八年级上册三角形-专题复习

合集下载

八年级数学 三角形 专题复习50道(含答案)

八年级数学  三角形 专题复习50道(含答案)

八年级数学三角形专题复习50道一、选择题:1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.已知AB=1.5,AC=4.5,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.3或4或5或63.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米5.如图,在五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的邻补角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°6.按照定义,三角形的角平分线(或中线、或高)应是()A.射线B.线段C.直线D.射线或线段或直线7.如图中有四条互相不平行的直线L.L2.L3.L4所截出的七个角.关于这七个角的度数关系,下列1何者正确( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°8.三角形三条高的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部.D.三角形的内部、外部或顶点9.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC一条角平分线,则∠CAD度数为( )A.40° B.45° C.50° D.55°10.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0B.0<a<4C.4<a<8D.0<a<811.如图,在△ABC中,∠A=,角平分线BE.CF相交于点O,则∠BOC=( )A.90°+B.90°-C.180°+D.180°-12.下列长度的三条线段能组成三角形的是( )A.1cm,2cm,3.5cmB.4cm,5cm,9cmC.5cm,8cm,15cmD.6cm,8cm, 9cm13.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒B.20cm的木棒;C.50cm的木棒D.60cm的木棒14.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°15.如图,直角△ADB中,∠D=90°,C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是(A)10 (B)20 (C)30 (D)4016.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°17.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S=4cm2,则S△ABC的值为△BEF()A.1cm2B.2cm2C.8cm2D.16cm218.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c19.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个B.3个C.4个D.5个20.已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或10二、填空题:21.若等腰三角形的周长为21,其中两边之差为3,则各边长分别为。

人教版八年级数学上册专题复习证明三角形全等的常见题型

人教版八年级数学上册专题复习证明三角形全等的常见题型

证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。

而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。

在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。

一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。

例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。

在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。

∴ AF=DE(全等三角形对应边相等)。

2.证已知边的另一邻角对应相等,再用ASA证全等。

例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。

在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。

例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。

二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。

例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。

求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。

例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN,BM=DN。

八年级上册第一章三角形整章复习知识点和对应练习

八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。

八年级数学上册第十一章《三角形》经典复习题(专题培优)

八年级数学上册第十一章《三角形》经典复习题(专题培优)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40° 2.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 3.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF 4.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 5.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 6.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A.αB.52αC.2αD.32α7.如图,线段BE是ABC的高的是( )A.B.C.D.8.如果一个三角形的两边长分别为4和7,则第三边的长可能是()A.3 B.4 C.11 D.129.若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A.不变B.减少C.增加D.不能确定10.下列长度的四根木棒,能与3cm,7cm长的两根木棒钉成一个三角形的是()A.3cm B.10cm C.4cm D.6cm11.小红有两根长度分别为4cm和8cm的木棒,他想摆一个三角形,现有长度分别为3cm,4cm,8cm,15cm四根木棒,则他应选择的木棒长度为().A.3cm B.4cm C.8cm D.15cm12.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、3 13.如图所示,ABC∆的边AC上的高是()A.线段AE B.线段BA C.线段BD D.线段DA 14.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条()A .2B .3C .4D .5 15.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm 二、填空题16.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.17.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;18.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 19.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.20.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.21.如图,在ABC 中,点,,D E F 分别在三边上,点E 是AC 的中点,,,AD BE CF 交于一点,283BGD AGE G BD DC S S ===,,,则ABC 的面积是________.22.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.23.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 24.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.25.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.26.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题27.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 28.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.29.(1)已知△ABC 中,∠B=5∠A ,∠C-∠B=15°,求∠A ,∠B ,∠C 的度数. (2)在△ABC 中,∠A=50°,BD ,CE 为高,直线BD ,CE 交于点H ,求∠BHC 的度数. 30.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF与BE交于点M.(1)若∠AEC=100°,求∠1的度数;(2)若∠2=∠D,则∠CAE=∠C吗?请说明理由.。

八年级三角形专题

八年级三角形专题

三角形专题复习1.三角形的边角关系2.3.三角形当中的三线(角平分线、中线和高线的性质) 在三角形中,三角形的三线分别交于一点。

4.尺规作图(1)作满足题意的三角形(2)作最短距离(送水、供电、修渠道等最短路径问题) 5.知识点1 三角形例1、如图所示,图中三角形的个数共有( )A .1个B .2个C .3 个D .4个例2、有四根长度分别为10cm、6cm、5cm、3cm的钢条,以其中三根为边,焊接成一个三角框架,问此三角形框架的周长可能是多少?例3、一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它的周长是()A.17 B.22 C.17或22 D.13例4、如图,在等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长.知识点2 全等三角形例1.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形例2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等例3.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°例4 .已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE。

求证:AE=BD。

知识点3 轴对称例1.下列图形中不是轴对称图形的是()例2.如图,在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是 .例3. 如图,△ABC中,AB=AC,过点B作BE⊥AC,垂足为E,过点作ED//BC交AB于点D,若BD=DE,求∠C的度数。

例4. 如图,点B、E、D、C在一条直线上,AB=AC,AE=AD,证明:BE=CD。

2020年秋人教版八年级数学上册期末复习专题《三角形》(含答案)

2020年秋人教版八年级数学上册期末复习专题《三角形》(含答案)

期末专题《三角形》一、选择题1.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10B.8C.6D.42.如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16B.24C.36D.543.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A,B1,C1,使A1B=AB,B1C=BC,1C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,那么△A2B2C2的面积是()A.7B.14C.49D.504.已知a,b,c是△ABC的三条边,对应高分别为h,h b,h c,且a:b:c=4:5:6,则么h a:h b:h c等于a()A.4:5:6B.6:5:4C.15:12:10D.10:12:155.如图,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,则△ABC的面积为()A.300B.315C.279D.3426.已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为( ).A. 2B. 3C. 5D. 13二、填空题7.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是8.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF= .9.如图,A,B,C分别是线段AB,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积1_______.10.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S,△CEF1的面积为S2,若S△ABC=6,则S1-S2的值为.三、解答题11.已知等腰三角形一腰上的中线把这个三角形的周长分成 9cm和 15cm两部分,求这个三角形的腰长。

(完整版)八年级三角形专题复习

(完整版)八年级三角形专题复习

E D C AB三角形导学案一、课前小测试:1.如图所示,已知在三角形纸片ABC 中,BC=3,AB=6,∠BCA=90°.在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A.6 B.3 C.D.2.如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是( ). A. 22cm B.20cm C. 18cm D.15cm3.梯形两底分别为m 、n ,过梯形的对角线的交点,引平行于底边 的直线被两腰所截得的线段长为( )A .mn n m + B.n m mn +2 C.n m mn + D.mn n m 2+4.已知长方形ABCD ,AB=3cm ,AD=4cm ,过对角线BD 的中点O 做BD 垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长 为______________.5.如图,过边长为1的等边△ABC 的边AB 上一动点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为______________.三角形的基本概念三角形的主要线段:三角形的角平分线.这里我们要注意两点:一是三角形有三条角平分线,并且相交于三角形内部一点(叫做三角形的内心);二是三角形的角平分线是一条线段,而角的平分线是一条射线.三角形的中线.这里我们要注意两点:一是一个三角形有三条中线,并且相交于三角形内部一点(叫做三角形的外心);二是三角形的中线是一条线段.三角形的高线(简称三角形的高).这里我们要注意三角形的高是线段,而垂线是直线. 三角形的稳定性:三角形的特性与表示三角形有下面三个特性:①三角形有三条线段;②三条线段不在同一条直线上; ③首尾顺次连接.“三角形” 用符号“∆” 表示,顶点是C B A ,,的三角形记作“ABC ∆” ,读作“三角形ABC ” .三角形的分类及角边关系1. 三角形的分类三角形按边的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧等边三角形角形底和腰不相等的等腰三等腰三角形不等边三角形三角形 三角形按角的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧)()()(形有一个角为钝角的三角钝角三角形形三个角都是锐角的三角锐角三角形斜三角形形有一个角为直角的三角直角三角形三角形把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形.它是两条直角边相等的直角三角形.注意:一个三角形中,最多有三个锐角,最少有两个锐角;最多有一个钝角;最多有一个直角.2. 三角形的三边关系定理及推论三角形三边关系定理:三角形的两边之和大于第三边. 推论:三角形两边之差小于第三边. 三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形. ②当已知两边时,可确定第三边的范围. ③证明线段不等关系. ④用于化简求值。

专题11.16 《三角形》全章复习与巩固(专项练习)-八年级数学上册基础知识专项讲练(人教版)

专题11.16 《三角形》全章复习与巩固(专项练习)-八年级数学上册基础知识专项讲练(人教版)

