实验设计与数据处理.ppt

合集下载

实验数据处理ppt课件

实验数据处理ppt课件
n
n
di 0
i 1
相对平均偏 d1差0% 0 x
注意:单次测量结果的偏差之和为零。精密度不能用偏差
之和来表示,常用平均偏差、标准偏差表示。
XUT School of sciences
(2)偏差的表示方法:a.绝对偏差、b.平均偏差、c.标准偏差
标准偏差
n,总体标准偏: 差
n xi 2
计算。
计算:0.0235 × 20.03 ÷3.1816 = 0.147946002 ?
解:三个数的最后一位都存在±1的绝对误差,相对误差各为:
(±1/235)× 100% = ±0.4%
0.0235相对误差最大,修
(±1/2003)× 100% = ±0.05% 约时按3位有效数字计算
(±1/31816) × 100% = ±0.003%
标准溶液
待测溶液
XUT School of sciences
1. 系统误差(可测误差) (1)方法误差 :由分析方法本身造成的误差。
a. 反应不能定量完成或有副反应 b. 干扰离子的存在 c. 沉淀溶解损失、共沉淀和后沉淀现象、灼烧时沉淀挥
发损失、或称量时吸潮 d. 滴定分析中滴定终点和计量点不吻合 (2) 仪器和试剂误差
1. 随机误差(偶然误差) —由一些随机或偶然的不确定因素所造成的误差。
如环境的温度、湿度发生微小波动,或仪器状态发生微小 变化、分析人员对各份样品处理时的微小差别。这些不可 避免偶然原因使分析结果在一定范围内产生波动。 特征:(1)对称性,有界性,服从统计规律。
(2)不可校正,无法避免。 (3)部分抵消,增加平行测定次数,可减小测量结果
(6)首位数字大于等于8, 可多计一位有效数字:95.2% 4位

实验设计与数据处理(共27张PPT)

实验设计与数据处理(共27张PPT)
性强的参数作为指标。
2)因素——对实验指标有影响 的原因或要素
• 因素也称为因子,它是在进行实验时重 点考察的内容。
• 因素一般用大写字母ABC……来标记, 如因素A、因素B、因素C等。
• ①因素分类: a)可控因素(温度、时间、种类、浓 度……)
b)不可控因素(风速、气温、……)
② 选择因素的原则
举例
• 例4:直接过滤实验中,欲考察混凝剂硫酸铝投 量,助剂聚丙烯酰胺投量,滤速对过滤周期平 均出水浊度的影响。
实验指标:过滤周期平均出水浊度
因素及水平:
混凝剂投量(mg/L)( 10、12、1)
助凝剂投量(mg/L)(、、)

速(m/h) (8、10、12)
4.实验设计方法
• 针对不同的具体情况,有不同的实验设计方法。 • 单因素试验设计
1.实验设计的发展过程
• 20世纪初:英国生物统计学家费歇尔(1890-1962) 首次提出了“试验设计”术语。
• 实验设计方法最早应用于农业、生物学、遗传学方面。在农业方面主要是进行 品种对比、施肥对比等。
• 20世纪40年代,英美两国开始在工业生产中应用,如改变原料配比 或工艺生产条件,寻找最佳工况。
试验设计与统计 • ②方萍、何延《 2.实验设计的基本宗旨
验证性实验:对已知的理论进行验证,以加深对理论的认识
》,浙江大学出版社,
2003年6月第1版 煮浆时间 (h) 3、4
验证性实验:对已知的理论进行验证,以加深对理论的认识
• (适合环境与资源相关专业、生命科学、农业科学、医学) ①郑少华、姜奉华《试验设计与数据处理》,中国建材工业出版社,2004年3月第1版,
通过本课程的教学,使学生掌握试验数据统计分析的基本原理,并能针对实际问题正确地运用。 中国统计出版社,1998年6月第1版(电工等专业 ) 20世纪40年代,英美两国开始在工业生产中应用,如改变原料配比或工艺生产条件,寻找最佳工况。

