?22?2?20n n n n n n m ++++∴--++<对任意正整数n 恒成立,11•222n n m ++∴<-对任意正整数n 恒成立,即112n m <-恒成立. 1112n ->-,1m ∴≤-,即m 的取值范围是(],1-∞-. 例6.(2019·江苏高考模拟)已知在数列{a n }中,设a 1为首项,其前n 项和为S n ,若对任意的正整数m ,n 都有不等式S 2m +S 2n <2S m+n (m≠n)恒成立,且2S 6<S 3. (1)设数列{a n }为等差数列,且公差为d ,求1a d的取值范围; (2)设数列{a n }为等比数列,且公比为q (q >0且q≠1),求a 1⋅q 的取值范围. 【答案】(1)1a d<﹣3;(2)a 1⋅q >0 【解析】在数列{a n }中,设a 1为首项,其前n 项和为S n ,若对任意的正整数m 、n 都有不等式S 2m +S 2n <2S m+n (m≠n)恒成立, (1)设{a n }为等差数列,且公差为d , 则:2ma 1+2(21)2m m -d+2na 1+2(21)2n n -d <2[(m+n )a 1+()(1)2m n m n ++-d],整理得:(m ﹣n )2d <0,则d <0,由2S 6>S 3,整理得:9a 1+27d >0, 则a 1>﹣3d ,所以d <0,1a d<﹣3; (2)设{a n }为等比数列,且公比为q (q >0且q≠1), 则()()()2m 2n m+n 111a 1q a 1q 2a 1q 1q1q1q---+<---,整理得1a 1q-(2q m+n ﹣q 2m ﹣q 2n)<0, 则:﹣1a 1q -(q m ﹣q n )2<0,所以1a 1q ->0,由2S 6>S 3,则:2q 6﹣q 3﹣1<0 解得:﹣12<q 3<1,由于q >0,所以:0<q <1,则:a 1>0.即有a 1⋅q >0. 例7. (2017·高考模拟(理))已知数列{}n a 前n 项和n S ,点()()*,n n S n N ∈在函数21122y x x =+的图象上.(1)求{}n a 的通项公式;(2)设数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,不等式1log (1)3n a T a >-对任意的正整数恒成立,求实数a 的取值范围.【答案】(1)n a n =;(2)1(0,)2. 【解析】 (1)点(),n n S 在函数()21122f x x x =+的图象上,21122n S n n ∴=+.① 当2n ≥时,()()21111122n S n n -=-+-,② ①-②得n a n =.当1n =时,111a S ==,符合上式.()*n a n n N ∴=∈.(2)由(1)得()2112n n a a n n +=+11122n n ⎛⎫=- ⎪+⎝⎭, 13242111n n n T a a a a a a +∴=+++111111123242n n ⎛⎫=-+-++- ⎪+⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭. ()()11013n n T T n n +-=>++,∴数列{}n T 单调递增,{}n T ∴中的最小项为113T =.要使不等式()1log 13n a T a >-对任意正整数n 恒成立,只要()11log 133a a >-,即()log 1log a a a a -<. 解得102a <<, 即实数a 的取值范围为10,2⎛⎫ ⎪⎝⎭.例8.(2019·天津高考模拟(理))已知单调等比数列{}n a 中,首项为12,其前n 项和是n S ,且335441,,2a S S a S ++成等差数列,数列{}nb 满足条件(nb 123n12.a a a a =(Ⅰ) 求数列{}n a 、{}n b 的通项公式; (Ⅱ) 设 1n n nc a b =-,记数列{}n c 的前n 项和 n T .①求 n T ;②求正整数k ,使得对任意*n N ∈,均有 k n T T ≥. 【答案】(Ⅰ) 1()2nn a =;(1)n b n n =+;(Ⅱ)①见解析;②见解析. 【解析】(Ⅰ)设11n n a a q -=. 由已知得 53344122S a S a S =+++ 即 5341222S a S =+ 进而有()543122S S a -=. 所以53122a a =,即214q = ,则12q =±,由已知数列{}n a 是单调等比数列,且11.2a = 所以取12q =,数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. ∵(12312nb na a a a =, ∴232222n ⨯⨯⨯⨯=()12222n n nb += 则()1n b n n =+.数列{}n b 的通项公式为()1n b n n =+. (Ⅱ)由(Ⅰ)得()11121n n n n c a b n n =-=-+ ①设n n p a =,{}n p 的前n 项和为n P .则2111112222n n nP =+++=-. 又设1111n n q b n n ==-+,{}n q 的前n 项和为n Q . 则1111111122311n Q n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 所以n n n T P Q =-= 112n-1111112n n n ⎛⎫--=- ⎪++⎝⎭②令1111112212n n n nT T n n ++-=--+=++ ()()()()11122212n n n n n n ++++-++.由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.【压轴训练】1.(2018·郑州模拟)已知数列{}n a 满足123n a a a a ⋯=2n 2(n ∈N *),且对任意n ∈N *都有12111......nt a a a ++<,则实数t 的取值范围为 ( ) 1.