等差数列的前n项和
等差数列前n项和的推导公式
等差数列前n项和的推导公式等差数列前n项和的推导公式,听起来是不是有点复杂?这个东西就像我们生活中的许多事情,简单却又充满了乐趣。
想象一下,咱们去超市买东西,每次都能找到一些折扣。
假如你要买一堆苹果,第一天买了一个,第二天又买了一个,再加上还有其他的。
嘿,等差数列就这么来了!说白了,它就是每次加上一个固定的数字,像是你每天都要喝的那杯咖啡,始终是那么多。
前n项和又是什么呢?简单来说,就是把这些数字加起来,比如说,你第一天买了一个苹果,第二天又加了一个,第三天又来了一个……你知道的,时间长了,苹果就越来越多。
数数看,你每天加的这一个,算下来就成了一个小山堆。
我们想要知道这些苹果加起来到底有多少,这时候,前n项和就派上用场了。
我们先来看看公式。
等差数列的前n项和,通常是用S_n来表示。
你可能会问,这个S_n到底是什么呢?它的公式是这样的:S_n = n/2 × (a_1 + a_n)。
这里的n是你加了多少天,a_1是第一天的苹果数量,而a_n就是第n天的苹果数量。
咋样?听起来是不是不那么复杂?举个例子,假如第一天你买了1个苹果,第二天买了2个,第三天买了3个……一直往下加。
那你就会发现,你买的苹果越来越多,像是人气不断飙升的网红一样。
每一天都在增加,真的是“天天向上”。
现在,我们来算算前n项和吧。
假设你想知道前5天的苹果总数。
第一天是1个,第二天是2个,第三天是3个,第四天是4个,第五天是5个。
把它们加起来,1 + 2 + 3 + 4 + 5,这个和就是15。
哦,天哪,真的是一大堆苹果!你看,这个过程就是等差数列的魅力所在。
再回到公式,S_n = n/2 × (a_1 + a_n)。
把数据代进去,n是5,a_1是1,a_n是5。
所以你就可以算出S_5 = 5/2 × (1 + 5),结果出来是15。
是不是特别简单?等差数列的魅力还不止于此,想想看,生活中我们总是喜欢把事情做得简单明了。
等差数列的前n项和公式推导与例题解析
等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n ∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。
等差数列前N项和的公式
若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质
a1+an=a2+an-1=a3+an-2=…
由(1)+(2) 得 即
Sn=n(a1+an)/2
2sn=(a1+an)+(a1+an)+(a1+an)+..
由此得到等差数列的{an}前n项和的公式
n(a1 an ) 公式1 Sn 2
n(n 1) n(n 1) 公式2 Sn na1 d nan d 2 2
熟练掌握等差数列的两个求和公式并能灵 活运用解决相关问题.
由以上例题可以得出:在求等差数列的前n项的和时,当
知道首项和公差,或者是知道首项和末项,均可以得出.
已知等差数列an中,已知a6=20,求S11=?
例4 等差数列-10,-6,-2,
2,…前多少项的和是54? 本题实质是反用公式,解一 个关于n 的一元二次函数,注 意得到的项数n 必须是正整数.
解:将题中的等差数列记为{an},sn代表该数列
复习回顾
(1) 等差数列的通项公式: 已知首项a1和公差d,则有: an=a1+ (n-1) d 已知第m项am和公差d,则有: an=am+ (n-m) d, d=(an-am)/(n-m) (2) 等差数列的性质: 在等差数列﹛an﹜中,如果m+n=p+q (m,n,p,q∈N),那么: an+am=ap+aq
n(n 1)10 由题意,得 :100 n (n 2)180 2 解得 n=8 或 n=9(舍)
等差数列前n项和的性质及应用
密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。
等差数列的前n项和与公差的关系
等差数列的前n项和与公差的关系等差数列是一种常见的数列,它的每一项与前一项之差都相等,这个差值被称为公差。
在研究等差数列时,我们经常需要计算前n项的和。
本文将探讨前n项和与公差之间的关系。
假设我们有一个等差数列的首项为a1,公差为d。
我们可以表示等差数列的第n项为an。
等差数列的前n项和公式在等差数列中,每一项与前一项之差都相等,也就是说:an = a1 + (n-1) * d我们可以利用这个公式计算等差数列的任意一项。
而等差数列的前n项和可以表示为:Sn = (n/2) * (a1 + an)这个公式可以帮助我们计算等差数列的前n项和,只需要知道首项和公差即可。
前n项和与公差的关系通过等差数列的前n项和公式,我们可以看到前n项和与公差之间存在一定的关系。
首先,我们可以观察到公差为0时,等差数列的前n项和就是n倍的首项,即 Sn = n * a1。
这是因为此时等差数列中的每一项都相等,所以前n项和就是n倍的首项。
其次,我们可以看到公差为正数时,等差数列的前n项和随着n的增大而增大。
这是因为每一项都比前一项大公差的值,所以随着n的增大,前n项和也会增大。
反之,当公差为负数时,等差数列的前n项和随着n的增大而减小。
这是因为每一项都比前一项小公差的值,所以随着n的增大,前n项和也会减小。
综上所述,前n项和与公差之间存在一定的关系。
对于公差为0的等差数列,前n项和是n倍的首项;对于正数公差的等差数列,前n项和随着n的增大而增大;对于负数公差的等差数列,前n项和随着n的增大而减小。
希望本文对你理解等差数列的前n项和与公差的关系有所帮助。
等差数列前n项和的性质
则
S偶-
S奇=
nd 2
.
