2018-2019学年广东省深圳市福田区九年级(上)期末数学试卷
广东省深圳市南山区九年级(上)期末数学试卷含答案
2018-2019学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题:(每题3分,共36分)1.(3分)如图所示的工件的主视图是()A .B .C .D .2.(3分)反比例函数y =﹣的图象在()A .第一、三象限C .第二、四象限B .第一、二象限D .第三、四象限3.(3分)如图,直线l 1∥l 2∥l 3,两条直线AC 和DF 与l 1,l 2,l 3分别相交于点A 、B 、C 和点D 、E 、F .则下列比例式不正确的是()A .=B .=C .=D .=4.(3分)下列说法不正确的是()A .所有矩形都是相似的B .若线段a =5cm ,b =2cm ,则a :b =5:2C .若线段AB =cm ,C 是线段AB 的黄金分割点,且AC >BC ,则AC =cmD .四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段5.(3分)根据下面表格中的对应值:xax +bx +c 2 3.24﹣0.022 3.250.01 3.260.03判断关于x 的方程ax +bx +c =0(a ≠0)的一个解x 的范围是()A .x <3.24C .3.25<x <3.26B .3.24<x <3.25D .x >3.266.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形7.(3分)一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A .红球比白球多C .红球,白球一样多B .白球比红球多D .无法估计8.(3分)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .C .D .229.(3分)设a 、b 是两个整数,若定义一种运算“△”,a △b =a +b +ab ,则方程(x +2)△x =1的实数根是()A .x 1=x 2=1B .x 1=0,x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣210.(3分)如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N .设△BPQ ,△DKM ,△CNH 的面积依次为S 1,S 2,S 3.若S 1+S 3=20,则S 2的值为()A .6B .8C .10D .1211.(3分)某县为做大旅游产业,在2015年投入资金3.2亿元,预计2017年投入资金6亿元,设旅游产业投资的年平均增长率为x ,则可列方程为()A .3.2+x =6C .3.2(1+x )=6B .3.2x =6D .3.2(1+x )=6212.(3分)如图,正方形ABCD 中,点E 、F 、G 分别为边AB 、BC 、AD 上的中点,连接AF 、DE 交于点M ,连接GM 、CG ,CG 与DE 交于点N ,则结论①GM ⊥CM ;②CD =DM ;③四边形AGCF 是平行四边形;④∠CMD =∠AGM 中正确的有()个.A .1B .2C .3D .4二、填空题:(每题3分,满分12分)13.(3分)顺次连接矩形各边中点所得四边形为形.14.(3分)已知点A (x 1,3),B (x 2,6)都在反比例函数y =或“>”或“=”)15.(3分)如图,在Rt △ABC 纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm ,则这个展开图可折成的正方体的体积为cm .3的图象上,则x 1x 2(填“<”16.(3分)如图,正方形ABCD 的边长为5,点A 的坐标为(﹣4,0),点B 在y 轴上,若反比例函数y =(k ≠0)的图象过点C ,则该反比例函数的表达式为;三、解答题:(17题6分,18题6分,19题7分,20题、21题、22题每题8分,23题9分,共52分)17.(6分)用适当的方法解下列方程:(1)(x ﹣2)﹣16=0(2)5x +2x ﹣1=0.18.(6分)如图,在6×8的网格图中,每个小正方形边长均为1dm ,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1:2;(2)台风“山竹”过后,深圳一片狼藉,小明测量发现一棵被吹倾斜了的树影长为3米,与地面的夹角为45°,同时小明还发现大树树干和影子形成的三角形和△ABC 相似(树干对应BC 边),22求原树高(结果保留根号)19.(7分)阅读对话,解答问题:(1)分别用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a ,b )的所有取值;(2)求在(a ,b )中使关于x 的一元二次方程x ﹣ax +2b =0有实数根的概率.20.(8分)已知,如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作BD 的平行线,过点D 作AC 的平行线,两线交于点P .①求证:四边形CODP 是菱形.②若AD =6,AC =10,求四边形CODP 的面积.221.(8分)如图,在平面直角坐标系中,直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x >的解集;(3)将直线l 1:y =x 沿y 向上平移后的直线l 2与反比例函数y =在第二象限内交于点C ,如果△ABC 的面积为30,求平移后的直线l 2的函数表达式.22.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数不超过30件超过30件销售价格单价40元每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元23.(9分)已知:如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,点P 从点B 出发,沿BC 向点C 匀速运动,速度为lcm /s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为2cm /s ;当一个点停止运动时,另一个点也停止运动连接PQ ,设运动时间为t (s )(0<t <2.5),解答下列问题:(1)①BQ =,BP =;(用含t 的代数式表示)②设△PBQ 的面积为y (cm ),试确定y 与t 的函数关系式;(2)在运动过程中,是否存在某一时刻t ,使△PBQ 的面积为△ABC 面积的二分之一?如果存在,求出t 的值;不存在,请说明理由;(3)在运动过程中,是否存在某一时刻t ,使△BPQ 为等腰三角形?如果存在,求出t 的值;不存在,请说明理由.22018-2019学年广东省深圳市南山区九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每题3分,共36分)1.(3分)如图所示的工件的主视图是()A .B .C .D .【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项,难度适中.2.(3分)反比例函数y =﹣的图象在()A .第一、三象限C .第二、四象限B .第一、二象限D .第三、四象限【分析】根据反比例函数y =(k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大进行解答.【解答】解:∵k =﹣1,∴图象在第二、四象限,故选:C .【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.3.(3分)如图,直线l 1∥l 2∥l 3,两条直线AC 和DF 与l 1,l 2,l 3分别相交于点A 、B 、C 和点D 、E 、F .则下列比例式不正确的是()A .=B .=C .=D .=【分析】根据平行线分线段成比例即可得到结论.【解答】解:∵l 1∥l 2∥l 3,∴,,,,故选:D .【点评】本题主要考查平行线分线段成比例,掌握平行线所分线段对应成比例是解题的关键.4.(3分)下列说法不正确的是()A .所有矩形都是相似的B .若线段a =5cm ,b =2cm ,则a :b =5:2C .若线段AB =cm ,C 是线段AB 的黄金分割点,且AC >BC ,则AC =cmD .四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段【分析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【解答】解:所有矩形对应边的比不一定相等,不一定都是相似的,A 不正确,符合题意;若线段a =5cm ,b =2cm ,则a :b =5:2,B 正确,不符合题意;线段AB =则AC =cm ,C 是线段AB 的黄金分割点,且AC >BC ,AB =(cm ),C 正确,不符合题意;四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段,D 正确,不符合题意;故选:A .【点评】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.5.(3分)根据下面表格中的对应值:xax +bx +c 2 3.24﹣0.022 3.250.01 3.260.03判断关于x 的方程ax +bx +c =0(a ≠0)的一个解x 的范围是()A.x<3.24C.3.25<x<3.262B.3.24<x<3.25 D.x>3.26【分析】根据表中数据得到x=3.24时,ax+bx+c=﹣0.02;x=3.25时,ax+bx+c=0.01,则x取2.24到2.25之间的某一个数时,使ax+bx+c=0,于是可判断关于x的方程ax+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.【解答】解:∵x=3.24时,ax+bx+c=﹣0.02;x=3.25时,ax+bx+c=0.01,∴关于x的方程ax+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.故选:B.【点评】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.6.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.【点评】本题考查了正方形的判定,平行四边形的性质,菱形的性质,矩形的判定,熟练运用这些性质解决问题是本题的关键.7.(3分)一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多C.红球,白球一样多B.白球比红球多D.无法估计222222【分析】计算出摸出红球的平均数后分析,若得到到的平均数大于5,则说明红球比白球多,反之则不是.【解答】解:∵5位同学摸到红球的频率的平均数为∴红球比白球多.故选:A .【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.易错点是得到红球可能的情况数.8.(3分)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()=7,A .B .C .D .【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C .【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9.(3分)设a 、b 是两个整数,若定义一种运算“△”,a △b =a +b +ab ,则方程(x +2)△x =1的实数根是()A .x 1=x 2=1B .x 1=0,x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣222【分析】根据题中的新定义将所求方程化为普通方程,左边化为完全平方式,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:∵a △b =a +b +ab ,∴(x +2)△x =(x +2)+x +x (x +2)=1,整理得:x +2x +1=0,即(x +1)=0,解得:x 1=x 2=﹣1.故选:C .【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.10.(3分)如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N .设△BPQ ,△DKM ,△CNH 的面积依次为S 1,S 2,S 3.若S 1+S 3=20,则S 2的值为()222222A .6B .8C .10D .12【分析】由条件可证明△BPQ ∽△DKM ∽△CNH ,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S 2.【解答】解:∵矩形AEHC 是由三个全等矩形拼成的,∴AB =BD =CD ,AE ∥BF ∥DG ∥CH ,∴四边形BEFD ,四边形DFGC 是平行四边形,∠BQP =∠DMK =∠CHN ,∴BE ∥DF ∥CG∴∠BPQ =∠DKM =∠CNH ,∵△ABQ ∽△ADM ,△ABQ ∽△ACH ,∴==,==,∴△BPQ ∽△DKM ∽△CNH ,∴=,∴=,=,∴S 2=4S 1,S 3=9S 1,∵S 1+S 3=20,∴S 1=2,∴S 2=8.故选:B .【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法及相似三角形的面积比等于相似比的平方是解题的关键.11.