初中数学几何题常见辅助线作法
初中几何辅助线大全(很详细哦)
初中几何辅助线—克胜秘籍等腰三角形1、作底边上的高,构成两个全等的直角三角形,这就是用得最多的一种方法;2、作一腰上的高;3 、过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1、垂直于平行边2、垂直于下底,延长上底作一腰的平行线3、平行于两条斜边4、作两条垂直于下底的垂线5、延长两条斜边做成一个三角形菱形1、连接两对角2、做高平行四边形1、垂直于平行边2、作对角线——把一个平行四边形分成两个三角形3、做高——形内形外都要注意矩形1、对角线2、作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD、、、、这类的就就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折瞧,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试瞧。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往就是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点与一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试瞧。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
初中数学作辅助线的方法
初中数学作辅助线的方法在数学中,辅助线是指在解题过程中,为了更加清晰地理解和解答问题,而额外添加的辅助线条。
辅助线能够帮助我们识别几何形状的性质、简化题目、发现问题的特点,进而解决问题。
下面将介绍一些初中数学中常用的辅助线的方法。
1.直线的辅助线:1.1利用等角性质:当一道题目中出现两条或多条直线之间存在相等角度的关系时,可以通过画一条平行于其中一条直线的辅助线,从而使问题更加清晰。
例如,当一道题目中有两条平行线上辅助线之间的交角等于已知夹角时,我们可以通过画一条与两条线垂直的辅助线,从而找到问题的解决方法。
1.2利用中点性质:当一道题目中出现一个直线段上存在中点的情况时,可以通过连接这个中点和其它的点,并利用中点将辅助线分成两等分的方式,简化问题。
例如,当一道题目中需要证明一个线段平分另一个线段时,可以通过在两个线段的中点之间画一条辅助线,从而将问题转化为证明两个等腰三角形。
2.圆的辅助线:2.1利用相切性质:当一道题目中出现一个圆和另一个圆间存在相切的情况时,可以通过在两个圆的相切点处引出切线,并连接相切点和圆心的辅助线来简化问题。
例如,当一道题目中有两个圆相切于一个点,需要求证两个圆的半径之比时,可以通过连接两个圆心之间的辅助线,并利用切线及其垂直性质来求解。
2.2利用内接性质:当一道题目中出现一个圆内接于一个图形的情况时,可以通过在圆和图形的交点处引出辅助线,并利用内接四边形的特点来简化问题。
例如,当一道题目中有一个圆内切于一个正方形,需要证明半径与正方形边长之比时,可以通过连接正方形的对角线并利用内接四边形的性质来证明。
3.三角形的辅助线:3.1利用中位线性质:当一道题目中有一个三角形的中位线时,可以通过连接三角形的中位线两端点与对应边上其他点的辅助线,来简化问题。
例如,当一道题目中需要证明两个三角形形状相似时,可以通过连接两个三角形的中位线,然后利用垂直性质来证明。
3.2利用高线性质:当一道题目中有一个三角形的高线时,可以通过连接三角形的高线两端点与对应边上其他点的辅助线,来简化问题。
初中数学常见辅助线的做法
初中数学常见辅助线的做法
初中数学常见辅助线的做法
在初中数学中,辅助线是解题过程中常用的工具。
通过适当地引入辅助线,可以使问题更加清晰明了,从而更容易解决。
本文将介绍几种常见的辅助线做法。
1.平移法
平移法是一种常用的辅助线做法。
它的基本思想是将图形沿某个方向平移,使得问题更加清晰。
例如,在解决一个三角形的问题时,我们可以平移其中的一条边,使得三角形更加规则,从而更容易解决问题。
2.垂线法
垂线法也是一种常用的辅助线做法。
它的基本思想是引入垂线,将原问题转化为更简单的问题。
例如,在解决一个三角
形的问题时,我们可以引入垂线,将三角形分成两个直角三角形,从而更容易解决问题。
3.对称法
对称法是一种常用的辅助线做法。
它的基本思想是通过引入对称轴,将原问题转化为更简单的问题。
例如,在解决一个图形的问题时,我们可以引入对称轴,将图形分成对称的两部分,从而更容易解决问题。
4.相似法
相似法是一种常用的辅助线做法。
它的基本思想是通过找到相似的图形,将原问题转化为更简单的问题。
例如,在解决一个三角形的问题时,我们可以找到一个相似的三角形,从而更容易解决问题。
总之,辅助线是解决初中数学问题的常用工具。
通过灵活运用各种辅助线做法,我们可以更加轻松地解决各种数学问题。
初中数学做辅助线的方法总结
初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。
以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。
例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。
2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。
