分式和分式方程培优精讲
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解
《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。
中考数学 专题09 分式与分式方程(知识点串讲)(解析版)
专题09 分式与分式方程专题总结【思维导图】【知识要点】知识点一:分式的基础概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子叫做分式,A为分子,B 为分AB 母。
【注意】判断式子是不是分式是从原始形式上去看,而不是从化简后的结果上去看。
与分式有关的条件:要求表示分式有意义分母≠0B ≠0分式无意义分母=0B =0分式值为0分子为0且分母不为0A =0,B ≠0分式值为正或大于0分子分母同号①A>0,B>0②A<0,B<0分式值为负或小于0分子分母异号①A>0,B<0②A<0,B>0分式值为1分子分母值相等A=B 分式值为-1分子分母值互为相反数A+B=01.(2019·湖北中考模拟)无论a 取何值时,下列分式一定有意义的是( )A .B .C .D .a 2+1a2a +1a2a 2‒1a +1a ‒1a 2+1【答案】D 【详解】当a=0时,a 2=0,故A 、B 中分式无意义;当a=-1时,a+1=0,故C 中分式无意义;无论a 取何值时,a 2+1≠0,故选D .2.(2019·江苏中考真题)若代数式有意义,则实数的取值范围是( )x +1x ‒3x A .B .C .D .x =‒1x =3x ≠‒1x ≠3【答案】D 【详解】代数式有意义,∵x +1x ‒3,∴x ‒3≠0∴x ≠3故选:D .3.(2018·沭阳县马厂实验学校中考模拟)在,,,,,中分式的个数有()1x 12x 2+123xy π3x +y a +1m A .2 个B .3 个C .4 个D .5 个【答案】B【详解】解:,,中的分母中均不含有字母,因此它们是整式,而不是分式;12x 2+123xyπ,,中的分母中含有字母,因此是分式;1x 3x +y a +1m 故选:B .考查题型一 分式值为0的判断方法1.(2018·安徽中考模拟)分式的值为0,则x 的取值为( )x 2+2x ‒3|x |‒1A .x=-3B .x=3C .x=-3或x=1D .x=3或x=-1【答案】A 【详解】∵原式的值为0,∴,{x 2+2x ‒3=0|x |‒1≠0∴(x-1)(x+3)=0,即x=1或x=-3;又∵|x|-1≠0,即x≠±1.∴x=-3.故选:A .2.(2018·云南中考模拟)当式子的值为零时,x 的值是()|x |‒5x 2‒4x ‒5A .B .C .D .或±55‒551【答案】C 【详解】由题意,得:|x |−5=0,且 x 2‒4x ‒5≠0;由|x |−5=0,得:x =±5;由,得:x ≠5,x ≠−1;x 2‒4x ‒5≠0综上得:x =−5,故选C.3.(2019·广西中考真题)若分式的值为0,则x 的值为( )x 2‒1x +1A .0B .1C .﹣1D .±1【答案】B【详解】∵分式的值为零,x 2‒1x +1∴,{x2‒1=0x +1≠0解得:x=1,故选B .知识点二:分式的运算(重点)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
分式与分式方程辅导讲义
分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。
知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。
字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。
知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。
式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。
分式运算培优竞赛讲义
成绩提升专业机构
分式的概念、性质及运算
分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容.
从整式到分式,我们可以形象地说是从“平房”到了“楼房”.在脚手架上活动,无疑增加了难点,体现在:解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理.
分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具.分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有:
1.化整为零,分组通分;
2,步步为营,分步通分;
3.减轻负担,先约分再通分;
4.裂项相消后通分等
例题求解
【例1】要使分式1有意义,则x的取值范围是. 1?x
x
(“希望杯”邀请赛试题)
思路点拨当分式的分母不为零时,分式有意义,由于分式是繁分式,因此考虑问题应细致周密.注:在新事物面前,人们往往习惯于把它们与原有的、熟知的事物相比,这里蕴涵的思想方法就是类比.学习分式时,应注意:
(1)分式与分数的概念、性质、运算的类比;
(2)整数可以看做是分数的特殊情形,但整式却不是分式的特殊情形;
(3)分式需要讨论宇母的取值范围,这是分式区别于整式的关键所在.
【例2】已知3x?4
x2?x?2?AB,其中A、B为常数,则4A-B的值为() ?x?2x?1
A.7 B.9 C.13 D.5
(江苏省竞赛题)
思路点拨对等式右边通分,比较分子的对应项系数求出A、B的值.