试验设计与数据处理第5章_正交试验设计与数据处理

试验设计与数据处理第5章_正交试验设计与数据处理

(y5+ y7)/2 =(0.472+0.554)/2=0.513
(y6+ y8)/2 =(0.480+0.552)/2=0.516
ቤተ መጻሕፍቲ ባይዱ
说明:
表头设计中的“混杂”现象(一列安排多个因素或交互作 用)
高级交互作用 ,如A×B× C,一般不考虑 r水平两因素间的交互作用要占r-1列 ,当r>2时,不宜
6.2 正交试验设计结果的直观分析法
6.2.1 单指标正交试验设计及其结果的直观分析 例:
单指标:乳化能力 因素水平:3因素3水平(假定因素间无交互作用)
(1)选正交表
要求: 因素数≤正交表列数 因素水平数与正交表对应的水平数一致 选较小的表
选L9(34)
(2)表头设计
将试验因素安排到所选正交表相应的列中 因不考虑因素间的交互作用,一个因素占有一列(可以随
R=max{K1 ,K2 ,K3}-min{K1 ,K2 ,K3}, 或 R=max{k1 ,k2 ,k3}-min{k1 ,k2 ,k3}
R越大,因素越重要 若空列R较大,可能原因: ➢ 漏掉某重要因素 ➢ 因素之间可能存在不可忽略的交互作用
(6)优方案的确定
优方案:在所做的试验范围内,各因素较优的水平组合 若指标越大越好 ,应选取使指标大的水平 若指标越小越好,应选取使指标小的水平 还应考虑:降低消耗、提高效率等
正交设计就是从选优区全面试验 点(水平组合)中挑选出有代表性 的部分试验点(水平组合)来进行 试验。
利用正交表L9(34)从27个试验点 中挑选出来的9个试验点。即:
(1)A1B1C1 (4)A1B2C2 (7)A1B3C3
(2)A2B1C2 (5)A2B2C3 (8)A2B3C1

第五讲--正交实验设计与数据处理PPT课件

第五讲--正交实验设计与数据处理PPT课件
如L8(41×24)是由一个4水平的列,4个2水平的 列组成,表示用该表设计试验时最多可安排一 个4水平的因素,4个2水平的因素,需要试验 的总次数为8次
其它如L18(21×37),L32(81×46×26)等等,都有 类似的含义。
-
20
交互作用表
需要考虑因素的交互作用时,许多正交表都配有一张交 互作用表
常常用来解决二水平或三水平或二、三水混合 水平的多因素设计问题;
适用于需要考察的交互作用不多、也不太复杂 的多因素试验研究的场合;
通过方差分析鉴别各因素对试验指标的影响。
-
22
正交试验设计步骤
首先要根据试验目的,确定要观察的因素 确定每个因素的水平 然后选用适当的正交表安排试验。
-
23
安排试验是一种较好的方法,在实践中已得到 广泛的应用 正交试验设计是用一套规格化的表格来安排试 验,这种表格叫做正交表
-
12
正交表简介
是一种特制的表格,每个表都有一个记号,如L9(34), L8(27),就是两个最常用的正交表;
符号说明: L——正交表 L下角的9、8——正交表的行数
括号里的3、2——因素所取的水平数, 指数4、7——正交表的列数
表内的数字1、2、3——因素的水平
-
13
二水平的正交表还有L16(215)、L12(211), 三水平的正交表还有L18(37),L27(313), 四水平的正交表还有L16(45)等等。
-
14
正交表L9(34)
-
15
正交表记法
一般正交表记为Ln(mk), n——是表的行数,是要安排的试验次数; k——表中列数,表示因素的个数; m——是各因素的水平数。
SB——反映了因素B各水平效应引起的差异,它正好 等于正交表L9(34)中第二列各水平的偏差平方和S2;

实验设计与数据处理ppt

实验设计与数据处理ppt
整合不同来源的数据。
数据清洗与整理
对数据进行排序、分组和筛选。 构建数据子集或合并数据集。
数据转换与变换
数据转换
1
2
将数据从一种形式或格式转换为另一种。
数据标准化或归一化。
3
数据转换与变换
数据变换 数据平滑或滤波。
对数据进行数学运算或函 数处理。
对数据进行对数、指数或 多项式变换。
数据分析方法
研究成果评价
创新性
该研究在数据处理方法上具有一定的创新性,为相关领域的数据 处理提供了新的解决方案。
实用性
研究成果在实际应用中表现出较高的实用价值,能够提高数据处理 效率和准确性。
局限性
尽管该研究取得了一定的成果,但仍存在一定的局限性,如需进一 步完善数据处理算法和拓展应用范围。
研究不足与展望
研究不足
选择合适的图表类型来传 达信息。
简洁明了,突出关键信息。
可视化原则
01
03 02
03 实验结果分析
实验结果解读
实验数据整理
将实验数据整理成表格或图形,便于观察和对 比。
异常值处理
识别并处理异常值,以避免对结果产生不良影 响。
数据分析方法
选择合适的数据分析方法,如均值、中位数、方差等,以全面了解数据分布和 特征。
描述性分析 推理性分析
01
计算均值、中位数、众数等统 计量。
02
生成直方图、箱线图等图表。
03
04
使用统计检验,如t检验、卡方
检验等。
05
构建和检验回归和相关模型。
06
数据可视化
图表类型 柱状图、折线图、饼图、散点图等。 可视化工具
数据可视化
• Excel、Tableau、Power BI等。