例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。
3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。
例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。
4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。
例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。
总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。
需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。
中考数学几何辅助线大全及常考题型解析
中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
初中几何常用辅助线做法
常用辅助线做法➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法常见辅助线的作法总结1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)构造等腰三角形或作等腰三角形的高利用“三线合一”性质。
7)作三角形的中位线。
8)引平行线构造全等三角形。
9)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)10)构造三垂直模型。
✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。
(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.✧考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
中考数学10大类辅助线
中考数学10大类辅助线中考数学常见的辅助线方法有很多种,可以根据题目的特点和计算的需要来选择适当的辅助线方法。
以下是常见的十大类辅助线方法:1.垂直线:通过绘制垂直线可以将几何图形划分为各个部分,方便计算和推导。
垂直线常用于求证和求交点等问题。
2.平行线:通过绘制平行线可以将几何图形划分为等价的部分,方便进行比较和推导。
平行线常用于求证和相似三角形等问题。
3.对角线:通过绘制对角线可以将几何图形划分为更简单的部分,方便计算和推导。
对角线常用于求面积和相似多边形等问题。
4.中垂线:通过绘制中垂线可以将线段划分为等分的两部分,方便计算和推导。
中垂线常用于求证和等腰三角形等问题。
5.角平分线:通过绘制角平分线可以将角划分为等角的两部分,方便计算和推导。
角平分线常用于求证和相似三角形等问题。
6.高线:通过绘制高线可以将三角形划分为底边和顶点的垂直线段,方便计算和推导。
高线常用于求证和面积等问题。
7.过中点的连线:通过绘制过中点的连线可以将线段或图形划分为对称的两部分,方便计算和推导。
过中点的连线常用于求证和相似图形等问题。
8.过交点的连线:通过绘制过交点的连线可以将几何图形划分为更简单的部分,方便计算和推导。
过交点的连线常用于求证和相似三角形等问题。
9.辅助圆:通过绘制辅助圆可以将几何图形划分为更简单的部分,方便计算和推导。
辅助圆常用于求证和相似图形等问题。
10.分割线:通过绘制分割线可以将几何图形划分为等价或相似的部分,方便计算和推导。
分割线常用于求证和比例等问题。
以上是中考数学常见的十大类辅助线方法的简介。
使用辅助线可以在解题过程中简化计算,提高解题的效率和准确性。
在实际应用中,需要根据题目的具体要求和解题步骤选择适当的辅助线方法,灵活运用,有助于提高数学解题能力。
初中几何常见辅助线作法50种
D E
A
1
4
2
3
B
C
7.条件不足时延长已知边构造三角形.
例:已知 AC = BD,AD⊥AC 于 A,BCBD 于 B
求证:AD = BC
证明:分别延长 DA、CB 交于点 E
∵AD⊥AC BC⊥BD
∴∠CAE = ∠DBE = 90o
在△DBE 和△CAE 中
∠DBE =∠CAE
BD = AC ∠E =∠E ∴△DBE≌△CAE ∴ED = EC,EB = EA ∴ED-EA = EC- EB
∴△ABC≌△CDA
∴AB = CD
E
练习:已知,如图,AB = DC,AD = BC,DE = BF,
D
C
求证:BE = DF
A
B
F
9.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“垂直加平分出等腰三角形”. 例:已知,如图,在 Rt△ABC 中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD 的延长线
A
△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDF
E
F
23
B
1
4
D5
C
DF = DF
M
∴△EDF≌△MDF
∴EF = MF
∵在△CMF 中,CF+CM >MF
2 / 26
BE+CF>EF
(此题也可加倍 FD,证法同上)
5. 在三角形中有中线时,常加倍延长中线构造全等三角形.