(.)3A +∞ 1.[.)3B +∞ 2.(.)3C +∞ 2.[.)3D +∞ 【答案】D 【解析】因为数列{}n a 满足123n a a a a ⋯=2n 2,所以n=1时, 12a =,当n ≥2时, 2123121n a a a a n -⋯=-(),可得: 212n n a -= ,所以2n 1n 11,a 2-=当n=1时,也适合212n n a -=, 数列n 1{}a 为等比数列,首项为12,公比为14,所以 n n12n 11(1)11121224(1)1a a a 33414-⋯+++==-<,-因为对任意n ∈N *都有 12111......n t a a a ++<,则t 的取值范围为2[.).3+∞ 2.(广东省华南师范大学附属中学、广东实验中学、广雅中学、深圳中学2019届高三上期末)等差数列的前n 项和为,,,对一切恒成立,则的取值范围为__ __.【答案】【解析】,,所以,,,,由得, 由函数的单调性及知,当或时,最小值为30,故. 3.设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25. (1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)nk (a n +4)对所有的正整数n 都成立,求实数k 的取值范围. 【答案】(1)a n =3n -4. (2)⎝⎛⎭⎪⎫-7,294. 【解析】(1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式a n =3n -4. (2)由题意知S n =-n +3nn -2,2S n +8n +27=3n 2+3n +27,a n +4=3n ,则原不等式等价于(-1)nk <n+1+9n对所有的正整数n 都成立.∴当n 为奇数时,k >-⎝ ⎛⎭⎪⎫n +1+9n 恒成立;当n 为偶数时,k <n +1+9n恒成立.又∵n +1+9n≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n在n =3上取最小值7,当n 为偶数时,n +1+9n 在n =4上取最小值294,∴不等式对所有的正整数n 都成立时,实数k 的取值范围是⎝ ⎛⎭⎪⎫-7,294.4.(2019·湖北黄冈调研)数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2.【答案】(1) 2·2n n a n -=. (2)证明:见解析. 【解析】(1)由题设得a n +1n +1=12·a nn, 又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)证明:b n =a n 4n -a n =4n2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2. 5.(2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7. (1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值. 【答案】(1)31()2n n a -=.(2)8.【解析】(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2a 1+a 1q +a 1q 2=7,解得⎩⎪⎨⎪⎧a 1=4q =12或⎩⎪⎨⎪⎧a 1=1q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n)1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8).又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.6. (2019·临川一中实验学校高考模拟(理))已知正项数列{}n a 的前n 项和为n S ,满足()2212n n n S a a n *+=+∈N .(1)求数列{}n a 的通项公式;(2)已知对于N n *∈,不等式1231111nM S S S S ++++<恒成立,求实数M 的最小值; 【答案】(1)12n n a +=;(2)229. 【解析】(1)1n =时,2111212a a a +=+,又0n a >,所以11a =,当2n ≥时,()2212n n n S a a n *+=+∈N()2111212n n n S a n a --*-+=+∈N ,作差整理得:()()1112n n n n n n a a a a a a ---+=+-, 因为0n a >,故10n n a a ->+,所以112n n a a --=, 故数列{}n a 为等差数列,所以12n n a +=. (2)由(1)知()34n n n S +=,所以()14411333nS n n n n ⎛⎫==- ⎪++⎝⎭, 从而1231111nS S S S ++++ 411111111111=134253621123n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦411111411111221323123361239n n n n n n ⎛⎫⎛⎫=++---=---< ⎪ ⎪++++++⎝⎭⎝⎭. 所以229M ≥,故M 的最小值为229.7. 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.【答案】(1)a n =3n . (2) 32∞[,+).【解析】(1)设公差为d ,由题意得:⎩⎪⎨⎪⎧a 1+d =6,2a 1+7d =27,解得⎩⎪⎨⎪⎧a 1=3,d =3,∴a n =3n . (2)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1, ∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1, ∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是32∞[,+).8. 