专题11.16 《三角形》全章复习与巩固(专项练习)一、单选题知识点一、三角形的三边关系1.现有两根木棒,它们的长分别是30cm和70cm,若要钉成一个三角形木架,则应选取的第三根木棒长可以为()A.40cm B.70cm C.100cm D.130cm2.下列长度的三条线段,不能组成三角形的是()A.3,7,5B.4,8,5C.5,12,7D.7,13,83.如图,∠ABC=90°,BD∠AC,下列关系式中不一定成立的是()A.AB>AD B.AC>BC C.BD+CD>BC D.CD>BD知识点二、三角形中重要线段4.下列尺规作图,能判断AD是ABC的BC边上的高是()A.B.C.D.5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则∠ABC的重心是().A .点DB .点EC .点FD .点G6.下列说法正确的个数有( )∠三角形的高、中线、角平分线都是线段;∠三角形的三条角平分线都在三角形内部,且交于同一点;∠三角形的三条高都在三角形内部;∠三角形的一条中线把该三角形分成面积相等的两部分.A .1个B .2个C .3个D .4个知识点三、与三角形有关的角7.将一副三角板按如图所示的位置摆放,90C EDF ∠=∠=︒ ,45E ∠=︒, 60B ∠=︒ ,点D 在边BC 上,边DE ,AB 交于点G .若 //EF AB ,则CDE ∠的度数为( )A .105︒B .100︒C .95︒D .75C ︒8.一副直角三角板如图摆放,点F 在CB 的延长线上,∠C =∠DFE =90°,若DE ∠CF ,则∠BEF 的度数为( )A .10°B .15°C .20°D .25°∠的度数是()9.将一副直角三角板按如图所示的方式叠放在一起,则图中αA.15°B.30°C.65°D.75°知识点四、三角形的稳定性10.如图所示,具有稳定性的有()A.只有(1),(2)B.只有(3),(4)C.只有(2),(3)D.(1),(2),(3)11.如图,木工师傅做窗框时,常常像图中那样钉上两条斜拉的木条起到稳固作用,这样做的数学原理是()A.三角形的稳定性B.两点之间线段最短C.长方形的轴对称性D.两直线平行,同位角相等12.要使如图所示的五边形木架不变形,至少要再钉上几根木条()A.1根B.2根C.3根D.4根知识点五、多边形内角和及外角和公式13.若一个多边形的内角和与外角和之差是720︒,则此多边形是()边形.A.6B.7C.8D.914.如果一个正多边形的内角和等于1080°,那么该正多边形的一个外角等于()A.30°B.45°C.60°D.72°15.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形知识点六、多边形对角线公式的运用16.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条17.为了丰富同学们的课余生活,东辰学校初二年级计划举行一次篮球比赛,从3个分部中选出15支队伍参加比赛,比赛采用单循环制(即每个队与其他各队比赛一场),则这次联赛共有()场比赛.A.30B.45C.105D.21018.八边形从一个顶点引出的对角线的条数为()A.4条B.5条C.6条D.7条知识点七、镶嵌问题19.下列四组多边形∠正三角形与正方形∠正三角形与正十二边形∠正方形与正六边形∠正八边形与正方形,其中能铺满地面的是()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠20.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是()A.B.C.D.21.下列正多边形不能实施平面镶嵌的是().A.正方形B.正五边形C.正六边形D.等边三角形二、填空题知识点一、三角形的三边关系22.已知三角形ABC,且AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,那么x的取值范围是________.23.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_____,_____,_____(单位:cm ).24.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______. 知识点二、三角形中重要线段25.在直角三角形ABC 中,90ACB ∠=︒,3cm AC =,4cm BC =,CD 是AB 边的中线,则AC 边上的高为__cm ,BCD ∆的面积=__2cm .26.(1)线段AD 是ABC ∆的角平分线,那么BAD ∠=∠__12=∠__. (2)线段AE 是ABC ∆的中线,那么BE =__=__BC .27.如图,在∠ABC 中,点D ,点E 分别是BC ,AB 的中点,若∠AED 的面积为1,则∠ABC 的面积为_____.知识点三、与三角形有关的角28.如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF //BC 时,∠EGB 的度数是___.29.如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=68°,则∠1=_____°.30.如图,将纸片ABC 沿DE 折叠,使点A 落在BE 边上的点A '处,若18A ∠=︒,则1∠=__________.知识点四、三角形的稳定性31.下图是跪姿射击的情形.我们可以看到,跪姿射击的动作构成了三个三角形∠一是由右脚尖、右膝、左脚构成的三角形支撑面;二是由左手、左肘、左肩构成的托枪三角形;三是由左手、左肩、右肩所构成的近乎水平的三角形.这三个三角形可以使射击者在射击过程中保持稳定.其中,蕴含的数学道理是___.32.如图,在四边形木架上再钉一根木条,将它的一对不相邻的顶点连接起来,这时木架的形状不会改变,这是因为三角形具有____.33.要使五边形木架(用5根木条钉成)不变形,至少要再钉_____根木条.知识点五、多边形内角和及外角和公式34.若一个多边形的内角和是其外角的和1.5倍,则这个多边形的边数是________. 35.五边形的内角和是_______度,外角和是________度.36.如图所示,在五边形ABCDE中,∠A=∠C=80°,∠B=140°,∠DEF为五边形ABCDE 的一个外角,且∠DEF=60°,则∠D=_____.知识点六、多边形对角线公式的运用37.一个n边形共有n条对角线,将这个n边形截去一个角后它的边数为__.38.八边形中过其中一个顶点有__条对角线.39.若一个多边形的内角和为900︒,则从该多边形一个顶点出发引的对角线条数是______.知识点七、镶嵌问题40.用边长相等的三角形、四边形、五边形、六边形、七边形中的一种;能进行平面镶嵌的几何图形有_________种.41.使用下列同一种正多边形不能铺满地面的是________(填序号)∠正三角形;∠正方形;∠正六边形;∠正八边形42.下列正多边形中能单独镶嵌平面的是________.(填写序号)∠正三角形;∠正方形;∠正五边形;∠正六边形.三、解答题知识点一、三角形的三边关系43.如图所示,(1)图中有几个三角形?∆的边和角.(2)说出CDE∠是哪些三角形的角?(3)AD是哪些三角形的边?C知识点二、三角形中重要线段44.已知a b c ,,满足()2240a c -+-=.(1)求a b c ,,的值.(2)以a b c ,,为边能否构成三角形,如果能,求出三角形的周长;如果不能,请说明理由.知识点三、与三角形有关的角45.如图,已知BD //AC ,CE //BA ,且D 、A 、E 在同一条直线上,设∠BAC =x ,∠D +∠E =y .(1)试用x 的一次式表示y ;(2)当x =90°,且∠D =2∠E 时,DB 与EC 具有怎样的位置关系?知识点四、三角形的稳定性46.凸六边形钢架ABCDEF 由6条钢管连接而成,为使这一钢架稳固,试用三条钢管连接,使之不能活动,方法很多,请列举三个.知识点五、多边形内角和及外角和公式47.(1)一个多边形的内角和比它的外角和多720︒,求该多边形的边数;(2)如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,AD 与CE 相交于点F ,30CAD ∠=︒,50B ∠=︒,求ADC ∠和AFC ∠的度数.知识点六、多边形对角线公式的运用48.观察下面图形,并回答问题.()1四边形有条对角线;五边形有条对角线;六边形有条对角线.()2根据()1中得到的规律,试猜测十边形的对角线条数.参考答案1.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形三边关系,∠三角形的第三边x 满足:70303070x -<<+,即40100x <<,故选:B .【点睛】本题考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.2.C【分析】根据两边之和等于第三边的原则去判断即可【详解】∠3+5>7,∠能构成三角形,不符合题意;∠4+5>8,∠能构成三角形,不符合题意;∠7+5=12,∠不能构成三角形,符合题意;∠8+7>13,∠能构成三角形,不符合题意;故选C .【点睛】本题考查了三角形的存在性,熟练掌握两边之和大于第三边是判断的根本标准. 3.D【分析】根据直角三角形斜边大于直角边判断A 、B 、D 选项,根据三角形的三边关系判断C 选项.【详解】解:∠BD ∠AC ,∠∠ADB=90°,∠AB>AD,∠∠ABC=90°,∠AC>BC,∠BD+CD>BC,∠选项A,B,C正确;∠∠BDC=90°,∠CD不一定大于BD,∠选项D不一定成立,故选:D.【点睛】此题考查直角三角形斜边大于直角边的性质,三角形的两边和大于第三边的性质,熟记性质并熟练运用是解题的关键.4.B【分析】过点A作BC的垂线,垂足为D,能满足此条件的AD即为所求,依次判断即可.【详解】解:A. 所作图BC的垂线未过点A,故此项错误;B.所作图过点A作BC的垂线,垂足为D,故此项正确;C.所作过点A作的线AD不垂直BC,故此项错误;D.所作图仅为过点A的AB边上的垂线,不符合题意,故此项错误;故选:B.【点睛】本题主要考查了三角形的高的作法,解题的关键是掌握几何图形的性质和基本作图方法.5.A【分析】结合题意,根据三角形重心的定义分析,即可得到答案.【详解】根据题意可知,直线CD经过∠ABC的AB边上的中线,直线AD经过∠ABC的BC边上的中线∠点D是∠ABC重心.故选:A .【点睛】本题考查了三角形的知识;解题的关键是熟练掌握三角形重心、中线的性质,从而完成求解.6.C【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上即可作答.【详解】解:∠三角形的中线、角平分线、高都是线段,故正确;∠三角形的三条角平分线都在三角形内部,且交于同一点,故正确;∠钝角三角形的高有两条在三角形外部,故错误;∠三角形的一条中线把该三角形分成面积相等的两部分,故正确.所以正确的有3个.故选:C .【点睛】本题考查对三角形的中线、角平分线、高的正确理解,熟练掌握三角形的中线、角平分线、高的概念是解决本题的关键.7.A【分析】根据EF AB ∥,可得45BGD E ,再根据外角的性质,利用 CDE B BGD 可求得结果.【详解】解:EF AB ∥,45BGD E ∠=∠=︒.又CDE ∠是BDG ∆的外角,60B ∠=︒=6045105CDE B BGD ,故选:A .【点睛】本题考查了平行线的性质,外角的性质,熟悉相关性质是解题的关键. 8.B【分析】根据一副直角三角锐角大小一定,根据平行线的性质内错角相等,可得∠DEF = ∠EFB = 45°,再由三角形外角的性质,即可求出∠BEF = ∠ABC - ∠EFB = 15°.【详解】解:∠DE ∠CF ,∠DEF = 45°,∠∠DEF = ∠EFB = 45°,∠∠ABC = 60°,∠∠BEF = ∠ABC - ∠EFB = 60°-45°= 15°故选B .【点睛】本题主要考查了平行线的性质以及三角形一个外角与其不相邻两个内角的性质. 9.D【分析】根据三角形内角和定理求出即可.【详解】解:如图,∠ABC ∆和DEF ∆都是直角三角形,且30,45B E ∠=︒∠=︒∠45,60EFD ACB ∠=︒∠=︒∠++180EFD ACB FAC ∠∠∠=︒∠180456075FAC ∠=︒-︒-︒=︒,即75α=︒故选:D .【点睛】此题主要考查了三角形的内角和,熟练掌握三角形内角和定理是解答此题的关键.10.C【分析】根据三角形具有稳定性而四边形不具有稳定性判断即可.由于四边形不具有稳定性,故(1)不具有稳定性;根据三角形的稳定性,图中具有稳定性的有(2),(3),而(4)虽然含有三角形,但右侧的四边形不具稳定性,所以整体也就不具稳定性.故选:C.【点睛】本题考查了三角形的稳定性性质,四边形的不稳定性,无论是三角形的稳定性还是四边形的不稳定性,它们在生产生活中都有着广泛的应用.11.A【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:这样做的数学原理是三角形的稳定性.故选:A.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.B【分析】三角形具有稳定性,钉上木条后,使五边形变为三角形的组合即可解题.【详解】AC CE,使五边形变为三个三角形,解:如图,钉上木条,根据三角形具有稳定性,可知这样的五边形不变形,故选:B.【点睛】本题考查三角形的稳定性,是基础考点,难度较易,掌握相关知识是解题关键.【分析】先求出多边形的内角和,再根据多边形的内角和公式求出边数即可.【详解】解:∠一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∠这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n-2)×180°=1080°,解得:n=8,即多边形的边数为8,故选:C.【点睛】本题考查了多边形的内角和外角,能列出关于n的方程是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°,多边形的外角和等于360°.14.B【分析】首先设此多边形为n边形,根据题意得:(n-2)•180°=1080°,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180°×(n-2)=1080°,解得:n=8,∠这个正多边形的每一个外角等于:360°÷8=45°.故选:B.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.15.D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.16.D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.17.C【分析】根据多边形对角线的计算方式可得出,m支球队举行比赛,若每个球队与其他队比赛(m-1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛12m(m-1).【详解】解:15支球队举行单循环比赛,比赛的总场数为:12×15×(15-1)=105.故选:C.【点睛】本题考查多边形的对角线的知识,解题的关键是读懂题意,明确单循环赛制的含义,利用多边形的对角线条数的知识进行解答.18.B【分析】由八边形八个顶点即可知从一个定点能引出的对角线条数.∠八边形八个顶点,每个顶点除了本身和相邻点不能作对角线,∠可引出8-3=5条对角线,故选:B.【点睛】此题考查多边形的对角线,可由对角线定义:由某一顶点向其他顶点引出的线段,得出结论.19.B【分析】根据围绕一点的各个角的和为360°进行一一判断即可.【详解】解:∠正三角形与正方形,正三角形每个内角60°,正方形每个内角90°,3×60°+2×90°=360°, 能铺满地面;∠正三角形与正十二边形, 正三角形每个内角60°,正十二边形每个内角150°,1×60°+2×150°=360°, 能铺满地面;∠正方形与正六边形, 正方形每个内角90°,正六边形每个内角120°,k×90°+n×120°=360°,k,n不是整数,不能铺满地面;∠正八边形与正方形,正八边角形每个内角135°,正方形每个内角90°,2×135°+1×90°=360°, 能铺满地面,其中能铺满地面的是∠∠∠.故选择:B.【点睛】本题考查能铺满地面的图形组合,掌握正多边形的内角和公式,会求正多边形的每个内角,抓住围绕一点的各个角的和为360°是解题关键.20.B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°,A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B.【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.21.B【分析】先求出各个正多边形每个内角的度数,再结合平面图形镶嵌的条件即可得.【详解】A、正方形的每个内角的度数为90︒,且490360⨯︒=︒,∴正方形能实施平面镶嵌,则此项不符题意;B、正五边形的每个内角的度数为()180521085︒⨯-=︒,且360101083︒=︒不是整数,∴正五边形不能实施平面镶嵌,则此项符合题意;C、正六边形的每个内角的度数为()180621206︒⨯-=︒,且3120360⨯︒=︒,∴正六边形能实施平面镶嵌,则此项不符题意;D、等边三角形的每个内角的度数为60︒,且660360⨯︒=︒,∴等边三角形能实施平面镶嵌,则此项不符题意;故选:B.【点睛】本题考查了平面镶嵌、正多边形的内角和,熟练掌握平面镶嵌的条件是解题关键.22.1<x<5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC<AC<AB+BC,∠AB=3,BC=2∠1<x<5,故答案为:1<x <5.【点睛】本题考查了三角形的三边关系,正确理解题意是解题的关键.23.6 11 6【分析】先分析出共有四种情况,再根据三角形三边关系即可求解【详解】解:每三根组合,有5cm ,6cm ,11cm ;5cm ,6cm ,16cm ;11cm ,16cm ,5cm ;11cm ,6cm ,16cm 四种情况.根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”,得其中只有11,6,16能组成三角形.故答案为:6,11,6【点睛】本题考查了三角形的三边关系,熟练掌握三角形三边关系并根据题意分出四种情况是解题关键.24.3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∠∠ABC 的三边长分别是a 、b 、c ,∠必须满足两边之和大于第三边,两边的差小于第三边,∠0,0,0a b c b c a c a b --<--<-+>, ∠a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.25.4 3【分析】根据三角形的高线的定义知BC 是边AC 上的高线.由三角形中线的定义知AD =BD ,则∠ACD 与∠BCD 的等底同高的两个三角形,它们的面积相等.【详解】如图,90ACB ∠=︒,4BC cm =,BC ∴是AC 边上的高,即AC 边上的高为4cm ,又CD 是AB 边的中线,BD AD ∴=,21111343()2224BCD ABC S S AC BC cm ∆∆∴==⨯⨯=⨯⨯=. 故答案是:4;3.【点睛】本题考查了三角形的面积,三角形的角平分线、中线和高.此题利用了“等底同高”的两个三角形的面积相等来求∠BCD 的面积的.26.CAD BAC CE12 【分析】(1)根据角平分线定义即可求解;(2)根据中点定义即可求解.【详解】解:(1)线段AD 是ABC ∆的角平分线,那么12BAD CAD BAC ∠=∠=∠. 故答案为:CAD ,BAC ;(2)线段AE 是ABC ∆的中线,那么12BE CE BC ==. 故答案为:CE ,12. 【点睛】本题考查角平分线定义与中线定义,掌握角平分线定义与中线定义是解题关键. 27.4【分析】根据线段中点的概念、三角形的面积公式计算,得到答案.【详解】解:∠点E 是AB 的中点,∠AED 的面积为1,∠∠ABD 的面积=∠AED 的面积×2=2,∠点D是BC的中点,∠∠ABC的面积=∠ABD的面积×2=4,故答案为:4.【点睛】本题考查了三角形的面积计算,掌握三角形的中线把三角形分为面积相等的两部分是解题的关键.28.105°【分析】过点G作HG∠BC,则有∠HGB=∠B,∠HGE=∠E,又因为∠DEF和∠ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【详解】解:过点G作HG∠BC,∠EF∠BC,∠GH∠BC∠EF,∠∠HGB=∠B,∠HGE=∠E,在Rt∠DEF和Rt∠ABC中,∠F=30°,∠C=45°,∠∠E=60°,∠B=45°,∠∠HGB=∠B=45°,∠HGE=∠E=60°,∠∠EGB=∠HGE+∠HGB=60°+45°=105°,故∠EGB的度数是105°,故答案为:105°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,其中正确作出辅助线是解本题的关键.29.22【分析】如图,延长HE,交BC于点G,求出∠2=∠HGF=68°,根据直角三角形两锐角互余即可求解.解:如图,延长HE ,交BC 于点G ,∠AD ∠BC ,∠∠2=∠HGF =68°,由题意得∠FEH =∠FEG =90°,∠∠1=90°-∠EGF =90°-68°=22°.故答案为:22【点睛】本题考查了平行线的性质与直角三角形的两锐角互余,根据题意添加辅助线是解题关键.30.36︒【分析】利用折叠性质得到18DA A A ∠'=∠=︒,然后根据三角形外角性质求解.【详解】 解:纸片ABC ∆沿DE 折叠,使点A 落在BE 边上的点A '处,18DA A A ∴∠'=∠=︒,136DA A A ∴∠=∠'+∠=︒.故答案为36︒.【点睛】本题考查了三角形内角和定理:三角形内角和是180︒.也考查了折叠的性质. 31.三角形的稳定性【分析】直接根据题意进行解答即可.【详解】解:由题意得这三个三角形可以使射击者在射击过程中保持稳定,其中,蕴含的数学道理是三角形的稳定性;故答案为三角形的稳定性.【点睛】本题主要考查三角形稳定性,熟练掌握三角形的稳定性是解题的关键.【分析】根据三角形的性质进行解答即可.【详解】解:斜钉一根木条的四边形木架的形状不会改变,能解释这一实际应用的数学知识是三角形具有稳定性,故答案为:稳定性.【点睛】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.33.2.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】如图,再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条,故答案为:2.【点睛】本题考查了三角形的稳定性,解题的关键是熟知要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形.34.5【分析】根据多边形的内角和与外角和即可求出答案.【详解】解:设该多边形的边数为n,由题意可知:(n-2)•180°=1.5×360°,解得:n=5,故答案为:5.【点睛】本题考查多边形的内角和与外角和,解题的关键是熟练运用多边形的性质,本题属于基础题型.35.540 360【分析】根据多边形的内角和公式(n-2)•180°和多边形的外角和定理进行解答.【详解】解:(5-2)•180°=540°,所以五边形的内角和为540度,外角和为360度.故答案为:540,360.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.36.120°【分析】利用内角与外角的关系可得∠AED=120°,然后再利用多边形内角和定理进行计算即可.【详解】解:∠∠DEF=60°,∠∠AED=120°,∠∠A=∠C=80°,∠B=140°,∠∠D=180°×(5﹣2)﹣80°﹣80°﹣140°﹣120°=120°,故答案为:120°.【点睛】此题主要考查了多边形内角与外角,关键是掌握多边形内角和定理:(n-2)•180° (n≥3且n为整数).37.6、5、4【分析】根据一个n边形对角线条数公式()32n n-共有n条对角线,列等式,求出边数,再利用分类将五边形截去一个角的情形求解即可.【详解】解:由这个n边形共有n条对角线,可得()32n nn-=,解得n=5或0(不合题意,舍去),所以这个多边形是五边形,将一个五边形截去一个角,根据截法不同可以有三种情况如图,其结果分别是6、5、4条边,故答案为:6、5、4.【点睛】本题考查由对角线条数与边关,分类思想,数形结合思想截取一个角实质看边是否减少是解题关键.38.5【分析】根据对角线的意义求解.【详解】解:根据对角线的意义可知:一个八边形过一个顶点有8-2-1=5条对角线,故答案为:5.【点睛】本题考查多边形的对角线,熟练掌握多边形对角线的意义是解题关键.39.4【分析】根据题意和多边形内角和公式求出多边形的边数,根据多边形的对角线的条数的计算公式计算即可.【详解】设这个多边形的边数为n,则(n-2)×180°=900°,解得,n=7,从七边形的其中一个顶点出发引的对角线的条数:7-3=4,故答案为:4.【点睛】本题考查的是多边形的内角和外角、多边形的对角线,掌握n边形的内角和等于(n-2)×180°、从n边形的其中一个顶点出发引的对角线的条数是n-3是解题的关键.40.2【解析】试题分析:一个多边形能不能进行平面镶嵌,关键看同一个顶点处无缝且能组成一个周角,因为任意三角形的内角和是180°,所以放在同一顶点处6个即可;因为任意四边形的内角和是360°,所以放在同一顶点处4个即可;因为任意五边形的内角和是540°,不能整除360°,所以不能密铺;因为边长相等的六边形的内角和是720°,虽然能整除360°,但不一定能密铺;因为任意七边形的内角和是900°,不能整除360°,所以不能密铺.因此能进行平面镶嵌的几何图形有三角形和四边形2种.考点:平面镶嵌.41.∠【分析】分别求出正三角形,各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】解:∠正三角形的每个内角是60°,放在同一顶点处6个即能密铺;∠正方形的每个内角是90°,4个能密铺;∠正六边形每个内角是120°,能整除360°,故能密铺;∠正八边形每个内角是135°,不能整除360°,不能密铺.故答案为:∠【点睛】本题考查一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.镶嵌定义是解答此题的重要依据.42.∠∠∠【分析】根据正多边形的内角特点即可依次判断.【详解】解:∠正三角形的每个内角是60,能整除360,能镶嵌平面;∠正方形的每个内角是90,4个能镶嵌平面;-÷=,不能整除360,不能镶嵌平面;∠正五边形每个内角是:1803605108。