特别地, 若 m+n=2p, 则 am+an=2ap .
2.等差中项
b=
a+c 2
3.若数列 {an}是等差数列,则 d k 2d
Sk , S2k Sk , S3k S2k , S4k S3k , 也是等差数列
4.若等差数列 {an} 的前 2n-1 项和为 S2n-1, 等差数列 {bn} 的
前 2n-1 项和为 T2n-1,
则
S2n-1 T2n-1
=
an bn
.
三、判断、证明方法
1.定义法; 2.通项公式法; 3.等差中项法.
{an}为等差数列 an kn b
Sn An2 Bn
注: 三个数成等差数列, பைடு நூலகம்设为 a-d, a, a+d(或 a, a+d, a+2d) 四个数成等差数列, 可设为a-3d, a-d, a+d, a+3d.
一、概念与公式
1.定义 若数列 {an} 满足: an+1-an=d(常数), 则称 {an} 为等差数列.
2.通项公式 an=a1+(n-1)d=am+(n-m)d.
3.前n项和公式
Sn=na1+
n(n-1)d 2
=
n(a1+an) 2
.
二、等差数列的性质
1.若 m+n=p+q(m、n、p、qN*), 则 am+an=ap+aq .
四、Sn的最值问题
1.若 a1>0, d<0 时,
满足
an≥0, an+1≤0.
等差数列前n项和的公式
21
1
问题2
一个堆放铅笔的V形架 的最下面一层放一支铅 笔,往上每一层都比它 下面一层多放一支,最 上面一层放100支.这个 V形架上共放着多少支 铅笔?
问题就是 求 “1+2+3+4+…+100=?”
问题2:对于这个问题,德国著名数学家高斯10岁 时曾很快求出它的结果。(你知道应如何算吗?)
假设1+2+3+ +100=x,
【变式】若Sn=-3n2 +6n +1,求an? 【解析】当n=1时,a1=S1=4. 当n≥2时,an=Sn-Sn-1 =(-3n2+6n+1)-[-3(n-1)2+6(n-1) +1]
=9-6n,
a1=4不符合此式.
故an=
4(n 1) 9 6n(n 2)
.
n
1 11 1从 而a1=,3或a1=-1.
na1 2 d 35
(A)33
(B)34
(C)35
(D)36
3.数列{an}为等差数列,an=11,d=2, Sn=35,则a1等于( )
(A)5或7
(B)3或5 (C)7或-1
(D)3或-1
4.设等差数列{an}的前n项和为Sn,a2+a4=6,则S5=_______.
5.两个等差数列{an}和{bn}的前n项和分别是Sn,Tn,若
(1)
那么100+99+98+ +1=x.
(2)
由(1)+(2)得101+101+101+ +101=2x,
100个101
所以 2x 101100, x=5050.
