相似三角形动点问题课件 PPT
相似三角形的性质ppt课件-2024鲜版
不同的判定方法有不同的适用条件,应根 据题目条件选择合适的判定方法。
忽视单位换算
在实际问题中,不同单位之间的换算可能 导致计算错误,应注意单位统一。
25
拓展延伸:相似多边形性质探讨
相似多边形的定义与性质
两个多边形如果它们的对应角相等且对应边成比例,则称这两个多边形相似。相似多边形 的性质与相似三角形类似,包括对应角相等、对应边成比例、面积比等于相似比的平方等 。
20
解决角度问题
2024/3/28
利用相似三角形对应角相等的性质,求解 未知角度。 通过构造相似三角形,利用已知角度求解 其他角度。 应用相似三角形性质于实际问题中,如测 量角度、计算角度等。
21
解决面积问题
利用相似三角形面积比等于相似 比的平方的性质,求解未知面积
。
2024/3/28
通过构造相似三角形,利用已知 面积求解其他面积。
在证明两个三角形相似时 ,有时可以通过证明两个 三角形全等来得出相似的 结论。
2024/3/28
02
相似三角形对应边成比例
7
对应边比例关系
2024/3/28
01
相似三角形对应边之间的比例相
等,即若两个三角形ABC和
A'B'C'相似,则有AB/A'B'
=
BC/B'C' = CA/C'A'。
02
相似比:相似三角形对应边之间 的比例称为相似比。
判定定理2
判定定理3
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形 相似。
如果两个三角形的三组对应边的比相等,那 么这两个三角形相似。
25.6 相似三角形的应用课件(共22张PPT)
求不能直接测量物体的宽度的实际问题,同样可以构造两个相似直角三角形,通过相似三角形的性质求解.
1.A字型.
2.X字型.
1.在某一时刻,测得一根长为1.8 m的竹竿的影长为3 m,同时测得一栋高楼的影长为90 m,这栋高楼的高度为多少?
解得x = 54,
即这栋高楼的高度为54 m.
随堂练习
如图,在学校操场上,高高耸立的旗杆上悬挂着五星红旗.你一定想知道学校操场上旗杆的高度,那么怎样测量和计算旗杆的高呢?(1)请设计一个测量旗杆高度的方案,说明理由,并与大家交流.(2)思考下面“大刚设计的方案”是否可行.如果可行,请说明其中的道理.若标杆CD=2 m,标杆影子BD=3 m,旗杆影子BO=12 m,求旗杆的高.
探究二
知识点2 利用相似三角形求距离
1.如图25-6-5,在一条小河的北岸A处有一古塔,南岸C处有一观景台.为求古塔和观景台之间的距离,请你设计测量方案,并给出计算结果.2.如图25-6-6,小明给出的测量方案是否可行?若可行,请按他的测量方案和所得数据求出结果.
解:构造相似三角形求解.
例2 如图,△ABC为一块铁板余料.已知BC=120 mm,高AD=80 mm.要用这块余料裁出一个正方形材料,且使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形的边长应为多少毫米?
解:∵ ∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST. ∴ ,即 , ,PQ×90=(PQ+45)×60.
解得PQ=90(m).因此河宽大约为 90 m.
已测得 QS = 45 m,ST = 90 m,QR = 60 m,请根据这些数据,计算河宽 PQ.
第 二十五章 图形的相似能运用三角形相似知识解决不能直接测量物体的高度和距离等实际问题.
第12讲相似三角形的判定复习课件(共46张PPT)
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图
相似三角形的性质pptPPT课件-2024鲜版
解决实际问题举例
航海问题
在航海中,可以利用相似三角形来测量船只与陆地之间的距离。通过观测陆地 上的两个目标点,并测量它们与船只之间的夹角,可以构造相似三角形,进而 计算出船只与陆地之间的距离。
军事应用
在军事领域,相似三角形可以用于计算炮弹的射程和角度。通过观测目标点和 测量炮弹的初速度、角度等信息,可以构造相似三角形,从而计算出炮弹的落 点和命中目标的可能性。
18
2024/3/28
05
总结与回顾
19
知识点总结
• 相似三角形的定义:两个三角形如果它们的对应角相等, 则称这两个三角形相似。
2024/3/28
20
知识点总结
相似三角形的性质 对应角相等; 对应边成比例;
2024/3/28
21
知识点总结
2024/3/28
面积比等于相似比的平方。 相似三角形的判定 两角对应相等,则两个三角形相似;
对应角相等是相似三角形 的基本性质之一,也是判 断两个三角形是否相似的 重要依据。
在几何学中,对应角相等 通常用于证明两个三角形 相似或全等。
8
对应边成比例
当两个三角形相似时,它们的对应边成比例。
对应边成比例是相似三角形的另一个基本性质,它表明相似三角形的各边长度之间 的比例关系。
2024/3/28
1. 题目
已知△ABC和△DEF中,∠A=∠D, ∠B=∠E,则△ABC和△DEF一定相
似吗?为什么?
