误差理论第二章习题答案
《误差理论与数据处理》部分课后作业参考答案
《误差理论与数据处理》部分课后作业参考答案1- 18根据数据运算规则,分别计算卞式结果: (1) 3151.0+65.8+7.326+0.4162+152.28=? (2) 28.13X0.037X1.473=? 【解】(1)原式 ^3151.0+65.8+7.33+0.42+152.28=3376.83 $3376.8(2)原式 ^28.1X0.037X1.47=1.528359 ^1.52- 12某时某地由气压表得到的读数(单位为PG 为102523.85, 102391.30, 102257.97, 102124.65, 101991.33, 101858.01, 101726.69, 101591.36,其权各为 1, 3, 5, 7, 8, 6, 4, 2,试求 加权算术平均值及其标准差。
1 x 2523.85 + 3 x 2391.30 + 5 x 2257.97 + 7 x 2124.65 + 8 x 1991.33 +…1+3+5+7+8+6+4+2 =102028.3425PaCT-=(2) 标准差:(1)加权算术平均值:_ 工必(玄一兀)------------------1=1=100000 +(1)线性系统误差:根据关系图利用残余误差观察法町知,不存在线性系统误差。
根据不同公式计算标准差比较法可得:按别捷尔斯公式:cr. =1.253—= 0.2642/心-1)故不存在线性系统误差。
(2)周期性系统误差:=|(-0.26) X 0.04 + 0.04 X 0.24 + 0.24 X (-0.16) + (-0.16) X 0.54 + 0.54 X (-0.36) +…|=0.1112 < Vn — la 2 = 0.624故不存在周期性系统误差。
2- 18对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线 圈比较得到的,测得结果如卞(单位为mH ): 50. 82, 50. 83, 50. 87, 50. 89;50. 78, 50. 78, 50. 75, 50. 85, 50. 82, 50.81。
合肥工业大学版误差理论与数据处理课后作业答案(精)
第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。
1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。
第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。
试求算术平均值及其标准差、或然误差和平均误差。
解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。
现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。
2-19 对某量进行两组测量,测得数据如下:xi0.620.861.131.131.161.181.201.211.221.301.341.391.411.57 yi0.991.121.211.251.311.311.381.411.481.591.601.601.841.95试用秩和检验法判断两组测量值之间是否有系统误差。
第七版同济课后习题答案
第七版同济课后习题答案第七版同济课后习题答案在学习过程中,课后习题是帮助我们巩固知识、提高能力的重要工具。
同济大学出版社出版的《土木工程测量学》第七版是一本经典教材,它的课后习题是非常有挑战性的。
本文将为大家提供一些第七版同济课后习题的答案,希望能对大家的学习有所帮助。
第一章:测量学概述1. 什么是测量学?测量学是一门研究测量方法和技术的科学,它涉及到测量仪器的使用、测量数据的处理和误差分析等内容。
2. 什么是测量误差?测量误差是指测量结果与实际值之间的差异。
它可以分为系统误差和随机误差两种类型。
3. 什么是测量精度?测量精度是指测量结果的可靠程度和准确程度。
它可以通过测量误差的大小来评估。
第二章:误差理论1. 什么是误差理论?误差理论是研究测量误差的产生、传播和控制规律的科学。
它包括误差的来源、误差的传播规律和误差的控制方法等内容。
2. 什么是随机误差?随机误差是指测量结果在重复测量中的不确定性,它是由于测量条件的变化和测量仪器的精度限制等原因引起的。
3. 什么是系统误差?系统误差是指测量结果在重复测量中的偏差,它是由于测量方法的不合理或测量仪器的固有偏差等原因引起的。
第三章:测量基本原理1. 什么是测量基准?测量基准是指用于建立测量坐标系的参考点或参考面。
它可以是地球表面的某个点或者是测量仪器的某个特定位置。
2. 什么是测量基线?测量基线是指用于测量距离的基准线。
它是测量工程中最基本的测量元素之一。
3. 什么是测量控制点?测量控制点是指用于控制测量工程的点位。
它可以是已知坐标的点,也可以是通过测量确定坐标的点。
第四章:平面坐标测量1. 什么是平面坐标?平面坐标是指在平面上表示点位位置的坐标。
它由横坐标和纵坐标组成。
2. 什么是平差?平差是指通过数学方法对测量数据进行处理,使其满足一定的准确性要求。