等差数列前n项和性质
公式应用
计算等差数列前n项和
利用等差数列前n项和公式, 可以快速计算出等差数列的前 n项和,避免了逐项相加的繁 琐过程。
判断等差数列的性质
通过等差数列前n项和公式, 可以推导出等差数列的一些性 质,如等差中项、等差数列的 和与项数的关系等。
解决实际问题
等差数列前n项和公式在实际 问题中有着广泛的应用,如计 算存款利息、求解物理问题等 。通过灵活运用公式,可以简 化问题求解过程。
等差数列求和与数学归纳法
数学归纳法是一种证明等差数列前n项和性质的有效方法。 通过数学归纳法,可以证明等差数列前n项和公式的正确性 ,以及推导其他相关性质。
06
总结与展望
总结等差数列前n项和性质
• 等差数列前n项和公式:等差数列前n项和S_n=n/2*[2a_1+(n-1)d],其中a_1为首项,d为公差,n为项数。该公式用于计 算等差数列前n项的和。
等差数列是数列中的一种特殊情况,学生可以将 所学的知识和方法拓展到等比数列和其他类型的 数列中,加深对数列的理解和掌握。
掌握等差数列的求解方法
在学习等差数列的过程中,学生需要掌握各种求 解方法,如直接代入法、待定系数法、配方法等 。通过不断练习,提高解题速度和准确性。
结合实际问题进行应用
数列在现实生活中有着广泛的应用,如分期付款 、人口增长、物理运动等问题。建议学生结合实 际问题,运用所学的等差数列知识进行求解和分 析,提高解决实际问题的能力。
若两个等差数列的前n项和分别为S_n和T_n,且S_n/T_n=k(k为 常数),则这两个数列的公差之比为k。
对未来学习的建议
深入学习等差数列的性质
除了前n项和性质外,等差数列还有许多其他重 要的性质,如通项公式、中项性质等。建议学生 深入学习这些性质,并理解它们之间的联系和应 用。
等差数列的前n项和的性质
A.22 B.26 C.30 D.34
C 由等差数列的前n项和性质知S673,S1346-S673,S2019-S1346 成等差数列,所以由等差中项的性质知 2(S1346-S673)=S673+S2019-S1346,又S673=2,S1346=12, 所以S2019=3(S1346-S673)=30,故选C.
Sn在转折项有最大值
an 0 an1 0
a1 0, d 0 , , ,(0),+, , , Sn在转折项有最小值
an 0
an1
0
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法1 由S3=S11得 1.根据Sn二次模型,寻找对称轴
法一 : 基本量思想 转为a1和d 法二 : 整体做差
3. an 是等差数列, Sn是前n项的和,求证: S6, S12 S6, S18 S12也成等差 推广: 若 an 是等差数列, Sn , S2n Sn , S3n S2n也成等差
等差数列an, Sn 100, S2n 500,求S3n
练习题
1.等差数列 an ,a10 30,a20 50,求a40
法一 : 基本量思想 转为a1和d 法二 : a10,a20 , a30, 还成等差
结论 : 若an是等差数列, 则 a10n还是等差 2.等差数列 an ,a1 a2 a3 35,a2 a3 a4 63,求a3 a4 a5
Sn 2n 3 ,求 a9 .
37
Tn 3n 1 b9
50
an S2n1 bn T2n1
an S2n1
bn
T2n1
二、等差数列的前n项的最值问题 Sn最值问题
4.2.2等差数列的前n项和公式
*,且p+q=s+t,
p,q,s,t∈N
通过配对凑成相同的数,变“多步求和”为“一步相乘”,
问题:为什么1+100=2+99=…=50+51呢?从数列角度怎么解释?
则a
p+aq=as+at.
也就是将“不同数的求和”转化为“相同数的求和”.
等差数列中,下标和相等的两项和相等.
等差数列的前n项和公式
等差数列任意条件
等差数列任意2个相互独立的条件
a1,d
2个相互独立的方程
等差数列任意问题
基
本
量
法
课堂小结
抽
象 等差数列
高斯求和
的前n项和
Sn,n,a1,
d 和 an
知三求二
(方程思想)
倒
序
求 等差数列
连续正整 和
的前n项
数的求和
应用
和公式
公式
(1 + )
=
基
2
an=a1+(n-1)d
因为1 + = 2 + −1 = ⋯ = + 1 ,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
4.2.2等差数列的前n项和公式
复习回顾
等差数列的概念: 一般地,如果一个数列从第2项起,每一项与它的前
一项的差都等于同一个常数,那么这个数列就叫做
等差数列
an-an-1=d(n≥2)
等差数列的前n项和性质+练习
1、等差数列{a n }前n 项和公式: n S = n a n 2a 1+=d n n n a 2)1(1-+=d n n na n 2)1(--。
等差数列的前n 项之和公式可变形为,若令A =,B =a 1-,则=An 2+Bn.在解决等差数列问题时,如已知,a 1,a n ,d ,,n 中任意三个,可求其余两个。
2、等差数列{a n }前n 项和的性质性质1:S n ,S 2n -S n ,S 3n -S 2n , …也在等差数列,公差为n 2d性质2:(1)若项数为偶数2n,则 S 2n =n(a 1+a 2n )=n(a n +a n+1) (a n ,a n+1为中间两项),此时有:S 偶-S 奇= nd , 性质3:(2)若项数为奇数2n -1,则 S 2n-1=(2n - 1)a n (a n 为中间项), 此时有:S 奇-S 偶= a n ,1-n n s =偶奇s 性质4:数列{nn s }为等差数列 性质5:若数列{a n }与{b n }都是等差数列,且前n 项的和分别为S n 和T n ,则2121n n n n a S b T --= 典型例题:热点考向1:等差数列的基本量(a 1,a n ,d ,,n 中任意三个,可求其余两个)例1、在等差数列{n a }中,已知81248,168S S ==,求1,a 和d 已知6510,5a S ==,求8a 和8S训练: 1、在等差数列{}n a 中,已知102030,50a a ==.(1)求通项公式{}n a ;(2)若242n S =,求n .2.在等差数列{}n a 中,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 3、已知等差数列的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。
4. 已知是等差数列,且满足,则等于________。
等差数列的前n项和公式的性质
例 3. 项数为奇数的等差数列{an },奇数项之和为 44,偶数项之和为
33,求这个数列的中间项及项数.