【例3】计算下列各式: 112a4a3
??? (1); a?ba?ba2?b2a4?b4
培养创新思维开发个性潜能 1。
人教版八年级上册数学《分式方程》分式培优说课教学复习课件
=
+1
2x
x+ 3 x - 5
x - 25
x+1 3 x+3
与上面的方程有什么共同特征?
分母中都含有未知数.
.
探究新知
分式方程的概念:
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
追问2:你能再写出几个分式方程吗?
注意:我们以前学习的方程都是整式方程,它们
的未知数不在分母中.
2.会解含有字母系数的分式方程.
1.能找出实际问题中的等量关系,熟练地列
出相应的方程.
探究新知
知识点
列分式方程解应用题的步骤
甲、乙两人做某种机器零件,已知
甲每小时比乙多做6个,甲做90个零件
所用的时间和乙做60个零件所用的时间
相等,求甲、乙每小时各做多少个零件?
请审题
分析题意
设元
探究新知
解:设甲每小时做x个零件,则乙每小时做(x–6)个
式子——各分母的最简公分母.
探究新知
90
60
=
追问:你得到的解 v= 6 是分式方程
30+v 30-v
的解吗?
检验:把v=6代入分式方程得:
左边=
90
90 5
30 6 36 2
右边=
60
60 5
30 - 6 24 2
左边=右边,所以v=6是原方程的解.
探究新知
1
10
=
问题3: 解分式方程: x-5 x 2 - 25 .
所以,原方程的解是x=1.
探究新知
素养考点 2
解含有整式项的分式方程
分式方程讲义
学科教师辅导讲义学员编号: 年 级: 八年级 课时数:3学员姓名: 辅导科目: 初中数学 学科教师:课 题分式 授课时间: 备课时间:教学目标重点、难点考点及考试要求教学内容【基本知识点】1、分式的概念:形如A/B ,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式(fraction)。
其中A 叫做分式的分子,B 叫做分式的分母。
注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
这里,分母是指除式而言。
而不是只就分母中某一个字母来说的。
也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
2、分式的四则运算(1).同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c(2).异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: bdbc ad d c b a +=+ (3).分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdac d c b a =⨯ (4).分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bcad d c b a =÷ (2).除以一个分式,等于乘以这个分式的倒数:bc ad c d b a d c b a =⨯=÷ 3、分式方程:分母中含有未知数的方程叫做分式方程,区别分式方程与整式方程最好的方法就是看分母是否含有未知数,例如38735=++x a x ,当x 是未知数时,它是整式方程,不是分式方程,当a 是未知数时,它是分式方程。
(完整)分式与分式方程题型分类讲义
分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程。
2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3。
用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 。
二、题型分类考点一:分式方程题型(一)分式方程去分母 1、解分式方程22311x x x时,去分母后变形为( )。
A .()()1322-=++x xB .()1322-=+-x xC .()()x x -=+-1322D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x xB .13-=x x C .x x =1 D .12=-πx题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解 1。
已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22。
方程13462232622+++++++x x x x x x -5=0的解是( )A 。
无解 B. 0 , 3 C 。
—3 D 。
0, ±33。
如果)2)(1(3221+-+=++-x x x x B x A 那么A-B 的值是( ) A .34 B 。
35C. 41 D 。
人教版数学八年级培优竞赛 分式方程的解 专题课件
=1
得
y= 10+a
2
,∵y≠2,∴a≠-6,又
y=
10+a 2
有
整数解,∴a=-8 或一 4,所有满足条件的整数 a 的值之和为-12.
1.分式方程 x 1 4 的解为( B)
x 1 (x 1)(x 2)
A.x=1
B.x=2
C.x=-1
D.x=-2
2.若分式方程 6 x 5 有增根,则增根是( A )
x
(2)x+ n n+1 =n+(n+1)得 x=n 或 x=n+1;
x
(3)解 x+ n2+n =2n+4,则(x-3)+ n2+n =2n+1,(x-3)+ nn+1 =n+
x-3
x-3
x-3
(n+l),由(2)得 x-3=n 或 x-3=n+1,故原方程的解为 x=n+3 或 x=n
+4.
谢谢观赏
x 1
10.若解关于 x 的分式方程 2 mx 3 会产生增根,则 m 的值为
x 2 x2 4 x 2
_____-__4__或__.6
11.若分式方程 1 3 ax 无解,求 a 的值.
x2
x2
去分母得 1+3(x-2)=ax,整理得(a-3)x=-5,当 a=3 时,该方程无解;
当 a≠3 时,若 x=2,则分式方程也无解,此时 a= 1 ,综上,a=3 或 a= 1 .