常见的平差方法有最小二乘法、最小二乘平差法等。
3. 什么是坐标转换?坐标转换是指将不同坐标系下的点位坐标相互转换的过程。
《误差理论与数据处理》习题2及解答
(mm)
② 重复测量 10 次,计算其算术平均值为: x = 26.2025(mm). 取与①相同的置信度,则测量结果为:26.2025±3σ= 26.2025±0.0015 (mm). ③ 若无该仪器测量的标准差资料,则依 10 次重复测量数据计算标准差和表示测量结 果。选参考值 x0 = 26.202,计算差值 ∆x i = x i − 26.202 、 ∆ x 0 和残差ν i 等列于表中。 序 1 2 3 4 5 6 7 8 9 10 号
∑ν
i =1
i
n( n − 1)
= 1.253
0.0008 5× 4
= 0.000224 (mm)
σx =
σ
n
=
0.000255 5
= 0.000114 ; σ x =
'
σ'
n
=
0.000224 5
= 0.0001
⑤求单次测量的极限误差和算术平均值的极限误差 因假设测量值服从正态分布,并且置信概率 P=2Φ(t)=99%,则Φ(t)=0.495,查附录
∆ x0 = 1 10 ∑ ∆xi = 0.0005 10 i =1
νi
0 +0.0003 +0.0003 0 +0.0001 -0.0003 -0.0002 0 +0.0001 -0.0003
ν i2
0 9×10 9×10 0 1×10
误差理论与平差基础-第2章 误差分布与精度指标
一、偶然误差特性
1、偶然误差
f ()
1 1 1 2
f ( )
1 1 exp 2 ( ) 2 2 2
2 2
参数 和 2 分别是随机误差 的数学期望和方差。它们 确定了正态分布曲线的形状。
1 n i 0 对于随机误差: E () lim n n i 1
三、精度估计的标准
中误差、平均误差和或然误差都可以作为衡量精
度的指标,但由于:
中误差具有明确的几何意义(误差分布曲线的拐点
坐标)
平均误差和或然误差都与中误差存在理论关系
所以,世界上各国都采用中误差作为衡量精度的指
标,我国也统一采用中误差作为衡量精度的指标。
三、精度估计的标准
4、容许误差(极限误差)
定义:由偶然误差的特性可知,在一定的观测条件下,偶然误 差的绝对值不会超过一定的限值。这个限值就是容许( 极限)误差。
P(| | ) 68.3% P(| | 2 ) 95.5% P(| | 3 ) 99.7%
测量中通常取2倍或3倍中误差作为偶然误差的容许误差;
即Δ容=2m 或Δ容=3m 。
m1 m2,说明第一组的精度高于第二组的精度。
说明:中误差越小,观测精度越高
三、精度估计的标准
2、平均误差
在一定的观测条件下,一组独立的真误差绝对值的数学 期望称为平均误差。 [| |] E (| |) lim n n
4 0.7979 5
三、精度估计的标准
1、中误差
解:第一组观测值的中误差:
0 2 2 2 12 (3) 2 4 2 32 (2) 2 (1) 2 2 2 (4) 2 m1 2.5 10
《误差理论与数据处理(第7版)》费业泰习题解答
误差理论与数据处理》习题及参考答案(第七版)第一章绪论1 — 5测得某三角块的三个角度之和为180°00' 02” ,试求测量的绝对误差1-8在测量某一长度时,读数值为 2.31m ,其最大绝对误差为 20 m ,试求其最大相对误差。
8.66 10-4%1-10检定2.5级(即引用误差为 2.5%)的全量程为100V 的电压表,发现 50V 刻度点的示值误差 2V 为最大误差,问该电压表是否合格?I 1 I 2 所以L 2=80mm 方法测量精度高。
1 — 13多级弹导火箭的射程为 10000km 时,其射击偏离预定点不超过0.1km ,优秀射手能在距离 50m 远处准确地射中直径为 2 cm 的靶心,试评述哪一个射和相对误差 解: 绝对误差等于: 相对误差等于: 180°00 02 180o 2222 180o 180 60 60 6480000.00000308641 0.000031%相对误差max绝对误差max测得值 100%20 10-62.31 100%最大引用误差某量程最大示值误差测量范围上限100%2100100% 2% 2.5%该电压表合格 1-12用两种方法分别测量L1=50mm L2=80mm 测得值各为50.004mm,80.006mm 。
试评定两种方法测量精度的高低。
相对误差 L 1:50mmI 150.004 50 50 100% 80.006 8080100% 0.008% 0.0075%击精度高? 解:多级火箭的相对误差为: ----------------------------0 10.00001 0.001% 10000射手的相对误差为:1cm°.°1m 0.0002 0.002% 50m 50m多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm 其测量误差分别为11 m和9 m ;而用第三种测量方法测量另一零件的长度L2=150mm其测量误差为 12 m ,试比较三种测量方法精度的高低。