例:已知,如图,AD 为△ABC 的中线,求证:AB+AC>2AD
证明:延长 AD 至 E,使 DE = AD,连结 BE
∵AD 为△ABC 的中线
初中几何全等三角形常见辅助线作法
全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。
求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。
平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。
是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。
求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
初中几何辅助线大全
初中几何辅助线等腰三角形1、作底边上的高,构成两个全等的直角三角形,这就是用得最多的一种方法;2、作一腰上的高;3 、过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1、垂直于平行边2、垂直于下底,延长上底作一腰的平行线3、平行于两条斜边4、作两条垂直于下底的垂线5、延长两条斜边做成一个三角形菱形1、连接两对角2、做高平行四边形1、垂直于平行边2、作对角线——把一个平行四边形分成两个三角形3、做高——形内形外都要注意矩形1、对角线2、作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD、、、、这类的就就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折瞧,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试瞧。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往就是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点与一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试瞧。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
八年级几何常见辅助线作法及例题(几何画板精确作图)
八年级几何常见辅助线作法及例题(几何画板精确作图)1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形.7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8. 面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、等腰三角形“三线合一”法1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:2CE=BD.中考连接:(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6二、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.ABC ∆例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.中考连接:(09崇文)以的两边AB 、AC 为腰分别向外作等腰Rt 和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.三、借助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2、如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN 上,且2AE=(AD+AB).问:∠1和∠2有何关系?中考连接:(2012年北京)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
初中数学做辅助线方法
初中数学做辅助线方法在初中数学中,使用辅助线是一种常见的解题方法,它可以帮助我们更好地理解问题和解题思路。
以下是一些常见的辅助线方法以及它们的应用。
1. 分割线法:当我们需要求一个几何图形的面积或长度时,有时可以使用一条或多条辅助线将图形分割成几个简单的几何图形,然后再计算每个简单图形的面积或长度,最后相加得到所求解。
2. 割线法:当我们需要找到一个几何图形内部的一些特殊点时,可以通过引入一条辅助线,将该点和图形的某些已知点连接起来,然后利用几何性质来得出所求点的位置。
3. 三角形连接线法:在三角形的题目中,如果我们需要求解三角形的面积、周长或者证明某些三角形特性时,可以引入一条或多条辅助线,将三角形分割成一些已知的几何图形,然后再进行计算或证明。
4. 外接圆法:当我们需要证明一个几何图形的性质时,有时可以通过引入一个外接圆,将几何图形与圆相切或相交,利用圆的性质来进行推导和证明。
5. 成比例辅助线法:在一些比例相关的问题中,可以通过引入成比例的辅助线来简化计算或证明的过程。
6. 平行线法:当我们需要证明两条线段平行或两个角相等时,可以通过引入一条或多条辅助线,建立起平行关系或等角关系,再利用几何性质进行证明。
除了以上的常见方法,还有许多其他的辅助线方法可以用来解决初中数学中的问题。
在使用辅助线方法时,我们需要注意以下几点:1. 想清楚目的:在引入辅助线之前,我们需要明确引入辅助线的目的是什么,是为了简化计算、证明一个定理,还是找到问题的关键点。
2. 利用已知条件:在选择引入辅助线的位置时,我们要利用已知的条件和题目中给出的信息,选择合适的辅助线,这样可以更好地利用已知条件进行计算或证明。
3. 注意合理性:在引入辅助线时,需要注意辅助线与已知条件的联系,辅助线的引入应该是自然合理的,避免引入没有必要的辅助线,以免使问题复杂化。
4. 利用几何性质:在引入辅助线后,我们需要灵活运用几何性质,结合已知条件和辅助线的位置,进行计算或证明。
初中几何辅助线大全-最全