已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围.【答案】(1)当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)(-3,+∞).【解析】 (1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为22595424n a n n n =-+=(-)-, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以322k <,即得k >-3.所以实数k 的取值范围为(-3,+∞).9.(2013·江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0. (1)求数列{a n }的通项公式a n ; (2)令221(2)n n n n a b ++=,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有564nT <. 【答案】(1)2n a n =.(2)见解析.10.(2016年高考四川理)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n nn n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析. 【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列.从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n n n e e e --++鬃?>. 11. 设函数()ln 1f x x px =-+ (1)求函数()f x 的极值点;(2)当0p >时,若对任意的0x >,恒有()0f x ≤,求p 的取值范围;(3)证明:222222222ln 2ln 3ln 4ln 21(,2)2342(1)n n n n N n n n --+++⋅⋅⋅+<∈≥+ 【答案】(1)1x p=; (2)[1,)+∞; (3)见解析. 【解析】(1)∵ ()ln 1f x x px =-+,∴()f x 的定义域为(0,)+∞,11'()pxf x p x x-=-=,当0p ≤时,'()0f x >,()f x 在(0,)+∞上无极值点,当0p >时,()f x 有唯一极大值点1x p=; (2)由(1)可知,当0p >时,()f x 在1x p =处却极大值11()ln f p p=,此极大值也是最大值,要使()0f x ≤恒成立,只需11()ln0f p p=≤,解得1p ≥,故p 的取值范围为[1,)+∞;(3)令1p =,由(2)可知,ln 10x x -+≤,即ln 1x x ≤-,222222222222222ln 1ln 2ln 3ln 111ln 11112323n n n n n n n n n -≤-⇒≤⇒+++≤-+-++-=222111111(1)()(1)()232334(1)n n n n n --++⋅⋅⋅+<--++⋅⋅⋅+⨯⨯⨯+ =11111111(1)()(1)()2334121n n n n n ---+-+⋅⋅⋅+-=---++2212(1)n n n --=+. 12.(2019·大庆模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n )在曲线y =12x 2+52x 上,数列{b n }满足b n +b n+2=2b n +1,b 4=11,{b n }的前5项和为45.(1)求{a n },{b n }的通项公式; (2)设c n =1a n -b n -,数列{c n }的前n 项和为T n ,求使不等式T n >k54恒成立的最大正整数k 的值. 【答案】(1)a n =n +2.b n =2n +3. (2)8.【解析】(1)由已知得S n =12n 2+52n ,当n =1时,a 1=S 1=12+52=3;当n ≥2时,a n =S n -S n -1=12n 2+52n -12(n -1)2-52(n -1)=n +2, 当n =1时,符合上式. 所以a n =n +2.因为数列{b n }满足b n +b n +2=2b n +1, 所以数列{b n }为等差数列.设其公差为d ,则⎩⎪⎨⎪⎧b 1+3d =11,5b 1+10d =45,解得⎩⎪⎨⎪⎧b 1=5,d =2,所以b n =2n +3. (2)由(1)得,c n =1a n -3b n -=1n +n -=1n +n -=14⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =14⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =14⎝ ⎛⎭⎪⎫1-12n +1.因为T n +1-T n =14⎝ ⎛⎭⎪⎫12n +1-12n +3=1n +n +>0,所以{T n }是递增数列,所以T n ≥T 1=16,故要使T n >k 54恒成立,只要T 1=16>k54恒成立,解得k <9,所以使不等式成立的最大正整数k 的值为8.13.(2019·重庆一中高三月考(文))设函数()223(0)xf x e ax a a =-+>,对于x R ∀∈,都有()5f x a≥成立.(Ⅰ)求实数a 的取值范围; (Ⅱ)证明:*1232ln(),23n n n en e n N n n n n+++++++>+∈L (其中e 是自然对数的底数). 