《误差理论与数据处理(第7版)》费业泰习题解答
《误差理论与数据处理》(第七版)习题及参考答案第一章绪论1-5测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于: 180 o 00 02o 1802 相对误差等于: 2 o180180 2 60 60 =26480000.000003086410.000031%1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m ,试求 其最大相对误差。
相对误差max绝对误差 测得值 max 100%-6 20 102.31100%8.66 -4 10%1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现 50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格? 最大引用误差某量程最大示值误差 测量范围上限100%2 100100%2%2.5%该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.6mm 。
试评定两种方法测量精度的高低。
相对误差50.450L 1:50mmI100%0.008%15080.680L2:80mmI100%0.0075%280I 1I 所以L 2=80mm 方法测量精度高。
21-13多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:0.12.320.001%10000射手的相对误差为:1cm0.01m8.6700020.002%50m50m多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm,其测量误差分别为11和9m;而用第三种测量方法测量另一零件的长度L2=150mm。
m其测量误差为12m,试比较三种测量方法精度的高低。
相对误差I 11m1mm11080.7%I 9m2mm11050.50082%I 12m3mm15080.708%I3II第三种方法的测量精度最高21第二章误差的基本性质与处理2-6测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,1.,168.40,168.50。
误差理论与数据处理课后习题及答案
第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
其测量误差为m μ12±,试比较三种测量方法精度的高低。
相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58=lim t δσ=±21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。
安徽合肥工业大学版误差理论与数据处理课后作业答案(精)
第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。
1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。
第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。
试求算术平均值及其标准差、或然误差和平均误差。
解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。
现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。
2-19 对某量进行两组测量,测得数据如下:xi0.620.861.131.131.161.181.201.211.221.301.341.391.411.57 yi0.991.121.211.251.311.311.381.411.481.591.601.601.841.95试用秩和检验法判断两组测量值之间是否有系统误差。
《误差理论与数据处理(第7版)》费业泰习题解答(可编辑修改word版)
《误差理论与数据处理》(第七版)习题及参考答案第一章绪论1-5 测得某三角块的三个角度之和为 180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:180o00'02 '-180o= 2 '相对误差等于:2 '180o =2 '=180 ⨯ 60 ⨯ 60 '2 '648000 '= 0.00000308641 ≈ 0.000031%1-8 在测量某一长度时,读数值为 2.31m,其最大绝对误差为 20m,试求其最大相对误差。
相对误差max =绝对误差max⨯100% 测得值=20 ⨯10-6⨯2.31100%= 8.66 ⨯10-4%1-10 检定2.5 级(即引用误差为 2.5%)的全量程为 100V 的电压表,发现 50V 刻度点的示值误差 2V 为最大误差,问该电压表是否合格?最大引用误差=某量程最大示值误差⨯100% 测量范围上限=2100⨯100% = 2% < 2.5%该电压表合格1-12 用两种方法分别测量 L1=50mm,L2=80mm。