实验设计与数据处理(全套课件200P)

实验设计与数据处理(全套课件200P)
正交实验设计是科研和生产中应用最多的实验研究方法之 一,尤其用于生产改造、最优配方及最优工艺过程的研究。 由于它方便、简洁而得到研究人员的认可。


2.1 概述
2.1.1 正交表 正交表是正交实验设计的基本工具,它是根据均衡分散的思 想,运用组合数学理论在拉丁方和正交拉丁方的基础上构造 的一种表格。它的形式和广泛的应用是与日本统计学家田口 玄一的工作分不开的。
保温时间 C/min
1(30) 2(35) 3(40) 2(35) 3(40) 1(30) 3(40) 1(30) 2(35) 70 79.4 75 9.4 1 2 3 3 1 2 2 3 1 84 65 75.4 19
指标yi 抗弯强度
35 30 29 26.4 26 15 20 20 23 T=224.4
本例中, 因素A中最优水平为水平1;
因素B中最优水平为水平1; 因素C中最优水平为水平2;
最优水平组合为A1B1C2
在选取最优方案时,还应考虑到因素的主次。 对于主要因素,一定要按有利于指标的要求来选取该因素的水平。
对于次要因素,可以选取有利于指标要求的水平,也可以按照优质、高产、 低耗和便于操作等原则来选取水平。
正交表列数
因素数
正交表代号
Ln(tq)
因素的水平数
正交表横行数 代表实验次数
代表表中数码数
2.1.2 正交表的特点
L9(34)
实验号
列号
1
1 2 1 1
2
1 2
3
1 2
4
1 2
1. 正交性 正交表中任意两列横向
各数码搭配所出现的次数相同,这 可保证实验的典型性。
3
4 5
1
2 2

试验设计与数据处理-李云雁-全套323页

试验设计与数据处理-李云雁-全套323页

ER
x x

x ER x
可以估计出相对误差的大小范围:
ER
x xt
x xt max
相对误差限或相对误差上界
∴ xt x(1 ER )
相对误差常常表示为百分数(%)或千分数(‰)
1.2.3 算术平均误差 (average discrepancy)
定义式:
n
n
xi x di
i1
i1
真值:在某一时刻和某一状态下,某量的客观值或实际值 真值一般是未知的 相对的意义上来说,真值又是已知的 ➢ 平面三角形三内角之和恒为180° ➢ 国家标准样品的标称值 ➢ 国际上公认的计量值 ➢ 高精度仪器所测之值 ➢ 多次试验值的平均值
1.1.2 平均值(mean)
(1)算术平均值(arithmetic mean)
①计算统计量: 两组数据的方差无显著差异时
t x1 x2 n1n2 s n1 n2
服从自由度 df n1n22 的t分布
s——合并标准差:
s (n11)s12 (n2 1)s22 n1n2 2
两组数据的精密度或方差有显著差异时
t x1 x2
s
2 1
s
2 2
n1 n2
服从t分布,其自由度为:
第二自由度为 df2 n2 1
,xn2(2)
②查临界值 给定的显著水平α
df1 n1 1 df2 n2 1
查F分布表 临界值
③检验 双侧(尾)检验(two-sided/tailed test) :
若 F (1 )(df1,df2)FF (df1,df2)
2
2
则判断两方差无显著差异,否则有显著差异
xi x di
d ——成对测定值之差的算术平均值:d i1

