SPI总线协议
基于SPI的总线协议的单片机数据通信
基于SPI的总线协议的单片机数据通信一、介绍单片机是一种集成电路,它集中了处理器、存储器和外设接口等功能。
它在各种计算机和电子设备中广泛应用,例如家电、汽车电子、工业控制等领域。
在设计单片机系统时,数据通信是一个重要的考虑因素。
为了实现单片机之间的数据传输,我们需要选择合适的总线协议。
本文将介绍一种基于SPI的总线协议,以及它在单片机数据通信中的应用。
二、SPI总线协议的基本原理SPI(Serial Peripheral Interface)是一种同步串行通信协议,它为单主设备和多从设备之间的通信提供了一种简单而高效的方法。
SPI总线协议需要四根线来实现数据的传输,包括时钟线(SCLK)、数据线(MOSI)、数据线(MISO)和片选线(SS)。
SPI总线协议的传输过程如下:1. 主设备通过将片选线拉低来选中从设备。
2. 主设备通过时钟线控制数据的传输,每个时钟周期传输一个比特。
3. 主设备通过MOSI线发送数据,从设备通过MISO线接收数据。
4. 主设备和从设备之间可以通过片选线的状态切换来进行多从设备的通信。
5. 传输完成后,主设备将片选线拉高,释放从设备。
三、SPI总线协议的优点1. 高速传输:SPI总线协议使用同步通信方式,可以实现高达几十MHz的数据传输速率,适用于高速数据通信。
2. 简单灵活:SPI总线协议的硬件实现简单,只需少量的线路和引脚。
同时,SPI总线协议支持多从设备的通信,可以通过片选线来选择不同的从设备进行通信。
3. 适用范围广:SPI总线协议不仅可以用于单片机之间的通信,还可以用于单片机与其他外设(例如传感器、存储器等)之间的通信。
四、SPI总线协议在单片机数据通信中的应用1. 与外设的通信:单片机通常需要与各种外设进行数据交互,如显示屏、键盘、传感器等。
SPI总线协议可以作为单片机与这些外设之间的通信接口,实现数据的传输和控制。
2. 多从设备的通信:在某些应用场景中,单片机需要与多个从设备进行通信。
单片机中的SPI总线通信协议与应用
单片机中的SPI总线通信协议与应用SPI(Serial Peripheral Interface)是一种基于同步通信方式的总线协议,常用于将单片机与外部设备进行数据交互。
本文将介绍SPI总线通信协议的原理和应用。
一、SPI总线通信协议的原理SPI总线通信协议由主设备(Master)和从设备(Slave)组成,主设备控制通信的发起和传输,而从设备被动接收和回应。
SPI总线通信协议通过四根线(SCLK、MOSI、MISO、SS)实现数据传输和通信控制。
1. SCLK(Serial Clock)线是用来同步主设备和从设备的时钟信号。
主设备通过拉高和拉低SCLK线来控制数据传输的时钟频率以及数据的采样和发送时机。
2. MOSI(Master Out Slave In)线是主设备发送数据给从设备的数据线。
主设备通过拉高和拉低MOSI线来将数据传输给从设备。
3. MISO(Master In Slave Out)线是从设备发送数据给主设备的数据线。
从设备通过拉高和拉低MISO线来将数据传输给主设备。
4. SS(Slave Select)线用于选择从设备。
主设备可以通过拉低相应的SS线来选择与之通信的从设备,从而实现多从设备的控制和数据交互。
SPI总线通信协议的数据传输是全双工的,即主设备和从设备可以同时发送和接收数据。
主设备通过SCLK线控制数据传输的时钟频率,而MOSI和MISO线相互独立地进行数据传输。
二、SPI总线通信协议的应用SPI总线通信协议广泛应用于各种领域,如数字信号处理、嵌入式系统、通信设备等。
下面将介绍几个常见的应用场景。
1. 存储器扩展许多单片机具有内置的存储器,在容量有限的情况下,可以通过SPI总线连接外部存储器来扩展储存空间。
主设备通过SPI总线的读写操作,将数据存储到外部存储器或者从外部存储器中读取数据。
2. 传感器接口许多传感器都支持SPI总线通信接口,例如加速度传感器、温度传感器等。
SPI通信协议(SPI总线)学习
SPI通信协议(SPI总线)学习各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟!SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。
是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。
2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。
4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。
(1)SDO/MOSI –主设备数据输出,从设备数据输入;(2)SDI/MISO –主设备数据输入,从设备数据输出;(3)SCLK –时钟信号,由主设备产生;(4)CS/SS –从设备使能信号,由主设备控制。
当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。
2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL 是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。
SPII2CUART三种串行总线的原理区别及应用
SPII2CUART三种串行总线的原理区别及应用SPI(Serial Peripheral Interface),I2C(Inter-Integrated Circuit)和UART(Universal Asynchronous Receiver/Transmitter)是常见的串行总线通信协议,它们在嵌入式系统中被广泛使用。
以下是对这三种串行总线的原理、区别及应用的详细介绍。
1. SPI(Serial Peripheral Interface)SPI是一种同步的、全双工的串行总线协议,通常由一个主设备和一个或多个从设备组成。
SPI总线上通信是基于时钟信号进行同步的,主设备产生时钟信号,从设备在时钟的边沿上发送和接收数据。
在SPI总线上,主设备控制通信的起始和结束,并通过片选信号选择与之通信的从设备。
SPI总线上的数据传输是基于多线制的,其中包括主设备的时钟线(SCLK)、数据输出线(MOSI)、数据输入线(MISO)和片选线(SS)。