测得值各为 50.004mm,80.006mm。
试评定两种方法测量精度的高低。
相对误差L1:50mm L2:80mm I1 =I 2 =50.004 -505080.006 -8080⨯100% = 0.008%⨯100% = 0.0075%I 1 >I2所以L2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为 10000km 时,其射击偏离预定点不超过 0.lkm,优秀射手能在距离 50m 远处准确地射中直径为 2cm 的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:0.110000= 0.00001 = 0.001% 射手的相对误差为:1cm 50m =0.01m50m= 0.0002 = 0.002%多级火箭的射击精度高。
1-14 若用两种测量方法测量某零件的长度 L1=110mm,其测量误差分别为±11m和±9m ;而用第三种测量方法测量另一零件的长度 L2=150mm。
误差理论与数据处理第六版答案
第1章绪论1-1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想的结果。
误差理论的主要内容:(1)讨论形成误差的原因;(2)各类误差的特征及处理方法;(3)对测量结果进行评定。
1-2 试述测量误差的定义及分类,不同种类误差的特点是什么?答1:测量误差的定义:误差=测得值-真值。
测量误差的分类:随机误差、系统误差和粗大误差。
各类误差的特点:(1)随机误差:服从统计规律,具有对称性、单峰性、有界性和抵偿性;(2)系统误差:不服从统计规律,表现为固定大小和符号,或者按一定规律变化;(3)粗大误差:误差值较大,明显地歪曲测量结果。
答2:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 试述误差的绝对值与绝对误差有何异同,并举例说明。
答1:相同点:都是测量值与真值之差。
不同点:误差的绝对值都是正值,而绝对误差有正、有负,反映了测得值与真值的差异。
例:某长度的绝对误差为-0.05mm,而该误差的绝对值为|-0.05|mm=0.05mm。
答2:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定。
误差理论与数据处理(第7版)》费业泰习题答案.doc
《误差理论与数据处理》(第七版 )习题及参考答案第一章绪论1- 5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:180o00 02 180o 2相对误差等于:2 22 =0.00000308641 0.000031%180o 180 60 60 6480001-8 在测量某一长度时,读数值为 2.31m ,其最大绝对误差为20 m,试求其最大相对误差。
相对误差 max 绝对误差max 100%测得值20 10-6100%2.318.66 10- 4%1-10 检定级(即引用误差为%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格最大引用误差某量程最大示值误差100% 测量范围上限22% 2.5%100%100该电压表合格1-12 用两种方法分别测量L1=50mm, L2=80mm。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L1:50mm I 1 50.004 50 100% 0.008%50L2:80mm I 2 80.006 80100% 0.0075%80I1 I2 所以 L2=80mm 方法测量精度高。
1- 13 多级弹导火箭的射程为 10000km 时,其射击偏离预定点不超过,优秀射手能在距离 50m 远处准确地射中直径为 2cm 的靶心,试评述哪一个射击精度高 解:多级火箭的相对误差为:0.10.00001 0.001%10000射手的相对误差为:1cm 0.01m0.002%50m0.000250m多级火箭的射击精度高。
1-14 若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为11 m和9 m;而用第三种测量方法测量另一零件的长度L2=150mm 。
其测量误差为12 m,试比较三种测量方法精度的高低。
相对误差I 111 m0.01%110mm I 29 m 0.0082%110mm I 312 m 0.008%150mmI 3 I 2 I 1 第三种方法的测量精度最高第二章误差的基本性质与处理2-6 测量某电路电流共 5 次,测得数据(单位为 mA)为,,,,。
误差理论第二章-3粗大误差处理
5
§2-4 测量结果的数据处理实例
一、等精度直接测量列测量结果的数据处理实例 例1、对某一轴径等精度测量10次,测得值如下(单位 mm), 26.2025;26.2022;26.2028;26.2025;26.2026;
26.2028;26.2023;26.2025;26.2026;26.2022.