(3分)某县为做大旅游产业,在2015年投入资金3.2亿元,预计2017年投入资金6亿元,设旅游产业投资的年平均增长率为x ,则可列方程为()A .3.2+x =6C .3.2(1+x )=6B .3.2x =6D .3.2(1+x )=62【分析】设这两年投入资金的年平均增长率为x ,根据题意可得,2015的投入资金×(1+增长率)2=2017年的投入资金,据此列方程.【解答】解:设这两年投入资金的年平均增长率为x ,由题意得,3.2(1+x )=6.故选:D .【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.(3分)如图,正方形ABCD 中,点E 、F 、G 分别为边AB 、BC 、AD 上的中点,连接AF 、DE 交于点M ,连接GM 、CG ,CG 与DE 交于点N ,则结论①GM ⊥CM ;②CD =DM ;③四边形AGCF 是平行四边形;④∠CMD =∠AGM 中正确的有()个.2A .1B .2C .3D .4【分析】要证以上问题,需证CN 是DN 是垂直平分线,即证N 点是DM 中点,利用中位线定理即可,利用反证法证明④不成立即可.【解答】解:∵AG ∥FC 且AG =FC ,∴四边形AGCF 为平行四边形,故③正确;∴∠GAF =∠FCG =∠DGC ,∠AMN =∠GND在△ADE和△BAF中,∵,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠ADE+∠AEM=90°∴∠EAM+∠AEM=90°∴∠AME=90°∴∠GND=90°∴∠DE⊥AF,DE⊥CG.∵G点为AD中点,∴GN为△ADM的中位线,即CG为DM的垂直平分线,∴GM=GD,CD=CM,故②错误;在△GDC和△GMC中,∵,∴△GDC≌△GMC(SSS),∴∠CDG=∠CMG=90°,∠MGC=∠DGC,∴GM⊥CM,故①正确;∵∠CDG=∠CMG=90°,∴G、D、C、M四点共圆,∴∠AGM=∠DCM,∵CD=CM,∴∠CMD=∠CDM,在Rt△AMD中,∠AMD=90°,∴DM<AD,∴DM<CD,∴∠DMC≠∠DCM,∴∠CMD ≠∠AGM ,故④错误.故选:B .【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用及平行四边形的性质的运用.在解答中灵活运用正方形的中点问题解决问题,灵活运用了几何图形知识解决问题.二、填空题:(每题3分,满分12分)13.(3分)顺次连接矩形各边中点所得四边形为菱形.【分析】作出图形,根据三角形的中位线定理可得EF =GH =AC ,FG =EH =BD ,再根据矩形的对角线相等可得AC =BD ,从而得到四边形EFGH 的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC 、BD ,∵E 、F 、G 、H 分别是矩形ABCD 的AB 、BC 、CD 、AD 边上的中点,∴EF =GH =AC ,FG =EH =BD (三角形的中位线等于第三边的一半),∵矩形ABCD 的对角线AC =BD ,∴EF =GH =FG =EH ,∴四边形EFGH 是菱形.故答案为:菱形.【点评】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.14.(3分)已知点A (x 1,3),B (x 2,6)都在反比例函数y =或“>”或“=”)【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k =﹣3,图象位于第二象限,或第四象限,在每一象限内,y 随x 的增大而增大,∵3<6,的图象上,则x 1<x 2(填“<”∴x 1<x 2,故答案为<.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.15.(3分)如图,在Rt △ABC 纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm ,则这个展开图可折成的正方体的体积为27cm .3【分析】首先设这个展开图围成的正方体的棱长为xcm ,然后延长FE 交AC 于点D ,根据三角函数的性质,可求得AC 的长,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:如图,设这个展开图围成的正方体的棱长为xcm ,延长FE 交AC 于点D ,则EF =2xcm ,EG =xcm ,DF =4xcm ,∵DF ∥BC ,∴∠EFG =∠B ,∵tan ∠EFG =∴tan B ==,=,∵BC =24cm ,∴AC =12cm ,∴AD =AC ﹣CD =12﹣2x (cm )∵DF ∥BC ,∴△ADF ∽△ACB ,∴即==,,解得:x =3,即这个展开图围成的正方体的棱长为3cm ,∴这个展开图可折成的正方体的体积为27cm .3故答案为:27.【点评】此题考查了相似三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.16.(3分)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为y=;【分析】过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO和△BCE全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO ≌△BCE (AAS ),∴OA =BE =4,CE =OB =3,∴OE =BE ﹣OB =4﹣3=1,∴点C 的坐标为(3,1),∵反比例函数y =(k ≠0)的图象过点C ,∴k =xy =3×1=3,∴反比例函数的表达式为y =.故答案为:y =.【点评】此题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D 的坐标是解题的关键.三、解答题:(17题6分,18题6分,19题7分,20题、21题、22题每题8分,23题9分,共52分)17.(6分)用适当的方法解下列方程:(1)(x ﹣2)﹣16=0(2)5x +2x ﹣1=0.【分析】(1)利用直接开平方法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵(x ﹣2)﹣16=0,∴(x ﹣2)=16,∴x ﹣2=4或x ﹣2=﹣4,2222解得:x 1=﹣2,x 2=6;(2)∵a =5,b =2,c =﹣1,∴△=2﹣4×5×(﹣1)=24>0,则x =即x 1==,x 2=,.2【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.(6分)如图,在6×8的网格图中,每个小正方形边长均为1dm ,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1:2;(2)台风“山竹”过后,深圳一片狼藉,小明测量发现一棵被吹倾斜了的树影长为3米,与地面的夹角为45°,同时小明还发现大树树干和影子形成的三角形和△ABC 相似(树干对应BC 边),求原树高(结果保留根号)【分析】(1)在OA ,OB ,OC 上分别截取OA ′=OA ,OB ′=OB ,OC ′=OC ,首尾顺次连接A ′,B ′,C ′即为所求;(2)先得出OB =OC =4,BC =4代入求出EF 即可得答案.【解答】解:(1)如图1所示,△A ′B ′C ′即为所求.,∠ABC =∠DEF =45°,从而由△DEF ∽△ABC 知=,(2)∵OB =OC =4,∴∠OBC =∠DEF =45°,BC =∵△DEF ∽△ABC ,∴=,即=,米.,=4,∴EF =2答:原树高为2【点评】此题考查了位似三角形的作法和勾股定理等知识,得出位似图形的对应点的坐标是解题关键.19.(7分)阅读对话,解答问题:(1)分别用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a ,b )的所有取值;(2)求在(a ,b )中使关于x 的一元二次方程x ﹣ax +2b =0有实数根的概率.【分析】(1)用列表法易得(a ,b )所有情况;(2)看使关于x 的一元二次方程x ﹣ax +2b =0有实数根的情况占总情况的多少即可.【解答】解:(1)(a ,b )对应的表格为:ab1234(1,1)(2,1)(3,1)(4,1)22123(1,2)(2,2)(3,2)(4,2)(1,3)(2,3)(3,3)(4,3)(2)∵方程x ﹣ax +2b =0有实数根,∴△=a ﹣8b ≥0.∴使a ﹣8b ≥0的(a ,b )有(3,1),(4,1),(4,2),∴.222【点评】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.注意本题是放回实验;一元二次方程有实数根,根的判别式为非负数.20.(8分)已知,如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作BD 的平行线,过点D 作AC 的平行线,两线交于点P .①求证:四边形CODP 是菱形.②若AD =6,AC =10,求四边形CODP 的面积.【分析】①根据DP ∥AC ,CP ∥BD ,即可证出四边形CODP 是平行四边形,由矩形的性质得出OC =OD ,即可得出结论;②根据勾股定理可求CD =8,由S△COD =S △ADC =××AD ×CD =12=S 菱形CODP ,可求四边形CODP 的面积.【解答】证明:①∵DP ∥AC ,CP ∥BD∴四边形CODP 是平行四边形,∵四边形ABCD 是矩形,∴BD =AC ,OD =BD ,OC =AC ,∴OD =OC ,∴四边形CODP 是菱形.②∵AD =6,AC =10∴DC =∵AO =CO =8∴S △COD =S △ADC =××AD ×CD =12∵四边形CODP 是菱形,∴S △COD =S 菱形CODP =12,∴S 菱形CODP =24【点评】本题主要考查矩形性质和菱形的判定;熟练掌握菱形的判定方法,由矩形的性质得出OC =OD 是解决问题的关键.21.(8分)如图,在平面直角坐标系中,直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x >的解集;(3)将直线l 1:y =x 沿y 向上平移后的直线l 2与反比例函数y =在第二象限内交于点C ,如果△ABC 的面积为30,求平移后的直线l 2的函数表达式.【分析】(1)直线l 1经过点A ,且A 点的纵坐标是2,可得A (﹣4,2),代入反比例函数解析式可得k 的值;(2)依据直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点,即可得到不等式﹣x >的解集为x <﹣4或0<x <4;(3)设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,依据CD ∥AB ,即可得出△ABC 的面积与△ABD 的面积相等,求得D (15,0),即可得出平移后的直线l 2的函数表达式.【解答】解:(1)∵直线l 1:y =﹣x 经过点A ,A 点的纵坐标是2,∴当y =2时,x =﹣4,∴A (﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点,∴B (4,﹣2),∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30,∴×OD ×4=30,∴OD =15,∴D (15,0),设平移后的直线l 2的函数表达式为y =﹣x +b ,把D (15,0)代入,可得0=﹣×15+b ,解得b =,.∴平移后的直线l 2的函数表达式为y =﹣x +【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,一次函数图象与几何变换以及三角形的面积.解决问题的关键是依据△ABC 的面积与△ABD 的面积相等,得到D 点的坐标为(15,0).22.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数不超过30件超过30件销售价格单价40元每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得:x [40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x =70时,40﹣(70﹣30)×0.5=20<30,∴x =70不合题意舍去,答:王老师购买该奖品的件数为40件.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出每件商品的价格是解题关键.23.(9分)已知:如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,点P 从点B 出发,沿BC 向点C 匀速运动,速度为lcm /s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为2cm /s ;当一个点停止运动时,另一个点也停止运动连接PQ ,设运动时间为t (s )(0<t <2.5),解答下列问题:(1)①BQ =5﹣2t ,BP =t ;(用含t 的代数式表示)②设△PBQ 的面积为y (cm ),试确定y 与t 的函数关系式;(2)在运动过程中,是否存在某一时刻t ,使△PBQ 的面积为△ABC 面积的二分之一?如果存在,求出t 的值;不存在,请说明理由;(3)在运动过程中,是否存在某一时刻t ,使△BPQ 为等腰三角形?