SPI总线具有以下特点:-速度较快,可以达到十几MHz甚至上百MHz的传输速率。
-支持多主设备,但每个时刻只能有一个主设备处于活动状态。
-适用于短距离通信,通常在PCB上的芯片之间进行通信。
-数据传输可靠性较高。
SPI总线广泛应用于各种设备之间的数据传输,例如存储器、传感器、显示模块等。
2. I2C(Inter-Integrated Circuit)I2C也是一种同步的、双向的串行总线协议,由一个主设备和一个或多个从设备组成。
I2C总线上的通信也是基于时钟信号进行同步的,主设备产生时钟信号和开始/停止条件,从设备在时钟边沿上发送和接收数据。
I2C总线上的数据传输是基于两根线—串行数据线(SDA)和串行时钟线(SCL)。
I2C总线具有以下特点:- 通信速度较慢,大多数设备的传输速率为100kbps,但也支持高达3.4Mbps的快速模式。
-支持多主设备,可以同时连接多个主设备。
SPI协议详解
SPI协议详解SPI(Serial Peripheral Interface)总线是⼀种⾼速、串⾏、全双⼯通信总线,由Motorola公司设计并推⼴。
优点是⽀持全双⼯通信,传输速率快,SCLK时钟频率最⾼可以达到50MHz左右。
缺点是没有流控制机制,不像I2C有应答机制,也不像UART有数据帧校验机制。
总线引脚SPI总线以主从⽅式⼯作,⽀持多主多从、单主多从、单主单从模式,拥有四个信号线:MISO – Master Input Slave Output,主设备数据输⼊,从设备数据输出;MOSI – Master Output Slave Input,主设备数据输出,从设备数据输⼊;SCLK – Serial Clock,时钟信号,由主设备产⽣;需要注意的是,SCLK只有在数据传输的过程中产⽣时钟周期,不进⾏数据传输时保持⾼电平或者低电平;CS – Chip Select,从设备使能信号,由主设备控制。
其中CS信号线主要⽤于⽚选,实际通信使⽤MISO/MOSI/SCLK三根信号线。
单主单从模式如下:单主多从模式如下:(每个SPI设备由⼀根独⽴的CS⽚选信号进⾏⽚选)总线时序根据CPOL(时钟极性)和CPHA(时钟相位)的组合区分,SPI总线时序有四种模式。
SPI通信的双⽅必须同时⼯作在其中⼀种模式下,往往是主控制器匹配SPI设备的⼯作模式。
Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1其中SPI 0和SPI 3两种模式最常⽤。
CPOL⽤来控制SCLK信号的Active状态是⾼电平还是低电平。
0 - SCLK⾼电平为Active状态1 - SCLK低电平为Active状态CPHA⽤来控制MOSI和MISO在第⼏个SCLK边沿进⾏数据采样。
0 - 第⼀个SCLK边沿采样,第⼆个边沿发送1 - 第⼀个SCLK边沿发送,第⼆个边沿采样总结:SPI总线协议本⾝并不复杂,这就意味着复杂性在SPI设备驱动的软件编码上,具体体现在:1)SPI总线协议没有数据校验机制,因此,必须根据SPI设备⽀持的SCLK时钟频率范围设置SPI时钟频率,实际应⽤中,可能会碰到⽰波器量时序信号没问题,但是SPI设备不回复数据或者回复数据错误的情况,⼤概率就是因为时钟频率不满⾜SPI设备要求导致的;2)SPI控制器的发送是直接将数据写⼊⼀个移位寄存器中,该移位寄存器跟随SCLK时钟发送数据;SPI控制器的接收与发送同步进⾏,也就是说发送数据的同时,也在接收数据,⽽接收数据是写⼊⼀个缓存寄存器中,如果缓存寄存器的值不及时读取的话,后续接收的数据会直接丢弃⽽不是覆盖到该缓存寄存器中,因此,每⼀次写数据之后,⼀定要读取数据,即使读取的数据⽆意义。
(完整)spi总线协议详细说明
SPI总线原理与应用篇《电子制作》2008年9月站长原创,如需引用请注明出处大家好,通过以前的学习,我们已经对51单片机综合学习系统的使用方法及学习方式有所了解与熟悉,学会了使用IIC总线的基本知识,体会到了综合学习系统的易用性与易学性,这一期我们将一起学习SPI总线的基本原理与应用实例。
先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI 总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。
主体系统如图1所示,其配套书本教程《单片机快速入门》如图2所示。
图1 51单片机综合学习系统主机部分图片图2 51单片机综合学习系统配套书本教程——《单片机快速入门》上图是我们将要使用的51单片机综合学习系统硬件平台,如图1所示,本期实验我们用到了综合系统主机、板载的AT93C46芯片,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。
SPI总线简介SPI总线基本概念SPI ( Serial Peripheral Interface ———串行外设接口) 总线是Motorola公司推出的一种同步串行接口技术。
SPI总线系统是一种同步串行外设接口,允许MCU 与各种外围设备以串行方式进行通信、数据交换。
外围设备包括FLASHRAM、A/ D 转换器、网络控制器、MCU 等。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
其工作模式有两种:主模式和从模式。
SPI是一种允许一个主设备启动一个从设备的同步通讯的协议,从而完成数据的交换。
也就是SPI是一种规定好的通讯方式。
这种通信方式的优点是占用端口较少,一般4根就够基本通讯了(不算电源线)。
SPII2CUART三种串行总线协议及其区别
SPII2CUART三种串行总线协议及其区别SPI(Serial Peripheral Interface)是一种常见的串行总线协议,主要用于单片机和外部设备之间的通信。
SPI协议需要同时使用多个信号线,包括时钟信号、主从选择信号、数据输入信号和数据输出信号。
SPI协议是一种全双工的通信方式,数据可以双向传输。
SPI通信协议的特点包括以下几点:1.时钟信号:SPI协议中的设备之间使用了共享的时钟信号,时钟信号用于同步数据传输。
时钟信号由主设备控制,并且时钟频率可以根据需要调整。
SPI协议没有固定的时钟频率限制,可以根据实际需求进行调整。
2.主从选择信号:SPI协议中的从设备需要通过主从选择信号进行选择。
主设备通过拉低从设备的主从选择信号来选择与之通信的从设备。