答案
是的,因为两个三角形中有两组对 应角相等,根据相似三角形的判定 条件,可以判定△ABC和△DEF相似。
2024/3/28
答案
已知△ABC和△DEF的相似比为2:3, 且△ABC的面积为16cm²,求△DEF 的面积。
相似三角形的判定PPT课件
3.4.1 类似三角形判定的基本定理
复习导入
定义
全等三
角形
三角、三边对应相等
的两个三角形全等
类似三 三角对应相等, 三边对应
角形
成比例的两个三角形类似
判定方法
边
角
边
角
边
角
角
角
边
边
边
边
斜边与直角边
(直角三角形)
探究新知
如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.
∴
=
=
∠EAO=∠BAC,
∠AEO=∠B,
∠AOE=∠ACB,
当堂练习
2. 如图,已知点O在四边形ABCD的对角线AC上,OE∥CB,OF∥CD.试判
断四边形AEOF与四边形ABCD是否类似,并说明理由.
∵OF∥CD,∴△AFO∽△ADC,
∴
=
=
∠FAO=∠DAC,
DE至点F,使DE=EF. 求证:△CFE∽△ABC.
证明 ∵DE∥BC,点D为△ABC的边AB的中点,
∴AE=CE.
又∵DE=FE,∠AED=∠CEF,
∴△ADE≌△CEF.
∵DE∥BC,
∴△ADE∽△ABC.
∴△CFE∽△ABC.
知识要点
平行于三角形一边的直线与其他两边相交,截得的三角形与原
三角形类似.
求证:只要DE//BC,△ADE与△ABC始终类似.
证明:在△ADE与△ABC中,∠A=∠A.
∵DE∥BC,
分析:根据类似三角形的定
义去证明,三角对应相等,
三边对应成比例。
《相似三角形》相似图形PPT课件
定义
两个多面体,如果它们的对应角相等,对应边长 成比例,则称这两个多面体相似。
1. 对应角相等
通过测量或计算验证两个多面体的对应角是否相 等。
3
2. 对应边长成比例
通过测量或计算验证两个多面体的对应边长是否 成比例。
性质总结
性质一
相似多面体的对应面面 积之比等于相似比的平
方。
性质二
相似多面体的对应体积 之比等于相似比的立方
案例分析
测量河流宽度
通过构造相似三角形,可以测量 河流的宽度,为水利工程和桥梁
建设提供重要数据支持。
估算森林面积
利用航空照片和相似三角形的原理 ,可以对森林面积进行估算,为林 业资源管理和生态保护提供依据。
分析交通事故原因
在交通事故分析中,相似三角形可 以帮助分析事故原因,确定责任方 ,为交通事故处理提供科学依据。
。
性质三
相似多面体的对应棱的 中线之比等于相似比。
性质四
相似多面体的对应高的 比、对应中线的比和对 应角平分线的比都等于
相似比。
应用前景展望
建筑设计
在建筑设计中,利用相似多面体 的性质可以方便地按比例缩放建 筑模型,以适应不同规模和需求
的设计项目。
艺术创作
在机械、航空等工程领域,相似 多面体的概念可用于按比例放大 或缩小零部件和装置,以简化设
。
相似比与对应角关系
01
02
03
相似比
两个相似三角形的对应边 之间的比值称为相似比。
相等性
相似三角形的对应角相等 。
互补性
如果两个角在一个三角形 中是互补的,那么它们在 另一个相似三角形中也是 互补的。
性质总结
对应边成比例
相似三角形PPT课件
通过构造相似三角形,使得已知三角 形和未知三角形分别对应相似三角形 的对应边和对应高,从而求解未知三 角形的面积。
对于三维几何体,可以利用相似三角 形的性质求解其体积。例如,对于两 个相似的棱锥,其体积之比等于其对 应边长之比的立方。
平行线截割定理
定理内容
两条平行线被一组横截线所截, 则对应线段成比例。
定理证明
通过构造相似三角形,利用相似三 角形的性质证明。
应用举例
证明线段成比例、求解线段长度等 。
射影定理
定理内容
在直角三角形中,斜边上的高是 两直角边在斜边上射影的比例中 项;每一条直角边是这条直角边 在斜边上的射影和斜边的比例中
性质
相似三角形的对应角相等 ,即如果∠A = ∠A',∠B = ∠B',则∠C = ∠C'。
判定方法
可以通过测量两个三角形 的对应角来判断它们是否 相似。
对应边成比例
定义
如果两个三角形的对应边 成比例,则称这两个三角 形相似。
性质
相似三角形的对应边成比 例,即如果AB/A'B' = BC/B'C' = CA/C'A',则 △ABC ∽ △A'B'C'。
项。
定理证明
通过构造相似三角形,利用相似 三角形的性质证明。
应用举例
求解直角三角形中的边长、角度 等问题。
直角三角形中特殊角性质
30°角所对直角边等于斜边一半
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
45°角所对直角边等于斜边一半乘以√2
25.5 相似三角形的性质课件(共24张PPT)
例题示范
知识点2 相似三角形的性质定理2问题3 △ABC的周长和△A1B1C1的周长的比与它们的相似比有什么关系?请说明理由.