≠-3
时,方程的解为负数,解得
m<4
或
m≠2.
13.阅读材料:
关于 x 的方程:
x
1 x
c
1 c
的解为:
x1
c
,x2
=
1 c
;
x
1 x
c
《分式方程》分式与分式方程PPT教学课件(第2课时)
1400 2.8x
=
9
先约分,再去分母,可以使计 算简便
解: 方程可化为 1400 - 500 = 9
xx
1400- 500 = 9 x
两边都乘 x,得 1400 • x - 500 • x = 9x
x
x
化简,得
1400- 500=9x
9x =900
900 = 9 x
900 • x = 9 • x x
9x =900
解得
x =100
x =100
探究新知
2 .你能试着解这个分式方程吗? 90 60
30+x 30 x (1)如何把它转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘什么样的式子才能把每一个分母都约去? (4)这样做的依据是什么?
解分式方程最关键的问题是什么? “去分母”
探究新知
素养考点 1 例1 解方程 (1) 1 = 3
x-2 x
分式方程的解法 (2) 1 - x = 1 - 2
x-2 2-x
解:(1)方程两边都乘 x(x - 2), 解:(2)方程两边都乘 (x - 2) ,
得
x=3 (x - 2)
得 1- x = -1- 2(x - 2)
解这个方程 ,得 x=3.
解这个方程,得 x=2.
检验:将x=3代入原方程,得 左边=1,右边=1,左边=右边. 所以,x=3是原方程的根.
检验:当 x=2时,x-2=0, x=2是原方程的增根, 所以,原方程无解.
探究新知
注意:
检验 (1)把未知数的值代入原方程(一般方法);
方法 (2)把未知数的值代入最简公分母(简便方法).
分式方程
目 标
分式方程拓展训练培优提高
分式方程拓展训练培优提高分式方程拓展训练一、分式方程的特殊解法1.交叉相乘法例1:解方程:$\frac{1}{x}=\frac{3}{x+2}$解法:交叉相乘得到$x(x+2)=3$,化简后得到$x^2+2x-3=0$,解得$x=1$或$x=-3$,但$x=-3$不符合原方程的定义域,所以解为$x=1$。
2.化归法例2:解方程:$\frac{12}{x-1}-\frac{2}{x-1}=\frac{1}{x-1}$解法:通分得到$\frac{10}{x-1}=\frac{1}{x-1}$,解得$x=11$。
3.左边通分法例3:解方程:$\frac{x-8}{x-7}-\frac{1}{x+7-x}=\frac{8}{x-7-x}$解法:左边通分得到$\frac{(x-8)-(x+7)}{(x-7)(x+7)}=\frac{8}{-2x}$,化简得到$-x^2+2x-15=0$,解得$x=3$或$x=-5$,但$x=-5$不符合原方程的定义域,所以解为$x=3$。
4.分子对等法例4:解方程:$\frac{1}{a}+\frac{1}{a-1}=\frac{b}{x}+\frac{1}{x-1}$,其中$a\neq b$解法:分子对等得到$\frac{x-1+a-1}{ax(a-1)}=\frac{bx+1+abx-ab}{x(x-1)ax(a-1)}$,化简得到$abx^2+(a+b-2)bx+a-1=0$,由于$a\neq b$,所以系数$a+b-2=0$,解得$a=1$,代入原方程得到$x=2$。
5.观察比较法例5:解方程:$\frac{4x}{5x-2}+\frac{17}{5x-2}=\frac{5x+24}{4x}$解法:观察到分母都含有$5x-2$,设$5x-2=t$,则原方程化为$\frac{4}{t}+\frac{17}{t}=\frac{t+24}{4(t+2)}$,化简得到$t^2-50t+76=0$,解得$t=2$或$t=48$,代回得到$x=\frac{4}{5}$或$x=\frac{50}{9}$,但$x=\frac{50}{9}$不符合原方程的定义域,所以解为$x=\frac{4}{5}$。
浙教版七年级数学下册培优专题—第14讲 分式2
第14讲 分式2模块一 分式方程的解法1.分式方程的定义:分母中含有未知数的方程叫作分式方程.2.分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②去括号;③移项;④合并同类项;⑤系数化为1;⑥验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:解分式方程一定要验根.例题1、解下列分式方程:(1)324x --2x x -1=2(2)2242111x x x x x -+=-+ (3)311(1)(2)x x x x -=++-(3)两边同时乘以(1)(2)x x +-,得(2)(1)(2)3x x x x --+-=.解这个方程,得1x =-.,检验:1x =-时(1)(2)0x x +-=,1x ∴=-不是原分式方程的解,原分式方程无解.例题2、解下列分式方程:(1) 21622=422x x x x x -++-+- (2)22252571061268x x x x x x x x x --+=+----+方程两边同时乘以(2)(2)x x +-,约去分母,得2216(2)=(2)x x -+-+,整理得22412=44x x x x --++,解这个整式方程,得=2x -,检验:把=2x -代入(2)(2)x x +-,得(22)(22)0-+--=所以=2x -是原方程的增根,原分式方程无解.