可同时与多个从设备通信。
3.数据传输:SPI协议是一种由主设备控制的同步通信协议,数据在时钟的边沿上升移位。
主设备在时钟的上升沿将数据发送给从设备,从设备在时钟的下降沿将数据发送给主设备。
SPI协议的优势在于速度快、可靠性高,适合于需要高速传输的应用,如存储器、显示器驱动等。
I2C(Inter-Integrated Circuit)是一种常见的串行总线协议,主要用于集成电路之间的通信。
I2C协议仅需要两根信号线:序列时钟线(SCL)和串行数据线(SDA)。
I2C协议是一种半双工通信方式,数据只能单向传输。
I2C通信协议的特点包括以下几点:1.序列时钟线(SCL):SCL是在主设备和从设备之间共享的信号线,用于同步数据传输。
主设备通过拉高和拉低SCL来控制数据传输的时钟频率。
2.串行数据线(SDA):SDA负责数据的传输。
数据在SCL的上升沿或下降沿变化时,主设备或从设备将数据写入或读取出来。
3.地址寻址:I2C协议使用7位或10位的地址寻址,从设备可以根据地址进行选择。
I2C协议的优势在于可以连接多个设备,节省了引脚,适用于多设备之间的通信,如传感器、温度传感器、压力传感器等。
spi总线工作原理
spi总线工作原理
SPI(Serial Peripheral Interface)总线是一种同步串行通信协议,它主要用于在微控制器或其他数字集成电路之间传输数据。
SPI总线由一个主设备(Master)和一个或多个从设备(Slave)组成。
主设备通过与从设备之间发送和接收数据的方式来与其进行通信。
SPI总线的工作原理如下:
1. 首先,主设备选择要与之通信的从设备。
这是通过在片选引脚上拉低电平来实现的。
其他从设备的片选引脚应保持高电平。
2. 接着,主设备通过时钟引脚(SCK)生成时钟信号,此时数据传输开始。
3. 主设备通过主输出(MOSI)引脚发送数据,从设备通过主输
入(MISO)引脚接收数据。
在每个时钟周期中,主设备和从设
备在SCK上的上升沿或下降沿进行数据交换。
4. 数据传输时,主设备先发送一个起始位(通常是高电平)并将其传输到从设备。
5. 接下来,主设备和从设备同时发送并接收数据,每一个时钟周期传输一个位。
数据传输的顺序是从最高位(MSB)到最
低位(LSB)。
6. 当所有数据位都传输完毕后,主设备通过拉高片选引脚结束
与从设备的通信。
7. 在通信结束后,主设备可以选择与其他从设备进行通信,或者在下一个时钟周期中重新选择与之前的从设备进行通信。
SPI总线的工作原理简单而直观。
它具有高速、可简化电路设计等优点,因此在很多嵌入式系统中得到了广泛应用。
spi 协议
spi 协议SPI协议。
SPI(Serial Peripheral Interface)是一种同步串行数据通信协议,通常用于在微控制器和外围设备之间进行通信。
SPI协议是一种全双工、点对点、串行通信协议,它使用四根线进行通信,包括时钟线(SCLK)、数据线(MOSI)、数据线(MISO)和片选线(SS)。
SPI协议的工作原理是通过主从模式进行通信,一个主设备可以连接多个从设备。
在通信过程中,主设备通过时钟线产生时钟信号,控制数据的传输速率,同时通过片选线选择要与之通信的从设备。
从设备在接收到片选信号后,根据时钟信号同步数据的传输,从而实现数据的传输和接收。
SPI协议的通信方式较为灵活,数据传输的速率可以根据具体的应用需求进行调整。
同时,SPI协议的通信是全双工的,主设备和从设备可以同时发送和接收数据,提高了通信效率。
此外,SPI协议的硬件连接简单,只需要四根线即可完成通信,因此在一些资源受限的应用场景中具有一定的优势。
在使用SPI协议进行通信时,需要注意一些问题。
首先,由于SPI协议是一种同步通信协议,主设备和从设备之间的时钟频率需要一致,否则会导致通信错误。
其次,由于SPI协议是一种点对点通信协议,因此在连接多个从设备时,需要合理设计片选信号的分配,避免片选信号的冲突。
最后,SPI协议在传输过程中没有错误检测和纠正机制,因此在一些对通信可靠性要求较高的应用场景中,需要额外考虑数据的校验和重传机制。
总的来说,SPI协议是一种灵活、高效的串行通信协议,适用于在微控制器和外围设备之间进行数据通信。
在实际应用中,需要根据具体的应用需求合理选择通信协议,并结合硬件设计和软件开发进行系统设计。
希望本文对SPI协议有一个清晰的认识,并能够在实际应用中发挥作用。
SPI协议简介
SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如P89LPC900.SPI,是一种高速的,全双工,同步的通信总线,其工作模式有两种:主模式和从模式,无论那种模式,都支持3Mbit/s的速率,并且还具有传输完成标志和写冲突保护标志。
到目前为止,我使用过的具有SPI 总线的器件,就是存储芯片Eprom:at25128,在使用过程中,发现的确是有这种总线的优点。
下面以P89LPC900单片机的SPI总线来解释SPI总线的通用使用规则。
LPC900单片机的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO是主机的输入,从机的输出。
/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。
在一个SPI通信系统中,必须有主机。
SPI总线可以配置成单主单从,单主多从,互为主从。
今以互为主从模式作为讲解:要进行SPI互为主从操作,必须遵照以下步骤:1 对A、B进行初始化,均设为主机(需要进行以下操作)。
a) SPI端口初始化为准双向。
b) SPCTL配置为0x50,SSIG=0,SPEN=1,MSTR=1。
c) 清除SPSTAT中的SPIF及WCOL标志位为0。
d) 如果需要使用SPI中断,可使能相应中断位。
2 将A上一个引脚连接到B的/SS引脚上,然后拉低/SS,可将B强行置为从机模式,同时B机会发生以下变化:a) B机的MSTR位自动清0。
单片机中的SPI总线协议原理及应用研究
单片机中的SPI总线协议原理及应用研究SPI(Serial Peripheral Interface)总线协议是一种串行通信协议,广泛应用于单片机和外部设备之间的数据交换。
本文将介绍SPI总线协议的原理以及其在单片机中的应用研究。
一、SPI总线协议的原理SPI协议被广泛应用于许多IC芯片之间的通信,它使用多线全双工的通信模式,由一个主设备和一个或多个从设备组成。