即x 1 x 2 r10 r21
设对一组等精度测量列x1 , x2 , x n x n 1 , x n x 1 x n x n 2 , x n x 2
x n ,当xi 服从正态分布时,得最大值x n 的统计量: r11 r22 x n x n 1 x n x 2 x n x n 2 x n x 3
求最后测量结果。
见备课笔记P25
6
二、不等精度直接测量列测量结果的数据处理 例2、对某一角度进行六组不等精度测量,各组测量结 果如下:
测6次得: 1 751806; 测30次得: 2 751810 测26次得:3 751808; 测12次得: 4 751816 测12次得:5 751813; 44 上的例题
(二)罗曼诺夫斯基准则(t检验准则)测量次数很小时用 当测量次数较少时,按t分布较为合理。先剔除一个可疑的测得 值,按t分布检验被剔除的测量值是否含有粗大误差。
对一等精度测量列,x1 , x2 , 除后计算平均值:
, xn , 若认为xj为可疑数据,将其剔
2
n 1 x xi n 1 i 1,i j
r21
x 1 x 3 x 1 x 3 , r22 x 1 x n 1 x 1 x n 2
误差理论习题答疑
LOGO
绪论1-5
由
∆g = ∆h − 2 ∆T gh T
有
∆T max =
max{ABS[T ( ∆h max − ∆g min )], ABS[T ( ∆h min − ∆g max )]}
2h
g
2h
g
LOGO
绪论1-7
1-7 为什么在使用微安表时,总希望
指针在全量程的2/3范围内使用?
,
LOGO
10
∑ σ =
vi2 ,
i =1
=
4.2 ×10−7 = 2.16 ×10−4 mm
n −1
9
σ = σ = 2.16 ×10−4 = 6.83×10−5 mm
xn
10
LOGO
误
所以
对①,测量,结果为:
x = x1 ± 3σ = (26.2025 ± 0.0006)mm
对② ,测量结果为:
x = x ± 3σ = (26.2025 ± 0.0002)mm x
绪论1-7
解:设微安表的量程为0 ~ Xn ,测量时
指针的指示值为X,微安表的精度等
级为S,最大, 误差≤ X nS% ,相对误差
≤
XnS% X
,一般X
≤
X n,故当X越接近X n
相对误差就越小,故在使用微安表
时,希望指针在全量程的2/3范围内
使用。
LOGO
绪论1-9
1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.1km, 优秀选手能,在距离50m远处准确射中 直径为2cm的靶心,试评述哪一个射 击精度高?
LOGO
绪论1-5
的最大相对误差为:
∆gmax =, ∆hmax − 2 ∆Tmax
误差理论与数据处理第5版 费业泰答案
《误差理论与数据处理》练习题参考答案第一章 绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-4在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。
1-6检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-8用两种方法分别测量L 1=50mm ,L 2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。
大学物理实验误差理论习题答案(单面)
第一章 误差估算与数据处理方法课后习题答案1.指出下列各量有效数字的位数。
(1)000.1=U kV 有效位数:4 (2)000123.0=L mm 有效位数:3 (3)010.10=m kg 有效位数:5 (4)自然数4 有效位数:无限位2.判断下列写法是否正确,并加以改正。
(1)0350.0=I A 35=mA错,0.0350A 有效位数为3位,而35mA 有效位数为2位,二者物理意义不同,不可等同,应改为0350.0=I A 11050.3⨯=mA 。
(2)()3.0270.53+=m kg错,测量结果(即最佳估计值270.53=m )有效数字的最后一位应与不确定度的末位对齐。
测量结果有效数字取位时,应遵循“四舍六入五凑偶”的原则;而且,不确定度应记为“±”的形式。
故应将上式改成()3.03.53±=m kg 。
(3)()2000103.274±⨯=h km错,当采用科学计数法表示测量结果时,最佳估计值与不确定度应同时用科学计数法表示,并且10的指数应取一致,还要保证最佳估计值的最后一位与不确定度的末位对齐。
因此,上式应改为()km h 4102.03.27⨯±=。
(4)()004.0325.4±=x A 正确。