人教版八年级数学上册全等三角形期末复习专题试卷及答案

人教版八年级数学上册全等三角形期末复习专题试卷及答案

2016-2017学年度第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. B. 1 C.2 D.512.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( )A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( )A.4个B.3个C.2个D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.4二填空题:21.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.下列结论:①AC ⊥BD;②CB=CD;③△ABC ≌△ADC;④DA=DC.其中所有正确结论的序号 是 .25.如图,△ABC 的角平分线交于点P ,已知AB ,BC ,CA 的长分别为5,7,6,则S △ABP ∶S △BPC ∶S △APC =___________.26.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB=6,BC=8.若S △ABC =28,则DE= .27.如图,OP 平分∠AOB ,PB ⊥OB ,OA=8cm ,PB=3cm ,则△POA 的面积等于 cm 2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC 上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.32.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC 于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.35.如图,在△ABC中,AD为BC边上的中线,E为AC上的一点,BE交AD于点F,已知AE=EF. 求证:AC=BF.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D 10、B 11、C 12、D 13、A 14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、12 cm2.28、9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.34、35、证:延长AD到G,使得DG=AD.(1分)在△ADC和△GDB中∴△ADC≌△GDB ∴AC=BG 且∠CAD=∠G∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC36、(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形(2)△DEF仍为等腰直角三角形证明:连结AD∵AB=AC ∠BAC=90° D为BC的中点∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形37、(1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF==×4×=∴S△BDF(3)不变过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

新乡市第一中学八年级数学上册第十一章《三角形》经典复习题(专题培优)

新乡市第一中学八年级数学上册第十一章《三角形》经典复习题(专题培优)