【答案】(Ⅰ)(]0,1(Ⅱ)见证明 【解析】(Ⅰ)()22()xf x e a x R '=-∈Q ,∴当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,)(x f ∴在(ln ,)a +∞上单调递增,在(,ln )a -∞上单调递减.x R ∀∈,()5f x a ≥都成立,min ()5f x a ∴≥.又min ()(ln )2ln 5f x f a a a a ==-+,所以由2ln 55a a a a -+≥,得ln 0a a -≥.01a ∴<≤;a ∴的取值范围是(]0,1.(Ⅱ)当1a =时,()5f x a ≥,即2235x e x -+≥.1x e x ∴≥+.∴当1x >-时,ln(1)x x ≥+.令()*1x n N n =∈,则11ln n n n +⎛⎫≥ ⎪⎝⎭.且1n =时,1ln 2>. 11123411ln ln ln ln 23123n n n +⎛⎫⎛⎫⎛⎫⎛⎫∴++++>++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L2341ln ln(1)123n n n +⎛⎫=⨯⨯⨯⨯=+ ⎪⎝⎭L ,1111ln(1)23n n ∴++++>+L .123223n n n n n n n +++++++L 1111112n n n n ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 11111ln(1)1ln (1)23n e n n ⎛⎫=+++++>++=+ ⎪⎝⎭L ;即()*1232ln (1)23n n n e n n N n n n n+++++++>+∈L 恒成立. 14. 已知函数f(x)=log k x(k 为常数,k>0且k≠1),且数列{f(a n )}是首项为4,公差为2的等差数列. (1)求证:数列{a n }是等比数列;(2)若b n =a n ·f(a n ),当k时,求数列{b n }的前n 项和S n ;(3)若c n =a n lga n ,问是否存在实数k ,使得{c n }中的每一项恒小于它后面的项?若存在,求出k 的取值范围;若不存在,说明理由.【答案】 (1)略 (2)S n =n·2n +3(3)(0,3)∪(1,+∞) 【解析】 (1)由题意知f(a n )=4+(n -1)×2=2n +2,即log k a n =2n +2, ∴a n =k2n +2,∴2(1)2212(1)n n n n a k k a k++++==.∵常数k>0且k≠1,∴k 2为非零常数.∴数列{a n }是以k 4为首项,k 2为公比的等比数列. (2)由(1)知,b n =a n f(a n )=k2n +2·(2n +2), 当k时,b n =(2n +2)·2n +1=(n +1)·2n +2.∴S n =2·23+3·24+4·25+…+(n +1)·2n +2,① 2S n =2·24+3·25+…+n·2n +2+(n +1)·2n +3.②②-①,得S n =-2·23-24-25-…-2n +2+(n +1)·2n +3=-23-(23+24+25+…+2n +2)+(n +1)·2n +3,∴33332(12)21?2?2.12()n n n n S n n --++=--++= (3)存在.由(1)知,c n =a n lga n =(2n +2)·k2n +2lgk ,要使c n <c n +1对一切n∈N *成立,即(n +1)lgk<(n +2)k 2lgk对一切n∈N *成立.①当k>1时,lgk>0,n +1<(n +2)k 2对一切n∈N *恒成立;②当0<k<1时,lgk<0,n +1>(n +2)k 2对一切n∈N *恒成立,只需21()2min n n k ++<, ∵11122n n n +=-++单调递增,∴当n =1时,1()2min n n ++=23. ∴k 2<23,且0<k<1,因此0<k<3.综上所述,存在实数k∈(0,315.(2019·江苏高三月考(理))已知正项数列中,用数学归纳法证明:.【答案】见解析. 【解析】当时,,,所以,时,不等式成立;假设()时,成立,则当时,,所以,时,不等式成立.综上所述,不等式成立.16.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n n n n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时, 11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111n n a a +⎧⎫-⎨⎬⎩⎭也为递减数列,所以当2n ≥时,111n n a a +- 22112a a ⎛⎫≤- ⎪⎝⎭ 154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n n n n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭ 当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <。
例谈证明数列不等式问题的三种途径
法来进行求证,但这两种方法较为繁琐,且运算量
较大.
(作者单位:山东省聊城市东阿县实验高中)
Copyright©博看网. All Rights Reserved.
∴不等式1 +
n
2
3
1
通过观察发现,该数列的通项公式为
,很难
n
1
1 <
求 得 数 列 的 和 ,于 是 先 将
进行放缩:
n
n
∴1+
)
n - n - 1 ,然后再进行求和,这样数列中的部分
放缩方式.
= 2 k + 1,
= 2 n,
(
Hale Waihona Puke 项便会相互抵消,化简所得的结果,即可证明不等式
c1 + c 2 + ⋯ + c k + c k + 1 < 2 k +
又 ∵∠CEF = 90° ,
即 EF ⊥ CE ,
∴PB ⊥ CE ,PB ⊥ 平面 PAC ,
∴ 正三棱锥 P - ABC 的三条侧棱两两互相垂直,
把三棱锥补形为正方体,则正方体的外接球即为
半径为 6 ,
2
公式进行求解.