3.试按有效数字修约规则,将下列各数据保留三位有效数字。
3.8547,2.3429,1.5451,3.8750,5.4349,7.6850,3.6612,6.26383.85 2.34 1.54 3.88 5.43 7.68 3.66 6.264.按有效数字的确定规则,计算下列各式。
(1)?6386.08.7537.343=++解:原式8.41981.41964.08.7537.343==++= (2)?543.76180.845.88=--解:原式73.3727.3543.76180.845.88==--= (3)?5.20725.0=⨯解:原式18.05.20725.0=⨯= (4)()?001.247.0052.042.8=÷-+解:原式()00.4001.200.8001.247.0052.042.8=÷=÷-+=5.分别写出下列各式的不确定度传播公式。
误差理论与数据处理习题(上)
第一章基本概念例题例1 在万能测长仪上,测量某一被测件的长度为50mm,已知其最大绝对误差为1μm,试问该被测件的真实长度为多少?解:L = 50mm δ= 0.001mm 故L0= L ±δ = 50.000 ± 0.001mm例2 用两种方法测量长度为50mm 的被测件,分别测得50.005mm;50.003mm。
试评定两种方法测量精度的高低。
解:因对相同的被测量,可用绝对误差的大小来评定其两种测量方法之精度高低。
绝对误差小者,其测量精度高。
第一种方法的绝对误差为:δ1 = (50.005 −50.000)mm = 0.005mm第二种方法的绝对误差为:δ2 = (50.003−50.000 )mm = 0.003mm∵δ2<δ1故第二种方法的测量精度高。
例3若某一量值Q 用乘积ab 表示,而a 与b 是各自具有相对误差f a和f b的被测量,试求量值Q 的相对误差。
解:式中a0、b0分别为a、b的真值。
则因此,Q 的相对误差约为f a+ f b。
例4若某一测量值Q用a与b的商a / b表示,而a与b 是各自具有相对误差f a和f b 的被测量,试求量值Q 的相对误差。
解:则因此,Q 的相对误差约为f a +f b。
例5通过电阻R 的电流I 产生热量(单位J)Q = I2Rt 式中的t 为通过电流的持续时间,已知I 与R 测量的相对误差为1%,t 测量的相对误差为5%,试求Q 的相对误差。
解:例6某一正态分布的随机误差δ的标准差为σ=0.002mm,求误差值落在±0.O05mm以外的概率。
解:误差落入[—0.O05,O.O05]范围内的概率为而δ落在±0.O05mm以外的概率则为例7某一随机误差δ服从正态分布,其标准差为σ=0.06N,给定∣δ∣≤a 的概率为0.9,试确定a的值。
解: 由对称区间概率计算公式可得由概率积分表可查得则习题1-1研究误差的意义是什么?误差理论研究的主要内容是什么?1-2什么叫测量误差?什么叫修正值?含有误差的某一测得值经过修正后,能否得到被测量的真值?为什么?1-3误差的绝对值与绝对误差是否相同?为什么?1-4测得某三角块的三个角度之和为180°00′02″,试求测量的绝对误差和相对误差。
误差理论与测量平差基础习题集-二期
误差理论与测量平差基础习题集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X X B B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W A A =-、ˆ3W B B =-、ˆ3W C C =-。
()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A W A B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-4测量某电路电流共5次,测得数据(单位为mA )为,,,,。
试求算术平均值及其标准差、或然误差和平均误差。
168.41168.54168.59168.40168.50
5
x ++++=
168.488()mA =
)(082.01
55
1
2
mA v
i i
=-=
∑=σ
0.037()5
x mA n
σ=
=
= 或然误差:0.67450.67450.0370.025()x R mA σ==⨯= 平均误差:0.79790.79790.0370.030()x T mA σ==⨯=
2-5在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为,,,,。
若测量值服从正态分布,试以99%的置信概率确定测量结
果。
20.001520.001620.001820.001520.0011