求证:相似三角形周长的比等于相似比.
证明:设△ABC∽△A1B1C1,相似比为k,
2.若△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC,AC,A′B′,A′C′的长.
解:∵△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm, ∴ , ∵AB=15 cm,B′C′=24 cm, ∴BC=20 cm, AC=25 cm, A′B′=18 cm,A′C′=30 cm.
结论:相似三角形对应高的比等于相似比.
思考:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?问题2 图中△ABC和△A′B′C′相似,AD,A′D′分别为对应边上的中线,BE,B′E′分别为对应角的角平分线,那么它们之间有什么关系呢?
(2)已知:两个三角形相似比为k,即 .求证: .
问题引入
如图,△ABC∽△A′B′C′,相似比为k.AD与A'D',AE与A'E'分别为BC,B'C'边上的高和中线,AF与A'F'分别为∠BAC=∠B'A'C'的平分线.(1)AD和A'D'的比与相似比之间有怎样的关系?请说明理由.(2)AE和A'E'的比、AF和A'F'的比分别与相似比有怎样的关系?请说明理由.
第二十五章 图形的相似
《相似三角形》完整版教学课件
易错点及注意事项
易错点
在判定两个三角形是否相似时,容易 忽略对应角和对应边的关系,导致判 断错误。
注意事项
在解答相似三角形问题时,要注意单 位统一和比例关系的正确应用,避免 计算错误。
拓展知识点介绍
射影定理
在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射 影和斜边的比例中项。
、建筑物等的高度。
又如,利用相似三角形的性质, 可以测量河流的宽度或海峡的宽
度等。
求解比例尺问题
比例尺是一种表示实际距离与地图上 距离之间比例关系的工具。
例如,已知比例尺和地图上的距离, 可以计算出实际的距离;反之,已知 实际距离和比例尺,也可以计算出地 图上的距离。
利用相似三角形的性质,可以通过比 例尺求解实际距离或地图上距离。
相似比概念
相似比
相似三角形对应边的比值叫做相似比 。
性质
相似三角形的周长之比等于相似比, 面积之比等于相似比的平方。
应用举例
利用相似三角形测量高度
01
通过构造相似三角形,可以测量出建筑物、山峰等高大物体的
高度。
利用相似三角形证明几何题
02
在几何证明题中,经常需要利用相似三角形的性质来证明线段
或角的相等或比例关系。
对应边与相似比关系
在相似三角形中,对应边的长度之比等于相似比。通过已知 的两边长度,可以计算出相似比,进而求出第三边的长度。
面积比与相似比关系
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方。这是因为在相似三角形中,面积与对应边长度的平方成正 比。
利用面积过开方运算求出它们的相似比。
性质应用举例
2024版相似三角形ppt初中数学PPT课件
相似三角形ppt初中数学PPT课件目录CONTENCT •相似三角形基本概念与性质•相似三角形在几何图形中应用•相似三角形在解决实际问题中应用•相似三角形证明方法探讨•典型例题解析与练习•课堂小结与拓展延伸01相似三角形基本概念与性质01020304定义AAA 相似SAS 相似SSS 相似定义及判定方法如果两个三角形有两组对应边成比例且夹角相等,则这两个三角形相似。
如果两个三角形的三组对应角分别相等,则这两个三角形相似。
两个三角形如果它们的对应角相等,则称这两个三角形相似。
如果两个三角形的三组对应边成比例,则这两个三角形相似。
相似比与对应角关系相似比两个相似三角形的对应边之间的比值称为相似比。
相等角两个相似三角形的对应角相等。
补角两个相似三角形的非对应角互为补角。
两个相似三角形的对应边之间的比值相等。