一、选择题1.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD A解析:A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】CG解:ABC中,AB边上的高为:.故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边 的度数是()上,则1A.10°B.15°C.20°D.25°B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.3.下列长度的三条线段能构成三角形的是()A.1,2,3B.5,12,13C.4,5,10D.3,3,6B解析:B【分析】根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,5+12=17>13,能组成三角形;C中,4+5=9<10,不能够组成三角形;D中,3+3=6,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的值不可能是()A.2.4 B.3 C.5 D.8.5D解析:D【分析】先根据三角形的三边之间的关系求解1<x<7,从而可得答案.【详解】解:长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,+,∴-<x<4343∴<x<7,1x的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.5.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为()A.8 B.9 C.10 D.11B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,可以将n 边形分割成()1n -个三角形,应用规律:由题意得:18,n -=9.n ∴=故选:.B【点睛】本题考查的是规律探究及规律运用,探究“在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,把n 边形分割成的三角形的数量”是解题的关键. 6.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32αC 解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.7.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .12B解析:B【分析】根据三角形的三边关系定理可得7-4<x <7+4,计算出不等式的解集,再确定x 的值即可.【详解】设第三边长为x ,则7-4<x <7+4,3<x <11,∴A 、C 、D 选项不符合题意.故选:B .【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.8.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .7C 解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C .【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.9.如图,已知AE 交CD 于点O ,AB ∥CD ,∠A =50°,∠E =15°,则∠C 的度数为( )A .50°B .65°C .35°D .15°C解析:C【分析】 先根据平行线的性质,得出A DOE ∠=∠,再根据DOE ∠是OCE ∆的外角,即可得到C ∠的度数.【详解】解:∵AB//CD ,45A ∠=︒,∴45DOE ∠=︒,∵DOE E C ∠=∠+∠,∴501535C DOE E ∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,正确得出DOE ∠的度数是解题的关键. 10.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.二、填空题11.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键.12.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n 的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n 边形的内角和是:(12-2解析:1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n 的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n 边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n 边形从一个顶点出发可引出(n-3)条对角线是解题的关键.13.如果三角形两条边分别为3和5,则周长L 的取值范围是________10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x ,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.14.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.40°【分析】根据角平分线的性质可得∠EAC=∠BAC ∠ECD=∠BCD 最后根据三角形外角的性质解答即可【详解】解:∵∠BAC 的平分线与∠BCD 的平分线交于点E ∴∠EAC=∠BAC ∠ECD=∠BCD 解析:40°【分析】根据角平分线的性质可得∠EAC=12∠BAC,∠ECD=12∠BCD ,最后根据三角形外角的性质解答即可.【详解】解:∵∠BAC 的平分线与∠BCD 的平分线交于点E ,∴∠EAC=12∠BAC ,∠ECD=12∠BCD , ∵∠BCD-∠BAC=∠B=80°, ∴∠ECD-∠EAC=12(∠BCD-∠BAC )=40°, ∵E ∠是△ACE 的外角∴∠E=∠ECD-∠EAC=40°.故答案为40°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义以及三角形的外角的性质等知识点,灵活利用三角形外角的性质是解答本题的关键.15.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B 的度数.【详解】∵把△ABC 的∠B 折叠,点B 落在P 的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B =180°,∴∠B =180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.16.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平解析:40【分析】如图(见解析),先根据直角三角板的定义可得445∠=︒,再根据平行线的性质可得1585=∠∠=︒,然后根据三角形的外角性质可得340∠=︒,最后根据对顶角相等即可得.【详解】如图,由题意得:445∠=︒,//a b ,185∠=︒,1855∴∠∠==︒,35440∴∠=∠-∠=︒,由对顶角相等得:2340∠=∠=︒,故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.17.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.10或50【分析】分点P 在AB 的上方点P 在AB 与CD的中间点P 在CD 的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P 在AB 的上方;(2)如图解析:10或50【分析】分点P 在AB 的上方、点P 在AB 与CD 的中间、点P 在CD 的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P 在AB 的上方,30,20BPD PBA ∠=︒∠=︒,150BPD PBA ∴∠=∠+∠=︒,//AB CD ,150CDP ∴∠=∠=︒;(2)如图,点P 在AB 与CD 的中间,延长BP ,交CD 于点E ,//,20AB CD PBA ∠=︒,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.∠的度数是______.18.一副分别含有30°和45°的直角三角板,拼成如图,则BFD15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数,再由补角的定义得出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.19.如图,已知ABC的角平分线BD,CE相交于点O,∠A=60°,则∠BOC=__________.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】根据三角形的内角和定理、角平分线的定义即可得.60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,BD 、CE 是ABC 的角平分线, 11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.210【分析】由题意得:∠1=∠D+∠DGA ∠2=∠F+∠FHB 然后由对顶角相等的性质得∠1=∠D+CGH ∠2=∠F+∠CHG 最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值【详解】解:如图给解析:210【分析】由题意得:∠1=∠D+∠DGA ,∠2=∠F+∠FHB ,然后由对顶角相等的性质得∠1=∠D+CGH ,∠2=∠F+∠CHG ,最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值 .【详解】解:如图,给两三角板的两个交点标上G 、H 符号,则∠1=∠D+∠DGA=∠D+CGH ,∠2=∠F+∠FHB=∠F+∠CHG ,∴∠1+∠2=∠D+CGH+∠F+∠CHG=∠D+∠F+(CGH+∠CHG )=30°+90°+90°=210°,故答案为210 .【点睛】本题考查直角三角形的应用,灵活运用直角三角形两锐角互余、三角形的外角性质和对顶角相等的定理求解是解题关键.三、解答题21.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C .(1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.解析:(1)45°;(2)不变,45°【分析】(1)由题意,先求出135ABN ∠=︒,由角平分线的定义,求出67.5ABE ∠=︒,22.5∠︒=BAC ,由三角形外角的性质,即可求出答案;(2)由三角形的外角性质,得ACB ABE BAC ∠=∠-∠,再根据角平分线的定义即可求出答案.【详解】解:(1)∵90MON ∠=︒,即90AOB ∠=︒,45BAO ∠=︒,∴135ABN AOB BAO ∠=∠+∠=︒,∵BE 平分ABN ∠,AC 平分BAO ∠, ∴167.52ABE ABN ∠=∠=︒,122.52BAC BAO ∠=∠=︒, ∴67.522.545ACB ABE BAC ∠=∠-∠=︒-︒=︒.(2)ACB ∠的大小不会发生变化,理由如下:∵BE 平分ABN ∠,AC 平分BAO ∠, ∴12ABE ABN ∠=∠,12BAC BAO ∠=∠, ∴ACB ABE BAC ∠=∠-∠1122ABN BAO =∠-∠ ()12ABN BAO =∠-∠12AOB =∠190452=⨯︒=︒. 【点睛】 本题考查了角平分线的定义,三角形的外角性质,解题的关键是熟练掌握所学的知识,正确的得到角的关系.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.解析:(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB ,再根据三角形的内角和定理列式计算即可得解;(2)设∠A=∠ACB=x ,根据直角三角形两锐角互余求出∠CDE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD 为△ABC 的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB ,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x ,∵CE 是△ABC 的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD 为△ABC 的角平分线,∴∠ACD=12∠ACB=12x , 由三角形的外角性质得,∠CDE=∠A+∠ACD ,∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 24.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?解析:2cm .【分析】先根据中线的定义得出MA =MC ,再求出两三角形的周长差即可.【详解】解:∵BM 是△ABC 的中线,∴MA =MC ,∴△ABM 的周长﹣△BCM 的周长=AB+BM+MA ﹣BC ﹣CM ﹣BM=AB ﹣BC=5﹣3=2(cm ).答:△ABM 与△BCM 的周长是差是2cm .【点睛】本题考查的是三角形的中线,熟知三角形中线的定义是解答此题的关键.25.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|.解析:3c+a ﹣b .【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a ﹣b ﹣c <0,b ﹣c ﹣a <0,c+a ﹣b >0.∴|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|=b+c ﹣a+c+a ﹣b+c+a ﹣b=3c+a ﹣b .【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.26.如果正多边形的每个内角都比它相邻的外角的4倍多30°.(1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.解析:(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数;(2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线. 27.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.解析:(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P ∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.28.观察探究及应用.(1)如图,观察图形并填空:一个四边形有_______条对角线;一个五边形有_______条对角线;一个六边形有_______条对角线;(2)分析探究:由凸n 边形的一个顶点出发,可作_______条对角线,多边形有n 个顶点,若允许重复计数,共可作_______条对角线;(3)结论:一个凸n 边形有_______条对角线;(4)应用:一个凸十二边形有多少条对角线?解析:(1)2;5;9;(2)(n-3);n(n-3);(3)(3)2n n -;(4)54 【分析】(1)根据图形数出对角线条数即可;(2)根据所画图形可推导出凸n 边形从一个顶点出发可引出(n-3)条对角线,进而可得共可作n(n-3)条对角线;(3)由(2)可知,任意凸n 边形的对角线有条(3)2n n -,即可解答; (4)把n=12代入(3)计算即可.【详解】解:(1)根据图形数出对角线条数,一个四边形有2条对角线,一个五边形有5条对角线,一个六边形有9对角线;故答案为:2;5;9;(2)∵从凸4边形的一个顶点出发,可作1条对角线,从凸5边形的一个顶点出发,可作2条对角线,从凸6边形的一个顶点出发,可作3条对角线,从凸7边形的一个顶点出发,可作4条对角线,…∴从凸n边形从一个顶点出发可引出(n-3)条对角线,若允许重复计数,共可作n(n-3)条对角线;故答案为:(n-3);n(n-3).(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,故答案为:(3)2n n-.(4)把n=12代入(3)2n n-计算得:1292⨯=54.故一个凸十二边形有54条对角线.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.。