如果存在,求出t 的值;不存在,请说明理由.2【分析】(1)①先利用勾股定理求出AB ,即可得出结论;②先作出高,进而得出△BDQ ∽△BCA ,表示出DQ ,最后用三角形的面积公式即可得出结论;(2)先求出△ABC 的面积,再利用△PBQ 的面积为△ABC 面积的二分之一,建立方程,进而判断出此方程无解,即可得出结论;(3)分三种情况,利用等腰三角形的性质和相似三角形的性质得出比例式建立方程求解即可得出结论.【解答】解:(1)①在Rt △ABC 中,AC =3cm ,BC =4cm ,根据勾股定理得,AB =5cm ,由运动知,BP =t ,AQ =2t ,∴BQ =AB ﹣AQ =5﹣2t ,故答案为:5﹣2t ,t ;②如图1,过点Q 作QD ⊥BC 于D ,∴∠BDQ =∠C =90°,∵∠B =∠B ,∴△BDQ ∽△BCA ,∴∴,,∴DQ =(5﹣2t )∴y =S △PBQ =BP •DQ =×t ×(5﹣2t )=﹣t +t ;(2)不存在,理由:∵AC =3,BC =4,∴S △ABC =×3×4=6,由(1)知,S △PBQ =﹣t +t ,22∵△PBQ 的面积为△ABC 面积的二分之一,∴﹣t +t =3,∴2t ﹣5t +10=0,∵△=25﹣4×2×10<0,∴此方程无解,即:不存在某一时刻t ,使△PBQ 的面积为△ABC 面积的二分之一;(3)由(1)知,AQ =2t ,BQ =5﹣2t ,BP =t ,∵△BPQ 是等腰三角形,∴①当BP =BQ 时,∴t =5﹣2t ,∴t =,②当BP =PQ 时,如图2过点P 作PE ⊥AB 于E ,∴BE =BQ =(5﹣2t ),∵∠BEP =90°=∠C ,∠B =∠B ,∴△BEP ∽△BCA ,∴,22∴∴t =,③当BQ =PQ 时,如图3,过点Q 作QF ⊥BC 于F ,∴BF =BP =t ,∵∠BFQ =90°=∠C ,∠B =∠B ,∴△BFQ ∽△BCA ,∴,∴∴t =,,即:t为秒或秒或秒时,△BPQ为等腰三角形.【点评】此题是三角形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.。
广东省深圳市福田区外国语学校2023-2024学年九年级上学期期中数学试题(原卷版+解析卷)
2023-2024 学年第一学期期中调研九年级数学试卷答题时间90分钟,满分100分.一.选择题(共 10 小题,每小题3分,共30分)1. 一个正方体截去四分之一,得到如图所示的几何体,其左视图是( )A. B. C. D. 2. 在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在 0.4 左右,则袋中白球约有( )A. 10 个B. 15 个C. 20 个D. 25 个3. 如图,矩形ABCD 中,对角线 AC BD 、交于点 O .若608AOB BD ∠=°=,,则 AB 的长为( )A. 3B. 4C. D. 54. 一元二次方程2430x x −−=根的情况是( ). A. 没有实数根B. 只有一个实数根C. 有两个不相等的实数根D. 有两个相等的实数根 5. 关于反比例函数6y x=,下列说法中不正确的是( ) A. 点()2,3−−在它图象上 B. 图象关于原点中心对称C. 当0x >时,y 随x 的增大而增大D. 它的图象位于第一,三象限 6. 如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影的的子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度是( )A 7m B. 6m C. 5m D. 4m7. 在“双减政策”的推动下,我区某中学学生每天书面作业时长明显减少,2022年上学期每天书面作业平均时长为100min ,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为70min .设该校这两学期平均每天作业时长每期的下降率为x ,则可列方程为( )A. ()2701100x +=B. ()2701100x +=C. ()2100170x −=D. ()2100170x −=8. 在同一平面直角坐标系中,函数()0y kx k k =−≠与y =()0k k x≠的大致图象可能是( ) A. B. C.D.9. 下列说法正确的是( )A. 两条对角线互相垂直的四边形是菱形B. 顺次连接菱形各边中点形成的四边形一定是矩形C. 已知点 C 为线段AB 的黄金分割点,若2AB =,则1AC =−D. 中午用来乘凉的树影是中心投影10. 如图,在 ABC 中,9024ACB AC BC ∠=°==,,,ACB 绕顶点C 逆时针旋转得到DEC ,使点 D 落在 AB 边上,连接 EB ,则 BE 的长为( ).A. B. C. D. 72二.填空题(共5小题,每小题3分,共15分)11. 已知方程²30x mx ++=的一个根是1,则m 的值是_______12. 如图,ABC 中,点D 、E 分别在线段AB 、AC 上,DE BC ∥,若4=AD ,6BD =,2AE =,则CE 的长是 _____.13. 如图,甲楼AB 高 16 米,乙楼CD 坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是2:3, 已知两楼相距BD 为 12 米,那么甲楼的影子落在乙楼上的高 DE =_______米.14. 如图,在 Rt AOB 中,904AOB OB AB ∠=°=,,∥x 轴,双曲线k y x=经过点B ,将AOB 绕点 B 逆时针旋转,使点 O 的对应点 D 落在 x 轴正半轴上,AB 的对应线段CB 恰好经过点 O .则 k 的值是_____.15. 如图,四边形ABCD 是正方形,点F 是边AB 上一点,连接DF ,点E 是边BC 延长线上的一点,且 DF DE ⊥,连接AC 交EF 于点Q ,若53AQ QC =,1AF =,则EF 的长为_____.三.解答题(共7小题,共55分)16. 解方程:(1)24120x x −−=;(2)22210x x −−=.17. 小红的爸爸积极参加社区志愿服务工作.根据社区安排,志愿者被随机分到A 组(清除小广告)、B 组(便民代购)和C 组(环境消杀). (1)小红爸爸被分到B 组的概率是____________;(2)某中学王老师也参加了该社区的志愿者队伍,请用画树状图或列表的方法求他和小红的爸爸被分到同一组的概率.18. 已知:ABC 三个顶点的坐标分别为()()()225415A B C −−−,-,,-,,-.的(1)画出ABC 关于 x 轴对称的111A B C △,并写出点1C 的坐标______;(2)以点 O 为位似中心,将ABC 放大为原来的 2 倍,得到222A B C △,请在网格中画出222A B C △,并写出点2B 的坐标为______,222ABCA B C S S = ∶______. 19. “荔枝”是深圳地方名优特产,深受消费者喜爱,某超市购进一批“荔枝”,进价为每千克24元,调查发现,当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克,设每千克降价x 元.(1)当一斤荔枝降价6元时,每天销量可达______千克,每天共盈利______元;(2)若超市要使这种“荔枝”的销售利润每天达到330元,且让顾客得到实惠,则每千克应降价多少元?20. 如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 到点F ,使CF =BE ,连接DF .(1)求证:四边形AEFD 是矩形;(2)连接OE ,若AD =5,EC =2,求OE 的长度.21. (1)如图1,在平面直角坐标系中,一次函数y ax b =+的图象与反比例函数k y x=的图象交于点()1,2A 和()2,B m −.①直接写出=a ____,b =____,k =____; ②请直接写出不等式k ax b x+>的解集____;连接OA 、OB ,则AOB S =△_______. (2)如图 2,直线 :2l y x m =−+与 x ,y 轴分别交于 A 、B 两点,点 M 是双曲()40y x x=>上一点,分别连接MA 、MB .在双曲线上是否存在点 M ,使得以BM 为斜边的MAB △与AOB 相似?若存在,请求出点 M 的坐标; 若不存在,请说明理由.22. 综合与实践:在综合与实践课上,老师让同学们以“折叠”为主题开展数学活动.【问题发现】(1)如图 1,在正方形 ABCD 中,6AB BC ==,F 为BC 边中点,E 为 AB 边上一点,连接 DE DF 、,分别将 和 CDF 沿 DE DF 、翻折,点 A 、C 的对应点分别为点 G 、H ,点 G 与点 H 重合,则EDF ∠=____°,AE =_____;【类比探究】(2)如图2,在矩形ABCD 中,54AB BC ==,,F 为BC 边的中点,E 为AB 边上一点,连接DE DF 、,分别将ADE 和CDF 沿 DE DF 、翻折,点A 、C 的对应点分别为点G 、H ,且D 、H 、G 三点共线,求AE 的长.【拓展延伸】(3)如图3,在菱形ABCD 中,660AB D ∠==°,,F 为CD 边上的三等分点,E 为BC 边上一点,连接AE AF 、,分别将ABE 和ADF 沿 AE AF 、翻折,点D 、B 的对应点分别为点G 、H ,点G 与点H 重合,直线GE 交直线AB 于点P ,请直接写出PB 的长.的2023-2024 学年第一学期期中调研九年级数学试卷答题时间90分钟,满分100分.一.选择题(共 10 小题,每小题3分,共30分)1. 一个正方体截去四分之一,得到如图所示的几何体,其左视图是( )A. B. C. D.【答案】D【解析】【分析】运用三种视图的空间方位进行解题.【详解】解:A 、选项不符合三种视图,不符合题意;B 、选项是主视图,不符合题意;C 、选项是右视图,不符合题意;D 、选项是左视图,符合题意;故选:D .【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.2. 在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在 0.4 左右,则袋中白球约有( )A. 10 个B. 15 个C. 20 个D. 25 个【答案】A【解析】【分析】此题考查了用频率估计概率,以及概率公式,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率是解题的关键.【详解】解:设白球有x 个,则 0.415x x =+,解得:10x =,经检验:10x =是原方程的解,∴10x =,故选A .3. 如图,矩形ABCD 中,对角线 AC BD 、交于点 O .若608AOB BD ∠=°=,,则 AB 的长为( )A. 3B. 4C.D. 5【答案】B【解析】 【分析】题考查矩形的性质和等边三角形的判定和性质.通过矩形的性质推出ABO 为等边三角形是解题的关键.【详解】∵ABCD 是矩形,∴1842OA OB OC OD BD =====, 又∵60AOB ∠=°,∴ABO 是等边三角形,∴4AB OA ==,故选B .4. 一元二次方程2430x x −−=的根的情况是( ). A. 没有实数根B. 只有一个实数根C. 有两个不相等的实数根D. 有两个相等的实数根 【答案】C【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:2430x x −−=,其中a =1,b =-4,c =-3,()224441(3)280=−=−−××−=> b ac ,∴一元二次方程有两个不相等的实数根故选:C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 5. 关于反比例函数6y x=,下列说法中不正确的是( ) A. 点()2,3−−在它的图象上 B. 图象关于原点中心对称C. 当0x >时,y 随x 的增大而增大D. 它的图象位于第一,三象限 【答案】C【解析】【分析】本题主要考查反比例函数的图象与性质,根据反比例函数的图象与性质逐一判断即可.熟练掌握反比例函数的图象与性质是解题的关键.【详解】解:A 、当2x =−时,则632y ==--,所以点()2,3−−在它的图象上,故不符合题意; B 、由反比例函数6y x=可知图象关于原点中心对称,故不符合题意; C 、当0x >时,y 随x 的增大而减小,故符合题意;D 、它的图象位于第一、三象限,故不符合题意;故选:C .6. 如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度是( )A. 7mB. 6mC. 5mD. 4m【答案】A【解析】 【分析】先说明△ADE ∽△ABC ,然后利用相似三角形的对应边成比例列式解答即可.【详解】解:如图:AD =6m ,AB =21m ,DE =2m ;∵DE //BC ,∴△ADE ∽△ABC ,∴DE AD BC AB =,即 2621BC =, 解得:BC =7m ,故选:A .【点睛】本题主要考查了相似三角形的判定与性质,发现并判定△ADE ∽△ABC 是解答本题的关键. 7. 在“双减政策”的推动下,我区某中学学生每天书面作业时长明显减少,2022年上学期每天书面作业平均时长为100min ,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为70min .设该校这两学期平均每天作业时长每期的下降率为x ,则可列方程为( )A. ()2701100x +=B. ()2701100x +=C. ()2100170x −=D. ()2100170x −=【答案】C【解析】 【分析】利用2023年上学期平均每天书面作业时长2022=年上学期每天书面作业平均时长(1×−该校这两学期平均每天作业时长每期的下降率2),即可列出关于x 的一元二次方程,此题得解.