对应边成比例两个相似三角形的对应高、中线、角平分线之间的比值也相等,且等于相似比。
对应高、中线、角平分线成比例两个相似三角形的面积之比等于相似比的平方。
面积比等于相似比的平方两个相似三角形的周长之比等于相似比。
周长比等于相似比性质总结02相似三角形在几何图形中应用平行线间距离问题利用相似三角形性质求解平行线间距离通过构造相似三角形,利用对应边成比例的性质,可以求解平行线间的距离。
平行线间距离与相似三角形关系平行线间距离与相似三角形的对应高成比例,因此可以通过相似三角形性质求解平行线间距离。
角度平分线问题利用相似三角形性质求解角度平分线问题通过构造相似三角形,利用对应角相等的性质,可以求解角度平分线问题。
角度平分线与相似三角形关系角度平分线将相邻两边按照相同比例分割,因此可以通过相似三角形性质求解角度平分线问题。
直角三角形中特殊应用利用相似三角形性质求解直角三角形中特殊应用在直角三角形中,通过构造相似三角形,利用对应边成比例的性质,可以求解一些特殊问题,如勾股定理、射影定理等。
直角三角形中特殊应用与相似三角形关系在直角三角形中,一些特殊应用可以通过构造相似三角形进行求解,这些应用与相似三角形的性质密切相关。
相似三角形的性质PPT通用课件
相等
1、相似三角形对应边成____,对应角______.
2、相似三角形对应边上的高、对应边上的中线、
相似比
对应角平分线的比都等于________.
相似比
3、相似三角形周长的比等于________,
相似三角形面积的比等于______________.
当堂训练
1.已知△ABC∽△DEF,BG、EH分别是△ABC和 △DEF的
求它们的相似比. 1∶4
1∶4
(2) △ADE的周长︰△ABC的周长=_______.
A
SADE
.
(3)
_______
D
E
S
ABC
(4)
SADE
S四边形BCED
1
15
B
C
7、如图,在 ABCD中,若E是AB的中点,
1:2
则(1)∆AEF与∆CDF的相似比为______.
AE 1
线AD=40cm,要把它加工成正方形零件,使正方
形的一边在BC上,其余两个顶点分别在AB,AC上
(1)△ ASR与△ ABC相似吗?为什么?
(2)求正方形SPQR的面积。
A
S
B
P
E R
D
Q
C
A
例题解析
(1)△ASR与△ABC相似吗?为什么?
40
(2)求正方形PQRS的面积.
分析:(1) △ASR∽△ABC.理由是:
100厘米、40厘米
———————。
(2)它们的面积之和是58平方厘米,这
两个三角形的面积分别是——————
50平方厘米、8平方厘米
——。
(1)与(2)的相似比=______
(完整)相似三角形精品PPT资料精品PPT资料
基础训练
口答: (4)如图,正方形的边长a=10,菱形的
边长b=5,它们相似吗?请说明理由.
倍 速 课 时 学 练
基础训练
6 65╰0
3
800
图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似.
• 练习: 成比例线段,并用比例式表示.
课 时 学 练
探索一
图中两个四边形是相似形,仔细观察这两 个图形,它们对应边之间存在怎样的关系? 对应角之间又有什么关系?
倍 速 课 时 学 练
探索二
再看看图中两个相似的五边形,是否 与你观察所得到的结果一样?
倍 速 课 时 学 练
形成认识:
1.相似多边形的特征:
对应边成比例,对应角相等.
符号语言(以四边形为例):
a =360°-(77°+83°+117°)=83° y的长度和角度a的大小.
800
x
5
• ⑴如图1,则x= 2.5,y 这些图形都有什么共同特征?
两个任意三角形是相似图形吗?
比是_________.
= 1,.5 α= ;90 这些图形都有什么共同特征?
0
相似图形:我们把这种形状相同的图形说成是相似图形
╮1250
y
图1
α╭ 3
用复印机把一个图形放大或缩小所所得的图形,也都与原来的图形相似.