人教版八年级上册数学期末考试复习:第11章《三角形》解答题专题复习

人教版八年级上册数学期末考试复习:第11章《三角形》解答题专题复习

第11章《三角形》解答题精选1.(2019秋•花都区期末)如图,在四边形ABCD 中,∠C +∠D =210°(1)∠DAB +∠CBA = 度;(2)若∠DAB 的角平分线与∠CBA 的角平分线相交于点E ,求∠E 的度数.2.(2019秋•南海区期末)阅读下面的材料,并解决问题.(1)已知在△ABC 中,∠A =60°,图1﹣3的△ABC 的内角平分线或外角平分线交于点O ,请直接求出下列角度的度数.如图1,∠O = ;如图2,∠O = ;如图3,∠O = ;如图4,∠ABC ,∠ACB 的三等分线交于点O 1,O 2,连接O 1O 2,则∠BO 2O 1= .(2)如图5,点O 是△ABC 两条内角平分线的交点,求证:∠O =90°+12∠A . (3)如图6,△ABC 中,∠ABC 的三等分线分别与∠ACB 的平分线交于点O 1,O 2,若∠1=115°,∠2=135°,求∠A 的度数.3.(2019秋•普宁市期末)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.4.(2019秋•东莞市期末)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =10°,求∠C 的度数.5.(2020春•东湖区期末)(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的27,求这个多边形的边数.6.(2019秋•越秀区期末)如图所示,在△ABC 中,D 是BC 边上一点∠1=∠2,∠3=∠4,∠BAC =69°,求∠DAC 的度数.7.(2019秋•揭阳期末)探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图①,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.8.(2019秋•江城区期末)如图,Rt △ABC 中,∠C =90°,∠B =3∠A ,求∠B 的度数.9.(2019春•龙门县期末)如图,在四边形ABCD 中,AD ∥BC ,连接BD ,点E 在BC 边上,点F 在DC 边上,且∠1=∠2.(1)求证:EF ∥BD ;(2)若DB 平分∠ABC ,∠A =130°,求∠2的度数.10.(2019春•番禺区期末)(1)如图1,已知AB ∥CD ,求证:∠EGF =∠AEG +∠CFG .(2)如图2,已知AB ∥CD ,∠AEF 与∠CFE 的平分线交于点G .猜想∠G 的度数,并证明你的猜想.(3)如图3,已知AB ∥CD ,EG 平分∠AEH ,EH 平分∠GEF ,FH 平分∠CFG ,FG 平分∠HFE ,∠G =95°,求∠H 的度数.11.(2019春•南海区期末)如图1,在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 与CE 交于点F .(1)求∠BFC 的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.12.(2018秋•澄海区期末)如图,已知AD,AE是△ABC的高和角平分线,∠B=44°,∠C=76°,求∠DAE的度数.13.(2018秋•越秀区期末)如图,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.14.(2018秋•揭西县期末)CE是△ABC的一个外角∠ACD的平分线,且EF∥BC交AB于点F,∠A=60°,∠CEF=50°,求∠B的度数.15.(2018秋•普宁市期末)已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB 的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.16.(2017春•石狮市期末)如图,在△ABC中,点D在BC边上,点E在AC边上,连接AD,DE,∠B=60°(1)若∠3=60°,试说明∠1=∠2;(2)∠C=40°,∠1=50°,且∠3=∠4,求∠2的度数.17.(2019春•潮南区期末)如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.18.(2018秋•大埔县期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠A=42°.(1)求∠BOC的度数;(2)把(1)中∠A=42°这个条件去掉,试探索∠BOC和∠A之间有怎样的数量关系.19.(2019春•南海区期末)已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.20.(2018秋•禅城区期末)叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)21.(2018春•福田区期末)完成下列推理说明.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,∠CDG=∠B,∠1+∠FEA =180°,试说明:∠BFE=∠ADF.理由:因为∠CDG=∠B(已知)所以DG∥AB()所以=∠BAD()因为∠1+∠FEA=180°(已知)所以+∠FEA=180°(等量代换)所以AD∥EF()所以∠BFE=()22.(2018春•海珠区期末)已知点C(﹣10,10),直线CE∥x轴交y轴于点B,点A是x轴的负半轴上的动点,作AD⊥AC交线段BO于点D(点D不与点O、B重合),MD⊥AD交CE于点M,∠EMD,∠OAD的角平分线MN,AN交于点N(1)直接写出OB的长度;(2)求出∠MNA的度数;(3)若NH⊥x轴于点H,求∠ANH的取值范围.23.(2017秋•潮安区期末)如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证△ACE是直角三角形.24.(2017秋•白云区期末)如图,在△ABC中,AD⊥BC,垂足为D,∠1=∠B,∠C=67°,求∠BAC的度数.25.(2018春•澄海区期末)(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图①,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;①如图①,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.26.(2018春•白云区期末)已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.27.(2018春•越秀区期末)如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.28.(2018春•东莞市期末)如图,AC、BD相交于点O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC 的延长线上.(1)求证:CD∥AB;(2)若∠D=38°,求∠ACE的度数.29.(2018春•茂名期末)已知:△ABC,∠A、∠B、∠C之和为多少?为什么?解;∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠(已作)AB∥CD()∴∠B=()而∠ACB+∠ACD+∠DCE=180°∴∠ACB++=180°()30.(2018春•香洲区期末)如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.①求证EG⊥AF;①求∠F的度数.【提示:三角形内角和等于180度】第11章《三角形》解答题精选参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=12∠DAB,∠EBA=12∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°−12(∠DAB+∠CBA)=180°−12(360°﹣∠C﹣∠D)=12(∠C+∠D),∵∠C+∠D=210°,∴∠E=12(∠C+∠D)=105°.2.【解答】解;(1)如图1,∵BO平分∠ABC,CO平分∠ACB∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠BAC)=12(180°﹣60°)=60°∴∠O=180°﹣(∠OBC+∠OCB)=120°;如图2,∵BO平分∠ABC,CO平分∠ACD∴∠OBC=12∠ABC,∠OCD=12∠ACD∵∠ACD=∠ABC+∠A∴∠OCD=12(∠ABC+∠A)∵∠OCD=∠OBC+∠O ∴∠O=∠OCD﹣∠OBC=12∠ABC+12∠A−12∠ABC=12∠A =30°如图3,∵BO 平分∠EBC ,CO 平分∠BCD∴∠OBC =12∠EBC ,∠OCB =12∠BCD∴∠OBC +∠OCB=12(∠EBC +∠BCD )=12(∠A +∠ACB +∠BCD )=12(∠A +180°)=12(60°+180°)=120°∴∠O =180°﹣(∠OBC +∠OCB )=60°如图4,∵∠ABC ,∠ACB 的三等分线交于点O 1,O 2∴∠O 2BC =23∠ABC ,∠O 2CB =23∠ACB ,O 1B 平分∠O 2BC ,O 1C 平分∠O 2CB ,O 2O 1平分BO 2C ∴∠O 2BC +∠O 2CB=23(∠ABC +∠ACB ) =23(180°﹣∠BAC )=23(180°﹣60°) =80°∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=100°∴∠BO 2O 1=12∠BO 2C =50°故答案为:120°,30°,60°,50°;(2)证明:∵OB 平分∠ABC ,OC 平分∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠O =180°﹣(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠A )=90°+12∠A . (3)∵∠O 2BO 1=∠2﹣∠1=20°∴∠ABC =3∠O 2BO 1=60°,∠O 1BC =∠O 2BO 1=20°∴∠BCO 2=180°﹣20°﹣135°=25°∴∠ACB =2∠BCO 2=50°∴∠A =180°﹣∠ABC ﹣∠ACB =70°或由题意,设∠ABO 2=∠O 2BO 1=∠O 1BC =α,∠ACO 2=∠BCO 2=β, ∴2α+β=180°﹣115°=65°,α+β=180°﹣135°=45°∴α=20°,β=25°∴∠ABC +∠ACB =3α+2β=60°+50°=110°,∴∠A =70°.3.【解答】解:(1)∵BP 、CP 分别平分∠ABC 和∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB ), =180°−12(∠ABC +∠ACB ),=180°−12(180°﹣∠A ), =180°﹣90°+12∠A , =90°+32°=122°,故答案为:122°;(2)∵CE 和BE 分别是∠ACB 和∠ABD 的角平分线,∴∠1=12∠ACB ,∠2=12∠ABD ,又∵∠ABD 是△ABC 的一外角,∴∠ABD =∠A +∠ACB ,∴∠2=12(∠A +∠ABC )=12∠A +∠1,∵∠2是△BEC 的一外角,∴∠BEC =∠2﹣∠1=12∠A +∠1﹣∠1=12∠A =α2;(3)∠QBC =12(∠A +∠ACB ),∠QCB =12(∠A +∠ABC ), ∠BQC =180°﹣∠QBC ﹣∠QCB ,=180°−12(∠A +∠ACB )−12(∠A +∠ABC ),=180°−12∠A −12(∠A +∠ABC +∠ACB ),结论∠BQC =90°−12∠A . 4.【解答】解:∵AD 是高,∠B =70°,∴∠BAD =20°,∴∠BAE =20°+10°=30°,∵AE 是角平分线,∴∠BAC =60°,∴∠C =180°﹣70°﹣60°=50°.5.【解答】解:(1)设这个多边形的每个内角是x °,每个外角是y °, 则得到一个方程组{α=4α+30α+α=180 解得{α=150α=30, 而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n ,依题意得:27(n ﹣2)180°=360°,解得n =9,答:这个多边形的边数为9.6.【解答】解:设∠1=∠2=x °,则∠3=∠4=2x °,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.7.【解答】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=90°+α2,∴∠CDE=45°+x−90°+α2=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12 x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.8.【解答】解:∵∠B=3∠A,∴∠A=13∠B,∵∠C=90°,∴∠A+∠B=90°,∴13∠B+∠B=90°,解得∠B=67.5°.9.【解答】(1)证明:如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=12∠ABC=25°.∴∠2=∠3=25°.10.【解答】证明:(1)如图1,过点G作GH∥AB,∴∠EGH=∠AEG.∵AB∥CD,∴GH∥CD.∴∠FGH=∠CFG.∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG;(2)如图2所示,猜想:∠G=90°;证明:由(1)中的结论得:∠EGF=∠AEG+∠CFG,∵EG、FG分别平分∠AEF和∠CEF,∴∠AEF=2∠AEG,∠CEF=2∠CFG,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2∠AEG+2∠CFG=180°,∴∠AEG+∠CFG=90°,∴∠G=90°;(3)解:如图3,∵EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∴∠AEG=∠GEH=∠HEF=13αααα,∠CFH=∠HFG=∠EFG=13αααα,由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,∴∠G=13∠AEF+23∠CFE=95°,∵AB∥CD,∴∠AEF+∠CFE=180°,∴13(∠AEF+∠CFE)+13αCFE=95°,∴∠CFE=105°,∴∠AEF=75°,∴∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.11.【解答】解:(1)∵BD、CE分别平分∠ABC、∠ACB∴∠CBD=12∠CBA,∠BCE=12∠ACB,∵∠CBA +∠BCA =180°﹣80°=100°,∴∠BFC =180°−12(∠CBA +∠ACB )=130°.(2)∵EG 、DG 分别平分∠AEF 、∠ADF∴∠GEF =12∠AEF ,∠GDF =12∠ADF ,∵∠AEF +∠ADF =360°﹣80°﹣130°=150°,∴∠GEF +∠GDF =12×150°=75°,∴∠EGD =360°﹣(∠GEF +∠GDF )﹣∠EFD =360°﹣75°﹣130°=155°.12.【解答】解:∵∠B =44°,∠C =76°,∴∠BAC =180°﹣∠B ﹣∠C =60°,∵AE 是角平分线,∴∠EAC =12∠BAC =30°.∵AD 是高,∠C =76°,∴∠DAC =90°﹣∠C =14°,∴∠DAE =∠EAC ﹣∠DAC =30°﹣14°=16°.13.【解答】解:(1)∵六边形ABCDEF 的内角都相等,∴∠BAF =∠B =∠C =∠CDE =∠E =∠F =(6−2)×180°6=120°, ∵∠F AD =60°,∴∠F +∠F AD =180°,∴EF ∥AD ,∴∠E +∠ADE =180°,∴∠ADE =60°;(2)∵∠BAD =∠F AB ﹣∠F AD =60°,∴∠BAD +∠B =180°,∴AD ∥BC ,∴EF ∥BC .14.【解答】解:∵EF ∥BC ,∴∠CEF =∠ECD =50°,∵CE 平分∠ACD ,∴∠ACE =∠ECD ,∴∠ACD =∠ACE +∠ECD =100°,∴∠ACB =180°﹣∠ACD =180°﹣100°=80°,∴∠B =180°﹣(∠A +∠ACB )=180°﹣60°﹣80°=40°.15.【解答】解:(1)证明:∵∠CDQ 是△CBD 的一个外角(三角形外角的定义),∴∠CDQ =∠α+∠C (三角形的一个外角等于和它不相邻的两个内角的和)∵PQ ∥MN (已知),∴∠CDQ =∠β(两直线平行,同位角相等).∴∠β=∠α+∠C (等量代换).∵∠C =45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C ,(2)证明:∵∠CFN 是△ACF 的一个外角(三角形外角的定义),∴∠CFN =∠β+∠C (三角形的一个外角等于和它不相邻的两个内角的和),∵PQ ∥MN (已知),∴∠CFN =∠α(两直线平行,同位角相等)∴∠α=∠β+∠C (等量代换).∵∠C =45°(已知),∴∠α=∠β+45°(等量代换).16.【解答】解:(1)∠B =60°,∠3=60°,∴△ABD 中,∠1=180°﹣∠B ﹣∠ADB =120°﹣∠ADB ,又∵∠2=180°﹣∠3﹣∠ADB =120°﹣∠ADB ,∴∠1=∠2;(2)∵∠C =40°,∠B =60°,∴∠BAC =80°,又∵∠1=50°,∴∠DAE=30°,又∵∠3=∠4,∴∠4=75°,∴∠2=∠4﹣∠C=75°﹣40°=35°.17.【解答】(1)解:∵AD∥BC,∠A=70°,∴∠ABC=180°﹣∠A=110°,∵BE平分∠ABC,∴∠ABE=12∠ABC=55°;(2)证明:DF∥BE.∵AB∥CD,∴∠A+∠ADC=180°,∠2=∠AFD,∵AD∥BC,∴∠A+∠ABC=180°,∴∠ADC=∠ABC,∵∠1=∠2=12∠ADC,∠ABE=12∠ABC∴∠2=∠ABE,∴∠AFD=∠ABE,∴DF∥BE.18.【解答】解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°﹣∠A=138°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12×138°=69°,∴∠BOC=180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC=90°+12∠A,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12(180°﹣∠A),∴∠BOC=180°﹣(∠1+∠2)=180−12(180°−αα)=90°+12αα.19.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=12∠DAC=12×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.20.【解答】已知:△ABC中,求证:∠A+∠B+∠C=180°.证明:过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.21.【解答】解:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵∠1+∠FEA=180°(已知),∴∠BAD+∠FEA=180°(等量代换),∴AD∥EF(同旁内角互补,两直线平行),∴∠BFE=∠ADF(两直线平行,同位角相等),故答案为:同位角相等,两直线平行,∠1,两直线平行,内错角相等,∠BAD,同旁内角互补,两直线平行,∠ADF,两直线平行,同位角相等.22.【解答】解:(1)∵C(﹣10,10),CE∥x轴,∴B(0,10),∴OB=10.(2)连接AM.∵AD⊥DM,∴∠DAM+∠DMA=90°,∵EC∥AH,∴∠EMA+∠HAM=180°,∴∠EMD+∠HAD=90°,∵MN平分∠EMD,AN平分∠DAH,∴∠EMN+∠NAH=45°,∴∠NMA+∠NAM=135°,∴∠MNA=180°﹣135°=45°.(3)由题意:0°<∠DAO<45°,∵AN平分∠DAO,∴0°<∠NAH<22.5°,∵NH⊥AH,∴∠AHN=90°,∴∠ANH=90°﹣∠NAH,∴67.5°<∠ANH<90°.23.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∴∠ACB+∠BAC=90°,∠CED+∠DCE=90°.∵∠ACB=∠CED,∴∠BAC=∠DCE,∴∠ACB+∠DCE=90°,∴∠ACE=180°﹣(∠ACB+∠DCE)=90°.∴△ACE是直角三角形.24.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠1=∠B=45°,又∵∠C=67°,∴∠BAC=180°﹣∠B﹣∠C=68°.25.【解答】(1)证明:如图①,过E作EF∥AD,∵AD∥BC,∴EF∥BC,∴∠DAE=∠AEF,∠CBE=∠BEF,∴∠AEB=∠DAE+∠CBE;(2)①证明:∵AD∥BC,∴∠DAC=∠ACB.∵AE平分∠DAC,∴∠EAC=12∠DAC=12∠ACB,∵∠ABC=∠BAC,∠ABC+∠BAC+∠ACB=180°,∴∠BAC+∠EAC=90°,∴∠ABE+∠AEB=90°;①解:如图(3),由①知∠BAE=90°,∴∠F AE=90°.∵∠F=65°,∴∠APC=90°+60°=155°.∴∠P AC+∠ACP=25°.∵AE平分∠DAC,CF平分∠ACD,∴∠DAC+∠ACD=2(∠P AC+∠ACP)=50°,∴∠D=180°﹣50°=130°.∵AD∥BC,∴∠BCD=180°﹣∠D=180°﹣130°=50°.26.【解答】证明:方法1:∵∠1=∠2,∴AB∥CD,∴∠ABC+∠DCB=180°,∵∠3=∠4,∴AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC=∠ADC.方法2:∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,∴ABCD是平行四边形,∴∠ABC=∠ADC.27.【解答】解:(1)AB∥CD,理由是:分别过点E、F作EM∥AB,FN∥AB,∵EM∥AB,FN∥AB,∴EM∥FN∥AB,∴∠1+∠A=180°,∠3+∠4=180°,∵∠A+∠E+∠F+∠C=540°,∴∠2+∠C=540°﹣180°﹣180°=180°,∴FN∥CD,∵FN∥AB,∴AB∥CD;(2)设∠P AQ=x,∠PCD=y,∵∠P AB=3∠P AQ,∠PCD=3∠PCQ,∴∠P AB=3x,∠BAQ=2x,∠PCD=3y,∠QCD=2y,过P作PG∥AB,过Q作QH∥AB,∵AB∥CD,∴AB∥CD∥PG∥GH,∴∠AQH=∠BAQ=2x,∠QCD=∠CQH=2y,∴∠AQC=2x+2y=2(x+y),同理可得:∠APC=3x+3y=3(x+y),∴αααααααα=23,即∠AQC=23∠APC.28.【解答】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠DBC=∠D,∴∠ABD=∠D,∴CD∥AB,(2)∵∠D=38°,∴∠ABD=∠D=38°,∵BD平分∠ABC,∴∠ABC=2∠ABD=76°,∴∠ABC=∠A=76°,∵CD∥AB,∴∠ACD=∠A=76°,∠ABC=∠DCE=76°,∴∠ACE=∠ACD+∠DCE=76°+76°=152°29.【解答】解;∠A+∠B+∠C=180°.理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠A(已作)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)而∠ACB+∠ACD+∠DCE=180°∴∠ACB+∠A+∠B=180°(等量代换)故答案为:A,内错角相等,两直线平行,∠DCE,两直线平行,同位角相等,∠A,∠B,等量代换.30.【解答】解:(1)∵AB⊥BC,∴∠EAB+∠AEB=90°,∵AE⊥ED,∴∠CED+∠AEB=90°,∴∠EAB=∠CED.(2)①∵AF平分∠BAE,∴∠EAG=12∠EAB,∵EH平分∠CED,∴∠HED=12∠CED,∵∠EAB=∠CED,∴∠HED=∠EAG,∴∠HED+∠AEG=90°,∴∠EAG+∠AEG=90°,∴∠EGA=90°,∴EG⊥AF.①作FM∥CD.∵AB⊥BC,CD⊥BC,∴AB∥CD,∴FM∥AB,∴∠DFM=∠CDF=12∠CDE,∠AFM=∠F AB=12∠EAB,∵∠CDE+∠CED=90°,∴∠CDE+∠EAB=90°,∴∠DF A=∠DFM+∠AFM=12∠CDE+12∠EAB=12(∠CDE+∠EAB)=45°.。