三角形中作辅助线的常用方法举例一、延长已知边构造三角形:例如:如图7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BC分析:欲证AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。
E 证明:分别延长DA,CB,它们的延长交于E点,∵AD⊥ACBC⊥BD(已知)∴∠CAE=∠DBE=90°(垂直的定义)在△DBE与△CAE中A BO EE()公共角∵DBECAE()已证D CBDAC(已知)图71∴△DBE≌△CAE(AAS)∴ED=ECEB=EA(全等三角形对应边相等)∴ED-EA=EC-EB即:AD=BC。
(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)二、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
三、有和角平分线垂直的线段时,通常把这条线段延长。
例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。
求证:BD=2CEF分析:要证BD=2CE,想到要构造线段2CE,同时AE1B 12DC 图91CE与∠ABC的平分线垂直,想到要将其延长。
证明:分别延长B A,CE交于点F。
∵BE⊥CF(已知)∴∠BEF=∠BEC=90°(垂直的定义)在△BEF与△BEC中,12(已知)∵BEBE(公共边)BEFBEC()已证1C F(全等三角形对应边相等)∴△BEF≌△BEC(ASA)∴CE=FE=2∵∠BAC=90°BE⊥CF(已知)∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD与△ACF中BACCAF(已证)BDABFC()已证AB=AC(已知)∴△ABD≌△ACF(AAS)∴BD=CF(全等三角形对应边相等)∴BD=2CE四、取线段中点构造全等三有形。
初中数学常用辅助线大全
初中数学常用辅助线大全初中数学中,辅助线是解决几何问题的重要工具。
通过添加适当的辅助线,可以转化问题,使其更容易解决。
以下是初中数学中常用的辅助线做法:1. 中点连接线:如果一条线段被另一条线段平分,则可以作出中点连接线。
中点连接线将原图形分为面积相等、形状相同的两部分。
2. 平行线:通过作平行线,可以将复杂的几何图形转化为简单的、易于处理的图形。
平行线有助于证明角度相等、线段相等和全等三角形。
3. 延长线:在需要证明某一直线或线段等于另一条直线或线段时,可以通过延长线的方式将问题简化。
4. 垂线:在证明角相等、三角形全等或线段长度等问题时,经常需要作垂线。
垂足将线段分为两段相等的部分,有助于证明和计算。
5. 角平分线:角平分线将角分为两个相等的部分,有助于证明角度相等和线段长度相等。
6. 构造法:在某些情况下,需要通过构造新的图形来解决问题。
例如,构造一个与原图形相似的三角形或平行四边形。
7. 截长补短法:当需要证明某一直线或线段等于两条其他直线或线段的和时,可以通过截长或补短的方式来证明。
8. 辅助圆:在证明与圆相关的问题时,有时需要作辅助圆。
通过辅助圆,可以将问题转化为与圆相关的定理和性质。
除了以上常用方法外,还有一些特殊图形的辅助线做法。
例如,在等腰三角形中,可以通过作底边上的高或中线来证明性质;在直角三角形中,可以通过作斜边上的中线来证明性质。
为了更好地掌握辅助线的做法,学生需要多做练习题,积累经验并熟悉各种题型。
同时,要注意总结和归纳,发现不同问题之间的联系和规律,以便能够更快地找到解决问题的方法。
另外,值得注意的是,辅助线并不是随意添加的,需要遵循一定的逻辑和推理。
添加的辅助线必须与原图形有清晰的关系,不能凭空创造。
同时,要注意证明过程中每一步的逻辑严密性,确保证明过程是正确的。
综上所述,初中数学中的辅助线做法是解决几何问题的关键。
通过熟练掌握各种辅助线的做法,学生可以更好地解决复杂的几何问题,提高数学成绩。
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中数学做辅助线的方法总结
初中数学做辅助线的方法总结初中数学中,辅助线是解题的一种重要方法,可以帮助我们清晰地理解题意和问题,并找到解题的思路。
下面是关于初中数学做辅助线的方法总结。
一、直线法1.作垂线:当题目中出现垂直关系时,我们可以通过作垂线来解决问题。
例如,求两个直线的垂直平分线、两个线段的中垂线等。
2.作平行线:当需要证明两条直线平行时,可以通过作一条与已知直线平行的辅助线,再应用平行线的性质进行证明。
二、角度法1.作角平分线:当需要求一个角平分线时,可以通过作一个角的辅助线将该角分成两个相等的角,进而求出角平分线。
2.作等角:当题目中需要证明两个角相等时,可以通过作一条等角的辅助线,将两个角变成等角,然后再应用等角的性质进行证明。
三、三角形法1.作高:当需要求一个三角形的高时,可以通过作条辅助线,形成一个矩形或直角三角形,从而利用高的性质求解。
2.作中线:当需要求一个三角形的中线时,可以通过作条辅助线,形成一个平行四边形或直角三角形,从而利用中线的性质求解。
3.作角平分线:当需要求一个三角形的角平分线时,可以通过作条辅助线,将该角分成两个相等的角,进而求出角平分线。
四、平行四边形法1.作对角线:当题目中出现平行四边形时,可以通过作对角线来将该平行四边形分成两个相等的三角形,进而利用三角形的性质进行求解。
五、轴对称法1.关于对称轴作对称点:当题目中出现轴对称图形时,可以通过作关于对称轴的对称点,将原图形和对称点所成的线段连结起来,形成对称图形,从而利用对称性进行求解。
六、相似三角形法1.作比例:当需要求解两个三角形相似的比例时,可以通过作条辅助线,形成相似三角形,并利用相似三角形的性质求解。
七、图形拓展法1.分割图形:当需要对一个复杂的图形进行分析时,可以通过作一些辅助线,将复杂图形分割成若干个简单的图形,进而分别求解。
总之,在初中数学中,辅助线是解题的有力工具,可以帮助我们合理分析题目,找到解题的思路,解决数学问题。
初中数学常见辅助线的做法
初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。
是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。
初中数学辅助线常用做法