• ⑵如图2,x= 22.5. 义务教育课程标准实验教科书
实际的建筑物和它的模型是相似的;
义务教育课程标准实验教科书
倍如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似.
30
15
25.3 相似三角形课件(共18张PPT)
知识点1 相似三角形的有关概念
∠A=∠A',∠B=∠B',∠C=∠C',
如图,在△ABC和△A'B'C'中,如果
即△ABC与△A'B'C'相似.△ABC与△A'B'C'的相似比为k.
对应角相等、对应边成比例的的两个三角形叫做相似三角形.相似三角形对应边的比叫做它们的相似比.
新知引入
相似用符号“∽”表示,读作“相似于”.△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.
若表示为△ABC∽△DEF,一般A与D,B与E,C与F分别对应.
例题解析
例 如图,△AEF∽△ABC.(1)若AE=3,AB=5,EF=2.4,求BC的长.(2)求证:EF//BC.
解:∵DE⊥AC,BC⊥AC, ∴DE∥BC, ∴△ADE∽△ABC, ∴ , ∴ , ∴AD=7×55=385 cm, ∴梯子长AB=AD+BD=385+55=440 cm.
3.已知△ABC∽△ , ∠A=50°,∠B=95°,则∠ 等于( ) A.95° B.50° C.35° D.25°4. 若△ABC∽△ ,且AB=1, , ,则△ABC与△ 的相似比k为_____, △ 与△ABC的相似比 为______.
课堂小结
2.用平行线判定三角形相似的定理: 平行于三角形一边的直线和其他两边(或它们的延长线)相交,所截得的三角形与原三角形相似.
1.对应角相等、对应边成比例的两个三角形叫做相似三角形. 相似三角形对应边的比叫做它们的相似比.
相似三角形ppt教学课件完整版
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应
《相似三角形》PPT课件
C
证明:∵ ∠BAC=90° AD⊥BC
∴ ∠ABC+∠C= 90° ∠ABC+∠BAD= 90°
∴ ∠BAD= ∠C ∵ ∠ADC= 90°
E是AC的中点, ∴ED=EC ∴ ∠EDC= ∠C ∵ ∠EDC = ∠BDF
∴ ∠BDF= ∠C= ∠BAD
又∵ ∠F =∠F
∴ △BDF∽△DAF.
∴ BD DF
所在的三角形相似。
O E
证明:∵ AB∥CD
∴ ∠C=∠A ∵ AO=OB,DF=FB
A
F
B
∴ ∠A= ∠B, ∠B= ∠FDB
∴ ∠C= ∠FDB
又 ∵ ∠DEO= ∠DEC
∴ △EDC∽△EOD
∴
ED EO
EC =ED
,即 ED2=EO ·EC
3. 过◇ABCD的一个顶点A作一直线分别交对角线BD、边
否则给出肯定的证明.
小结:
通这一节的复习之后你有哪些收获?
谢谢
A
解:有相似三角形,它们是: △ADE∽ △BAE, △BAE ∽ △CDA ,△ADE∽ △CDA B ( △ADE∽ △BAE ∽ △CDA)
1 2E C D
G
F
2.△在ABC中,AB>AC,过AB上一点D作直线 DE交另一边于E,使所得三角形与原三角形相 似,画出满足条件的图形.
A
A
A
A
E
D
AD AF
∵ ∠BAC=90°, AD⊥BC
∴ △ABC∽△ABD ∴ AB BD
AC AD
∴
AB DF AC AF
二、探索题
1、条件探索型
1.已知:如图,△ABC中,P是AB边上的一点,连 结CP.满足什么条件时△ ACP∽△ABC.
《相似三角形的性质和判定》PPT课件
全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似
。
02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
相似三角形的动点问题(共6张PPT)
当△ABC与△ADE相似时,会有什么情况?
在△ABC中,点D、E分别是边AB、 AC上的动点:
如果P、Q分别从B、C同时出发,问:
△PAD和△PBC相似,求PD的值。
当△ABC与△ADE相似时,会有什么情况?
当∠ B =_______或
时△ABC∽△AED
△PAD和△PBC相似,求PD的值。
△PAD和△PBC相似,求PD的值。
相似三角形的动点问题
第1页,共6页。
常见的相似三角形的基本图形:
(7)
第2页,共6页。
在△ABC中,点D、E分别是边AB、 AC上的动点:
当∠ B =_______或
= 时△ABC∽△ADE
当∠ B =_______或
= 时△ABC∽△AED
思考:
当△ABC与△ADE相似时,会有什么情况?