(2)原方程可变形为:525710(2)(3)(3)(4)(2)(4)x x x x x x x x x --+=-++---方程两边都乘以(2)(3)(4)x x x -+-,得5(4)(25)(2)(710)(3)x x x x x x -+--=-+整理,得4040x -=-,∴1x =,检验,当1x =时,(2)(3)(4)0x x x -+-≠∴原方程的解是1x =.例题3、解下列分式方程: 分离常数(1)24681357x x x x x x x x ++++-=-++++(2)222232411221x x x x x x x x +-+++=+-++∴11111357x x x x -=-++++, ∴22(1)(3)(5)(7)x x x x =++++,∴(1)(3)(5)(7)x x x x ++=++, ∴832x =-,∴4x =-.经检验4x =-是原方程的解.(2)原方程变形为2211112221x x x x -+=-+-++,即2211221x x x x =+-++, ∴22221x x x x +-=++,解得3x =-.经检验3x =-是原方程的解.裂项法 例题4、(1)已知+++⨯⨯⨯111133557…()()n n =-+120+212141,求n . 答案:∵1111=()13132-⨯⨯,1111()35352=-⨯⨯……1111()(21)(21)21212n n n n =-⨯-+-+ ∴原方程变为11111111120()1335572121241n n -+-+-+-⨯=-+ 14012141n -=+ 解的20n =(2)解方程()()()11112x x x x ++---…()()x x x =---11+120162017. 答案:2018x =例题5、解下列关于x 的方程(1)m -1=2m x - (2)()11a b a b a x b x +=+≠答案:(1)21m x m -=- (2)x ab =模块二 分式方程的增根和无解1.分式方程的增根(1)产生增根的原因增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)分式方程增根的应用如果说某个含参数的分式方程无解,但是去分母以后的整式方程是有解的,说明那个解应该是增根.只要把增根求出来(也就是令原来的分母为零),代入整式方程就可以解出参数的值.2.分式方程无解:不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(1)原方程去分母后的整式方程无解;(2)原方程去分母后的整式方程有解,但这个解使原方程的分母为0,它是原方程的增根,从而原方程无解.3.分式方程无解与增根的区别:分式方程无解时,不一定有增根;分式方程有增根时,不一定无解.例题6、(1)若关于x 的分式方程26111m x x -=--有增根,则增根是________. (2)如果分式方程8877x k x x --=--出现了增根,那么k 的值为________. (3)若分式方程22111x m x x x x x++-=++产生增根,则m 的值为________. (4) 如果解方程2251224m x x x x +-=-+-时出现增根,则m 的取值为________. 答案:(1)1x =;去分母,得:26(1)1m x x -+=-,移项,得:27(1)m x x -+=,当1x =-时,原方程无解,(分母为0的两种情况讨论)当1x =时为原方程的增根.(2)1;(3)2-或1;(4)12m =±.例题7、(1)若关于x 的方程4122ax x x =+--无解,则a 的值是___________. (2)若关于x 的分式方程311x a x x --=-无解,则a =___________. (2) 若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值. 答案:(1)1或2;(2)1或2-;(3)解:原方程化为(2)3a x +=-,①∵原方程无解,∴20a +=或10x -=,20x +=,得1x =,2x =-分别代入①,得5a =-,12a =-,综上知2a =-,5-或12-.例题8、(1)若关于x 的方程2102x m x ++=-的根为正数,则m 取值范围为________. (2)若关于x 的分式方程32122x a x x =---的解是非负数,则a 取值范围是________.(3) 若关于x 的方程1101ax x +-=-的解为正数,则a 取值范围为_______.由题意得:0x >且2x ≠,即:203m->且223m -≠,解得:2m <且4m ≠-.(2)43a ≥-且23a ≠.(3)1a <且1a ≠-.课后作业模块一 分式方程的解法1、 解下列分式方程:(1)23233x x x +=-+ (2)26111x x x -=+-答案:(1)1x =-;(2)5x =-.2、解下列分式方程:(1)48755986x x x x x x x x ----+=+----(2)11111(1)(1)(2)(2009)(2010)x x x x x x x +++=------化简,去分母可得:2211301772x x x x -+=-+,解得7x =; 经检验,7x =是原方程的根.(2)原方程可化为1111111111220092010x x x x x x x -+-+--+=------ 化简,得11112010x x x -=--, ∴112010x =-,解得,2011x =, 经检验2011x =不是原方程的增根,∴2011x =是原方程的根.模块二 分式方程的增根和无解3、(1)若方程61(1)(1)1m x x x -=+--有增根,则它的增根是________. (2)若关于x 的分式方程3211x m x x -=+--有增根,则m 的值是____________. 答案:(1)1x =;(2)2-.4、(1)若关于x 的方程233x m x x -=--无解,则m 的值是________. (2)当m =________时,关于x 的分式方程213x m x +=--无解.答案:(1)3m =;(2)6-.5、若关于x 的分式方程212x a x +=--的解是正数,则a 的取值范围是_________. 答案:2a <且4a ≠-.。