【详解】解:设根据题意得:()2100170x −=.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 8. 在同一平面直角坐标系中,函数()0y kx k k =−≠与y =()0k k x≠的大致图象可能是( )A. B. C.D.【答案】D【解析】【分析】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k 的符号对函数图象的影响是解题的关键.【详解】解:①当0k >时,y kx k =−过一、三、四象限;y =k x 位于一、三象限; ②当0k <时,y kx k =−过一、二、四象象限;y =k x 位于二、四象限. 观察图形可知,只有D 选项符合题意.故选D .9. 下列说法正确的是( )A. 两条对角线互相垂直的四边形是菱形B. 顺次连接菱形各边中点形成的四边形一定是矩形C. 已知点 C 为线段AB 2AB =,则 1AC =−D. 中午用来乘凉的树影是中心投影【答案】B【解析】 【分析】本题考查的是菱形的判定,中点四边形的判定,黄金分割的含义,平行投影的含义;本题根据菱形的判定,中点四边形的判定,黄金分割的含义结合线段的黄金分割点有2个,以及太阳光线是平行光线逐一分析判定即可,熟记基础概念是解本题的关键.【详解】解:两条对角线互相垂直的平行四边形是菱形,故A 不符合题意;顺次连接菱形各边中点形成的四边形一定是矩形,表述正确,故B 符合题意;如图,C 是AB 的黄金分割点,则AC AB ′=,则1AC ′=,或BC AB =,则1BC =−,∴)213AC =−−=C 不符合题意; 中午用来乘凉的树影是平行投影,故D 不符合题意;故选B10. 如图,在 ABC 中,9024ACB AC BC ∠=°==,,,ACB 绕顶点C 逆时针旋转得到DEC ,使点 D 落在 AB 边上,连接 EB ,则 BE 的长为( )A. B. C. D. 72【答案】A【解析】【详解】现根据旋转证得ECB ACD ,即2BE AD =,然后过点C 作CF AB ⊥于点F ,则2AD AF =,根据三角形的面积求出CF 长,然后利用勾股定理求出AF 即可解题.∴AB ,由旋转可知:42EC BC CD AC ====,,90ECD∠=°, ∵90ECB BCD ACD BCD ∠+∠=∠+∠=°,∴ECB ACD ∠=∠, 又∵2ECBC CD AC==, ∴ECB ACD ∽, ∴2BE BC AD AC==,即2BE AD =, 过点C 作CF AB ⊥于点F ,则2AD AF =, ∵1122ABC S AC BC AB CF =×=× ,∴AC BC CF AB ×==∴AF ,∴2AD AF ==,即2BE AD == 故选:A .【点睛】本题考查旋转的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,作辅助线构造“三线合一”是解题的关键.二.填空题(共5小题,每小题3分,共15分)11. 已知方程²30x mx ++=的一个根是1,则m 的值是_______【答案】-4【解析】【分析】将x=1代入方程中即可求出m 的值.【详解】解:由题意可知,将x=1代入方程中得到:1²+m+3=0,解得m=-4,故答案为:-4.【点睛】本题考查了一元二次方程方程解得概念,告诉方程的解就是将解代入方程中,等号两边相等即可.12. 如图,ABC 中,点D 、E 分别在线段AB 、AC 上,DE BC ∥,若4=AD ,6BD =,2AE =,则CE 的长是 _____.【答案】3【解析】【分析】根据DE BC ∥,易证AD AE DB EC =,再代入数据即可求解. 【详解】解:∵DE BC ∥, ∴AD AE DB EC=, ∵4=AD ,6BD =,2AE =, ∴426CE=, 解得:3CE =,故答案为:3.【点睛】本题主要考查了平行线分线段成比例定理,熟练地掌握平行线分线段成比例,是解题的关键. 13. 如图,甲楼AB 高 16 米,乙楼CD 坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是2:3, 已知两楼相距BD 为 12 米,那么甲楼的影子落在乙楼上的高 DE =_______米.【答案】8【解析】【分析】本题考查了相似三角形的应用和平行投影的知识;过E 作EF AB ⊥,利用平行投影的知识物高与影长的比是2:3,求出AF 的长度,进而求得DE BF AB AF ==−即可得出答案.解题的关键是利用平行投影的知识,求出AF 的长度.【详解】如图,过点E 作EF AB ⊥,垂足为点F ,在Rt ΔAFE 中,90AFE ∠=°,12EF BD ==∵物高与影长的比是2:3 ∴23AF EF =, ∴8AF =∵16AB =,∴1688DE BF AB AF ==−=−=故答案为:8米14. 如图,在 Rt AOB 中,904AOB OB AB ∠=°=,,∥x 轴,双曲线k y x=经过点B ,将AOB 绕点 B 逆时针旋转,使点 O 的对应点 D 落在 x 轴正半轴上,AB 的对应线段CB 恰好经过点 O .则 k 的值是_____.【答案】【解析】【分析】先求得BOD 是等边三角形,即可求得B 的坐标,然后根据待定系数法即可求得k 的值.【详解】∵ AB x 轴,ABO BOD ∴∠=∠,ABO CBD ∠=∠ ,BOD OBD ∴∠=∠,OB BD = ,BOD BDO ∴∠=∠,BOD ∴ 是等边三角形,如图,过点B 作BE x ⊥轴于点E ,60BOD ∴∠=°,∴30OBE ∠=°, ∴114222OE OB ==×=,∴BE(2B ∴,∵双曲线 k y x=经过点B ,2k ∴=×=故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,待定系数法求反比例函数的解析式等,求得 BOD 是等边三角形是解题的关键.15. 如图,四边形ABCD F 是边AB 上的一点,连接DF ,点E 是边BC 延长线上的一点,且 DF DE ⊥,连接AC 交EF 于点Q ,若53AQ QC =,1AF =,则EF 的长为_____.【解析】【分析】过E 点作EG AB 交AC 的延长线于点G ,设EF 于CD 交于点P ,则有ADF CDE ≌,即可得到1AF CE EG ===,再证得QCP QGE QAF ∽∽,可以得到14EC GC BC CA ==,求出BF 和BE 长,利用勾股定理解题即可.【详解】解:过E 点作EG AB 交AC 的延长线于点G ,设EF 于CD 交于点P ,∵ABCD 是正方形,DF DE ⊥,∴90B DAF DCB DCE CEG ADC EDF ∠=∠=∠=∠=∠=∠=∠=°,AD DC =,45ACB ECG ∠=∠=°,AB CD , ∴ADF CDE ∠=∠,∴ADF CDE ≌,∴1AF CE ==,又∵45ECG ∠=°,∴1EC EG ==,∵EG AB ,AB CD ,∴EG AB CD ,∴G CAB ∠=∠,B BEG ∠=∠, ∴QCP QGE QAF ∽∽, ∴35QCPC PC PQ QG EG AF QF ====, ∴2184GC CA ==, 又∵EG AB CD ,∴14ECGC BC CA ==, ∴4BC AB ==,∴35BF BE ==,,∴EF ,【点睛】本题考查相似三角形的判定和性质,勾股定理,全等三角形的判定和性质,正方形的性质,作辅助线构造相似三角形是解题的关键.三.解答题(共7小题,共55分)16. 解方程:(1)24120x x −−=;(2)22210x x −−=.【答案】(1)16x =,22x =−(2)112x =+,212x =−【解析】【分析】本题主要考查了解一元二次方程的配方法和因式分解法,关键是熟练掌握各自的解题方法. (1)利用因式分解法求解,“因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,也就是把原方程进行了降次转化为解一元一次方程”;(2)利用配方法解方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数,然后开平方求解即可.【小问1详解】解:24120x x −−=, ()()260x x +−=, ∴20x +=或60x −=,∴12x =−,26x =;【小问2详解】解: 22210x x −−=,∴2221x x −=, 则212x x −=,∴222111222x x −+=+ , 221324x x −+= , 即21324x −= ,则12x −,∴112x =+,212x =. 17. 小红爸爸积极参加社区志愿服务工作.根据社区安排,志愿者被随机分到A 组(清除小广告)、B 组(便民代购)和C 组(环境消杀). (1)小红爸爸被分到B 组概率是____________;(2)某中学王老师也参加了该社区的志愿者队伍,请用画树状图或列表的方法求他和小红的爸爸被分到同一组的概率.【答案】(1)13 (2)13【解析】【分析】(1)小红爸爸随机分到一组有3种情况,其中1种是分到B 组,根据概率公式可得答案;(2)通过画树状图,得出一共有多少种情况,再从中选出满足条件有多少种情况,最后根据概率公式可得答案.【小问1详解】解:∵小红爸爸随机分到一组有3种情况,其中1种是分到B 组,∴小红爸爸被分到B 组的概率为13; 故答案为:13【小问2详解】解:小红爸爸和王老师分组可用树状图表示如下:的的由树状图可知,共有9种等可能结果,其中小红爸爸和王老师被分到同一组的结果有三种,分别是()()(),,,,,A A B B C C ,∴()3193P ==小红爸爸和王老师被分到同一组. 【点睛】本题考查了利用树状图法求概率、概率公式,解本题的关键在通过画树状图法,得出一共的情况数和满足条件的情况数.18. 已知:ABC 三个顶点的坐标分别为()()()225415A B C −−−,-,,-,,-.(1)画出ABC 关于 x 轴对称的111A B C △,并写出点1C 的坐标______;(2)以点 O 为位似中心,将ABC 放大为原来的 2 倍,得到222A B C △,请在网格中画出222A B C △,并写出点2B 的坐标为______,222ABC A B C S S = ∶______. 【答案】(1)见解析,()115C −, (2)加解析,()2108B ,,14∶【解析】【分析】此题考查了作轴对称图形及位似图形,(1)分别确定对称点111A B C ,,,顺次连线即可;(2)分别连接AO BO CO ,,并延长二倍,确定点222A C B ,,,顺次连线即可得到222A B C △,利用位似图形的性质即可解答. 【小问1详解】 解:如图:111A B C △即为所求,()115C −,;故答案为:()115C −,; 【小问2详解】 解:如图:222A B C △即为所求,由图可知:()2108B ,, ABC 与222A B C △位似,位似比12∶,2221ABC A B C S S ∴= ∶∶4. 故答案为:()2108B ,,14∶.19. “荔枝”是深圳地方名优特产,深受消费者喜爱,某超市购进一批“荔枝”,进价为每千克24元,调查发现,当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克,设每千克降价x 元.(1)当一斤荔枝降价6元时,每天销量可达______千克,每天共盈利______元;(2)若超市要使这种“荔枝”的销售利润每天达到330元,且让顾客得到实惠,则每千克应降价多少元?【答案】19. 32;320 20. 5元 【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. (1)由题意:当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克.即可得出结论;(2)由题意:超市要使这种“荔枝”的销售利润每天达到330元,列出一元二次方程,解方程,即可解决问题.是【小问1详解】解: 由题意得:销售数量为202632+×=千克;利润为()()402462620320−−××+=元; 故答案为:32;320; 【小问2详解】由题意得:()()4024202330x x −−+=, 解得: 1,5,x x ==₁₁ ∵让顾客得到实惠,5x ∴=, 答:销售利润每天达到330元,且让顾客得到实惠,每千克应降价5元.20. 如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 到点F ,使CF =BE ,连接DF .(1)求证:四边形AEFD (2)连接OE ,若AD =5,EC =2,求OE 的长度. 【答案】(1)见解析;(2【解析】【分析】(1)根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论;(2)由菱形的性质得AD =AB =BC =10,由勾股定理求出AE =4,AC,再由直角三角形斜边上的中线性质即可得出答案.【详解】证明:(1)∵四边形ABCD 是菱形, ∴AD ∥BC 且AD =BC , ∵BE =CF , ∴BC =EF , ∴AD =EF ,是∵AD ∥EF ,∴四边形AEFD 是平行四边形, ∵AE ⊥BC , ∴∠AEF =90°,∴四边形AEFD 是矩形;(2)解:∵四边形ABCD 是菱形,AD =5, ∴AD =AB =BC =5, ∵EC =2, ∴BE =5-2=3, 在Rt △ABE 中,4AE ===,在Rt △AEC 中,AC ,∵四边形ABCD 是菱形, ∴OA =OC ,∴OE =12AC【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形斜边上的中线性质等知识;根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF 是解题的关键.21. (1)如图1,在平面直角坐标系中,一次函数y ax b =+的图象与反比例函数ky x=的图象交于点()1,2A 和()2,B m −.