第3页,共6页。
△PAD和△PBC相似,求PD的值。
当△ABC与△ADE相似时,会有什么情况?
当△ABC与△ADE相似时,会有什么情况?
点P从点B出发,沿着BC向点C以2cm/秒的速度移动;点Q从点C出发,沿着CA向点A以1cm/秒的速度移动。
如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有动点P使
② 经过多少秒时以C、P、Q为顶点的三角形恰好与⊿ABC
相似?
A
A
Q Q
B
P
CB
P
C
③求当t为何值时,S⊿CPQ的最大值和S四边形ABPQ的最小值?
第6页,共6页。
如图,AD∥BC,∠D=90°,DC=7,
AD=2,BC=4.若在边DC上有动点P,
△PAD和△PBC相似,求PD的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形动点问题课件
回顾旧知:
1、如图△ABC中,D、E分别是AB、AC上的点, 在下列条件下:①∠AED=∠B;②AD:AC=AE:AB; ③DE:BC=AD:AC.能判定△ADE与ACB相似的是 ( )A A.①② B.①③ C.①②③ D.①
2.如图,在△ABC中,AB=24,AC=18,D是AC上
个?画出DE,并说明理由。
A
E3
E1
D
B
E2(3) E4
C
典例分析
• 如图,在△ABC中,AB=10cm,BC=20cm,AC=16cm,
点P从点A开始沿A---B边向B点以2cm/s的速度移动,
点Q从点B开始沿B---C边向点C以4cm/s的速度移动,
同时出发,到端点则停止,问经过几秒钟,△PBQ
一点,AD=12.在AB上取一点E.使A、D、E三点
组成的三角形与△ABC相似,则AE的长为( D )
A.16
B.14 C.16或14 D.16或9
合作探究
D点是△ABC的边AC上的一点,E点能够
在AB和BC上运动。当E点在什么位置时,点
D、点E和△ABC的一个顶点组成的小三角形
与△ABC相似。问:这样的三角形可以画几
A
B
C
当堂检测
1、已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别 是AB、BC上运动的两点.若P自点A出发,以1cm/s的速 度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿 BC方向运动,问经过几秒,以P、B、Q为顶点的三角形 与△BDC相似?
2、如图所示,梯形ABCD中,AD∥BC, ∠A=90°,AB=7cm,AD=2cm,BC=3cm,P点 以1cm/s的速度从A往B运动,经过几秒,使 得以P,A,D为顶点的三角形与以P,B,C 为顶点的三角形相似.
拓展提升
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC: BC=4:3,点P从点A出发沿AB方向向点B运动,速 度为1cm/s,同时点Q从点B出发沿B→C→A方向向 点A运动,速度为2cm/s,当一个运动点到达终点 时,另一个运动点也随之停止运动。当运动过程 中,以点B、P、Q为顶点的三角形与△ABC是否相 似,如果相似请求出时间t,如果不相似请说明理由;
或
10 2t 4t 20 10
解得 t=2.5 或 t=1
经检验2.5s或1s 都在5s 之内,
∴经过2.5s或1s 时, △PBQ与△ABC相似。
归纳小结: 通过上面的例题,动点形成相似三角形是由什么判定?
由两边成比例且夹角相等。
A
A
D
E
D E
B
C
B
C
AD AE AB AC
AD AE AC AB
与△ABC相似?
.A
P
.
B
Q
C
解:设经过t秒后, △PBQ与△ABC相似, 由已知可得:AP=2t cm, BP=( 10-2t)cm, BQ=4t cm, 且P,Q两点运动的时间都为5s.
∵ ∠B= ∠B
∴当 BP BQ 或 BP BQ 时两个三角形相似,
BA BC
BC BA
即Hale Waihona Puke 102t 4t 10 20
注意:1、先把动态的线段用含t的式子表示再列出方程 2、两个比例式只需要调换分母 3、要检验得到的答案是否在取值范围之内
举一反三
1、在典例分析中,如果将Q点速度改为10cm/s, 其余条件不变,则t为多少时两个三角形相似?
A
B
C
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
2、在典例分析中,若点P从点B向A点移动,点Q从点C 向移动,速度不变,同时出发,问经过几秒钟, △PAQ与△ABC相似. (列出方程即可)