《分式与分式方程》课件
分式的定义中,分母是除数,可以是整数 、多项式或分式。
分式的值随着分子和分母的取值变化而变 化,当分子和分母同号时,分式的值为正 ;当分子和分母异号时,分式的值为负。
分式的性质
总结词
分式的性质
详细描述
分式具有一些重要的性质,如分式的加减法、乘除法、约分和通分等 。
详细描述
分式的加减法性质指出,当分母相同时,可以直接对分子进行加减运 算;当分母不同时,需要先进行通分,再进行加减运算。
详细描述
分式的乘除法性质指出,分式与整数相乘或相除时,可以直接对分子 和分母分别进行乘除运算。
分式的约分与通分
总结词
分式的约分与通分
详细描述
约分是指将一个分式化简为最简形式的过程,通过约简分子和分母的公因式来 实现。通分是指将两个或多个分式化为具有相同分母的过程,以便进行加减运 算。
02
分式方程的解法
总结词
理解同分母分式的加减法规则
详细描述
同分母的分式可以直接进行加减运算,分母不变, 分子进行相应的加减运算。
总结词
掌握异分母分式的加减法规则
详细描述
异分母的分式在加减时,需要先通分,然后按照同分母 分式的加减法规则进行运算。
分式的乘除法
总结词
理解分数乘法的规则
01
详细描述
02 分数乘法时,分子乘分子作为
THANKS
新的分子,分母乘分母作为新 的分母,然后再化简。
总结词
理解分数除法的规则
03
详细描述
04 分数除法时,可以转化为乘法
运算,即被除数乘以除数的倒 数,然后再化简。
总结词
掌分式的一种方法,
通过分子和分母的最大公约数 来约简分式。
专题09 分式与分式方程(知识点串讲)(解析版)
专题09 分式与分式方程专题总结【思维导图】【知识要点】知识点一:分式的基础概念:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A叫做分式,A为分子,B为分母。
B【注意】判断式子是不是分式是从原始形式上去看,而不是从化简后的结果上去看。
与分式有关的条件:1.(2019·湖北中考模拟)无论a取何值时,下列分式一定有意义的是()A.a2+1a2B.a+1a2C.a2−1a+1D.a−1a2+1【答案】D【详解】当a=0时,a2=0,故A、B中分式无意义;当a=-1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选D.2.(2019·江苏中考真题)若代数式x+1x−3有意义,则实数x的取值范围是()A.x=−1B.x=3C.x≠−1D.x≠3【答案】D【详解】∵代数式x+1x−3有意义,∴x−3≠0,∴x≠3故选:D.3.(2018·沭阳县马厂实验学校中考模拟)在1,1,x2+1,3xy,,a+1m中分式的个数有()A.2 个B.3 个C.4 个D.5 个【答案】B【详解】解:12,x 2+12,3xy π中的分母中均不含有字母,因此它们是整式,而不是分式;1x ,3x+y ,a +1m 中的分母中含有字母,因此是分式; 故选:B .考查题型一分式值为0的判断方法 1.(2018·安徽中考模拟)分式x 2+2x−3|x |−1的值为0,则x 的取值为( ) A .x=-3 B .x=3C .x=-3或x=1D .x=3或x=-1【答案】A 【详解】 ∵原式的值为0, ∴{x 2+2x −3=0|x |−1≠0,∴(x-1)(x+3)=0,即x=1或x=-3; 又∵|x|-1≠0,即x≠±1. ∴x=-3. 故选:A .2.(2018·云南中考模拟)当式子|x |−5x 2−4x−5的值为零时,x 的值是()A .±5B .5C .−5D .5或1【答案】C 【详解】由题意,得:|x |−5=0,且x 2−4x −5≠0; 由|x |−5=0,得:x =±5; 由x 2−4x −5≠0,得:x ≠5,x ≠−1; 综上得:x =−5, 故选C.3.(2019·广西中考真题)若分式x 2−1x+1的值为0,则x 的值为( )A .0B .1C .﹣1D .±1【答案】B 【详解】∵分式x 2−1x+1的值为零,∴{x2−1=0x +1≠0,解得:x=1, 故选B .知识点二:分式的运算(重点)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
初中数学分式的概念、运算及分式方程培优(含解析)