解:设等差数列{an}共有(2n+1)项,则奇数项有(n+1)项,偶数项
有 n 项,中间项是第(n+1)项,即 an+1,
1
S奇 2a1+a2n+1n+1 n+1an+1 n+1 44 4
解法1: 由S3=S11, 得
1
1
3 13 3 2 d 1113 1110 d
2
2
∴ d=-2
1
Sn 13n n(n 1) (2)
2
n2 14n
( n 7)2 49
故当n=7时, Sn取最大值49.
解法2: 由S3=S11, 得d=-2<0
=
5+2
,则
+3
10n 3
67
7
=_______;
=_______;
2n 2
18
8
课堂小结
等差数列的前n项和公式的性质
性质1:数列{an}是等差数列⟺Sn=An2+Bn (A,B为常数)
Sn
性质2: 若数列{an}是公差为d的等差数列, 则数列 也
d
n
是等差数列, 且公差为 2 .
当m=n时,公式变化?
an S 2 n 1
bn T2 n1
例 4.已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,
5
a5
Sn 2n+2
Tn,且T =
,则b =________.
3
n
5
n+3
变式1. 若
等差数列的前n项和-概念解析
数学教育
等差数列的前n项和公式是数学 教育中的重要内容,是中学数学
课程中的必修知识点。
在物理领域的应用
物理学中的周期性现象
等差数列的前n项和公式可以用于描述物理学中的周期性现象,例如声音的振 动、波动等。
物理学中的序列问题
等差数列的前n项和公式可以用于解决物理学中的序列问题,例如在研究粒子运 动、流体动力学等领域中,可以通过等差数列的前n项和公式来描述一系列物理 量的变化规律。
解答
由于该等差数列是偶数项,所以它的前10项和等于中间两 项之和(第5项和第6项)乘以10除以2,即$(3 - 3) times 10 / 2 = 0$。
习题三:等差数列前n项和的实际应用问题
01 总结词
02 详细描述
03 应用1
04 应用2
05 应用3
掌握等差数列前n项和在实 际问题中的应用
等差数列前n项和在实际问 题中有着广泛的应用,如 计算存款、贷款、工资等 问题。
总结词
详细描述
公式
示例
解答
理解等差数列前n项和的 概念
等差数列的前n项和是指 从第一项到第n项的所有 项的和,可以通过公式 或递推关系式来求解。
$S_n = frac{n}{2} times (2a_1 + (n-1)d)$,其中 $a_1$是首项,$d$是公 差,$n$是项数。
求等差数列$1, 3, 5, 7, ldots$的前5项和。
等差数列前n项和的公式推导
等差数列前n项和的公式可以通过数学归 纳法进行推导。
化简得:$S_{k+1} = frac{(k+1)}{2}(2a_1 + kd)$,所以当n=k+1时,公式也成立。
等差数列的前n项和公式
故a1=5
例3
n(a1 an ) 公式 S n 和S n 2
n ( n 1) na1 d 2 2)在等差数列中,a1=-2,S10=-11,求d
分析:若a1 = -2, S10 =-11, n=10,求d,活用公式2
解: S10=-2X10+10(10-1)d/2
所以-11=-20+45d
思考:
n(a1 an ) Sn 2
又因为an=a1+(n-1)d,代入上式 这个式子化简又变成什么呢?
n(n 1) S n na1 d 2
于是得到了求等差数列前n项和的两 个公式:
思考:(1)这两个公式有那些相同的参数,不同的? 可以得到什么结论 ?(2) 每个公式中至少要知道 几个参数,才能求任意的一个? 注意:1) 相同点: 已知a1和n; 不同点:一个已知 an,一个已知d 2) 知三求一
书295页Aቤተ መጻሕፍቲ ባይዱ1,4,5 B组1,2
先 把 公 式 抄 三 遍 哦
每个人都有一双隐形的翅膀,努力就会成功!