三棱锥的外接球,
其直径为 D = PA2 + PB2 + PC 2 = 6 ,
∴ 三棱锥 P - ABC 为正三
棱锥,
∴顶点 P 在底面的射影
O1 为底面三角形的中心,连接
图8
BO1 交 AC 于 G ,
∴AC ⊥ BG ,
又 PO1 ⊥ AC ,PO1 ⋂ BG = O1 ,
∴AC ⊥ 平面 PBG ,∴PB ⊥ AC ,
数列中的不等式的证明
数列中的不等式的证明证明数列中的不等式的一般方法包括数学归纳法和放缩法。
数学归纳法可以直接应用于正整数相关的命题,包括数列不等式。
但有些数列不等式必须经过加强后才能使用数学归纳法证明。
放缩法包括单项放缩、裂项放缩、并项放缩、舍(添)项放缩、排项放缩和利用基本不等式放缩。
能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然。
第一种证明方法是直接应用数学归纳法。
例如,对于函数$f(x)=-x+ax$在$(0,1)$上为增函数的情况,可以通过数学归纳法求出实数$a$的取值集合$A$,并比较数列$\{a_n\}$中相邻两项$a_{n+1}$和$a_n$的大小。
另一个例子是已知数列$\{a_n\}$中$a_1=2$,$a_{n+1}=(2-1)(a_n+2)$,可以求出数列的通项公式,并证明$2<b_n\leq a_{4n-3}$,其中$b_n=3a_{2n+1}/(2a_{2n}+3)$。
第二种证明方法是放缩法。
例如,已知数列$\{a_n\}$中$a_n+(a_{n+1}+2)a_n+2a_{n+1}+1=3$,$a_1=-2$,可以证明$-1a_{2n-1}$。
另一个例子是已知函数$f(x)=ax-x$的最大值不大于$/428$,且在$x\in[1,1]$时$f(x)\geq11/428$,可以求出$a$的值,并证明$a_n<2n+111$,其中$a_{n+1}=f(a_n)$。
综上所述,证明数列中的不等式可以通过数学归纳法和放缩法两种方法进行。
具体方法包括直接应用数学归纳法、加强命题后应用数学归纳法、单项放缩、裂项放缩、并项放缩、舍(添)项放缩、排项放缩和利用基本不等式放缩。
在使用放缩法时,需要根据具体情况选择合适的方法进行证明。
1.若数列{b_n}中b_1=2,b_{n+1}=\frac{3-b_n}{2},证明b_n>0且b_n<\frac{2}{3}。
2.用数学归纳法证明:对于任意正整数n,有1+2+3+\cdots+n\leq n^2.3.已知a_1=1,a_{n+1}=\sqrt{a_n+6},证明a_n<3.4.设数列{a_n}的通项公式为a_n=\frac{1}{n(n+1)},求证\sum_{k=1}^n\frac{1}{k}-\ln(n+1)<1.5.已知数列{a_n}为等差数列,数列{b_n}为等比数列,且a_1=b_1,a_2=b_2,a_3=b_3,求证a_n\leq b_n。
数列中的不等式有关问题
数列中的不等式有关问题数列与不等式的知识交汇为高中数学的重点难点,大多数学生对于此类型无从下手,常出现再压轴题中,具有极高的思想性和技巧性,体现了在核心素养下的综合能力,未来高考数学命题的一个新的亮点,在课标卷中以客观题出的可能性较大。
本文总结了数列与不等式交汇的常见类型,所涉及到数列的单调性,基本不等式,二次函数,比较大小,数列常见的求和方式等问题类型一:数列中不等式的证明问题(1)利用错位相减法求和证明不等式1、在数列中,, .(1)设,证明:是等比数列,并求的通项公式;(2)设为数列的前项和,证明: .(1)因为,,所以 .又,所以是首项为,公比为的等比数列.于是,故 .(2) .两边同乘以得 .以上两式相减得 .故 .(2)利用裂项相消法求和证明不等式2、已知是公差为2的等差数列.数列满足,,且(I)求数列和的通项公式;(Ⅱ)设 ,数列的前项和为 ,证明:(Ⅰ)由题意可知,时,又公差为2,故 .从而有,故数列是公比为的等比数列又,所以;(Ⅱ)由(Ⅰ)知 .故.(3)左边不能直接求和,将通项放缩为等比数列再求和3、已知数列的前n项和为,对任意正整数n,点都在函数的图象上,且在点处的切线的斜率为 .(1)求数列的通项公式;(2)若,求证: .(1)解:依题意可知,当时,,当时,也符合上式,∴;(2)证明:∵,∴,,∴,∴,∴原不等式成立..类型二:数列不等式中的恒成立求参数的取值范围或最值(1)裂项相消求和后齐一次函数或直接能判断数列单调性4.已知在递增等差数列中,,是和的等比中项.(1)求数列的通项公式;(2)若,为数列的前项和,当对于任意的恒成立时,求实数的取值范围.【详解】(1)由题意可得,,化简可得.因为数列递增,,..(2)因为,而,要对于任意的恒成立,.(2)对恒成立的式子参变分离,后结合基本不等式判断数列的单调性求最值5、已知等差数列中,公差,,且,,成等比数列.