SPI总线通信的核心是由主设备控制的时序同步传输。
SPI总线协议中,主设备通过四根信号线与从设备通信,分别是:1. SCK(Serial Clock):时钟信号线,由主设备产生,用于同步数据传输。
2. MOSI(Master Out Slave In):主设备输出、从设备输入的数据线,主设备将数据发送给从设备。
3. MISO(Master In Slave Out):主设备输入、从设备输出的数据线,从设备将数据发送给主设备。
4. SS(Slave Select):从设备选择线,用于选择与主设备进行通信的从设备。
SPI总线协议的通信流程如下:1. 主设备发送一个时钟脉冲,同时将MOSI上的数据发送给从设备。
2. 主设备接收从设备的数据,并同时发送另一个时钟脉冲。
3. 主设备不断重复以上两步操作,直到通信结束。
SPI总线协议使用传输率较高的时钟信号进行同步,因此可以实现较快的数据传输速度。
SPI协议的主要特点包括:1. 全双工通信:主设备和从设备可以同时发送和接收数据。
2. 时钟同步:通过时钟信号实现主设备和从设备的同步传输。
3. 硬件控制:SPI通信依赖硬件的控制,因此具有很高的可靠性和稳定性。
二、SPI总线协议在单片机中的应用研究SPI总线协议在单片机中广泛应用于各种外设的通信和控制。
下面将介绍一些常见的应用场景。
1. 存储器扩展在许多嵌入式系统中,存储器扩展是很常见的需求。
通过SPI总线协议,主单片机可以与外部存储器芯片进行通信。
例如,可以使用SPI接口连接闪存、EEPROM或SRAM等存储器芯片,实现数据的读写操作。
spi总线协议
spi总线协议SPI总线协议。
SPI(Serial Peripheral Interface)是一种用于在数字集成电路之间进行通信的同步串行通信协议。
它通常用于连接微控制器和外围设备,例如存储器芯片、传感器、显示器和无线模块等。
SPI总线协议具有简单、高效、灵活等特点,因此在许多嵌入式系统中得到广泛应用。
本文将对SPI总线协议的基本原理、通信方式、时序特性以及应用进行介绍。
SPI总线协议基本原理。
SPI总线由四根信号线组成,分别为时钟信号(SCLK)、主设备输出(MOSI)、主设备输入(MISO)和片选信号(SS)。
在SPI总线中,通信的主设备通过SCLK信号产生时钟脉冲,控制数据的传输。
MOSI信号用于主设备向从设备发送数据,MISO信号用于从设备向主设备发送数据。
片选信号用于选择从设备,使得主设备可以与多个从设备进行通信。
SPI总线协议通信方式。
SPI总线协议采用全双工通信方式,即主设备和从设备可以同时发送和接收数据。
通信开始时,主设备通过片选信号选择从设备,并在时钟信号的控制下,通过MOSI信号向从设备发送数据,同时从设备通过MISO信号向主设备发送数据。
通信结束后,主设备通过片选信号取消对从设备的选择,从而完成一次数据传输。
SPI总线协议时序特性。
在SPI总线协议中,数据的传输是在时钟信号的控制下进行的。
通常情况下,数据的传输是在时钟的上升沿或下降沿进行的,具体取决于SPI设备的工作模式。
此外,SPI总线协议还可以通过调整时钟信号的极性和相位来适应不同的外设要求,从而实现更灵活的通信方式。
SPI总线协议应用。
SPI总线协议在各种嵌入式系统中得到广泛应用,例如单片机、嵌入式系统、传感器网络等。
在单片机中,SPI总线协议通常用于连接外部存储器、显示器、通信模块等外围设备。
在嵌入式系统中,SPI总线协议可以用于连接各种外设,实现系统的功能扩展和升级。
在传感器网络中,SPI总线协议可以用于连接各种传感器节点,实现数据的采集和传输。
关于I2C和SPI总线协议
关于I2C和SPI总线协议篇一:SPI、I2C、UART三种串行总线协议的区别第一个区别当然是名字:SPI(Serial Peripheral Interface:串行外设接口);I2C(INTER IC BUS)UART(Universal Asynchronous Receiver Transmitter:通用异步收发器)第二,区别在电气信号线上:SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。
如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。
在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。
如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。
(注:I2C资料了解得比较少,这里的描述可能很不完备)UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。
显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。
第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行;第四,看看牛人们的意见吧!1、I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。
SPI通信协议(SPI总线)学习
SPI通信协议(SPI总线)学习
SPI(Serial Peripheral Interface)是一种同步的、全双工的通信总线,常用于连接微
控制器和外围设备。
SPI总线的通信协议相对简单,有四根信号线组成:SCLK(时钟
信号)、MOSI(主机输出从机输入信号)、MISO(主机输入从机输出信号)和SS (片选信号)。
SPI总线的工作方式如下:
1. 选择从机:主机通过将片选信号(SS)置低来选择要通信的从机。
通常每个从机都
有独立的片选线。
2. 时钟信号:主机通过时钟信号(SCLK)提供同步时钟给从机,控制数据传输的时钟周期。
3. 主机输出从机输入:主机将要发送给从机的数据通过主机输出从机输入信号(MOSI)发送给从机。
数据按照时钟的上升沿或下降沿传输。
4. 主机输入从机输出:从机将要发送给主机的数据通过主机输入从机输出信号(MISO)传输给主机。
数据按照时钟的上升沿或下降沿传输。
5. 数据传输顺序:数据传输是基于时钟信号的,每个时钟周期传输一个位。
主机和从
机按照特定的数据传输格式进行通信,可以是先传输最高有效位(MSB)或最低有效
位(LSB)。