谢谢指导!
感谢高一(1)班的同学!!
答案:500, 做对了吗?
答案: 8900 对了吗?
n ( n 1) n(a1 an ) 公式 Sn 2 和 S n na1 2 d 例3 (1)在等差数列中,a20=15,S20=200, 求a1?
分析:对公式1活用,注意n=20 解: 因为sn=n(a1+an)/2 故S20 =20(a1+a20)/2 200=20(a1+15)/2 =>20= a1+15
三.讲解新课
一般地,把一个数列的前n项和,记做Sn
即有Sn=a1+a2+a3+……+an
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的前n项和1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点)2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点)[基础·初探]教材整理等差数列的前n项和1.等差数列的前n项和公式已知量首项、末项与项数首项、公差与项数求和公式S n=n a1+a n2S n=na1+n n-12d2.等差数列前n项和公式的函数特点S n =na1+n n-12d=d2n2+⎝⎛⎭⎪⎫a1-d2n.d≠0时,Sn是关于n的二次函数,且无常数项.判断(正确的打“√”,错误的打“×”)(1)公差为零的数列不能应用等差数列的前n项和公式.( )(2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.( )(3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.( )【解析】(1)任何等差数列都能应用等差数列的前n项和公式.(2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式.(3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√[小组合作型]与S n有关的基本量的计算(1)已知等差数列{a n}中,a1=32,d=-12,S n=-15,求n和a n;(2)已知等差数列{a n}中,S5=24,求a2+a4;(3)数列{a n}是等差数列,a1=1,a n=-512,S n=-1 022,求公差d;(4)已知等差数列{a n}中,a2+a5=19,S5=40,求a10.【精彩点拨】运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换.【尝试解答】(1)S n=n·32+n n-12·⎝⎛⎭⎪⎫-12=-15,整理得n2-7n-60=0,解得n=12或n=-5(舍去),所以a12=32+(12-1)×⎝⎛⎭⎪⎫-12=-4.(2)设等差数列的首项为a1,公差为d,则S5=5a1+5×5-12d=24,即5a1+10d=24,所以a1+2d=24 5,所以a2+a4=2(a1+2d)=2×245=485.(3)因为a n =a 1+(n -1)d ,S n =na 1+n n -12d ,又a 1=1,a n =-512,S n =-1 022,所以⎩⎨⎧1+n -1d =-512, ①n +12n n -1d =-1 022, ②把(n -1)d =-513代入②得n +12n ·(-513)=-1 022,解得n =4, 所以d =-171.(4)由已知可得⎩⎨⎧a 1+d +a 1+4d=19,5a 1+5×42d =40,解得a 1=2,d =3,所以a 10=a 1+9d =2+9×3=29.等差数列中基本计算的两个技巧:(1)利用基本量求值.等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[再练一题] 1.等差数列中:(1)a 1=105,a n =994,d =7,求S n ; (2)a n =8n +2,d =5,求S 20; (3)d =13,n =37,S n =629,求a 1及a n .【解】 (1)由a n =a 1+(n -1)d 且a 1=105,d =7, 得994=105+(n -1)×7,解得n =128, ∴S n =n a 1+a n2=128×105+9942=70 336.(2)∵a n =8n +2,∴a 1=10,又d =5, ∴S 20=20a 1+20×20-12×5=20×10+10×19×5=1 150.(3)将d =13,n =37,S n =629代入a n =a 1+(n -1)d ,S n =n a 1+a n2,得⎩⎨⎧a n=a 1+12,37·a 1+an2=629,解得⎩⎨⎧a 1=11,a n =23.等差数列前n 项和公式在实际中的应用为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2011年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少【精彩点拨】 将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】 根据题意,从2011年~2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n },其中,a 1=500,d =50. 那么,到2020年(n =10),投入的资金总额为S 10=10×500+10×10-12×50=7 250(万元),即从2011年~2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1)问题中所涉及的数列{a n}有何特征;(2)是求数列{a n}的通项还是求前n项和;(3)列出等式(或方程)求解.[再练一题]2.如图122,一个堆放铅笔的V型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔图122【解】由题意可知这个V型架自下而上各层的铅笔数组成等差数列,记为数列{a n},其中a1=1,a120=120.根据等差数列前n项和公式得S120=120×1+1202=7 260.即V型架上共放着7 260支铅笔.[探究共研型]等差数列前n项和的性质探究1 n n S m,S2m-S m,S3m-S2m也成等差数列吗如果是,它们的公差是多少【提示】由S m=a1+a2+…+a m,S2m-S m=a m+1+a m+2+…+a2m=a1+md+a2+md +…+a m +md =S m +m 2d ,同理S 3m -S 2m =a 2m +1+a 2m +2+…+a 3m =S 2m -S m +m 2d , 所以S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .