厌氧生物技术解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑤ 对氨氮的去除效果不好,还可能由于原废水中含有的有机氮在厌 氧条件下的转化导致氨氮浓度的上升。
厌氧生物处理的发展趋势
开发厌氧生物处理新工艺用来治理有机污水的污染,无疑是一 种具有良好经济效益的方法。近年来,污水厌氧处理工艺发展十
分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升
流式厌氧污泥床、档板式厌氧法、厌氧生物池、厌氧膨胀床和流 化床、厌氧生物转盘等。
厌氧处理法最早用于处理城市污水处理厂的沉淀污泥,后来用于处理高 浓Байду номын сангаас有机废水。普通厌氧生物处理法的主要缺点是水力停留时间长,一般需 要20~30d。
进入上世纪50、60年代,特别是70年代的中后期,随着世界范围 的能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得 以强化,相继出现了一批被称为现代高速厌氧消化反应器的处理工艺, 从此厌氧消化工艺开始大规模地应用于废水处理,真正成为一种可以 与好氧生物处理工艺相提并论的废水生物处理工艺。这些被称为现代 高速厌氧消化反应器的厌氧生物处理工艺又被统一称为“第二代厌氧 生物反应器”,主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌 氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生 物转盘(ARBC)和挡板式厌氧反应器等。
颗粒的大小;pH值;氨的浓度;水解产物浓度。
微生物 细菌、原生生物和真菌→微絮凝、发酵细菌
• 重要的微生物
纤维素分解菌——最重要的一步;产物CO2,H2,已醇; 碳水化合物分解菌——丙酮乙醇,乙酸(杆状菌生化絮凝); 蛋白质水解-----生成氨基酸、(棱菌生化絮凝) 脂肪分解菌→脂肪酸(弧菌生化絮凝)
③ 厌氧生物处理出水水质仍通常较差,一般需要利用好氧工艺进行
进一步的处理; ④ 厌氧生物处理的气味较大;
臭气主要是SRB形成的具有臭味的硫化氢气体以及硫醇、氨气、
有机酸等的臭气。同时硫化氢还会与水中的铁离子等金属离子反应形 成黑色的硫化物沉淀,使处理后的废水颜色较深,需要添加后处理设
施,进一步脱色脱臭。
大家都在为提高生物处理能力和稳定性的途径努力着:
1.提高生物的持有量 2.利用厌氧生物处理中微生物种群的特点,实现相分离。
厌氧生物处理的基本原理
1.水解阶段:碳水化合物(脂肪、蛋白质)在水解发酵菌作用下转化 为糖类、脂肪酸、氨基酸、水和二氧化碳; 2.产氢产乙酸阶段:脂肪酸在产氢产乙酸菌作用下转化成H2、CO2、乙酸 CH3CH2COOH→CO2+CH3COOH+H2 3.产甲烷阶段:最后两组生理不同的产甲烷菌,有共同的产物 4H2+CO2→CH4+2H2O 2CH3COOH→2CH4+2CO2
现代的厌氧生物处理
进入20世纪90年代以后,随着以颗粒污泥为主要特点的UASB反 应器的广泛应用,在其基础上又发展起来了同样以颗粒污泥为根本 的颗粒污泥膨胀床(EGSB)反应器和厌氧内循环(IC)反应器。其 中EGSB反应器利用外加的出水循环可以使反应器内部形成很高的 上升流速,提高反应器内的基质与微生物之间的接触和反应,可以 在较低温度下处理较低浓度的有机废水,如城市废水等;而IC反应 器则主要应用于处理高浓度有机废水,依靠厌氧生物过程本身所产 生的大量沼气形成内部混合液的充分循环与混合,可以达到更高的 有机负荷。这些反应器又被统一称为“第三代厌氧生物反应器”。
4%
(1/3)CO2还原 (2/3)乙酸脱羧
H2 28%
复杂有机物 水解与发酵
76%
较高级有机酸
CH4
20% 生成乙酸与脱氢
乙酸
72% 生成甲烷
1水解阶段
定义 复杂的非溶解性的有机物质在产酸细菌胞外水解酶的作用下转
化为简单的溶解性单体或二聚体的过程。
影响因素 温度,水力停留时间,有机物质的组成成分,有机物质
厌氧生物技术
早期的厌氧生物反应器
① 1881年法国Mouras的自动净化器: ② 1891英国Moncriff的装有填料的升流式反应器: ③ 1895年,英国设计的化粪池(Septic Tank); ④ 1905,德Imhoff池(称隐化池、双层沉淀池) 特点有: ① 处理废水同时,也处理从废水沉淀下来的污泥; ② 前几种构筑物由于废水与污泥不分隔而影响出水 水质; ③ 双层沉淀池则有了很大改进,有上层沉淀池和下 层消化池; ④ 停留时间很长,出水水质也较差。 ⑤ 后两种反应器曾在英、美、德、法等国得到广泛 推广,在我国目前仍有应用 。
2 产氢产乙酸阶段
主要微生物: 产氢产乙酸菌以及同型乙酸菌 产物:乙酸、甲烷、CO2、H2
3 产甲烷阶段
主要微生物:产甲烷菌
产物:甲烷
特征:细胞的增殖很少,(甲烷细菌繁殖慢,数量少,消化时间
长);食物不足;产生能量仅为好氧1/20-1/30。
理论产生甲烷量:
1、糖类、脂类和蛋白质等有机物经过厌氧消化能转化为甲烷和CO2等 气体,这样的混合气体统称为沼气;产生沼气的数量和成分取决于 被消化的有机物的化学组成,一般可以用下式进行估算:
是一种很好的燃料。以日排COD10t的工厂为 例,若COD去除率为80%,甲烷产量为理论的 80%时,则可日产甲烷2240m3,其热值相当于 3.85t原煤,可发电5400度电。
厌氧生物处理的特点
主要优点
② 污泥产量很低;产酸菌的产率Y为0.15~0.34kgVSS/kgCOD, 产甲烷菌的产率Y为0.03kgVSS(活性污泥中可挥发性固
体)/kgCOD 左右,而好氧微生物的产率约为
0.25~0.6kgVSS/kgCOD。 ③ 厌氧微生物可以使生物不能降解的一些有机物进行降解或部分
降解;对于某些含有难降解有机物的废水,利用厌氧工艺进行
处理可以获得更好的处理效果。
主要缺点
① 厌氧生物处理过程中所涉及到的生化反应过程较为复杂。
② 厌氧微生物特别是其中的产甲烷细菌对温度、pH等环境因素非常 敏感。
厌氧生物处理的特点
主要优点
与废水的好氧生物处理工艺相比,废水的厌氧生物处理工艺具有以 下主要优点:
① 能耗降低,而且还可以回收生物能(沼气);因为厌氧生物处 理工艺无需为微生物提供氧气,所以不需要鼓风曝气,减少了 能耗,而且厌氧生物处理工艺在大量降低废水中的有机物的同 时,还会产生大量的沼气。
n沼气中的主要成分是甲烷,含量50~75%之间,
相关文档
最新文档