初中数学分式的概念、运算及分式方程培优考试要求:例题精讲:模块一分式的概念【例1】x为何值时,分式29113xx-++有意义?【解析】根据题意可得:110330xx⎧+≠⎪+⎨⎪+≠⎩,解得3x≠-且4x≠-;如果问:x为何值时,分式29113xx-++值为零,答案为3x=.【答案】3x=【巩固】⑴若分式216(3)(4)xx x--+有意义,则x;⑵若分式216(3)(4)xx x--+无意义,则x;【解析】⑴若分式216(3)(4)xx x--+有意义,则3x≠且3x≠-且4x≠-;⑵若分式216(3)(4)xx x--+无意义,则3x=或3x=-或4x=-;【答案】⑴3x≠且3x≠-且4x≠-;⑵3x=或3x=-或4x=-【例2】解下列不等式:①53xx-<-;②523xx->-【解析】①由题意可知5030xx->⎧⎨-<⎩或者5030xx-<⎧⎨->⎩,解得3x<;5x>,所以原不等式的解集为3x<或5x>;②5203x x -->-,即11303xx ->-,由题意可知113030x x ->⎧⎨->⎩或者113030x x -<⎧⎨-<⎩, 解得1133x <<;无解,所以原不等式的解集为1133x <<. 【答案】3x <或5x >;1133x <<.【巩固】⑴解不等式304x x +<- ;⑵解不等式334x x +>- .【解析】 ⑴由题意可知3040x x +>⎧⎨-<⎩或者3040x x +<⎧⎨->⎩,由得34x -<<;无解集,所以原不等式的解集为34x -<<;⑵由题意可知3304x x +->-,15204xx ->-,可得:152040x x ->⎧⎨->⎩或者152040x x -<⎧⎨-<⎩得1542x <<;无解集,所以原不等式的解集为1542x <<. 【答案】34x -<<;1542x <<.模块二 分式的运算☞分式的化简求值裂项【例3】 设为正整数,求证:. 【解析】,故【答案】【巩固】化简:. 【解析】 【答案】2100100x x+n 1111...1335(21)(21)2n n +++<⋅⋅-+1111()(21)(21)22121n n n n =--+-+111111111(1.....)(1)233521212212n n n -+-++-=-<-++1111...1335(21)(21)2n n +++<⋅⋅-+111.....(1)(1)(2)(99)(100)x x x x x x ++++++++111111111.........(1)(1)(2)(99)(100)11299100x x x x x x x x x x x x +++=-+-+-++++++++++211100100100x x x x =-=++【巩固】化简: 【解析】 原式 【答案】255x x+【例4】 化简:. 【解析】同理,,故.【答案】0【巩固】(第11届希望杯试题)已知,,为实数,且,,,求. 【解析】 由已知可知 ,三式相加得,,故. 【答案】16【巩固】化简:. 【解析】同理,, 故 【答案】022222111113256712920x x x x x x x x x x +++++++++++++11111(1)(1)(2)(2)(3)(3)(4)(4)(5)x x x x x x x x x x =+++++++++++++211555x x x x =-=++222()()()()()()a bc b ac c aba b a c b c b a c a c b ---++++++++22()()()()a bc a ac ac bc a ca b a c a b a c a b a c-+--==-++++++2()()b ac b a b c b a b c b a -=-++++2()()c ab c bc a c b c a c b-=-++++2220()()()()()()a bcb ac c aba b a c b c b a c a c b ---++=++++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca++113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+221111()()a b c a b a c a ab ac bc a b a c a b a c a b c a---+-==+=---+------2211b c a b ab bc ac b c a b --=---+--2211c a b c ac bc ab c a b c --=---+--2222220a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++=--+--+--+☞分式的恒等变形部分分式【例5】 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【解析】2222465()()()()x y x y x y A x y B x y B A x A B y AB -+--=--++=-+--+-, 故有4B A -=,6A B +=,所以1A =,5B =.【答案】1A =5B =【巩固】若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 . 【解析】设原式可分解为22()()x ax m x ax n ++++,展开可得:224322()()2()()x ax m x ax n x ax a m n x a m n x mn ++++=+++++++. 比较等号两边的系数可得:32a m n mn p =⎧⎪+=⎨⎪=⎩,,故22(2)21(1)1p m m m m m =-=-=--≤,最大值为1.【答案】1【例8】 若213111a M Na a a -=+--+,求M 、N 的值. 【解析】 2213()()1111a M N M N a M N a a a a -++-=+=--+-,所以31M N M N +=-⎧⎨-=⎩,所以12M N =-⎧⎨=-⎩ 【答案】1,2M N =-=-【巩固】(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【解析】 22()2()42244a b a b x a b x x x x x +--+==+--- 所以40a b a b +=⎧⎨-=⎩,解得22a b =⎧⎨=⎩【答案】2,2a b ==分式恒等证明【例9】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【解析】 左边()()333333333322a b a b a b a a b a a b a b a b a b a b a b -+--⎛⎫⎛⎫-+=--=⋅ ⎪⎪--++-+⎝⎭⎝⎭ ()()33332222a b a b a ab b a ab b a b a b -+=⋅=++-+=-+右边。