探究2 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么a n b n 与S 2n -1T 2n -1有怎样的关系请证明之.【提示】a nb n =S 2n -1T 2n -1. 【证明】a nb n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=2n -1a 1+a 2n -122n -1b 1+b 2n -12=S 2n -1T 2n -1. (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ;(2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.【精彩点拨】 (1)利用S m ,S 2m -S m ,S 3m -S 2m 成等差数列求解.(2)利用前n 项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】 (1)在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列,∴2×70=30+(S 3m -100),∴S 3m =210. (2)a 5b 5=2a 52b 5=9a 1+a 99b 1+b 9=S 9T 9=6512.巧妙应用等差数列前n 项和的性质 (1)“片段和”性质.若{a n }为等差数列,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…构成公差为n2d的等差数列.(2)项数(下标)的“等和”性质.S n =n a1+a n2=n am+a n-m+12.(3)项的个数的“奇偶”性质.{a n}为等差数列,公差为d.①若共有2n项,则S2n=n(a n+a n+1);S偶-S奇=nd;S偶S奇=an+1an.②若共有2n+1项,则S2n+1=(2n+1)a n+1;S偶-S奇=-a n+1;S偶S奇=nn+1.(4)等差数列{a n}中,若S n=m,S m=n(m≠n),则S m+n=-(m+n).(5)等差数列{a n}中,若S n=S m(m≠n),则S m+n=0.[再练一题]3.已知两个等差数列{a n}与{b n}的前n(n>1)项和分别是S n和T n,且S n∶T n=(2n+1)∶(3n-2),求a9b9的值.【解】a9b9=2a92b9=a1+a17b1+b17=a1+a172×17b1+b172×17=S17T17=2×17+13×17-2=3549=57.等差数列前n项和的最值探究1 将等差数列前n项和S n=na1+n n-12d变形为Sn关于n的函数后,该函数是怎样的函数为什么【提示】 由于S n =na 1+n n -12d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,所以当d ≠0时,S n 为关于n 的二次函数,且常数项为0.探究2 类比二次函数的最值情况,等差数列的S n 何时有最大值最小值 【提示】 由二次函数的性质可以得出,当d >0时,S n 有最小值;当d <0时,有最大值,且n 取值最接近对称轴的正整数时,S n 取得最值.在等差数列{a n }中,a 10=18,前5项的和S 5=-15. (1)求数列{a n }的通项公式.(2)求数列{a n }的前n 项和的最小值,并指出何时取最小值.【精彩点拨】 (1)直接根据等差数列的通项公式和前n 项和公式列关于首项a 1和公差d 的方程,求得a 1和d ,进而得解;(2)可先求出前n 项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.【尝试解答】(1)由题意得⎩⎨⎧a 1+9d =18,5a 1+5×42×d =-15,得a 1=-9,d =3, ∴a n =3n -12. (2)S n =n a 1+a n2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478,∴当n =3或4时,前n 项的和取得最小值S 3=S 4=-18.等差数列前n 项和的最值问题的三种解法:(1)利用a n :当a 1>0,d <0时,前n 项和有最大值,可由a n ≥0且a n +1≤0,求得n 的值;当a 1<0,d >0,前n 项和有最小值,可由a n ≤0且a n +1≥0,求得n 的值.(2)利用S n :由S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n (d ≠0),利用二次函数配方法求得最值时n的值.(3)利用二次函数的图象的对称性. [再练一题]4.在等差数列{a n }中,a 1=25,S 17=S 9,求S n 的最大值. 【解】 利用前n 项和公式和二次函数性质,由S 17=S 9得 25×17+172(17-1)d =25×9+92(9-1)d ,解得d =-2, ∴S n =25n +n2(n -1)(-2)=-(n -13)2+169, ∴由二次函数性质,当n =13时,S n 有最大值169.1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2 【解析】 S 8=8a 1+a 82=4(a 3+a 6),又S 8=4a 3,所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6. 【答案】 A2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A .2 B .3 C .6 D .7 【解析】 由题意得⎩⎨⎧2a 1+d =4,4a 1+6d =20,解得⎩⎨⎧a 1=12,d =3.【答案】 B3.在等差数列{a n }中,a 1=2,前三项和为15,则前6项和为( ) A .57 B .-40 C .-57 D .40 【解析】 由题意知a 1+a 2+a 3=15,∴3a 2=15,a 2=5,∴d =a 2-a 1=3,∴a n =3n -1, ∴S 6=62+172=57.【答案】 A4.在等差数列{a n }中,已知a 1=2,d =2,则S 20=________. 