八年级上册三角形-专题复习

八年级上册三角形-专题复习

八年级上册三角形-专题复习work Information Technology Company.2020YEAR八年级上册三角形 专题复习基础知识回顾:1、三角形的内角和等于 ,三角形的外角等于与它 的两个内角的和。

2、三角形的任意两边之和 第三边,任意两边之差 第三边。

3、全等三角形的对应边 ,对应角 .证明两个三角形全等的方法有:SSS , , ,AAS , (只适用于直角三角形)。

4、角平分线上的点到角两边的距离 ;到角两边距离 的点在角的平分线上。

5、线段垂直平分线上的点到线段两个端点的距离 ;到线段两个端点距离相等的点,在这条线段的 。

6、等腰三角形性质:(1)等腰三角形两腰 ;(2)等边对 ;(3)三线合一:顶角平分线,底边上的中线,底边上的高互相 。

7、等腰三角形判定:(1)有两条边 的三角形是等腰三角形;(2)有两个角 的三角形是等腰三角形,简称“等角对等边”。

8、等边三角形的判定方法是:有一个角是60°的 三角形是等边三角形;有两个角是 的三角形是等边三角形;三边 的三角形是等边三角形。

达标练习:1、如图,∠1=100°,∠C =70°,则∠A 的大小是( )A.10°B.20°C.30°D.80°2、如图,△ABC 中,AB =AC ,∠B =70°,则∠A 的度数是( )A.70°B.55°C.50°D.40°3、三角形的下列线段中一定能将三角形的面积分成相等两部分的是( )A.中线B.角平分线C.高D.中位线4、下列各组数可能是一个三角形的边长的是( )A.1,2,4B.4,5,9C.4,6,8D.5,5,115、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16B.18C.20D.16或206、如图,AB ∥CD ,∠A+∠E =75°,则∠C 为( )A.60°B.65°C.75°D.80°7、如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD =2BD ,BE =CE ,设△ADF 的面积为S 1,△CEF 的面积为S 2,若ABC S =6,则S 1-S 2= 。

苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)

苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)

八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)1.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC 和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.2.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.3.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.4.如图,在Rt△ABC和Rt△ABD中,∠C=∠BAD=90°,BD、AC交于点F,且AF=AD,作DE⊥AC于点E.(1)求证:∠CBF=∠ABF;(2)若AB﹣BC=4,AC=8,求BC的长;(3)求证:AE=CF.5.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E.求证:BC=2AE.小明探究发现,可以通过构造全等三角形来解决,在BC上截取BF=AE,连接AF,可证△ABF≌△BAE(如图2),从而使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是(填“SSS”“SAS”“ASA”“AAS”或“HL”中的一个);参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC是等边三角形,点P在BQ上,且∠APB=120°,CP=CQ,探究线段AP,BQ的数量关系,并证明你的结论.6.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.请补充完整证明“BE=DC,且BE⊥DC”的推理过程;证明:∵△ABD和△ACE都是等腰直角三角形(已知)∴AB=AD,AE=AC(等腰直角三角形定义)又∵∠BAD=∠CAE=90°(已知)∴∠BAD+∠BAC=(等式性质)即:∴△ABE≌△ADC()∴BE=DC(全等三角形的对应边相等)∠ABE=∠ADC(全等三角形的对应角相等)又∵∠BFO=∠DFA()∠ADF+∠DFA=90°(直角三角形的两个锐角互余)∴∠ABE+∠BFO=90°(等量代换)∴即BE⊥DC(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD 相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?7.如图,在△ABC中,AB=AC,射线BD上有一点P,且∠BPC=∠BAC.(1)求证:∠APC=∠APD;(2)求证:AB+AC>PB+PC.8.已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.9.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.10.阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1.(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,∴AC=BC,∠ACP=∠BCP.又∵CP=CP,∴△ACP≌△BCP.∴∠CAP=∠CBP,即∠CAE=∠CBF.(2)证明:∵在△ACE与△BCF中,,∴△ACE≌△BCF(ASA).∴AE=BF.(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,∴S△ABC =S△ABG.∴AE=AC.①当∠ACB为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;②当∠ACB为锐角时,∠CAH=90°﹣∠ACB,而∠CAE<∠CAH,要使AE=AC,只需使∠ACB=∠CEA,此时,∠CAE=180°﹣2∠ACB,只须180°﹣2∠ACB<90°﹣∠ACB,解得:60°<∠ACB<90°.2.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.3.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;4.(1)证明:∵AF=AD,∴∠ADF=∠AFD,∵∠AFD=∠BFC,∴∠ADF=∠BFC,在Rt△CBF和Rt△ABD中,∴Rt△CBF~Rt△ABD,∴∠CBF=∠ABF.(2)解:设BC=x,∵AB﹣BC=4,∴AB=x+4,在Rt△ABC中,∵AC=8,∴(x+4)2﹣x2=64,整理,可得8x+16=64,解得x=6,∴BC的长是6.(3)证明:如图1,作FG⊥AB于点G,,∵∠CBF=∠ABF,∴FG=CF,∵∠FAG+∠DAE=90°,∠ADE+∠DAE=90°,∴∠FAG=∠ADE,∵∠AFG=90°﹣∠FAG,∠DAE=90°﹣∠ADE,∴∠AFG=∠DAE,在Rt△AFG和Rt△DAE中,∴Rt△AFG≌Rt△DAE,∴AE=FG,∵FG=CF,∴AE=CF.5.解:(1)在BC上截取BF=AE,连接AF,如图2所示:∵∠DAB=∠ABD,∴∠BAE=∠ABF,在△ABF和△BAE中,,∴△ABF≌△BAE(SAS),故答案为:SAS;(2)BQ=2AP,理由如下:在BP上截取点M,使BM=AP,连接CM,在QB上取点N,使QN=PM,连接CN,如图3所示:∵∠APB=120°,∴∠APQ=180°﹣120°=60°,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,∴∠APQ=∠ABC,即∠ABP+∠BAP=∠ABP+∠CBM,∴∠BAP=∠CBM,在△ABP和△BCM中,,∴△ABP≌△BCM(SAS),∴BP=CM,∠APB=∠BMC=120°,∴∠CMN=180°﹣120°=60°,∵CP=CQ,∴∠CPM=∠Q,在△PCM和△QCN中,,∴△PCM≌△QCN(SAS),∴CM=CN,∴△CMN是等边三角形∴CM=MN,∵BQ=BP+PM+MN+QN,∴BQ=2BM=2AP.6.(1)解:∠CAE+∠BAC,∠DAC=∠BAE,SAS,对顶角相等,∠BOF=∠DAF=90°;(2)证明:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOC=60°.7.解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BPC=∠BAC,∴A、P、B、C四点共圆,∴∠APC=∠ABC,∠APB+∠ACB=180°∴∠APC=∠ACB,∵∠APB+∠APD=180°∴∠ACB=∠APD(2)证明:如图,在射线PD上截取PE=PC,连接AE,在△PAE和△PAC中∴△PAE≌△PAC(SAS)∴AE=AC∵在△ABE中,AB+AE>BE∴AB+AC>PB+PC.8.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.9.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.10.解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,∵,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF.。