试验设计与数据处理

试验设计与数据处理

2、复因素试验
研究两个以上不同因素效应的试验,叫做复因素试 验或多因素试验。复因素试验克服了单因素试验的 缺点,其结果能较全面的说明问题。
但随着试验因素的增多,往往容易使试验过于复杂 庞大,反而会降低试验的精确性。处理数目与试验 种类、排列方法、要求的精确程度有关,应以较少 的处理解决较多问题,因此。复因素试验一般以24个试验因素较好。
中心点处的 m0 次重复,使试验误差较为准确估计成为可能,从而使 对方程与系数的检验有了可靠依据。
中心组合设计方案
中心组合设计中的试验点由三部分组成:
(1)将编码值-1与1看成每个因子的两个水平,采 用二水平正交表安排试验,可以是全因子试验,也可
以是其1/2实施,1/4实施等。记其试验次数为mc,则 mc = 2 p ,或 2 p1 (1/2实施)、2p2 (1/4实施)等。
5、回归设计
(1) 回归正交试验设计 a、一次回归正交试验设计 b、二次回归正交试验设计
(2) 回归旋转设计 a、二次回归正交旋转组合 设计 b、二次通用旋转组合设计
1.完全方案
复因素试验研究的因素较多,完全方案是其 最简单的一种设计,设计的原理就是每个试 验因素的每个水平都要相互碰到,所有因素 处于完全平等的地位。设计时首先确定要研 究的因素及每个试验因素的水平,然后再将 所有试验因素的各个水平组合起来,每一个 组合就是一个处理。设 A、B、C、……代表 试验因素,A1、A2,、……B1、 B2,……; C1、C2,……代表相应试验因素的不同水平 。
3.正交试验设计
对于单因素或两因素试验,因其因素少 , 试验的设计 、实施与分析都比较简单 。但
在实际工作中 ,常常需要同时考察 3个或3
个以上的试验因素 ,若进行全面试验 ,则 试验的规模将很大 ,往往因试验条件的限 制而难于实施 。正交试验设计就是安排多 因素试验 、寻求最优水平组合 的一种高效 率试验设计方法。

试验设计与数据处理(第1与2章)

试验设计与数据处理(第1与2章)

四、我国试验设计方法的研究与应用概况
我国对试验设计方法的研究与推广应用起 步较晚,建国后才逐渐开展这方面的工作。 进入70年代后,正交试验设计方法在我国工 农业科研、生产中的应用越来越广,解决了 不少科研生产中的关键问题。 1978年,我国数学家方开泰和王元将数论和 多元统计相结合,在正交试验设计基础上,创 立了一种新的适用于多因素多水平试验的设计 方法——均匀试验设计法,并很快在很多领域 中得到广泛应用。
试验设计在试验研究中具有非常重要的作 用,它可以有效地解决以下问题: 1、通过试验设计可以分清各试验因素对试验 指标影响的大小,找出主要因素。 2、通过试验设计可以了解每个因素的水平改 变时,试验指标是怎么变化的。 3、通过试验设计可以了解各个因素之间的相 互影响情况,即因素之间的交互作用。
4、通过试验设计可以迅速地找出最优生产条 件或工艺条件,确定最优方案,并能预估在 最优生产条件或工艺条件下的试验指标值。
描述随机变量的某些特征的量叫做随机变 量的数字特征。常用的数字特征是数学期 望和方差。
(一)数学期望(均值) 1、数学期望的概念
首先举一个例子,假设对某种食品的水分进行 了n次测量,其中有m1次测得的结果为x1,m2次 测得的结果为x2,…,mk次测得的结果为xk,则 测定结果的平均值为
k mi 1 ξ = (x1 m1+x 2 m 2+... x k m k )= x i + n n i=1
五、学习《试验设计和数据处理》课程的意 义
试验设计和数据处理方法已成为一种现代 通用技术,是工程技术人员必备的基础知识。 通过本课程的学习,可使学生掌握试验设 计和数据处理的基本原则和常用方法,可培 养学生从事试验研究工作的能力,提高学生 的综合素质,成为高质量的应用型人才。

《实验数据处理》课件

《实验数据处理》课件

深度学习的常见模型有卷积神经 网络(CNN)、循环神经网络 (RNN)和长短期记忆网络(
LSTM)等。
PART 06
实验数据处理案例分析
案例一:医学数据可视化分析
总结词
通过数据可视化技术,将医学数据转化为直观的图形 和图像,帮助医生更好地理解和分析数据。
详细描述
医学数据可视化分析是利用数据可视化技术,将大量的 医学数据转化为直观的图形和图像,帮助医生更好地理 解和分析数据。例如,通过将患者的生理参数、医疗影 像等数据可视化,医生可以更准确地诊断病情、制定治 疗方案和评估治疗效果。
案例三:金融市场数据分析与预测
总结词
通过数据分析方法和技术,对金融市场的历史数据进 行处理和分析,预测未来的市场走势和风险。
详细描述
金融市场数据分析与预测是利用数据分析方法和技术 ,对金融市场的历史数据进行处理和分析,以预测未 来的市场走势和风险。例如,通过对股票市场的历史 数据进行处理和分析,可以预测未来的股票价格走势 和风险,为投资者提供决策依据。此外,金融市场数 据分析与预测还可以用于评估金融市场的稳定性和风 险程度,为政策制定者和监管机构提供参考。
数据异常值处理
总结词
识别和去除异常值的方法
详细描述
异常值是指远离数据集主体的极端值,可能 会对数据分析产生负面影响。常见的异常值
检测方法有Z分数法、IQR法等,可以根据 数据的分布和特征选择合适的方法。去除异 常值可以采用简单的删除或更复杂的平滑技
术。
数据标准化处理
总结词
将数据调整到统一尺度的过程
数据来源与类型
定量数据
数值型数据,如实验测量值。
定性数据
描述性数据,如调查问卷的文本答案。