6. 数据传输模式:SPI总线支持多种数据传输模式,如模式0、模式1、模式2和模式3,不同模式下时钟信号和数据传输的相位和极性不同。
7. 传输完成:主机通过将片选信号(SS)置高来结束通信。
SPI总线的优点是简单、高速、低成本,适用于连接多种外设,如传感器、存储器、显示器等。
然而,SPI总线并没有提供错误检测和纠正机制,需要通过其他方式保证数据的可靠性。
SPI、I2C、UART、USB串行总线协议的区别
SPI、I2C、UART、USB串行总线协议的区别SPI、I2C、UART三种串行总线协议的区别第一个区别当然是名字:SPI(Serial Peripheral Interface:串行外设接口);I2C(INTER IC BUS)UART(Universal Asynchronous Receiver Transmitter:通用异步收发器)第二,区别在电气信号线上:SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。
如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。
在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。
如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。
(注:I2C资料了解得比较少,这里的描述可能很不完备)UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。
显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。
第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行;第四,看看牛人们的意见吧!wudanyu:I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。
SPI总线协议介绍(易懂)
SPI总线协议介绍(易懂)目录CONTENTS•SPI总线协议产生背景•SPI总线协议内容介绍•SPI总线协议总结一、SPI总线协议背景12 SPI是由摩托罗拉(Motorola)公司于1979年开发的全双工同步串行总线,是微处理控制单元(MCU)和外围设备之间进行通信的同步串行端口。
主要应用在EEPROM、Flash、实时时钟(RTC)、数模转换器(ADC)、网络控制器、MCU、数字信号处理器(DSP)以及数字信号解码器之间。
SPI,全称Serial Peripheral Interface,中文意思是串行外部设备接口,是一种全双工、高速、同步的通信总线。
SPI 总线器件可直接与各个厂家生产的多种标准外围器件直接接口,一般使用4 条线:串行时钟线SCLK、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线CS3SPI总线术语及定义,如表(1)所示:表(1) SPI总线术语及定义二、SPI总线协议内容1<1>.SPI总线采用主从模式架构,支持多从设备应用,一般只支持单主设备;<2>.当主设备想要和某从设备进行通信时候,主设备需要先向对应从设备的片选线(CS)山发送使能信号(高电平或者低电平,按从设备而定),表示选中该从设备;<3>.时钟由主设备控制,数据在时钟脉冲下按位传输,高位在前;<4>.目前应用中的数据速率可达几Mbps。
2SPI设备之间采用全双工模式通信,是一个主机和一个或者多个从机的主从模式。
主机负责初始化帧,这个数据传输帧可以用于读与写两种操作,片选线可以从多个从机选择一个来响应主机的请求。
如图(1)、图(2)、图(3)和图(4)所示图(1)SPI连接类型首先Master产生时钟,时钟频率小于或等于Slave支持的最大频率;随后Master通过产生时钟信号(SCLK)来控制数据传输,并通过将特定Slave的芯片选择(CS)线拉低来进行通信。
硬件学习之通信协议篇-SPI总线
一、概述SPI:Serial Peripheral Interface,串行外围设备接口。
是由摩托罗拉在20世纪80年代中期开发的同步串行总线接口规范(带有时钟信号,通过时钟极性和时钟相位来控制采样,即同步传输)。
1、支持半双工、全双工通信模式。
2、没有流控制和应答机制来确认是否接收到数据(UART有校验或流控制)。
3、没有一个固定的传输速率规定,已有器件SPI输出速率达到50Mbps以上(I2C有明确规定速率)。
4、只能板内的短距离传输(RS232、RS485输出距离远)。
5、没有限制传输bit数量,常用的是8bit或9bit。
6、不需要硬件地址(I2C要地址),采用片选。
7、主从模式,一托多。
二、3线和4线模式3线SPI和4线SPI各个模式下信号定义:3线9bit I型接口信号:SCL、CS、SDA3线9bit II型接口信号:SCL、CS、SDO、SDI4线8bit I型接口信号:SCL、CS、DCX、SDA4线8bit II型接口信号:SCL、CS、DCX、SDO、SDI3线9bit2data Lane接口信号:SCL、CS、D0、D1对于3线或4线来区分,并不是信号线的数量,也不是网上说的半双工和全双工,或者数据线数量差异。
3线说的是时钟、片选、数据信号(不管是一根数据线,还是两根数据线),共三种信号。
4线说的是时钟、片选、数据信号、数据或命令控制线(确定发送的是数据还是命令),共4中信号。
三、SPI四种工作模式通过CPOL时钟极性和CPHA时钟相位的搭配来得到四种工作模式:CPOL时钟极性定义的是SCLK时钟线空闲状态时的电平CPOL=0,即SCLK=0,表示SCLK时钟信号线在空闲状态时的电平为低电平,因此有效状态为高电平。
CPOL=1,即SCLK=1,表示SCLK时钟信号线在空闲状态时的电平为高电平,因此有效状态为低电平。
CPHA时钟相位定义的是数据位相对于时钟线的时序(即相位)CPHA=0,即表示输出(out)端在上一个时钟周期的后沿改变数据,而输入(in)端在时钟周期的前沿(或不久之后)捕获数据。
SPI总线协议及SPI时序图详解
SPI总线协议及SPI时序图详解SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中。
下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中。