求数列的通项公式;若为数列的前项和,且存在,使得成立,求实数的取值范围.(1)由题意可得即又因为,所以所以 .(2)因为,所以.因为存在,使得成立,所以存在,使得成立,即存在,使得成立.又(当且仅当时取等号).所以,即实数的取值范围是 .(3)参变分离后,用做商法判断函数的单调性,求最最值6、已知数列中,,.(1)求数列的通项公式;(2)若对任意的,都有成立,求实数的取值范围.(1)数列{a}中,,.n可得时,,即,时,,又,两式相减可得,化为,可得,即,综上可得;(2)对任意的,都有成立,即为的最小值,由可得,,可得时,递增,当或2时,取得最小值,则.变式1、已知数列的前n项和满足.,(1)证明数列为等差数列,并求出数列的通项公式.(2)若不等式,对任意恒成立,求的取值范围.【答案】(1);(2) .(4)参变分离后,不等号右侧式二次函数,利用二次函数单调型判断函数的单调性7、设数列前项和为 , 满足.(1)令求数列的前项和;(2)若不等式对任意的恒成立,求实数的取值范围.解:(1)①②得故(2)由题意,再结合(2),知即 .从而,设,.(5)参变分离后,用做差法判断函数的单调性,求函数的最值8、已知数列的前项和为,且.(1)求数列的通项公式;(2)设,若恒成立,求实数的取值范围;(1)由,得 .所以是以,为首项,为公比的等比数列.,所以,其中(2)由(1)知所以相减得,,因此,,,所以是最大项,,所以 .变式2、已知正项数列的前n项和满足(1)求数列的通项公式;(2)若(n∈N*),求数列的前n项和 ;(3)是否存在实数使得对恒成立,若存在,求实数的取值范围,若不存在说明理由.【答案】(1)(2)(3)存在,类型三、数列与不等式结合求参数的最值9、已知f(x)=3x2-2x,数列{an }的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{an}的通项公式;(2)设bn =,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.解(1)由点(n,Sn )(n∈N*)均在函数y=f(x)的图象上得Sn=3n2-2n.当n≥2时,an =Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×12-2×1=1,满足上式,所以an=6n-5(n∈N*).(2)由(1)得bn= = =,Tn =b1+b2+b3+…+bn= [1-+-+-+…+-]=(1-).因此,使得(n∈N*)成立的m必须且仅须满足,即m≥10,故满足要求的最小整数m=10.类型四、数列与不等式结合奇偶讨论10、已知正项数列的前项和为,数列满足.(1)求数列的通项公式;(2)数列满足,它的前项和为,(ⅰ)求;(ⅱ)若存在正整数,使不等式成立,求实数的取值范围.解、(1),当时,,∴或(舍去)当时,由,得,两式相减得:,∴,即,∴.又∵数列为正项数列,故,也即,∴数列是以1为首项,1为公差的等差数列,∴,.(2)(ⅰ),则①,②,可得:,故.(ⅱ)即不等式成立,若为偶数,则,所以,设,则在单调递减,故当时,,所以;若为奇数,则,所以设,则在单调递增,故当时,,所以,综上所述,的取值范围或.试卷第3页,总9页。
数列不等式证明大题解题技巧
数列不等式证明大题解题技巧
1. 把数列的不等式转化为数学归纳法或数列递推公式证明:通过利用归纳假设或递推公式,将数列的不等式转化为一系列数学运算的等式或不等式,从而证明原始的数列不等式。
2. 利用数列的性质进行变形:通过对数列进行一系列变形,利用数列的性质,等式性质或不等式性质,将原始的数列不等式转化为更容易证明的形式。
3. 利用基本不等式或数学不等式进行转化:通过利用已知的基本不等式或数学不等式,对不等式进行转化或放缩,从而证明原始的数列不等式。
4. 利用函数性质进行推理:如果数列具有某种特定的性质,可以将数列不等式化为函数不等式,然后根据函数性质进行推理和证明。
5. 利用数列的特殊性质进行归纳:如果数列具有某种特殊的性质,可以通过归纳法证明数列的不等式。
总之,数列不等式的证明需要将数列不等式转化为一些更易于证明的形式,利用数列的特性、基本不等式、数学不等式、函数性质等进行推理和证明。
熟练掌握这些解题技巧,并结合具体题目的特点进行灵活应用,可以帮助解决数列不等式的证明大题。
数列中不等式问题的求解策略
数列中不等式问题的求解策略
曾伟
【期刊名称】《中学生数理化(高二数学、高考数学)》
【年(卷),期】2024()11
【摘要】数列是高考数学的核心考点,由于在新高考的试题中没有了选做题,因此数列解答题成为必考大题,而高考数学中数列解答题一般以两种形式呈现:一是求数列的基本量,包括计算等差(比)数列的公差(比)、通项及前n项和,属于基础题;二是数列的综合问题,特别是数列与不等式的综合,此类问题难度较大,技巧性较强。