正交试验设计—直观分析法(试验设计与数据处理课件)

正交试验设计—直观分析法(试验设计与数据处理课件)

(5)计算极差,确定因素的主次顺序
R越大,因素越重要 若空列R较大,可能原因:
➢ 漏掉某重要因素 ➢ 因素之间可能存在不可忽略的交互作用
(6)最优方案的确定
➢ 优方案:在所做的试验范围内,各因素较优的水平组合 ➢ 若指标越大越好 ,应选取使指标大的水平 ➢ 若指标越小越好,应选取使指标小的水平 ➢ 还应考虑:降低消耗、提高效率等
② 例题6-3
水平
(A)乙醇浓度/%
1
80
2
60
3
70
目标:检验三个指标 :
(B)液固比
7 6 8
(C)回流次数
1 2 3
提取物得率
总黄酮含量
葛根素含量
注意:三个指标都是越大越好。
对三个指标分别进行直观分析: ➢ 提取物得率: 因素主次:C A B 优方案:C3A2B2 或C3A2B3 ➢ 总黄酮含量: 因素主次:A C B 优方案:A3C3B3 ➢ 葛根素含量 : 因素主次:C A B 优方案:C3A3B2
110
120 130 温度/℃
2
3
4
时间/h
趋势图



催化剂种类
多指标正交试验设计及其结果 的直观分析
多指标正交试验设计及其结果的直观分析
有两种分析方法: ➢ 综合平衡法 ➢ 综合评分法
(1)综合平衡法
❖ 先对每个指标分别进行单指标的直观分析 ❖ 对各指标的分析结果进行综合比较和分析,得出较优方案
❖ 选 L9(34) 正交表
(2)表头设计
➢ 将试验因素安排到所选正交表相应的列中 ➢ 因不考虑因素间的交互作用,一个因素占有一列(可以随机排列) ➢ 空白列(空列):最好留有至少一个空白列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能对试验结果进行预测和优化; • 试验因素对试验结果的影响规律,为控制试验提供思路; • 确定最优试验方案或配方。
参考文献
1. 水处理实验技术.李燕城.中国建筑工业 出版社.
2. 试验设计与数据处理.李云雁等.化学工 业出版社:2005.2 O212.6-43/2
3. 实验设计与数据处理.刘振学等.化学工 业出版社:2005.3 O212.6-43/1
实验设计与数据处理
引言
• 新产品、新工艺、新材料、新品种及其他 科研成果产生流程
多次反复试验
提高产量
试验数据分析
提高产品性能
规律研究
降低成本能耗
• 科研工作的必要手段——试验
实验和试验
实验
已知某个结论去 验证 已知方法的操作 验证性
试验
未知某个结论去 探索 未知方法的探索 探索性
试验设计方法起源 1980s
• 3.水平:因素在试验中所处的不同状态,可 能引起指标的变化。
• 选择原则:
• 宜选择三水平; • 水平是等间隔的; • 水平是具体的;
• 在技术上现实可行。
试验设计的方法
• 针对不同的具体情况,有不同的试验设计方法。 • 单因素试验设计 • 多因素试验设计 • 正交试验设计
• 各种试验方法的目的、出发点各不相同。
• 2.因素:对试验指标有影响的原因或要素,又称 因子,在试验时重点考察的内容,一般用大写字 母A、B、C标记。
• (1)分类:
• A.可控因素:温度、时间、浓度等
• B.不可控因素:风速、气压、气温等
• (2)选择原则:
• A.抓住主要因素,并且考虑各因素之间的交互作 用。
• B.找出非主要因素,使其在试验中保持不变,以 消除其干扰作用。
1920s
1980s 美国引进田口方法
1920s Fisher用于田间试验
Statistical Experiment Design
1920s Tippett将SED用于棉纺
1924~
1949
1935
1935 “Design of Experiments” 试验设计成为应用技术科学 1930~40s 英、美、苏用于工业
wi xi
i 1 n
wi
i 1
wi——权重
加权和
• 适合不同试验值的精度或可靠性不一致时