假设主机和从机初始化就绪:并且主机的sbuff=0xaa (10101010),从机的sbuff=0x55 (01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。
---------------------------------------------------脉冲主机sbuff 从机sbuff sdi sdo---------------------------------------------------0 00-0 10101010 01010101 0 0---------------------------------------------------1 0--1 0101010x 10101011 0 11 1--0 01010100 10101011 0 1---------------------------------------------------2 0--1 1010100x 01010110 1 02 1--0 10101001 01010110 1 0---------------------------------------------------3 0--1 0101001x 10101101 0 13 1--0 01010010 10101101 0 1---------------------------------------------------4 0--1 1010010x 01011010 1 04 1--0 10100101 01011010 1 0---------------------------------------------------5 0--1 0100101x 10110101 0 15 1--0 01001010 10110101 0 1---------------------------------------------------6 0--1 1001010x 01101010 1 06 1--0 10010101 01101010 1 0---------------------------------------------------7 0--1 0010101x 11010101 0 17 1--0 00101010 11010101 0 1---------------------------------------------------8 0--1 0101010x 10101010 1 08 1--0 01010101 10101010 1 0---------------------------------------------------这样就完成了两个寄存器8位的交换,上面的0--1表示上升沿、1--0表示下降沿,sdi、sdo相对于主机而言的。
SPI总线协议及SPI时序图详解
SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中。
下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中。
假设主机和从机初始化就绪:并且主机的sbuff=0xaa (10101010),从机的sbuff=0x55 (01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。
---------------------------------------------------脉冲主机sbuff 从机sbuff sdi sdo---------------------------------------------------0 00-0 10101010 01010101 0 0---------------------------------------------------1 0--1 0101010x 10101011 0 11 1--0 0101010010101011 0 1---------------------------------------------------2 0--1 1010100x 01010110 1 02 1--0 1010100101010110 1 0---------------------------------------------------3 0--1 0101001x 10101101 0 13 1--0 0101001010101101 0 1---------------------------------------------------4 0--1 1010010x 01011010 1 04 1--0 1010010101011010 1 0---------------------------------------------------5 0--1 0100101x 10110101 0 15 1--0 0100101010110101 0 1---------------------------------------------------6 0--1 1001010x 01101010 1 06 1--0 1001010101101010 1 0---------------------------------------------------7 0--1 0010101x 11010101 0 17 1--0 0010101011010101 0 1---------------------------------------------------8 0--1 0101010x 10101010 1 08 1--0 01010101 10101010 1 0---------------------------------------------------这样就完成了两个寄存器8位的交换,上面的0--1表示上升沿、1--0表示下降沿,sdi、sdo相对于主机而言的。
spi总线协议
spi总线协议SPI(Serial Peripheral Interface)总线协议是一种用于在多个芯片之间进行通信的串行通信协议。
它是针对短距离通信,高速数据传输和简单控制信号交互而设计的。
SPI总线协议广泛应用于嵌入式系统中,特别是在连接存储器、传感器、外设以及其他硬件设备时。