《分式方程》分式与分式方程PPT教学课件
-.
学习目标
1. 掌握分式方程的概念,可以判别分式方程; 2. 可以根据实际问题列分式方程.
情境引入
甲、乙两地相距 1400 km,乘高铁列车 从甲地到乙地比乘特快列车少用 9 h,已知 高铁列车的平均行驶速度是特快列车的2.8倍.
(1)这一问题中有哪些等量关系呢?
等量关系: 列车的速度×行驶时间=1400, 高铁列车行驶时间=特快列车的行驶时间﹣9, 高铁列车的平均速度=特快列车平均速度×2.8.
捐款总额 捐款人数
第一次 4800元 第二次 5000元
x x+20
人均捐款额
4800 x
5000 x 20
4800 5000
x
x 20
探究新知 观察:下列方程有什么共同特点?
1400 1400 9 x 2.8x
1400 2.8 1400
y
y9
4800 5000 x x 20
分母中都含有未知数
3
情境引入
甲、乙两地相距 1400 km,乘高铁列车 从甲地到乙地比乘特快列车少用 9 h,已知 高铁列车的平均行驶速度是特快列车的2.8倍.
(2)如果设特快列车的平均行驶速度为xkm/h, 那么x满足怎样的方程?
高铁列车平均速度:2.8x
特快列车行驶时间: 1400
x
高铁列车行驶时间:1400
2.8 x
等量关系:
第一块试验田的面积 = 第二块试验田的面积
12000 14000 x x 1500
问题解决
2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好 先用人工装运,6h完成了一半任务;后来机械装运和人工装运同时进 行,1h完成了后一半任务.如果设单独采用机械装运xh可以完成后一 半任务,那么x满足怎样的分式方程?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、知识点梳理
知识点一:分式的定义
一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B
A
叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件
1、分式有意义:分母不为0(0B ≠)
2、分式值为0:分子为0且分母不为
0(⎩
⎨⎧≠=00B A )
3、分式无意义:分母为0(0B =)
4、分式值为正或大于0:分子分母
同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0
0B A )
5、分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00
B A )
知识点三:分式的通分
① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
② 分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数;
Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;
Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
知识点四:分式的四则运算与分式的乘方 1、分式的乘除法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示
为:d
b c a d c b a ••=•
分式除以分式:式子表示为
c
c ••=•=÷b
d a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。
式子n n n
b a b a =⎪⎭⎫
⎝⎛
3、分式的加减法则:
同分母分式加减法:分母不变,把分子相加减。
式子表示为
c
b
a c
b ±=±
c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为
bd
bc
ad d c ±=±b a 注意:加减后得出的结果一定要化成最简分式(或整式)。
知识点五:分式方程的解的步骤
⑴去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程) ⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:
如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根; 如果最简公分母不为0,则是原方程的解。
2、产生增根的条件是:①是得到的整式方程的解; ②代入最简公分母后值为0。
三、典型例题
例一 当x 有何值时,下列分式有意义
(1)44+-x x (2)2
32+x x
(3)
1
22-x
(4)
3||6--x x
(5)
x
x 11-
例二:考查分式的值为0的条件
当x 取何值时,下列分式的值为0.