人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

专题三角形及其性质☞解读考点☞2年中考【题组】(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()1.A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,2.则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D.考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a (a>0)【答案】A.【解析】试题分析:A.∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B.∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D.∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C. 7或9 D.9或12【答案】B.【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选B.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°【答案】C.【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C 的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.考点:三角形内角和定理.8.(广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【答案】B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的()A.内心 B.外心 C.中心 D.重心【答案】D.【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.10.(百色)下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形【答案】A.【解析】试题分析:∵三角形具有稳定性,∴A正确,B.C、D错误.故选A.考点:三角形的稳定性.11.(百色)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5 C.5或6 D.6【答案】B.【解析】试题分析:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5,故选B.考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE是△ABC的高的是()A. B.C.D.【答案】D.考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是()A.正方形 B.矩形 C.平行四边形 D.直角三角形【答案】D.【解析】试题分析:直角三角形具有稳定性.故选D.考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A.【解析】试题分析:为△ABC中BC边上的高的是A选项.故选A.考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A.B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A. B. C. D.【答案】A.考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. B. C. D.【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.【答案】1<c<5.【解析】试题分析:由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.(南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,20.∠B=40°,则∠ACE的大小是度.【答案】60.【解析】试题分析:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE平分∠ACD,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10.【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10.考点:三角形三边关系.(广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若,22.则图中阴影部分的面积是.【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.【答案】5.【解析】试题分析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD 与CE相交于点O,则= .【答案】2.【解析】试题分析:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145° B.152° C.158° D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB 再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB =4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A.120° B.135° C.150° D.180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A. B. C. D.【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5 两种,故取出的三条线段为边能构成钝角三角形的概率是.考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知==,==,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。

八年级数学上册第十一章《三角形》经典复习题(专题培优)

八年级数学上册第十一章《三角形》经典复习题(专题培优)

一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形的内角和是180D.直角三角形两个锐角互余B解析:B【分析】根据三角形的稳定性可以解决.【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B.【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD A解析:A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】解:ABC 中,AB 边上的高为:.CG故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.3.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒C解析:C【分析】 根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.4.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形 D解析:D【分析】 根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,故选:D.【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.5.以下列各组线段为边,能组成三角形的是( )A.1,2,3 B.1,3,5 C.2,3,4 D.2,6,10C 解析:C【分析】根据三角形三边关系逐一进行判断即可.【详解】A、1+2=3,不能构成三角形,故不符合题意;B、1+3=4<5,不能构成三角形,故不符合题意;C、2+3=5>4,可以构成三角形,故符合题意;D、2+6=8<10,不能构成三角形,故不符合题意,故选:C.【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.6.如图,D是ABC的边BC上任意一点,E、F分别是线段AD CE、的中点,且ABC的面积为220cm,则BEF的面积是()2cmA.5 B.6 C.7 D.8A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S △BEF =12S △BCE =12×10=5cm 2. 故选:A .【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.7.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒C解析:C【分析】 根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线,∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.8.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°A解析:A【分析】 利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠,∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.9.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 10.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5B解析:B【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条故选:B【点睛】本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键 二、填空题11.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.50°【分析】连接BC 根据三角形内角和定理可求得∠DBC +∠DCB 的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数即可求得∠A 的度数【详解】解:连接BC ∵∠BDC =130° 解析:50°【分析】连接BC ,根据三角形内角和定理可求得∠DBC +∠DCB 的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数,即可求得∠A 的度数.【详解】解:连接BC ,∵∠BDC =130°,∴∠DBC +∠DCB =180°−∠BDC =50°,∵∠BGC =90°,∴∠GBC +∠GCB =180°−∠BGC =90°,∴∠GBD +∠GCD =(∠GBC +∠GCB )−(∠DBC +∠DCB )=40°,∵BF 平分∠ABD ,CE 平分∠ACD ,∴∠ABD +∠ACD =2∠GBD +2∠GCD =80°,∴∠ABC +∠ACB =(∠ABD +∠ACD )+(∠DBC +∠DCB )=130°,∴∠A =180°−(∠ABC +∠ACB )=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.12.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.13.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-, 当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.14.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.∠的度15.如图,飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,那么APB数为______°.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P在目标A的正上方飞行员测得目标B的俯角为30°∴∠A=∠CPB=∵CP∥AB∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∴APB∠=90︒-∠B=60︒,故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B的俯角为30°得到∠B=30是解题的关键.16.如图所示,△ABC中,∠BAC、∠ABC、∠ACB的四等分线相交于D、E、F(其中∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF),且△DFE的三个内角分别为∠DFE =60°、∠FDE=53°、∠FED=67°,则∠BAC的度数为_________°.72【分析】由∠CAD=3∠BAD∠ABE=3∠CBE∠BCF=3∠ACF易得各角与∠ABC∠ACB∠BAC之间的关系由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论【详解】解:∵∠CAD解析:72【分析】由∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF易得各角与∠ABC、∠ACB、∠BAC之间的关系,由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论.【详解】解:∵∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,∴∠CAD=34∠BAC,∠BAD=14∠BAC,∠ABE=34∠ABC,∠CBE=14∠ABC,∠BCF=34∠ACB,∠ACF=14∠ACB.∵∠DFE=60°、∠FDE=53°、∠FED=67°,∴136********4136744BAC ABC ABC ACB ACB BAC ⎧∠+∠=⎪⎪⎪∠+∠=⎨⎪⎪∠+∠=⎪⎩, 解得∠BAC=72°,∠ABC=56°,∠ACB=52°,故答案为:72.【点睛】本题考查了三元一次方程组的应用,以及三角形外角的性质.解题的关键是由外角的性质列出方程组.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.17.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 18.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE 解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键. 19.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A =2∠A1同理可得∠A1=2∠A2即∠A =22∠A2因此找出规律【详解】由三角形的外角性质得∠ACD =∠A +∠ABC ∠A1CD =∠A 解析:6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A =2∠A 1,同理可得∠A 1=2∠A 2,即∠A =22∠A 2,因此找出规律.【详解】由三角形的外角性质得,∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1+∠A 1BC ,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD , ∴∠A 1+∠A 1BC =12(∠A +∠ABC )=12∠A +∠A 1BC , ∵A 1B 、A 1C 分别平分∠ABC 和∠ACD ,∴∠ACD =2∠A 1CD ,∠ABC =2∠A 1BC ,而∠A 1CD =∠A 1+∠A 1BC ,∠ACD =∠ABC +∠A ,∴∠A =2∠A 1,∴∠A 1=12∠A , 同理可得∠A 1=2∠A 2,∴∠A 2=14∠A , ∴∠A =2n ∠A n , ∴∠A n =(12)n ∠A =642n ︒, ∵∠A n 的度数为整数,∴n =6.故答案为:6.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.20.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数再根据三角形的内角和定理即可求出∠BOC 的度数【详解】解:∵OBOC 分别是∠ABC 和∠ACB 的角平分线∴∠OBC+∠O 解析:110︒.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【详解】解:∵OB 、OC 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB= 111()222ABC ACB ABC ACB ∠+∠=∠+∠ ∵∠A=40°, ∴∠OBC+∠OCB=1(18040)2︒︒- =70°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-70°=110°.故答案是110.【点睛】 本题主要利用角平分线的定义和三角形内角和定理求解,熟记概念和定理是解题的关键.三、解答题21.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)解析:(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.22.已知AD 是ABC 的角平分线,CE 是AB 边上的高,AD ,CE 相交于点P ,BCE 40,APC 123∠∠=︒=︒,求ADC ∠和ACB ∠的度数.解析:∠ADC 83=︒,∠ACB 64=︒.【分析】由CE 是AB 边上的高,可得∠AEC=90︒,再利用三角形的外角性质可得∠ADC ,∠EAP ,∠B 的度数,再根据AD 是ABC 的平分线,可得∠BAC 的度数,再利用三角形的内角和定理即可得到∠ACB 的度数.【详解】∵CE 是AB 边上的高,∴CE ⊥AB ,即∠AEC=90︒,∵∠APC=∠BCE+∠ADC=123︒,∠BCE=40︒,∴∠ADC=123︒-4083︒=︒,∵∠APC=∠AEP+∠EAP=123︒,∴∠EAP=1239033︒-︒=︒,∵AD 是ABC 的角平分线,∴∠BAC=2∠EAP=23366⨯︒=︒,∵∠ADC=∠BAD+∠B ,∴∠B=833350︒-︒=︒,∵∠B+∠BAC+∠ACB=180︒,∴∠ACB=180665064︒-︒-︒=︒,即∠ADC 83=︒,∠ACB 64=︒.【点评】本题考查了三角形的角平分线、高线,三角形的外角性质和三角形的内角和定理.熟记性质并准确识图是解题的关键.23.如图,△ABC 中,D 为AC 上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB 的角平分线分别交BD 、BA 于点E 、F .(1)若α=90°,判断∠BEF 和∠BFE 的大小关系并说明理由;(2)是否存在α,使∠BEF 大于∠BFE ?如果存在,求出α的范围,如果不存在,请说明理由.解析:(1)∠BEF=∠BFE ,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF ,等量代换得到∠BEF=∠BFC ,于是得到∠BEF=∠BFE ;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE ;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF平分∠ACB,∴∠DCE=∠BCF,∴∠DEC=∠BFC,∵∠DEC=∠BEF,∴∠BEF=∠BFC,即∠BEF=∠BFE;(2)∵∠BEF=∠EBC+∠ECB,∠BFE=∠A+∠ACF,∠ECB=∠ACF,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A,∵∠EBC=∠ABC-∠ABD=α-∠ABD,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD,∴∠BEF-∠BFE=(α-∠ABD)-(180°-α-∠ABD)=2α-180°,若∠BEF>∠BFE,则∠BEF﹣∠BFE>0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.24.若a,b,c是ABC的三边的长,化简|a﹣b﹣c|+|b﹣c﹣a|+|c+a﹣b|.解析:3c+a﹣b.【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a﹣b﹣c<0,b﹣c﹣a<0,c+a﹣b>0.∴|a﹣b﹣c|+|b﹣c﹣a|+|c+a﹣b|=b+c﹣a+c+a﹣b+c+a﹣b=3c+a﹣b.【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.25.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,请直接写出∠P与∠B、∠C之间存在的数量关系.解析:(1)∠A+∠C=∠B+∠D;(2)①3,4;②110°;③3∠P=∠B+2∠C.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C-∠P=∠P-∠B,即∠P=12(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M 为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP ,以N 为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP ,∵AP 、DP 分别平分∠CAB 和∠BDC ,∴∠BAP=∠CAP ,∠CDP=∠BDP ,∴2∠P=∠B+∠C ,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C )=12(100°+120°)=110°; ③3∠P=∠B+2∠C ,其理由是:∵∠CAP=13∠CAB ,∠CDP=13∠CDB , ∴∠BAP=23∠CAB ,∠BDP=23∠CDB , 以M 为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP ,以N 为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB ), ∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB ). ∴2(∠C-∠P )=∠P-∠B ,∴3∠P=∠B+2∠C .【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义. 26.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.解析:50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线, ∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.27.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.解析:(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠. BE 平分ABC ∠,DF 平分CDN ∠, 12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒.BF 、DF 平分ABC ∠、ADC ∠的邻补角,12CBF MBC ∴∠=∠,12CDE CDN ∠=∠, 90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒. BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角, 1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E ∴∠=∠+∠+∠,903654E ∴∠=︒-︒=︒.【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.28.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.解析:50︒【分析】根据角平分线的性质求出∠BAD 的度数,利用三角形内角和求出∠B 的度数,由此得到∠ADE 的度数,利用三角形外角性质求出∠ADC ,即可得到答案.【详解】解:∵AD 平分BAC ∠, ∴1302BAD DAC BAC ∠=∠=∠=︒, ∵180180608040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∴403070ADC B BAD ∠=∠+∠=︒+︒=︒, ∴1202ADE B ∠=∠=︒, ∴702050CDE ADC ADE ∠=∠-∠=︒-︒=︒.【点睛】 此题考查三角形内角和定理,角平分线的性质,三角形外角定理,正确分析图形掌握各角直角的位置关系是解题的关键.。