SPI总线协议的设计旨在提供一种灵活而高效的通信解决方案。
它使用一组由主设备和从设备共享的信号线,并采用全双工的通信方式。
在SPI总线上,数据传输是以位为单位进行的,主设备通过时钟信号来同步从设备的响应。
SPI总线协议通常使用四根线来传输数据:时钟线(SCK),主设备输出信号(MOSI),主设备输入信号(MISO)以及片选信号(SS)。
SPI总线协议的工作方式如下:首先,主设备通过片选信号选择要与其通信的从设备,在从设备中,可以有多个设备共享同一根片选信号。
然后,主设备通过时钟线同步数据传输的速度,并在MOSI线上发送数据。
同时,从设备通过MISO线将响应数据发送回主设备。
通过这种方式,主设备和从设备之间实现了双向的、同步的数据传输。
SPI总线协议的特点之一是其高速性能。
由于SPI总线使用并行传输方式,数据可以在一个时钟周期中同时传输多个位,从而实现了高速的数据传输。
另外,SPI总线还具有较低的延迟和较低的功耗,使其成为一种适用于高性能嵌入式系统的通信解决方案。
在使用SPI总线协议进行通信时,需要对从设备进行配置。
从设备的配置通常包括设置传输模式、时钟频率和数据位顺序等参数。
SPI总线协议支持多种传输模式,如主设备模式和从设备模式等。
主设备模式下,主设备发出时钟信号并控制通信过程;从设备模式下,从设备接收时钟信号并进行响应。
时钟频率的选择取决于设备之间的距离和通信需求,较短的距离和较高的速率可以实现更高的传输速度。
数据位顺序指定了数据的传输顺序,可以是最高有效位(MSB)优先或最低有效位(LSB)优先。
尽管SPI总线协议有许多优点,但它也存在一些限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原文:SanDisk Secure Digital Card - Product Manual Version 2.2 (Document No. 80-13-00169 September 2004)第5章 SPI总线协议译者:醇酒。
请尊重我的劳动,勿抄袭和修改本文中的内容,若文中翻译有不妥之处,请Email:chunjiu○处指正,不胜感激!SD卡规格书第五章 SPI总线协议译者注:SPI总线协议目录5.1. SPI总线协议5.1.1. 模式选择5.1.2. 总线传送保护5.1.3. 数据的读取5.1.4. 数据写入5.1.5. 擦除和写保护处理5.1.6. 读取CID/CSD寄存器5.1.7. 复位顺序5.1.8. 时钟控制5.1.9. 错误条件5.1.9.1. CRC和无效指令5.1.9.2. 读取、写入和擦除的超时情形5.1.10.存储器阵列分布5.1.11. 卡的锁定/解锁5.1.12. 特殊用途的命令集5.1.13. 版权保护命令集5.2. SPI命令设置5.2.1. 命令格式5.2.2. 命令类5.2.2.1. 详细的命令描述5.2.3.应答5.2.3.1 R1 的格式5.2.3.2. R1b的格式5.2.3.3. R2的格式5.2.3.4. R3 的格式5.2.3.5. 数据应答5.2.4. 数据标记5.2.5.数据错误标记5.2.6. 清除状态位5.3. 卡寄存器5.4. SPI总线时序图解5.4.1. 命令 / 应答5.4.2. 数据读取5.4.3. 数据写入5.4.4. 时钟数值5.5. SPI 电气接口5.6. SPI总线操作条件(环境)5.7.总线时钟附录:英文特殊命令表英文通用命令表存储器阵列图产品规格表主控制器设计参考(简介,无实际内容)5.1. SPI Bus Protocol5.1. SPI总线协议While the SD Card channel is based on command and data bit-streams, which are initiated by a start bit and terminated by a stop bit, the SPI channel is byte oriented. Every command or data block is built of eight bit bytes and is byte aligned (multiples of eight clocks) to the CS signal.当SD卡通道是基于命令和数据位流模式上时,通常是开始于一个“起始位”和终止于一个“停止位”,这个SPI通道是用字节作为单位的。
CS信号上的每个命令或数据块都是8bit的字节和字节队列(就是8个时钟的倍数)。
Similar to the SD Bus protocol, the SPI messages are built from command, response and data-block tokens. All communication between host and cards is controlled by the host (master). The host starts every bus transaction by asserting the CS signal low.相似SD总线模式,这个SPI信息是建立在命令、应答和数据块标记上的。
所有的主控制器和SD卡之间的通讯都是受控于主控制器。
而主控制器的每次总线处理都是从拉低CS的信号电平开始的。
The response behavior in SPI Bus mode differs from the SD Bus mode in the following three ways:* The selected card always responds to the command.* An eight or 16-bit response structure is used.* When the card encounters a data retrieval problem, it will respond with an error response (which replaces the expected data block) rather than time-out as in the SD Bus mode.SPI总线协议和SD总线协议的应答行为有下列三处的不同点:1.被选中的卡总是对命令做出应答;2.使用的应答结构是8或16位的;3.当这个卡碰到一个数据检索问题,它将用一个错误应答来回答(取代了原先期望的数据块)而不是SD总线协议模式下的超时。