①直接写出=a ____,b =____,k =____; ②请直接写出不等式kax b x+>的解集____;连接OA 、OB ,则AOB S =△_______.(2)如图 2,直线 :2l y x m =−+与 x ,y 轴分别交于 A 、B 两点,点 M 是双曲()40y x x=>上一点,分别连接MA 、MB .在双曲线上是否存在点 M ,使得以BM 为斜边的MAB △与AOB 相似?若存在,请求出点 M 的坐标; 若不存在,请说明理由.【答案】(1)①1,1,2;②20x −<<或1x >;32;(2)()4,1M 【解析】【分析】(1)①将()1,2A 代入k y x=求出k 的值,得到2y x =,然后将()2,B m −代入2y x =求出()2,1B −−,然后利用待定系数法将()1,2A ,()2,1B −−代入y ax b =+求解即可; ②根据图象结合A ,B 两点的坐标即可求出不等式kax b x+>的解集;设直线AB 与y 轴交于点C ,首先求出点C 的坐标,得到1OC =,然后利用AOBAOC COB S S S =+ 代数求解即可; (2)首先根据题意求出OB m =,2m=,过点M 作ME x ⊥轴于点M ,过点A 作AF BM ⊥交BM 于点F ,根据相似三角形的性质得到2mAO AF ==,OE OA AE m =+=,然后证明出BOA AEM ∽ ,进而得到,4m M m,然后代入()40y x x =>求解即可.【详解】(1)①根据题意得, 将()1,2A 代入k y x=得,21k=,解得2k =, ∴2y x=, 将()2,B m −代入2y x =得,212m ==−−, ∴()2,1B −−,将()1,2A ,()2,1B −−代入y ax b =+,得221a b a b +=−+=−,解得11a b = = ;故答案为:1,1,2; ②∵()1,2A ,()2,1B −−, ∴根据图象可得,不等式kax b x+>解集20x −<<或1x >; 如图所示,设直线AB 与y 轴交于点C ,∵1a =,1b =, ∴1y x =+,∴当0x =时,11y x =+=, ∴()0,1C , ∴1OC =,∴1131121222AOB AOC COB S S S =+=××+××= ; 故答案为:20x −<<或1x >;32;(2)∵直线 :2l y x m =−+与 x ,y 轴分别交于 A 、B 两点, ∴当0x =时,2y x m m =−+=, ∴OB m =,当0y =时,02x m =−+,解得2mx =, ∴2m AO =, 如图所示,过点M 作ME x ⊥轴于点M ,过点A 作AF BM ⊥交BM 于点F ,的∵BOA BAM ∽ , ∴ABO ABF ∠=∠, ∵AF BM ⊥,AO BO ⊥,∴2mAOAF ==, ∵BOA BAM ∽ ,∴BAO BMA ∠=∠,90BAM AOB ∠=∠=°, ∴90BAO MAE ∠+∠=°, ∵ME x ⊥轴,∴90AME MAE ∠+=°, ∴BAO AME ∠=∠, ∴BMA AME ∠=∠, ∵AF BM ⊥,ME x ⊥轴,∴2mAFAE ==, ∴OE OA AE m =+=,∵BAO AME ∠=∠,90BOA AEM ∠=∠=°, ∴BOA AEM ∽ ,∴OB AE OA ME=,即2m AE m ME =, ∴124m ME AE ==,∴,4m M m, ∵点 M 是双曲()40y x x=>上一点, ∴44m m=,即216m =, 解得4m =或4−(舍去),∴()4,1M .【点睛】本题是一次函数和反比例函数的交点问题,考查了待定系数法求函数的解析式,三角形的面积以及函数与不等式的关系,相似三角形的性质和判定等知识,数形结合是解题的关键.相似三角形的性质:相似三角形对应边成比例,对应角相等.相似三角形的判定方法:①两组角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 22. 综合与实践:在综合与实践课上,老师让同学们以“折叠”为主题开展数学活动.【问题发现】(1)如图 1,在正方形 ABCD 中,6AB BC ==,F 为BC 边的中点,E 为 AB 边上一点,连接 DE DF 、,分别将ADE 和 CDF 沿 DE DF 、翻折,点 A 、C 的对应点分别为点 G 、H ,点 G 与点 H 重合,则EDF ∠=____°,AE =_____; 【类比探究】(2)如图2,在矩形ABCD 中,54AB BC ==,,F 为BC 边的中点,E 为AB 边上一点,连接DE DF 、,分别将ADE 和CDF 沿 DE DF 、翻折,点A 、C 的对应点分别为点G 、H ,且D 、H 、G三点共线,求AE 的长. 【拓展延伸】(3)如图3,在菱形ABCD 中,660AB D ∠==°,,F 为CD 边上的三等分点,E 为BC 边上一点,连接AE AF 、,分别将ABE 和ADF 沿 AE AF 、翻折,点D 、B 的对应点分别为点G 、H ,点G 与点H 重合,直线GE 交直线AB P ,请直接写出PB 的长.【答案】(1)45°,2 (2)45°,127 (3)125或34【解析】【分析】(1)由翻折可得,3AEEG CF FG ===,在Rt EBF 中利用勾股定理解题即可; (2)延长DG 交AB 于点M ,连接FG ,由翻折可得FGM FBM ≌,即可得到GM BM =,在Rt ADM 中运用勾股定理解题;(3)分2DF =和4DF =两种情况解题解题,如图,当点F 为DC 的三等分点时,4DF =,则2FC =,设直线GE 交直线CD 于点Q ,连接AC ,过点E 作EN DC ⊥交DC 的延长线于点N ,则有FQG EQC ≌,即FQ QE =,再在Rt ENQ 中利用勾股定理求出CQ ,最后根据相似三角形的对应边成比例解题即可.【详解】(1)∵四边形ABCD 是正方形,6,90AD AB BCD ∴==∠=°,∵F 为AD 的中点,3CF BF ∴==,∵将ADE 和CDF 沿CE CF 、翻折, 点A C 、的对应点分别为点G H 、,,3AE EG CF FG ∴===,设 ,AE x =则 6,BE x =−3EF x ∴=+,²²²EF BE BF =+ ,()()3?6?3?x x ∴+=−+,解得2x =2AE ∴=, ∵将ADE 和CDF 沿CE CF 、, 点A C 、的对应点分别为点G H 、,,ADE GDE CDF GDF ∴∠=∠∠=∠,90BCD ∠=° ,11904522EDF ADC ∴∠=∠=×°=°, 故答案为: 45°,2;(2)延长DG 交AB 于点M ,连接FG , ∵F 为BC 边的中点, ∴2CF BF ==由翻折可得:2FG CF BF ===,90DGF C B A DHE ∠=∠=∠=∠=∠=°,5DG DC AB ===,AE EH =,又∵FM FM =, ∴FGM FBM ≌, ∴GM BM =,设MB x =,则5DM x =+,5AM x =−,在Rt ADM 中,222AD AM DM +=,即()()222455x x +−=+, 解得:45x =, ∴295DM =,215AM =, ∵1111122222ADM S AM AD AE AD DM EH AE AD DM AE =×=×+×=×+× ∴21412529745AM AD AE AD DM ××===++;(3)①如图,当点F 为DC 2DF =,则4FC =,设直线GE 交CD 于点Q , ∵ABCD 是菱形,∴120DAB DCB ∠=∠=°,6AD DC BC ===,60D ABC ∠=∠=°,由翻折可得:DAF GAF ∠=∠,BAE GAE ∠=∠,D AGF ∠=∠=60ABC AGE ∠=∠=°,FG FD =,∴120FGQ QCE ∠=°=∠,60EAF ∠=°连接AC ,则ACD 是等边三角形,60ACE D EAF CAD ∠=∠=∠=∠=°,∴DAF CAE ∠=∠,AD AC =,∴ADF ACE ≌,∴2EC DF FG ===,又∵FGQ QCE FQG EQC ∠=∠∠=∠,, ∴FQG EQC ≌,∴FQ QE =,过点E 作EN DC ⊥交DC 的延长线于点N ,则60ECN ∠=°,∴30CEN ∠=°, ∴112CN CE ==,∴EN =设CQ x =,则4FQ QE x ==−,在Rt ENQ 中,222EN NQ QE +=,即()()22214x x ++=−, 解得:65x =, 又∵ABCD 是菱形,∴AB DC ,∴DCB CBP ∠=∠,CQE P ∠=∠, ∴ECQ EBP ∽, ∴2BP EB CQ EC==, ∴6122255BP CQ ==×=; ②如图,当点F 为DC 的三等分点时,4DF =,则2FC =,设直线GE 交直线CD 于点Q ,连接AC ,过点E 作EN DC ⊥交DC 的延长线于点N ,由①可得,ADF ACE ≌,∴4EC DF FG ===,又∵FGQ QCE FQG EQC ∠=∠∠=∠,,∴FQG EQC ≌,∴FQ QE =,则60ECN ∠=°,∴30CEN ∠=°, ∴122CN CE ==,∴EN ,设CQ x =,则()422FQ QE x x ==−−=+,在Rt ENQ 中,222EN NQ QE +=,即(()()22222x x +−=+, 解得:32x =, 又∵ABCD 是菱形,∴AB DC ,∴DCB CBP ∠=∠,CQE P ∠=∠, ∴ECQ EBP ∽, ∴12BP EB CQ EC ==, ∴11332224BP CQ ==×=; 综上, BP 长为125或34. 【点睛】本题考查相似三角形的判定和性质,勾股定理,翻折的性质,全等三角形的判定和性质,矩形和菱形的性质,能作出辅助线构造直角三角形应用勾股定理计算是解题的关键.。
广东省深圳市福田区红岭教育集团2023-2024学年第一学期九年级开学考数学试卷及参考答案
福田区红岭教育集团2023-2024学年第一学期九年级开学考数学试卷一.选择题(每题3分,共30分)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列等式从左到右的变形,是因式分解的是()A.x2-4x+4=x(x-4)+4B.(x+1)2=x2+2x+1C.x2-4=(x+2)(x-2)D.15x5=3x2•5x33.用配方法解方程x2-4x-10=0,下列配方结果正确的是()A.(x+2)2=14B.(x+2)2=6C.(x-2)2=14D.(x-2)2=6 4.一元二次方程-x2+2x-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.一次函数y1=kx+b和y2=2x的图象如图所示,则kx+b≥2x的解集是()A.x≥1B.x≤2C.x<1D.x≤16.下列命题是真命题的是()A.若a>b,则1-2a>1-2bB.等腰三角形的角平分线、中线和高重合C.一组对边平行,另一组对边相等的四边形是平行四边形D.一个正多边形的内角和为720°,则这个正多边形的一个外角等于60°7.某商店需要购进甲乙两种商品,已知甲的进价比乙多50元,分别用2万元进货甲乙两种商品,购买乙的件数比甲多20件,现设乙的进价为x元,则下列方程正确的是()A.B.C.D.8.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形AB边上的高CE的长是()A.4.8cm B.9.6cm C.5cm D.10cm9.已知关于x的分式方程=4的解为非负数,则a的取值范围是()A.a≥-4B.a>-4C.a≥-4且a≠-1D.a>-4且a≠-110.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△EOF≌△BOC;③DF2+BE2=2OE2;④正方形ABCD面积是四边形CEOF的面积为的4倍.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二.填空题(每题3分,共15分)11.因式分解:2x3-18x=.12.已知方程2x2-mx+3=0的一个根是-1,则m的值是.13.若关于x的分式方程=7有增根,则a的值为.14.如图,在周长为32的平行四边形ABCD中,AC、BD交于点O,OE⊥BD交AD于点E,则△ABE 的周长为.15.如图,在菱形ABCD中,∠B=45°,E、F分别是边CD,BC上的动点,连接AE、EF,G、H 分别为AE、EF的中点,连接GH.若GH的最小值为3,则BC的长为.三.解答题(共55分)16.(8分)解方程:(1)(x-1)2=3(x-1);(2)x2-4x+1=0.17.(8分)(1)解不等式组:并把它的解集在数轴上表示出来.(2)先化简,再求值:,其中a=-2.18.(6分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,旋转中心的坐标为.19.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB,交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形.(2)若AB=5,BD=6,求OE的长.20.(8分)某服装店老板用4000元购进了一批甲款T恤,用8800元购进了一批乙款T恤,已知所购乙款T恤数量是甲款T恤数量的2倍,购进的乙款T恤单价比甲款T恤单价贵5元.(1)购进甲、乙两款T恤的单价分别是多少元?