部编数学八年级上册专题02三角形内角外角问题(解析版)含答案

部编数学八年级上册专题02三角形内角外角问题(解析版)含答案

2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题02 三角形内角外角问题一、选择题1. (2023湖北宜昌)如图,小颖按如下方式操作直尺和含30°角的三角尺,依次画出了直线a ,b ,c .如果170=°∠,则2Ð的度数为( )A. 110°B. 70°C. 40°D. 30°【答案】C 【解析】可求34570Ð=Ð+Ð=°,由25Ð=Ð,即可求解.如图,由题意得:430Ð=°,a b ∥,3170\Ð=Ð=°,34570Ð=Ð+Ð=°Q ,540\Ð=°,2540\Ð=Ð=°,故选:C .【点睛】本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题的关键.2. (2023大连)如图,直线,45,20AB CD ABE D Ð=Ð=°°∥,则E Ð的度数为( )A. 20°B. 25°C. 30°D. 35°【答案】B 【解析】先根据平行线的性质可得45ABE BCD ÐÐ==°,再根据三角形的外角性质即可得.,45AB CD ABE Ð=°Q ∥,45ABE BCD \=Ð=а,20D Ð=°Q ,25BCD D E Ð-Ð==\а,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.3. (2023内蒙古包头)如图,直线a b P ,直线l 与直线,a b 分别相交于点,A B ,点C 在直线b 上,且CA CB =.若132Ð=°,则2Ð的度数为( )A. 32°B. 58°C. 74°D. 75°【答案】C 【解析】由CA CB =,132Ð=°,可得1801742CBA CAB °-ÐÐ=Ð==°,由a b P ,可得2CBA Ð=Ð,进而可得2Ð的度数.∵CA CB =,132Ð=°,∴1801742CBA CAB °-ÐÐ=Ð==°,∵a b P ,∴274CBA Ð=Ð=°,故选:C .【点睛】本题考查了等边对等角,三角形的内角和定理,平行线的性质.解题的关键在于明确角度之间的数量关系.4. (2023山东东营)如图,AB CD ∥,点E 在线段BC 上(不与点B ,C 重合),连接DE ,若40D Ð=°,60BED Ð=°,则B Ð=( )A. 10°B. 20°C. 40°D. 60°【答案】B 【解析】根据三角形的外角的性质求得20C Ð=°,根据平行线的性质即可求解.∵40D Ð=°,60BED Ð=°,∴20C BED D Ð=Ð-Ð=°,∵AB CD ∥,∴B Ð=20C Ð=°,故选:B .【点睛】本题考查了三角形的外角的性质,平行线的性质,熟练掌握以上知识是解题的关键.5. (2023山东聊城)如图,分别过ABC V 的顶点A ,B 作AD BE P .若25CAD Ð=°,80EBC Ð=°,则ACB Ð的度数为( )A. 65°B. 75°C. 85°D. 95°【答案】B 【解析】根据两直线平行,同位角相等,得到80E ADC BC =°Ð=Ð,利用三角形内角和定理计算即可.∵AD BE P ,80EBC Ð=°,∴80E ADC BC =°Ð=Ð,∵25CAD Ð=°,∴71805ACB ADC CAD =°Ð=°-Ð-Ð,故选B .【点睛】本题考查了平行线的性质,三角形内角和定理,熟练掌握平行线性质是解题的关键.6. (2023深圳)如图为商场某品牌椅子侧面图,120DEF Ð=°,DE 与地面平行,50ABD Ð=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A 【解析】根据平行得到50ABD EDC Ð=Ð=°,再利用外角的性质和对顶角相等,进行求解即可.由题意,得:DE AB ∥,∴50ABD EDC Ð=Ð=°,∵120DEF EDC DCE Ð=Ð+Ð=°,∴70DCE Ð=°,∴70ACB DCE Ðа==;故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.7. (2023湖北荆州)如图所示的“箭头”图形中,AB CD ∥,80B D Ð=Ð=o ,47E F Ð=Ð=o ,则图中G Ð的度数是( )的A. 80oB. 76oC. 66oD. 56o【答案】C 【解析】延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,根据平行线的性质即可解答.如图,延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,4780,E F EBA FDC Ð=Ð=Ð=Ð=o o Q ,33EMA EBA E \Ð=Ð-Ð=°,33FNC FDC F Ð=Ð-Ð=°,,AB CD AB HG ∥∥Q ,HG CD \∥,33MGH EMA \Ð=Ð=°,33NGH FND Ð=Ð=°,333366EGF \Ð=°+°=°,故选:C .【点睛】本题考查了平行线的判定及性质,三角形外角的定义和性质,作出正确的辅助线是解题的关键.8. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°【答案】C 【解析】根据三角形外角的性质、平行线的性质进行求解即可;∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∥,∵AB CD∴∠A=∠D=30°,故选:C.【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.9.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70°B.75°C.80°D.85°【答案】B【解析】利用三角形内角和定理和平行线的性质解题即可.如图,∵∠2=90°﹣30°=60°,∴∠3=180°﹣45°﹣60°=75°,∵a∥b,∴∠1=∠3=75°.10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15°B.25°C.30°D.10°【答案】A.【解析】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键。

人教版八年级数学上册 专题复习:证明三角形全等的常见题型(含答案)

人教版八年级数学上册 专题复习:证明三角形全等的常见题型(含答案)

人教版八年级数学上册证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。

而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。

在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。

一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。

例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

证明∵BE=CF(已知),∴BE+ EF=CF+EF,即BF=CE。

在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。

∴ AF=DE(全等三角形对应边相等)。

2.证已知边的另一邻角对应相等,再用ASA证全等。

例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。

在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。

例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。

二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。

例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。

求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。

例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN,BM=DN。

八年级上学期数学三角形复习专题

八年级上学期数学三角形复习专题

八年级上学期数学三角形复习专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级上学期数学三角形复习专题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级上学期数学三角形复习专题的全部内容。

八年级学上三角形专题一、三角形相关概念1.三角形的概念由叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示:通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条 ,可以度量,而角的平分线是经过角的顶点且平分此角的一条.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连一个和它的对边的叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理①三角形两边之和第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a—c,c>b—a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.(四)三角形的内角结论1:三角形的内角和为°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于 . ②三角形的一个外角大于 . 如图中,∠ACD=∠A+∠B , ∠ACD 〉∠A , ∠ACD>∠B. ③三角形的一个外角与与之相邻的内角互补3.外角个数 过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.(六)多边形(补充性)①多边形的对角线 条对角线 ②n 边形的内角和为 ③多边形的外角和为 考点11、下列说法错误的是( ) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册三角形 专题复习
基础知识回顾:
1、三角形的内角和等于 ,三角形的外角等于与它 的两个内角的和。

2、三角形的任意两边之和 第三边,任意两边之差 第三边。

3、全等三角形的对应边 ,对应角 .证明两个三角形全等的方法有:SSS , , ,AAS , (只适用于直角三角形)。

4、角平分线上的点到角两边的距离 ;到角两边距离 的点在角的平分线上。

5、线段垂直平分线上的点到线段两个端点的距离 ;到线段两个端点距离相等的点,在这条线段的 。

6、等腰三角形性质:
]
(1)等腰三角形两腰 ;(2)等边对 ;
(3)三线合一:顶角平分线,底边上的中线,底边上的高互相 。

7、等腰三角形判定:
(1)有两条边 的三角形是等腰三角形;
(2)有两个角 的三角形是等腰三角形,简称“等角对等边”。

8、等边三角形的判定方法是:有一个角是60°的 三角形是等边三角形;有两个角是 的三角形是等边三角形;三边 的三角形是等边三角形。

达标练习:
1、如图,∠1=100°,∠C =70°,则∠A 的大小是( )
* ° ° ° °
2、如图,△ABC 中,AB =AC ,∠B =70°,则∠A 的度数是( )
° ° ° °
3、三角形的下列线段中一定能将三角形的面积分成相等两部分的是( )
{
A.中线
B.角平分线
C.高
D.中位线
4、下列各组数可能是一个三角形的边长的是( )
,2,4 ,5,9 ,6,8 ,5,11
5、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )
或20
6、如图,AB ∥CD ,∠A+∠E =75°,则∠C 为( )
° ° ° °
7、如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD =2BD ,BE =CE ,设△ADF 的面积为S 1,△CEF 的面积为S 2,若ABC S =6,则S 1-S 2= 。

( 第2题 第1题 第6题
8、如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE (不标注新的字母,不添加新的线段),你添加的条件是 。

9、若实数x 、y 满足4-x +8-y =0,则以x ,y 的值为边长的等腰三角形的周长为 。

10、如图,在△ABC 中,∠B =47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC = °。

11、如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则∠EBC 的数为 。

12、如图,在△ABC 中,AB =AD =DC ,∠BAD =20°,则∠C = 。

13、如图,CD =CA ,∠1=∠2,EC =BC 。

求证:DE =AB 。

)
;
14、如图,AD ∥BC ,BD 平分∠ABC 。

求证:AB =AD 。

>
15、如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC =BD 。

求证:(1)BC =AD ;
(2)△OAB 是等腰三角形。


第7题 第8题
" 第10题
第11题 第12题
第13题 第14题
第15题
"
16、已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC。

(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由。

第16题
~

17、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA。

(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:ME=BD。

"
第17题
^
,
.
*
参考答案
基础知识:
1、180°,不相邻。

2、大于,小于。

3、相等,相等,SAS,ASA,HL。

4、相等,相等,
5、相等,垂直平分线上。

6、(1)相等;(2)等角;(3)重合。

-
7、(1)相等;(2)相等。

8、等腰,60°,相等。

达标练习:
1、C;
2、D;
3、A;
4、C;
5、C;
6、C;
7、1;
8、AB=AC(或AD=AE 或BD=CE或BE=CD或EF=DF或BF=CF)。

9、20;10、;11、36°;12、40°。

13、证明:∵∠1=∠2,
∴∠BCA=∠ECD。

在△BCA和△ECD中,
BC EC
BCA ECD CA CD
=
∠=∠
=








.
∴△BCA≌△ECD(SAS)。

∴DE=AB。

14、证明:∵AD∥BC,
∴∠DBC=∠ADB。

又∵BD平分∠ABC,
∴∠ABD=∠DBC。

∴∠ABD=∠ADB,
∴AB=AD。

[
15、(1)证明:∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°。

在Rt△ACB和Rt△BDA中,
AB BA AC BD
=
=





∴△ACB≌△BDA(HL)。

∴BC=AD。

(2)证明:由△ACB≌△BDA,得∠CAB=∠DBA,∴△OAB是等腰三角形。

16、(1)证明:∵OB=OC,。

∴∠OBC=∠OCB。

∵BD、CE是两条高,
∴∠BDC=∠CEB=90°。

又∵BC=CB,
∴△BDC≌△CEB(AAS),
∴∠DCB=∠EBC。

∴AB=AC,即△ABC是等腰三角形。

(2)点O是在∠BAC的角平分线上。

|
理由:连接AO。

∵△BDC≌△CEB,
∴DC=EB,CE=BD。

∵OB=OC,
∴OD=OE。

又∵∠BDC=∠CEB=90°,AO=AO,
∴△ADO≌△AEO(HL)。

∴∠DAO=∠EAO,
∴点O是在∠BAC的角平分线上。

17、(1)证明:在等腰直角△ABC中,∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD,
∴△BDC≌△ADC,
∴∠DCA=∠DCB=45°。

由∠BDE=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDE=∠EDC,
∴DE平分∠BDC。

(2)证明:连接MC,
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD。

又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC。

又∵CE=CA,
∴∠DAC=∠CEM=15°,
∴△ADC≌△EMC,
∴EM=AD=DB。

相关文档
最新文档