【解析】 S 20=20·a 1+20×192×d =20×2+20×192×2=420. 【答案】 4205.等差数列{a n }中,a 10=30,a 20=50. (1)求通项公式a n ; (2)若S n =242,求n .【解】 (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50, 得方程组⎩⎨⎧a 1+9d =30,a 1+19d =50,解得⎩⎨⎧a 1=12,d =2,所以a n =2n +10. (2)由S n =na 1+n n -12d ,S n =242,得12n +n n -12×2=242,解得n =11或n =-22(舍去),所以n =11.学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11【解析】法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=5a1+a52=5a3=5,故选A.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d=1,∴S5=5a1+5×42d=5(a1+2d)=5,故选A.【答案】A2.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )C.10 D.12【解析】∵公差为1,∴S8=8a1+8×8-12×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=1 2,∴a10=a1+9d=12+9=192.故选B.【答案】B3.在等差数列{a n}中,若S9=18,S n=240,a n-4=30,则n的值为( ) A.14 B.15 C.16 D.17【解析】S9=9a1+a92=9a5=18,所以a5=2,S n =n a1+a n2=n a5+a n-42=240,∴n(2+30)=480,∴n=15.【答案】B4.设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于( )【解析】由题意S3,S6-S3,S9-S6,S12-S9成等差数列.∵S3S6=13.不妨设S3=1,S6=3,则S6-S3=2,所以S9-S6=3,故S9=6,∴S12-S9=4,故S12=10,∴S6S12=310.【答案】A5.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取得最小值时,n等于( )A.6 B.7 C.8 D.9【解析】设公差为d,由a4+a6=2a5=-6,得a5=-3=a1+4d,解得d=2,∴S n=-11n+n n-12×2=n2-12n,∴当n=6时,S n取得最小值.【答案】A二、填空题6.已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.【解析】∵a3+a5=2a4,∴a4=0.∵a1=6,a4=a1+3d,∴d=-2.∴S6=6a1+6×6-12d=6.【答案】67.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是________.【解析】法一:设等差数列{a n}的公差为d,由S5=10,知S5=5a1+5×4 2d=10,得a1+2d=2,即a1=2-2d.所以a2=a1+d=2-d,代入a1+a22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20. 【答案】 208.等差数列{a n }的前9项的和等于前4项的和,若a 1=1,a k +a 4=0,则k =________.【解析】 设{a n }的公差为d ,由S 9=S 4及a 1=1得9×1+9×82×d =4×1+4×32×d ,所以d =-16,又a k +a 4=0,所以⎣⎢⎡⎦⎥⎤1+k -1×⎝ ⎛⎭⎪⎫-16+⎣⎢⎡⎦⎥⎤1+4-1×⎝ ⎛⎭⎪⎫-16=0,即k =10. 【答案】 10 三、解答题9.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.【解】 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n n -12d .由已知得⎩⎪⎨⎪⎧10a 1+10×92d =100, ①100a 1+100×992d =10, ②①×10-②,整理得d =-1150,代入①,得a 1=1 099100, 所以S 110=110a 1+110×1092d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150 =110⎝⎛⎭⎪⎫1 099-109×11100=-110. 故此数列的前110项之和为-110.10.已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值 【解】 (1)由a 1=9,a 4+a 7=0, 得a 1+3d +a 1+6d =0,解得d =-2, ∴a n =a 1+(n -1)d =11-2n . (2)a 1=9,d =-2,S n =9n +n n -12·(-2)=-n 2+10n=-(n -5)2+25,∴当n =5时,S n 取得最大值.[能力提升]1.在项数为2n +1项的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n =( )A .9B .10C .11D .12【解析】 ∵等差数列有2n +1项, ∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n =165150, ∴n =10. 【答案】 B2.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5【解析】 a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7n +1+12n +1=7+12n +1,∴n =1,2,3,5,11.【答案】 D3.在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于________. 【解析】 因为S n =na 1+n n -12d ,所以35=na 1+n n -12×2=na 1+n (n -1)①,又a n =a 1+(n -1)·d =a 1+2(n -1),∴a 1+2(n -1)=11②,由①②可得a 21-2a 1-3=0, 解得a 1=3或-1. 