在实际的数学复习备考中,同学们对数列中的不等式问题的求解存在较大困难,为了帮助同学们攻克艰难,寻找自信,提升数学复习备考效率。
下面结合最近的一些联考或模考试题,给出破解数列中不等式问题的四类求解策略,供同学们复习时参考。
【总页数】4页(P8-11)
【作者】曾伟
【作者单位】江西省吉安市第一中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.数列型不等式问题的若干求解策略
2.巧裂项求数列的和妙放缩证明不等式——浅谈一类高考数列不等式问题的求解策略
3.竞赛中递推型数列不等式问题的求解策略
4.竞赛中递推型数列不等式问题的求解策略
因版权原因,仅展示原文概要,查看原文内容请购买。
数列不等式
数列不等式1、证明:1/2+1/3+。
+1/n < lnn 。
无非就是证明1/k<ln(k)-ln(k-1)对于k>=2都成立,这个高中生完全可以搞定.......尽管这个题的原型是中值定理和积分放缩...我们有(1+1/n)^n<e<(1+1/n)^(n+1)即nln(1+1/n)<1<(n+1)ln(1+1/n)即1/(n+1)<ln(1+1/n)<1/n然后分别令n=1,2,...,n-1 即1/2<ln2 1/3<ln(3/2) 1/4<ln(4/3) ... 1/n=ln(n/(n-1))再相加,即得1/2+1/3+...+1/n<ln(2.3/2.4/3...n/(n-1))=lnn1/(n+1)<ln(1+1/n)<1/n以上可以用导数来证,更符合教学实际:x/(1+x)<=ln(1+x)<=x以上讨论可以看出:1。
纯数列的要求更高 2。
涉及到lnn 的数列不等式应先介绍:用导数证明:x/(1+x)<=ln(1+x)<=x 再应用到数列: 1/(n+1)< ln(1+1/n) <1/n 得到: 1/(n+1)< ln(n+1)-lnn 于是:1/2+1/3+1/4+。
+1/n < ( ln2-ln1) + (ln3-ln2) + (ln4-ln3) +。
+ (lnn-ln(n-1)) = lnn2、3、下面是用n=k为真, 证明n=k+1为真的简略证明:n=k+1为真等价于4、5、6、6、回复 5# 的帖子由Catalan恒等式知a2n=(1+1/2+1/3+……+1/2n)-2(1/2+1/4+1/6+……+1/2n)=1/(n+1)+1/(n+2)……+1/2n,cn=1+1/2+ 1/3+……1/n-Inn收敛,lim(c2n-cn)=1/(n+1)+1/(n+2)+……1/2n-In(2n/n)=0a2n=In2>In(2-1/(n+1))7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、已知数列{}n x 满足1111,,.21n n x x n N x *+==∈+ (1)猜想数列{}n x 单调性并证明;(2)证明:1112.65n n n x x -+⎛⎫-≤ ⎪⎝⎭证(1)由1n+1244n 112513213821x x x x x x ===+==+及得, 由246x x x >>猜想:数列{}2n x 是递减数列下面用数学归纳法证明:(1)当n=1时,已证命题成立 (2)假设当n=k 时命题成立,即222k k x x +> 易知20k x >,那么23212224212321231111(1)(1)k k k k k k k k x x x x x x x x ++++++++--=-=++++ =22222122230(1)(1)(1)(1)k k k k k k x x x x x x ++++->++++ 即2(1)2(1)2k k x x +++>也就是说,当n=k+1时命题也成立,结合(1)和(2)知,命题成立(2)当n=1时,12116n n x x x x +-=-=,结论成立 当2n ≥时,易知1111101,12,12n n n n x x x x ---<<∴+<=>+ 111115(1)(1)(1)(1)212n n n n n x x x x x ----∴++=++=+≥+ 11111111(1)(1)n n n n n n n n x x x x x x x x -+---∴-=-=++++ 2n -111221n -12225551265n n n n x x x x x x ---≤-≤-≤≤-= ()()()。
数列不等式知识点
数列不等式知识点在数学中,不等式是一种比较数值大小关系的表示方法。
而数列不等式则是指涉及数列的不等式问题。
1. 数列的定义数列是由按照一定规律排列的一系列数所组成的集合。
数列通常用{a₀, a₁, a₂, a₃, ...}来表示,其中a₀, a₁, a₂, a₃, ...是数列的项。
数列可以是有穷的,也可以是无穷的。
2. 数列不等式的基本概念数列不等式是指涉及数列的不等式问题。