5
x ++++=
20.0015()mm =
5
2
1
0.0002551
i
i v
σ==
=-∑
正态分布 p=99%时,t 2.58= lim x x t δσ=±
2.585
=± 0.0003()mm =±
测量结果:lim (20.00150.0003)x X x mm δ=+=±
2-7用某仪器测量工件尺寸,在排除系统误差的条件下,其标准差mm 004.0=σ,若要求测量结果的置信限为mm 005.0±,当置信概率为99%时,试求必要的测量次数。
正态分布 p=99%时,t 2.58=
lim x t
n
δ=±
2.580.004
2.064
0.005
4.265
n n n ⨯=
===取
2-10某时某地由气压表得到的读数(单位为Pa )为,,,,,,,,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。
)(34.1020288
1
8
1Pa p
x
p x i i
i i
i ==
∑∑==
)(95.86)18(8
1
8
1
2
Pa p v
p i i
i xi i x ≈-=
∑∑==σ
2-11测量某角度共两次,测得值为6331241'''= α,''24'13242 =α,其标准差分别为8.13,1.321''=''=σσ,试求加权算术平均值及其标准差。
961:190441
:
1
:2
2
2
1
21==
σσp p
''35'1324961
19044'
'4961''1619044''20'1324
=+⨯+⨯+
=x
''0.3961
1904419044
''1.32
1
≈+⨯
==∑=i i
i
x
x p
p i
σσ
2-12 甲、乙两测量者用正弦尺对一锥体的锥角α各重复测量5次,测得值如下:
;
5127,0227,5327,037,0227:''''''''''''''' 甲α
;5427,0527,0227,5227,5227:''''''''''''''' 乙α 试求其测量结果。
甲:20"60"35"20"15"
72'72'30"5
x ++++=+
=甲
5
2
1
51i
i v
σ=++++-∑22222
甲(-10")(30")5"(-10")(-15")4 18.4"= x 8.23"5
5
σ==
=甲 乙:25"25"20"50"45"
72'72'33"5
x ++++=+
=乙
5
2
1
1351i
i v
σ=++-++=
=
-∑22222
乙(-8")(-8")(")(17")(12")
413.5"=
x 6.04"5
5
σ=
=
=乙 22
22
x x
1
1
11
::
:3648:67738.23 6.04
p p σσ=
=
=乙
乙甲甲 364830"677333"
72'36486773
p x p x x p p +⨯+⨯=
=+++甲乙乙甲乙甲72'32"=
78.46773
36483648
32.8''=+⨯
''=+=乙
甲甲甲
p p p x x σσ
''15''32'273±=±= x x X σ
2-14重力加速度的20次测量具有平均值为2/811.9s m 、标准差为
2/014.0s m 。
另外30次测量具有平均值为2/802.9s m ,标准差为2/022.0s m 。
假设这两组测量属于同一正态总体。
试求此50次测量的平均值和标准差。
147:24230022.01:
20014.011
:
1
:2
2
22
2122
2
1=⎪⎭
⎫ ⎝⎛⎪⎭
⎫ ⎝⎛=
=
x x p p σ
σ
)/(9.808147
2429.802
1479.8112242s m x ≈+⨯+⨯=
)
(2m/s 0.0025147242242
20
014.0≈+⨯=
x σ 2-15对某量进行10次测量,测得数据为,,,,,,,,,,试判断该测量列
中是否存在系统误差。
96.14=x
按贝塞尔公式 2633.01=σ
按别捷尔斯法0.2642)
110(10253.110
1
i 2≈-⨯
=∑=i
v
σ
由
u +=112σσ 得 0034.011
2=-=σσ
u 67.01
2
=-<
n u 所以测量列中无系差存在。
2-16对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线圈比较得到的,测得结果如下(单位为mH ):
,,,; ,,,,,。
试判断前4次与后6次测量中是否存在系统误差。
使用秩和检验法: 排序:
序号 1 2 3 4 5 第一组
第二组
序号 6 7 8 9 1
0 第一组
第二组
T=+7+9+10= 查表 14=-T 30=+T
+>T T 所以两组间存在系差。