In addition to the command response, every data block sent to the card during write operations will be responded with a special data response token. A data block may be as big as one card write block (WRITE_BL_LEN) and as small as a single byte(NOTE1).除了命令的应答之外,每个数据块发送到SD卡后,在写操作的期间将用一个特别的数据应答标记来应答。
一个数据块可以大到卡的写入块长度(WRITE_BL_LEN)或小到一个单字节的大小(注意1)。
NOTE1: The default block length is as specified in the CSD (512 bytes). A set block length of less than 512 bytes will cause a write error. The only valid write set block length is 512 bytes. CMD16 is not mandatory if the default is accepted.注意1:缺省的块长度定义在CSD寄存器内(512字节)。
设定块的的长度小于512字节将会导致写入错误。
唯一合法的块写入长度只能定为512字节。
若此缺省值可接受,则无需使用CMD16命令,它不是必要的。
5.1.1. Mode Selection5.1.1.模式选择The SD Card wakes up in the SD Bus mode. It will enter SPI mode if the CS signal is asserted (negative) during the reception of the reset command (CMD0). If the card recognizes that the SD Bus mode is required it will not respond to the command and remain in the SD Bus mode. If SPI mode is required, the card will switch to SPI mode and respond with the SPI mode R1 response.SD卡启动时处在SD总线模式下。
它将在CS信号有效(低电平)时接收一个复位命令(CMD0)来进入SPI 总线模式。
如果这个卡认为必须停留在SD总线模式,那么它将不应答这个命令并继续保持在SD总线模式。
如果可以转换到SPI总线模式,则它会转换到SPI总线模式并用SPI模式的R1应答来作回应。
The only way to return to the SD Bus mode is by power cycling the card. In SPI mode, the SD Card protocol state machine is not observed. All the SD Card commands supported in SPI mode are always available.而唯一让卡返回SD总线模式的办法是用电源周期(即电源关开一次)。
在SPI总线模式下,SD卡的保护状态机将不会被遵守了。
SD卡所有能支持的命令在SPI模式下总是可以使用的。
The default command structure/protocol for SPI mode is that CRC checking is disabled. Since the card powers up in SD Bus mode, CMD0 must be followed by a valid CRC byte (even though the command is sent using the SPI structure). Once in SPI mode, CRCs are disabled by default.SPI总线模式下,默认的命令结构/协议CRC检查是失效的。
由于卡在电源开启时总是处于SD总线模式,CMD0命令必须跟随一个合法的CRC字节(即使这个命令使用了SPI结构来发送)。
一旦进入SPI总线模式,CRC就被默认为失效的了。
CMD0 is a static command and always generates the same 7-bit CRC of 4Ah. Adding the “1,” end bit (bit 0) to the CRC creates a CRC byte of 95h. The following hexadecimal sequence can be used to send CMD0 in all situations for SPI mode, since the CRC byte (although required) is ignored once in SPI mode. The entire CMD0 sequence appears as 40 00 00 00 00 95 (hexadecimal).CRC字节(“尽管还是必须的”。
译者注:原文的意思是指这个CRC字节所占的位置还是不可省略掉)会在SPI模式里被忽略。
这个完整的CMD0命令是40 00 00 00 00 95 (十六进制系列)。
5.1.2. Bus Transfer Protection5.1.2.总线传送保护Every SD Card token transferred on the bus is protected by CRC bits. In SPI mode, the SD Card offers a non protected mode which enables systems built with reliable data links to exclude the hardware or firmware required for implementing the CRC generation and verification functions.在总线上传送的每个SD卡标志都是用CRC的校验位来保护的。