其基本概念包括以下几点:- 第n项:数列中的第n个数,记作aₙ。
- 通项公式:数列中第n项的计算公式,记作aₙ = f(n)。
- 收敛:数列的项随着n的增大逐渐趋近于一个确定的数,称为收敛数列。
- 发散:数列的项没有趋近于一个确定的数,称为发散数列。
3. 数列不等式的解法解数列不等式的关键是找到数列的通项公式。
根据不等式的性质,我们可以采用以下几种方法求解数列不等式:- 猜想法:根据数列的观察和猜想,推导出数列的通项公式,然后通过数学推导求解不等式。
- 数学归纳法:通过数学归纳法证明数列不等式的正确性。
- 数列性质法:利用数列的性质和特点,推导出数列的通项公式,并进一步求解不等式。
4. 数列不等式的常见形式数列不等式有多种常见形式,包括以下几个方面:- 随机数列不等式:数列的项之间没有明确的规律,需要通过观察和推导来解决。
- 递推数列不等式:数列的项之间存在递推关系,可以通过递推公式和递推关系求解。
- 斐波那契数列:斐波那契数列是一种特殊的数列,每一项都是前两项的和,可用于解决一些特殊的数列不等式问题。
5. 数列不等式的应用数列不等式在数学中有着广泛的应用。
一些典型的应用包括:- 研究数列的收敛性和发散性。
- 证明数列的性质和特征。
- 解决数学中的一些优化问题,如求最大值、最小值等。
- 解决一些实际问题,如经济学中的消费模型、物理学中的运动模型等。
总之,数列不等式是数学中一个重要的研究方向,通过解决数列不等式可以培养我们的思维能力和数学分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造等比数列
4.数列{a n }中,a1 8,a4 2,且满足a n 2 2a n 1 a n . (1)求数列{a n }的通项公式; (2)设S n | a1 | | a 2 | | a n | ,求S n; 1 ( 3)设bn ( n N ),Tn b1 b2 bn, n(12 a n ) m 使得对任意n N 均有Tn 成立.求最大正整数m . 32
1 1 例2. (2) 已知Sn 2 2 2 求证 : n 1 1 Sn n .
(2)对 1 1 2 n
1 2 n
的放缩, 大致二种情况 1 n1 n
2 n n n1 1 1 n n 1 ( n 1) 2 n n n1
3.已知递增的等比数列 {an }满足a2 a3 a4 28,且a3 2是a2和a4的等差中项. (1)求数列{an }的通项公式; (2)若bn an log1 an,S n b1 b2 b3 bn,
2
求使不等式S n n 2
n1
30成立时n的最小值.
例2.已知an 2n 1, 数列an 的前项n和为S n . 1 1 1 7 证明 : S1 S 2 Sn 4 1 1 1 1 ( n 2) Sn n 2 2 Sn n n( n 1) n 1 n Sn n
1 1 a1 a2
1 1 1 1 2 an n n1 n
第3项开始放缩
1 1 1 1 7 1 ( ) an 4 2 n 4
3.已知数列{an}满足 a1=1,an+1=3an+1, (1)求{an}的通项公式; 1 1 1 3 (2)证明 + +…+a < . a1 a2 n 2
3.设数列an 的前n项和为S n , 已知a1 1, 2 Sn 1 2 2 an1 n n , n N * n 3 3 an (1)求数列an 的通项公式
n
2
1 1 1 7 ( 2)证明 : 对一切正整数n, 有 a1 a2 an 4
1 2 Sn nan1 n( n 1)( n 2) 3
n( n 1) Tn 2n
T1 T2 T3 T4
3 Tn m T2 2
( n 1)(n 2) n( n 1) ( n 1)(2 n) Tn1 Tn n1 n 2 2 2 n1
点评:数列中不等式恒成立问题,利用函数的单调性。
例2.数列a n 满足a1 2a 2 2 a 3 2 1 an n (1)求数列a n 的通项; 2 ( 2)若bn ( 2n 5)a n , 数列bn 的前n项和S n .
2 n 1
n an . 2
7 求证 : - S n 1 4
2n 1 S n 1 n 2
数列中的不等式问题
例 1.已知等差数列{an}中,a2=6,a3+a6=27. (1)求数列{an}的通项公式; a 3n 3n( n 1) n Sn Sn 2 (2)记数列{an}的前 n 项和为 Sn,且 Tn= n-1,若对于一 3· 2 切正整数 n,总有 Tn≤m 成立,求实数 m 的取值范围.
1 (1)对 2 的放缩, 大致三种情况 n 1 1 1 1 ( n 2) 2 n n( n 1) n 1 n 1 1 1 1 1 ( )( n 2) 2 2 n n 1 2 n1 n1 1 1 1 1 2( )( n 1) 2 1 n 2n 1 2n 1 2 n 4