(2)老板把这两种T恤的标价都定为每件100元,甲款T恤打九折销售,乙款T恤按标价销售.经过一段时间的销售,老板发现,销售两种T恤共100件时,利润不低于4200元.那么这段时间按标价销售的乙款T恤至少要销售多少件?21.(9分)【问题情境】:如图1,点E为正方形ABCD内一点,AE=2,BE=4,∠AEB=90°,将直角三角形ABE绕点A逆时针方向旋转α度(0≤α≤180°)点B、E的对应点分别为点B′、E′.【问题解决】:(1)如图2,在旋转的过程中,点B′落在了AC上,求此时CB′的长;(2)若α=90°,如图3,得到△ADE′(此时B′与D重合),延长BE交B′E′于点F,①试判断四边形AEFE′的形状,并说明理由;②连接CE,求CE的长;(3)在直角三角形ABE绕点A逆时针方向旋转过程中,直接写出线段CE′长度的取值范围.22.(8分)问题提出(1)如图①,在△ABC中,D、E分别是AB和AC的中点,连接DE,则DE与BC的数量关系是,位置关系是;问题探究(2)如图②,在四边形ABCD中,∠BAC=90°,AB=AC=4,CD=4,E为AD中点,连接BE,求BE的最大值;问题解决(3)如图③,某小区计划在一片足够大的空地上修建四边形的花园ABCD,其中BC=20米,AD=CD,AD⊥CD,AB∥CD,由于受地理位置的影响,∠ABC<90°.根据要求,现计划给该花园修建条笔直的绿色长廊,且绿色长廊的入口O定为BC的中点,出口定为点D,为了尽可能地提高观赏体验,要求绿色长廊OD最长,试求绿色长廊OD最长为多少米?红岭教育集团九年级开学考数学试卷参考答案与试题解析一.选择题(共10小题)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故A符合题意;B、D,是轴对称图形,但不是中心对称图形,故B、D不符合题意;C、不是轴对称图形,是中心对称图形.故C不符合题意.故选:A.2.下列等式从左到右的变形,是因式分解的是()A.x2-4x+4=x(x-4)+4B.(x+1)2=x2+2x+1C.x2-4=(x+2)(x-2)D.15x5=3x2•5x3【解答】解:A.x2-4x+4=(x-2)2,原题干因式分解错误,故A不符合题意;B.(x+1)2=x2+2x+1,从左边到右边的变形是整式乘法计算,故B不符合题意;C.x2-4=(x+2)(x-2),从左边到右边的变形属于因式分解,故C符合题意;D.15x5不属于多项式,故D不符合题意;故选:C.3.用配方法解方程x2-4x-10=0,下列配方结果正确的是()A.(x+2)2=14B.(x+2)2=6C.(x-2)2=14D.(x-2)2=6【解答】解:x2-4x-10=0,移项,得x2-4x=10,配方,得x2-4x+4=10+4,即(x-2)2=14.故选:C.4.一元二次方程-x2+2x-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:Δ=b2-4ac=22-4×(-1)×(-1)=0,∴原方程有两个相等的实数根.故选:B.5.一次函数y1=kx+b和y2=2x的图象如图所示,则kx+b≥2x的解集是()A.x≥1B.x≤2C.x<1D.x≤1【解答】解:当x≤1时,kx+b≥2x,所以不等式kx+b≥2x的解集为x≤1.故选:D.6.下列命题是真命题的是()A.若a>b,则1-2a>1-2bB.等腰三角形的角平分线、中线和高重合C.一组对边平行,另一组对边相等的四边形是平行四边形D.一个正多边形的内角和为720°,则这个正多边形的一个外角等于60°【解答】解:若a>b,则1-2a<1-2b,故A是假命题,不符合题意;等腰三角形的顶角的角平分线、底边上的中线和底边上的高重合,故B是假命题,不符合题意;一组对边平行且相等的四边形是平行四边形,故C是假命题,不符合题意;一个正多边形的内角和为720°,则这个正多边形有6条边,它的一个外角等于360°÷6=60°,故D是真命题,符合题意;故选:D.7.某商店需要购进甲乙两种商品,已知甲的进价比乙多50元,分别用2万元进货甲乙两种商品,购买乙的件数比甲多20件,现设乙的进价为x元,则下列方程正确的是()A.B.C.D.【解答】解:设乙的进价为x元,则甲的进价是(x+50)元,根据题意得,.故选:C.8.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形AB边上的高CE的长是()A.4.8cm B.9.6cm C.5cm D.10cm【解答】解:对角线AC,BD交于点O,则△ABO为直角三角形则AO=OC=3.BO=DO=4,∴AB==5cm,∴菱形的面积根据边长和高可以计算,根据对角线长也可以计算,即S=×6cm×8cm=5cm×CE,∴CE=4.8cm,故选:A.9.已知关于x的分式方程=4的解为非负数,则a的取值范围是()A.a≥-4B.a>-4C.a≥-4且a≠-1D.a>-4且a≠-1【解答】解:原分式方程可化为,方程两边同乘x-3得,x+3a=4(x-3),去括号得,x+3a=4x-12,移项得,x-4x=-12-3a,合并同类项得,-3x=-12-3a,系数化为1得x=a+4,∵原分式方程的解为非负数,∴x≥0,x≠3,即a+4≥0,a+4≠3,解得a≥-4且a≠-1,故选:C.10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△EOF≌△BOC;③DF2+BE2=2OE2;④正方形ABCD面积是四边形CEOF的面积为的4倍.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【解答】解:在正方形ABCD中,OC=OD,∠COD=90°,∠ODC=∠OCB=45°,∵∠EOF=90°,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),故①正确;在正方形ABCD中,OF≠OD即OF≠OB,所以△EOF不全等于△BOC;故②错误;∵△COE≌△DOF,∴CE=DF,OE=OF,∵四边形ABCD为正方形,∴BC=CD,∴BE=CF,在Rt△ECF中,CE2+CF2=EF2,∵∠FOE=90°,∴OE2+OF2=EF2,又∵OE=OF,∴2OE2=EF2,∴DF2+BE2=CE2+CF2=2OE2,故③正确;由①全等可得四边形CEOF的面积与△OCD面积相等,∴正方形ABCD面积是四边形CEOF的面积为的4倍,故④正确.综上所述,结论正确的是①③④.故选:B.二.填空题(共5小题)11.因式分解:2x3-18x=2x(x+3)(x-3).【解答】解:2x3-18x=2x(x2-9)=2x(x+3)(x-3).故答案为:2x(x+3)(x-3).12.已知方程2x2-mx+3=0的一个根是-1,则m的值是-5.【解答】解:把x=-1代入2x2-mx+3=0,得2+m+3=0,解得,m=-5.故答案为:-5.13.若关于x的分式方程=7有增根,则a的值为3.【解答】解:原分式方程变形为2-x+a=7(x-5),∵分式方程有增根,∴x-5=0,x=5为增根,将x=5代入上式,2-5+a=0,∴a=3.故答案为3.14.如图,在周长为32的平行四边形ABCD中,AC、BD交于点O,OE⊥BD交AD于点E,则△ABE 的周长为16.【解答】解:∵平行四边形ABCD的周长为32,∴AB+AD=16,O为BD的中点,∵OE⊥BD,∴OE为线段BD的垂直平分线,∴BE=DE,∴AB+AE+BE=AB+AE+DE=AB+AD=16,即△ABE的周长为16,故答案为:16.15.如图,在菱形ABCD中,∠B=45°,E、F分别是边CD,BC上的动点,连接AE、EF,G、H分别为AE、EF的中点,连接GH.若GH的最小值为3,则BC的长为.【解答】解:连接AF,∵G,H分别为AE,EF的中点,∴GH∥AF,且,要使GH最小,只要AF最小,当AF⊥BC时,AF最小,∵GH的最小值为3,∴AF=6,∵∠B=45°,∴∠BAF=45°,∴BF=AF=6,∴,∵四边形ABCD是菱形,∴.故答案为:.三.解答题16.解方程:(1)(x-1)2=3(x-1);(2)x2-4x+1=0.【解答】解:(1)∵(x-1)2=3(x-1),∴(x-1)2-3(x-1)=0,∴(x-1)(x-1-3)=0,∴(x-1)(x-4)=0,∴x-1=0或x-4=0,x1=4,x2=1.(2)∵x2-4x+1=0,∴a=1,b=-4,c=1,∴Δ=b2-4ac=(-4)2-4×1×1=12>0,∴方程有两个不相等的实数根,即,.17.(1)解不等式组:并把它的解集在数轴上表示出来.(2)先化简,再求值:,其中a=-2.【解答】解:(1)解不等式①得,x≥-1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:(2)解:=•=•=•=-2(a+3)=-2a-6,当a=-2时,原式=-2×(-2)-6=-2.18.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,旋转中心的坐标为(-3,0).【解答】解:(1)解:如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(-3,0)故答案为:(-3,0).19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB,交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形.(2)若AB=5,BD=6,求OE的长.【解答】(1)证明:∵AB∥CD,∴∠CAB=∠DCA,∵AC为∠DAB的平分线,∴∠CAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB=AD,∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,对角线AC,BD交于点O,∴AC⊥BD,OA=OC=,OB=OD=,∴OB==3,在Rt△AOB中,∠AOB=90°,∴OA=,∵CE⊥AB,∴∠AEC=90°,在Rt△AEC中,∠AEC=90°,O为AC中点,∴=4.20.某服装店老板用4000元购进了一批甲款T恤,用8800元购进了一批乙款T恤,已知所购乙款T 恤数量是甲款T恤数量的2倍,购进的乙款T恤单价比甲款T恤单价贵5元.(1)购进甲、乙两款T恤的单价分别是多少元?(2)老板把这两种T恤的标价都定为每件100元,甲款T恤打九折销售,乙款T恤按标价销售.经过一段时间的销售,老板发现,销售两种T恤共100件时,利润不低于4200元.那么这段时间按标价销售的乙款T恤至少要销售多少件?【解答】解:(1)设购进甲款T恤的单价是x元,则购进乙款T恤的单价是(x+5)元,根据题意得:=×2,解得:x=50,经检验,x=50是所列方程的解,且符合题意,∴x+5=50+5=55.答:购进甲款T恤的单价是50元,乙款T恤的单价是55元;(2)设这段时间按标价销售了y件乙款T恤,则销售了(100-y)件甲款T恤,根据题意得:(100×0.9-50)(100-y)+(100-55)y≥4200,解得:y≥40,∴y的最小值为40.答:这段时间按标价销售的乙款T恤至少要销售40件.21.【问题情境】:如图1,点E为正方形ABCD内一点,AE=2,BE=4,∠AEB=90°,将直角三角形ABE绕点A逆时针方向旋转α度(0≤α≤180°)点B、E的对应点分别为点B′、E′.【问题解决】:(1)如图2,在旋转的过程中,点B′落在了AC上,求此时CB′的长;(2)若α=90°,如图3,得到△ADE′(此时B′与D重合),延长BE交B′E′于点F,①试判断四边形AEFE′的形状,并说明理由;②连接CE,求CE的长;(3)在直角三角形ABE绕点A逆时针方向旋转过程中,直接写出线段CE′长度的取值范围.【解答】解:(1)∵AE=2,BE=4,∠AEB=90°,∴AB===2,∵四边形ABD是正方形,∴BC=AB=2,∠ABC=90°,∴AC=AB=2,由旋转的性质得:AB'=AB=2,∴CB′=AC-AB'=2-2;(2)①四边形AEFE′是正方形,理由如下:由旋转的性质得:AE'=AE,∠EAE'=α=90°,∠AE'D=∠AEB=90°,∵∠AEF=180°-90°=90°,∴四边形AEFE′是矩形,又∵AE'=AE,∴四边形AEFE′是正方形;②过点C作CG⊥BE于点G,如图3所示:则∠BGC=90°=∠AEB,∴∠CBG+∠BCG=∠CBG+∠ABE=90°,∴∠BCG=∠ABE,在△BCG和△ABE中,,∴△BCG≌△ABE(AAS),∴CG=BE=4,BG=AE=2,∴EG=BE-BG=4-2=2,∴CE===2;(3)∵直角三角形ABE绕点A逆时针方向旋转α度(0≤α≤180°)点B、E的对应点分别为点B′、E′,∴当α=0°时,E'与E重合,CE'最短=2;当E‘落在CA的延长线上时,AE'=AE=2,CE'最长=AC+AE'=2+2,∴线段CE′长度的取值范围是2≤CE'≤2+2.22.问题提出(1)如图①,在△ABC中,D、E分别是AB和AC的中点,连接DE,则DE与BC的数量关系是DE=BC,位置关系是DE∥BC;问题探究(2)如图②,在四边形ABCD中,∠BAC=90°,AB=AC=4,CD=4,E为AD中点,连接BE,求BE的最大值;问题解决(3)如图③,某小区计划在一片足够大的空地上修建四边形的花园ABCD,其中BC=20米,AD=CD,AD⊥CD,AB∥CD,由于受地理位置的影响,∠ABC<90°.根据要求,现计划给该花园修建条笔直的绿色长廊,且绿色长廊的入口O定为BC的中点,出口定为点D,为了尽可能地提高观赏体验,要求绿色长廊OD最长,试求绿色长廊OD最长为多少米?【解答】解:(1)由题可知,D、E分别是AB和AC的中点,∴DE为△ABC的中位线,∴DE∥BC且DE=BC;故答案为:DE=BC,DE∥BC;(2)如图,取AC的中点F,连接EF、BF,∵E、F分别是AD和AC的中点,∴EF为△ADC的中位线,∴EF∥DC且EF=CD=×4=2,在Rt△ABF中,AB=4,AF=AC=2:BF==2;在△BEF中,BF+EF>BE,∴当B、E、F三点共线的时候BE最大,即此时BE=BF+EF=2+2,答:BE的最大值为2+2;(3)过C作CM⊥AB于M点,在AD上截取DN使DN=BM,连接BN,取CN中点P,连接DP.OP,∵CM⊥AB,AB∥CD,∴∠CMA=∠MCD=∠ADC=90°,∴四边形ADCM为矩形,∵AD=CD.∴矩形ADCM为正方形,∴CD=CM,在△CMB与△CDN中,,∴△CMB≌△CDN(SAS),∴CN=CB,∠BCM=∠NCD,∴∠BCN=∠MCD=90°,在Rt△BCN中,BC=CN=20,∴BN==20,在Rt△CDN中,点P为CN中点,∴DP=CN=10,在Rt△BCN中,点P、O分别为CN、CB中点,∴OP为△BCN的中位线,∴OP∥BN且OP=BN=10,在△OPD中,OP+PD>OD,∴当O、P.D三点共线的时OD最大,即此时OD=OP+PD=10+10,答:绿色长廊OD最长为(10+10)米.。