➢ 客观真实值——真值
1.1 真值与平均值
1.1.1 真值(true value)
• 真值:在某一时刻和某一状态下,某量的客观值或实际值 • 真值一般是未知的 • 相对的意义上来说,真值又是已知的 ➢ 平面三角形三内角之和恒为180° ➢ 国家标准样品的标称值 ➢ 国际上公认的计量值 ➢ 高精度仪器所测之值 ➢ 多次试验值的平均值
• 数理统计
– 现有数据的分析
试验设计
试验研究
试验实施 数据整理
数据分析
• 优化试验设计在科学研究中的地位与意义 :
– 1.试验设计方法是一项通用技术,是当代科技 和工程技术人员必须掌握的技术方法。
– 2.科学地安排实验,以最少的人力和物力消费, 在最短的时间内取得更多、更好的生产和科研 成果。简称为:多、快、好、省。
4. 实验设计与数据处理.田胜元.中国建筑 工业出版社. TU83-43
第一章 实验数据的误差分析
• 误差分析(error analysis) :对原始数据的可靠性进 行客观的评定
• 误差(error) :试验中获得的试验值与它的客观真实 值在数值上的不一致
➢ 试验结果都具有误差,误差自始至终存在于一切科学实 验过程中
1948 范福仁《田间试验之统计与分析》
1970
1970.4 华罗庚推广优选法、统筹法 1978 优选法用于五粮液获成功
1978
华方罗王开庚元泰11991139004~~01~985
方开泰、王元创建均匀设计法
课程性质与任务
• 试验设计方法是一项通用技术,是当代科 技和工程技术人员必须掌握的技术方法。
1940s末 美国Deming传播SED至日本 1949 日本Genichi Taguechi(田口玄一)以 SED为基础建立“正交试验设计”法 1952 应用L27(313)于日本东海电报公司 1952~1962 应用100万项,1/3成效明显 1955~1970 日本借此推行全面质量管理
我国试验设计方法发展
• 如何进行科学合理的试验设计
– 优良的试验方案 – 遵循试验设计基本原则,控制试验误差 – 简单计算获取有价值试验规律 – 试验研究结果可推广和重复
因素对指标 影响大小
B
因素对指标 影响规律
A
试验设 计效果
因素间是否 C 相互影响
优选最佳条 件,估计指
E
标值
D 估计和控制 试验误差
本课程《试验设计方法》可以解决以上5个问题
实验设计基本要素
• 1.指标:用来衡量实验效果好坏的特征值。 • (1)指标的分类: • A.定量指标,数量指标,如重量、转化率、收率、成活率、
合格率等。 • B.定性指标,非数量指标,如颜色、味道、光泽等。 • (2)指标的选择原则: • A. 客观性强 • B.易于量化 • C.灵敏度高 • D.精确性强
1.1.2 平均值(mean)
(1)算术平均值(arithmetic ... xn
xi
i 1
n
n
适合:
等精度试验值 试验值服从正态分布
(2)加权平均值(weighted mean)
n
xW
w1x1 w2 x2 ... wn xn w1 w2 ... wn
试验设计方案的步骤
• 1.明确试验目的,确定试验指标。 • 2.挑选因素,选取水平。 • 3.确定试验设计方法。 • 4.安排试验点。
数据处理的目的
• 通过误差分析,评判试验数据的可靠性; • 确定影响试验结果的因素主次,抓住主要矛盾,提高试
验效率; • 确定试验因素与试验结果之间存在的近似函数关系,并
• 试验设计方法是自然科学研究方法论领域 中的一个成熟分支学科。
• 让学生熟悉并掌握近代最常用、最有效的 几种优化试验设计方法的基本原理及其应 用。
• 什么叫做(优化)试验设计方法?
– 把数学上优化理论、技术应用于试验设计中, 科学的安排试验、处理试验结果的方法。
– 采用科学的方法去安排试验,处理试验结果, 以最少的人力和物力消费,在最短的时间内取 得更多、更好的生产和科研成果的最有效的技 术方法。
相关文档
最新文档