【答案】 3或-14.从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.(1)记该款服装4月份日销售与销售天数n 的关系为a n ,求a n ; (2)求4月份的总销售量;(3)按规律,当该商场销售此服装超过1 200件时,社会上就流行,而且销售量连续下降,且日销售低于100件时,则流行消失,问:该款服装在社会上流行是否超过10天【解】 (1)从4月1日起每天销售量依次组成数列{a n },(n ∈{1,2,…,30})依题意,数列a 1,a 2,…,a 12是首项为10,公差为15的等差数列, ∴a n =15n -5(1≤n ≤12).a 13,a 14,a 15,…,a 30是首项为a 13=a 12-10=165,公差为-10的等差数列, ∴a n =165+(n -13)(-10)=-10n +295(13≤n ≤30), ∴a n =⎩⎨⎧15n -5 1≤n ≤12,n ∈N +,-10n +295 13≤n ≤30,n ∈N +.(2)4月份的总销售量为 1210+1752+18×165+18×17×-102=2 550(件),(3)4月1日至4月12日销售总数为 12a 1+a 122=1210+1752=1 110<1 200,∴4月12日前还没有流行.由-10n +295<100得n >392,∴第20天流行结束,故该服装在社会上流行没有超过10天.等差数列的前n 项和1.理解并掌握等差数列的前n 项和公式及其推导过程,体会等差数列的前n 项和公式与二次函数的关系.(重点)2.熟练掌握等差数列的五个基本量a 1,d ,n ,a n ,S n 之间的联系,能够由其中的任意三个求出其余的两个.(重点)[基础·初探]教材整理等差数列的前n项和1.等差数列的前n项和公式已知量首项、末项与项数首项、公差与项数求和公式S n=n a1+a n2S n=na1+n n-12d2.等差数列前n项和公式的函数特点S n =na1+n n-12d=d2n2+⎝⎛⎭⎪⎫a1-d2n.d≠0时,Sn是关于n的二次函数,且无常数项.判断(正确的打“√”,错误的打“×”)(1)公差为零的数列不能应用等差数列的前n项和公式.( )(2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.( )(3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.( )【解析】(1)任何等差数列都能应用等差数列的前n项和公式.(2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式.(3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).[小组合作型]与S n有关的基本量的计算(1)已知等差数列{a n}中,a1=32,d=-12,S n=-15,求n和a n;(2)已知等差数列{a n}中,S5=24,求a2+a4;(3)数列{a n}是等差数列,a1=1,a n=-512,S n=-1 022,求公差d;(4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10.【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换.【尝试解答】 (1)S n =n ·32+nn -12·⎝ ⎛⎭⎪⎫-12=-15,整理得n 2-7n -60=0,解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×⎝ ⎛⎭⎪⎫-12=-4.(2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+5×5-12d =24,即5a 1+10d =24,所以a 1+2d =245, 所以a 2+a 4=2(a 1+2d )=2×245=485. (3)因为a n =a 1+(n -1)d ,S n =na 1+n n -12d ,又a 1=1,a n =-512,S n =-1 022,所以⎩⎨⎧1+n -1d =-512,①n +12n n -1d =-1 022, ②把(n -1)d =-513代入②得n +12n ·(-513)=-1 022,解得n =4, 所以d =-171.(4)由已知可得⎩⎨⎧a 1+d +a 1+4d=19,5a 1+5×42d =40,解得a 1=2,d =3,所以a10=a1+9d=2+9×3=29.等差数列中基本计算的两个技巧:(1)利用基本量求值.等差数列的通项公式和前n项和公式中有五个量a1,d,n,an和S n,一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m+n=p+q(m,n,p,q∈N+),则a m+a n=a p+a q,常与求和公式S n=n a1+a n2结合使用.[再练一题]1.等差数列中:(1)a1=105,a n=994,d=7,求S n;(2)a n=8n+2,d=5,求S20;(3)d=13,n=37,S n=629,求a1及a n.等差数列前n项和公式在实际中的应用为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2011年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少【精彩点拨】将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】根据题意,从2011年~2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n},其中,a1=500,d=50.那么,到2020年(n=10),投入的资金总额为S 10=10×500+10×10-12×50=7 250(万元),即从2011年~2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1)问题中所涉及的数列{a n}有何特征;(2)是求数列{a n}的通项还是求前n项和;(3)列出等式(或方程)求解.[再练一题]2.如图122,一个堆放铅笔的V型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔图122。