广东省深圳市福田区2020-2021学年九上期末数学试题(原卷版)
5.如图,l1 l2 l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,若 ,则 的值为( )
A. B. C. D.
6.如图,矩形ABCD的周长是10cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为17cm2,那么矩形ABCD的面积是( )
15.如图,直线y= x+4与x轴、y轴交于A、B两点,AC⊥AB,交双曲线 于C点,且BC交x轴于M点,BM=2CM,则k=_____.
三、解答题(本题共7小题,其中第16题5分,第17题6分,第18、19、20题各8分.第21、22题各10分,共55分)
16.计算: ﹣(﹣2020)0﹣4cos45°.
A.①②③B.②③④C.①②④D.①②③④
二、填空题(本题共5小题,每小题3分,共15分)
11.已知2x=3y,那么 的值为_____.
12.一个不透明的口袋中有红球和黑球共若干个,这些球除颜色外都相同.每次摸出1个球,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为________.
A.3cm2B.4cm2C.5cm2D.6cm2
7.下列说法正确的是( )
A.对角线垂直的平行四边形是矩形
B.方程x2+4x+16=0有两个相等的实数根
C.抛物线y=﹣x2+2x+3的顶点为(1,4)
D.函数 ,y随x的增大而增大
8.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为( )
2018-2019深圳市各区各学校九年级上期末数学试卷真题共9份(含解析)
2018-2019学年广东省深圳实验学校九年级(上)期末数学试卷一、选择题1.(3分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0B.﹣1C.0.5D.(﹣1)2 2.(3分)下列图形中,即是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图,太阳光线与地面成80°角,窗子AB=2米,要在窗子外面上方0.2米的点D处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC的长度至少是()A.米B.2sin80°米C.米D.2.2cos80°米4.(3分)在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x C.x≥﹣1且x D.x>﹣15.(3分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=()A.55°B.44°C.38°D.33°6.(3分)如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB 上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=()A.B.C.D.7.(3分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=()A.B.C.D.8.(3分)如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,点N从点A同时出发,以2cm/s的速度经过点D向点C 运动,当其中一个动点到达端点时,另一个动点也随之停止运动.则△AMN的面积y(cm2)与点M运动的时间t(s)的函数的图象大致是()A.B.C.D.9.(3分)设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为S k(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是()A.B.C.16D.1410.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤二、填空题11.(3分)甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为米.12.(3分)若函数是二次函数,则m的值为.13.(3分)把多项式8a3﹣2a分解因式的结果是.14.(3分)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为.15.(3分)若方程的根为正数,则k的取值范围是.16.(3分)有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为.17.(3分)如图,点A是双曲线y在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为.18.(3分)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为.19.(3分)如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为.20.(3分)如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=4﹣2,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD AM;④若BE平分∠DBC,则正方形ABCD的面积为4,其中结论正确的是(填序号)三、解答题21.(11分)计算(1)|﹣1|4sin30°(2)先化简,再求值:1,其中a=2sin60°﹣tan45°.22.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.23.如图,一次函数y=kx+b的图象与反比例函数y(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)根据图象直接写出kx+b<的x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.24.深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?25.已知:如图,在矩形ABCD中,AC是对角线,点P为矩形外一点且满足AP=PC,AP⊥PC,PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=5,AB BC,求矩形ABCD的面积;(2)若CD=PM,试判断线段AC、AP、PN之间的关系,并证明.26.如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.27.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B 两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2018-2019学年广东省深圳实验学校九年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0B.﹣1C.0.5D.(﹣1)2【解答】解:根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选:B.2.(3分)下列图形中,即是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.3.(3分)如图,太阳光线与地面成80°角,窗子AB=2米,要在窗子外面上方0.2米的点D处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC的长度至少是()A.米B.2sin80°米C.米D.2.2cos80°米【解答】解:∵DA=0.2米,AB=2米,∴DB=DA+AB=2.2米,∵光线与地面成80°角,∴∠BCD=80°.又∵tan∠BCD,∴DC.故选:C.4.(3分)在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x C.x≥﹣1且x D.x>﹣1【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x.故选:C.5.(3分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=()A.55°B.44°C.38°D.33°【解答】解:∵AD=DO,∴∠DOA=∠BAC=22°,∴∠AEF∠DOA=11°,∵∠EFG=∠BAC+∠AEF,∴∠EFG=33°.故选:D.6.(3分)如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB 上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=()A.B.C.D.【解答】解:如图作BM⊥AC于M,连接PD.∵∠ABC=90°,AD=DC,AB=6,BC=3,∴BD=AD=DC,AC3,∵•AB•BC•AC•BM,∴BM,∴S△ABD=S△ADP+S△BDP,∴•AD•BM•AD•PF•BD•PE,∴PE+PF=BM.故选:A.7.(3分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=()A.B.C.D.【解答】解:如图,过点D作DE⊥l1于点E并反向延长交l4于点F,在正方形ABCD中,AD=DC,∠ADC=90°,∵∠α+∠ADE=90°,∠ADE+∠CDF=180°﹣90°=90°,∴∠α=∠CDF,在△ADE和△DCF中,∠∠,∴△ADE≌△DCF(AAS),∴DF=AE,∵相邻两条平行直线间的距离都是1,∴DE=1,AE=2,根据勾股定理得,AD,所以,cosα .故选:A.8.(3分)如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,点N从点A同时出发,以2cm/s的速度经过点D向点C 运动,当其中一个动点到达端点时,另一个动点也随之停止运动.则△AMN的面积y(cm2)与点M运动的时间t(s)的函数的图象大致是()A.B.C.D.【解答】解:点M从点A出发,以1cm/s的速度向点B运动,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,当其中一个动点到达端点时,另一个动点也随之停止运动.因而点M,N应同时到达端点,当点N到达点D时,点M正好到达AB的中点,则当t≤1秒时,△AMN的面积y(cm2)与点M运动的时间t(s)的函数关系式是:y;当t>1时:函数关系式是:y.故选:A.9.(3分)设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为S k(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是()A.B.C.16D.14【解答】解:联立两直线解析式成方程组,得:,解得:,∴两直线的交点是(0,6).∵直线y=kx+6与x轴的交点为(,0),直线y=(k+1)x+6与x轴的交点为(,0),∴S k6×|()|=18(),∴S1+S2+S3+…+S8=18×(1),=18×(1),=1816.故选:C.10.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤【解答】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.二、填空题11.(3分)甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为8×10﹣8米.【解答】解:0.000 000 08=8×10﹣8;故答案为:8×10﹣8.12.(3分)若函数是二次函数,则m的值为﹣3.【解答】解:若y=(m﹣3)x m2﹣7是二次函数,则m2﹣7=2,且m﹣3≠0,故(m﹣3)(m+3)=0,m≠3,解得:m1=3(不合题意舍去),m2=﹣3,∴m=﹣3.故答案为:﹣3.13.(3分)把多项式8a3﹣2a分解因式的结果是2a(2a+1)(2a﹣1).【解答】解:8a3﹣2a=2a(4a2﹣1)=2a(2a+1)(2a﹣1).故答案为:2a(2a+1)(2a﹣1).14.(3分)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为1.