1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
初三数学几何辅助线解题技巧
初三数学几何辅助线解题技巧
初三数学中,几何是一个比较重要的章节,而在几何中使用辅助线解题技巧是十分必要的。
辅助线可以帮助我们找到几何图形中的对称点、平分线、垂线等,从而解决难题。
以下是一些常见的几何问题和辅助线解题技巧:
1. 求正方形对角线的长度
解法:通过连接正方形的对角线,我们可以构成两个全等的直角三角形,如图所示。
因此,我们可以使用勾股定理求出正方形对角线的长度。
2. 求等腰三角形中,底角的大小
解法:连接等腰三角形的底边中点和顶点,如图所示。
这条线段会将等腰三角形分成两个全等的直角三角形。
因此,我们可以使用三角形内角和公式求得底角的大小。
3. 求平行四边形中对角线的交点
解法:连接平行四边形的相邻顶点,如图所示。
这条线段可以将平行四边形分成两个全等的三角形,并且交点即为两条对角线的交点。
4. 求正弦函数的值
解法:在三角形中,我们可以使用正弦函数求解一个角的正弦值。
如图所示,我们可以通过连接角的顶点和对边中点,构成一个直角三角形,从而使用正弦函数求解。
以上是几种常见的辅助线解题技巧,希望能够帮助同学们更好地应对几何问题。
同时,在解题过程中,我们要注意辅助线的选择和使用,避免增加难度或者引入冗余信息,从而导致解题失败。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何常见辅助线口诀
三角形
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
四边形
平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆形
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
由角平分线想到的辅助线
一、截取构全等
如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自已试一试。
二、角分线上点向两边作垂线构全等
如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180
分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形
如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:
BD=2CE。
分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。
四、角平分线+平行线
如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。
分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。
由线段和差想到的辅助线
截长补短法
AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。
分析:过C点作AD垂线,得到全等即可。
由中点想到的辅助线
一、中线把三角形面积等分
如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。
已知ΔABC的面积为2,求:ΔCDF的面积。
分析:利用中线分等底和同高得面积关系。
二、中点联中点得中位线
如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD 的延长线分别交EF的延长线G、H。
求证:∠BGE=∠CHE。
分析:联BD取中点联接联接,通过中位线得平行传递角度。
三、倍长中线
如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。
分析:倍长中线得到全等易得。
四、RTΔ斜边中线
如图,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。
分析:取AB中点得RTΔ斜边中线得到等量关系。
由全等三角形想到的辅助线
一、倍长过中点得线段
已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是。
分析:利用倍长中线做。
二、截长补短
如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,求证:
∠A+∠C=180
分析:在角上截取相同的线段得到全等。
三、平移变换
如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE
分析:将△ACE平移使EC与BD重合。
四、旋转
正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求
∠EAF的度数
分析:将△ADF旋转使AD与AB重合。
全等得证。
由梯形想到的辅助线
一、平移一腰
所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17. 求CD的长。
分析:利用平移一腰把梯形分割成三角形和平行四边形。
二、平移两腰
如图,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。
分析:利用平移两腰把梯形底角放在一个三角形内。
三、平移对角线
已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积。
分析:通过平移梯形一对角线构造直角三角形求解。
四、作双高
在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
分析:作梯形双高利用勾股定理和三角形边边边的关系可得。
五、作中位线
(1)如图,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:EF//AD
分析:联DF并延长,利用全等即得中位线。
(2)在梯形ABCD中,AD∥BC,∠BAD=90°,E是DC上的中点,连接AE 和BE,求∠AEB=2∠CBE。
分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。