(1)3
1
+-x x
(2)
4
2||2--x x (3)
6
53222----x x x x
例三:考查分式的值为正、负的条件
(1)当x 为何值时,分式x -84
为正; (2)当x 为何值时,分式2
)1(35-+-x x 为负;
(3)当x 为何值时,分式3
2
+-x x 为非负数.
例四:化简求值题 1、已知:511=+y x
,求y xy x y xy x +++-2232的值。
2、已知:21=-x x ,求221x
x +的值。
提示:整体代入,①xy y x 3=+,②转化出y
x
11
+.
例五 若0106222=+-++b b a a ,求b
a b
a 532+-的值.
例六 如果21<<x ,试化简
x
x --2|
2|x x x x |||1|1+
---.
例七 计算
(1)87
4321814121111x x x x x x x x +-
+-+-+--; (2)
)
5)(3(1
)3)(1(1)1)(1(1+++
++++-x x x x x x ;
例八若关于x 的分式方程
3
132--=-x m
x 有增根,求m 的值.
例九 解下列不等式 (1)
01
2
||≤+-x x (2)
03
252
>+++x x x
四、课堂练习
1.当x 取何值时,下列分式有意义: (1)
3
||61
-x
(2)
1
)1(32
++-x x (3)
x
1
11+
2.当x 为何值时,下列分式的值为零:
(1)4
|
1|5+--x x
(2)
5
62522+--x x x
(3))
2)(1(1
)3)(1(2)3)(2(1--+
-----x x x x x x .
3、当a 为何整数时,代数式2
805
399++a a 的值是整数,并求出这个整数值.
4、 已知:31
=+x x ,求1
242++x x x 的值.
5、已知:0132=+-a a ,试求)1)(1
(22a a a a --的值. 6、计算2
12
1111x x x ++
++-;
7、已知:1
21)12)(1(45--
-=---x B
x A x x x ,试求A 、B 的值.
8.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.
9、解下列方程(组)
(1)569108967+++++=+++++x x x x x x x x (2)⎪⎪⎪⎩⎪⎪
⎪⎨⎧=+=+=+)
3(4
111)2(3
1
11)1(21
11x z z y y x
10、若分式方程
12
2-=-+x a
x 的解是正数,求a 的取值范围.
11.若
73212++y y 的值为8
1
,则96412-+y y 的值是( )
(A )21-
(B )171- (C )7
1
- (D )71
12.有三个连续正整数,其倒数之和是60
47
,那么这三个数中最小的是( )
(A )1 (B )2 (C )3 (D )4
13.若d c b a ,,,满足
a d d c c
b b a ===,则2
222
d c b a da
cd bc ab ++++++的值为( ) (A )1或0 (B )1- 或0 (C )1或2-(D )1或1- 14.方程7
10
11=
+
+
z y x 的正整数解()z y x ,,是_____. 15. 若11
,11=+=+
z
y y x ,则=xyz _____. 16.解方程:
708
115
209112716512311222222-+=
+++++++++++++x x x x x x x x x x x x .
五、课后作业
1、(1)当a 时,分式321
+-a a 有意义;(2)当_____时,分式4
312-+x x 无意义;
(3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1;
(5)当______时,分式
51+-x 的值为正;(6)当______时分式1
4
2+-x 的值为负.
2、(1)当分式
44x x --=-1时,则x__________; (2)若分式11
x x -+的值为零,则x 的值为 (3)当x________时,
1
x x x
-- 有意义. 3、计算: ①3333x x x x -+-+-; ②21221
1933a a a
+--+-; ③2111
111
x x x ++-+-.
4、若关于x 的方程1
101
ax x ++=-有增根,则a 的值为
5、如果分式方程11
x m
x x =
++无解,则m 的值为
6、如果解关于x 的方程2
22-=+-x x
x k 会产生增根,求k 的值.
7、当k 为何值时,关于x 的方程1)
2)(1(23++-=++x x k
x x 的解为非负数.
8、已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.
9.设轮船在静水中的速度为v ,该船在流水(速度为v u <)中从上游A 驶往下游B,再返回A ,所用的时间为T,假设0=u ,即河流改为静水,该船从A 至B 再返回A,所用时间为t ,则( )
(A)t
T>(D)不能确定T与t的大小关系T=(B)t
T<(C)t。