【解答】解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.15.(3分)若方程的根为正数,则k的取值范围是k<﹣2且k≠﹣3.【解答】解:去分母得,3(x+k)=2(x﹣3),解得x=﹣3k﹣6,因为方程是正数根,所以﹣3k﹣6>0,解得k<﹣2,因为原式是分式方程,所以x≠3且x+k≠0,所以k≠﹣3.故k的取值范围是k<﹣2且k≠﹣3,故答案为:k<﹣2且k≠﹣3.16.(3分)有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为.【解答】解:设其中一双鞋分别为a,a′;画树状图得:∵共有12种情况,能配成一双的有8种情况,∴取出两只刚好配一双鞋的概率是:.故答案为:.17.(3分)如图,点A是双曲线y在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为2.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,连接OC,如图,∵AB过原点,∴点A与点B关于原点对称,∴OA=OB,∵△CAB为等腰三角形,∴OC⊥AB,∴∠ACB=120°,∴∠CAB=30°,∴OA OC,∵∠AOD+∠COE=90°,∠AOD+∠OAD=90°,∴∠OAD=∠COE,∴Rt△AOD∽Rt△OCE,∴()2=()2=3,而S△OAD|﹣6|=3,∴S△OCE=1,即|k|=1,而k>0,∴k=2.18.(3分)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为(3n﹣1,0).【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=21,OB1=A1B1•cos30°=2,∴A1(1,0).∵B1C2D1A2∽菱形A1B1C1D1,∴OA23,∴A2(3,0).同理可得A3(9,0)…∴A n(3n﹣1,0).故答案为:(3n﹣1,0).19.(3分)如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为(,).【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,并沿MN向下平移单位后得A'(2,0)连接A'B'交直线y=x于点Q如图理由如下:∵AA'=PQ,AA'∥PQ,∴四边形APQA'是平行四边形.∴AP=A'Q.∵AP+PQ+QB=B'Q+A'Q+PQ且PQ.∴当A'Q+B'Q值最小时,AP+PQ+QB值最小.根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小.∵B'(0,1),A'(2,0),∴直线A'B'的解析式y x+1.∴x x+1.即x,∴Q点坐标(,).故答案是:(,).20.(3分)如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=4﹣2,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD AM;④若BE平分∠DBC,则正方形ABCD的面积为4,其中结论正确的是①②③④(填序号)【解答】解:①正确,证明如下:∵BC=DC,CE=CG,∠BCE=∠DCG=90°,∴△BEC≌△DGC,∴∠EBC=∠CDG,∵∠BDC+∠DBH+∠EBC=90°,∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五点都在以BD 为直径的圆上;由圆周角定理知:∠DHA=∠ABD=45°,故②正确;③由②知:A、B、C、D、H五点共圆,则∠BAH=∠BDH;又∵∠ABD=∠DBG=45°,∴△ABM∽△DBG,得AM:DG=AB:BD=1:,即DG AM;故③正确;④过H作HN⊥CD于N,连接EG;若BH平分∠DBG,且BH⊥DG,已知:BH垂直平分DG;得DE=EG,H是DG中点,HN为△DCG的中位线;设CG=x,则:HN x,EG=DE x,DC=BC=(1)x;∵HN⊥CD,BC⊥CD,∴HN∥BC,∴∠NHB=∠EBC,∠ENH=∠ECB,∴△BEC∽△HEN,则BE:EH=BC:HN=22,即EH;∴HE•BH=BH•4﹣2,即BE•BH=4;∵∠DBH=∠CBE,且∠BHD=∠BCE=90°,∴△BDH∽△BCE,得:DB•BC=BE•BH=4,即BC2=4,得:BC2=4,即正方形ABCD的面积为4;故④正确;故答案为:①②③④.三、解答题21.(11分)计算(1)|﹣1|4sin30°(2)先化简,再求值:1,其中a=2sin60°﹣tan45°.【解答】解:(1)原式=1﹣2﹣1+4=﹣2+2=0;(2)原式=[]•(a﹣1)+1•(a﹣1)+1,当a=2sin60°﹣tan45°=211时,原式.22.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解得k.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2+k﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2+k﹣1)=2k2﹣6k+3,∵x12+x22=11,∴2k2﹣6k+3=11,解得k=4,或k=﹣1,∵k,∴k=4(舍去),∴k=﹣1.23.如图,一次函数y=kx+b的图象与反比例函数y(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)根据图象直接写出kx+b<的x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:,∴一次函数解析式为y x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y.(2)观察图象可知,kx+b<时,x的取值范围0<x<4.(3)如图所示,∵点C(0,1),B(4,0)∴BC,PC,∴以BC、PC为边构造菱形,∵四边形BCPD为菱形,∴PB垂直且平分CD,∵PB⊥x轴,P(4,2),∴点D(8,1).24.深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?【解答】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a <5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大,且大于6000元;当a=3时,3﹣a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3﹣a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.25.已知:如图,在矩形ABCD中,AC是对角线,点P为矩形外一点且满足AP=PC,AP⊥PC,PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=5,AB BC,求矩形ABCD的面积;(2)若CD=PM,试判断线段AC、AP、PN之间的关系,并证明.【解答】解:(1)∵AP=PC,AP⊥PC,∴AC AP=5∵AB2+BC2=AC2,AB BC,∴AB,BC=3∴S四边形ABCD=AB×BC=15(2)AC=AP+PN如图.延长AP,CD交于点E∵AP=PC,AP⊥PC,∴∠APC=90°,∠PAC=∠PCA=45°∵四边形ABCD是矩形∴∠ADC=90°,∴∠ADC=∠APC∴点A,点C,点D,点P四点共圆∴∠PDA=∠PCA=45°,∠PCD=∠PAD,∠DPC=∠DCA,∵PM⊥PD∴∠PMD=∠PDM=45°∴PM=PD,且PM=CD∴PD=CD,∴∠DPC=∠DCP∴∠PAD=∠DAC,且AD=AD,∠ADE=∠ADC=90°∴△ADE≌△ADC(ASA)∴AC=AE,∵AP=PC,∠APC=∠EPC=90°,∠PCE=∠PAD∴△PAN≌△PEC(ASA)∴PN=PE∴AC=AE=AP+PE=AP+PN26.如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.【解答】解:(1)如图1,连接OD,OC,∵PC、PD是⊙O的两条切线,C、D为切点,∴∠ODP=∠OCP=90°,∵四边形ABCD是⊙O的内接正方形,∴∠DOC=90°,OD=OC,∴四边形DOCP是正方形,∵AB=4,∠ODC=∠OCD=45°,∴DO=CO=DC•sin45°4=2;(2)如图1,连接EO,OP,∵点E是BC的中点,∴OE⊥BC,∠OCE=45°,则∠E0P=90°,∴EO=EC=2,OP CO=4,∴PE2;(3)证明:如图2,在AB上截取BF=BM,连接FM,∵AB=BC,BF=BM,∴AF=MC,∠BFM=∠BMF=45°,∵∠AMN=90°,∴∠AMF+∠NMC=45°,∠FAM+∠AMF=45°,∴∠FAM=∠NMC,∵由(1)得:PD=PC,∠DPC=90°,∴∠DCP=45°,∴∠MCN=135°,∵∠AFM=180°﹣∠BFM=135°,在△AFM和△CMN中∠∠,∴△AFM≌△CMN(ASA),∴AM=MN.27.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B 两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点D(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a,∴抛物线C的函数表达式为y x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y (x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有>>>,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y x2+4上,∴m﹣2(m+2)2+4,解得m3或3(舍弃),∴m3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y x2+4中,2﹣m(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m3或6.2018-2019学年广东省深圳市宝安区九年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下面的几何体中,俯视图为三角形的是()A.B.C.D.2.(3分)一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 3.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°4.(3分)已知﹣1是一元二次方程ax2+bx+1=0的一个根,则a﹣b的值是()A.﹣1B.0C.1D.无法确定5.(3分)已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是()A.B.C.D.6.(3分)在不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其它差别.每次从袋子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.6,则袋中白球有()A.12个B.20个C.24个D.40个7.(3分)如图,这是某市政道路的交通指示牌.BD的距离为3m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A.3B.3C.33D.338.(3分)下列说法正确的是()A.两条对角线互相垂直且相等的四边形是正方形B.任意两个等腰三角形相似C.一元二次方程x2﹣ax﹣2=0,无论a取何值,一定有两个不相等的实数根D.关于反比例函数y,y的值随x值的增大而减小9.(3分)如图,已知△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,点B的坐标为(﹣3,2),则点C的坐标为()A.(3,﹣2)B.(6,﹣4)C.(4,﹣6)D.(6,4)10.(3分)如图,在菱形ABCD中,∠A=60°,AB=2,点M为边AD的中点,连接BD交CM于点N,则BN的长是()A.1B.C.D.11.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论中正确的是()A.abc<0B.4ac﹣b2>0C.当x<1时,y随x的增大而减小D.4a﹣2b+c>012.(3分)如图,矩形ABCD,AB=8,AD=14,点M,N分别为边AD和边BC上的两点,且MN∥AB,点E是点A关于MN所在的直线的对称点,取CD的中点F,连接EF,NF,分别将△EDF沿着EF所在的直线折叠,将△CNF沿着NF所在的直线折叠,点D和点C恰好重合于EN上的点G.以下结论中:①EF⊥NF;②∠MNE=∠CNE;③△MNE∽△DEF;④四边形MNCD是正方形;⑤AM=5.其中正确的结论是()A.①②B.①④C.①③⑤D.①④⑤二、填空题:本题共4小题,每小题3分,共12分.13.(3分)已知,则.14.(3分)抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是.15.(3分)如图,在A时测得一棵大树的影长为4米,B时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是.16.(3分)如图,在平面直角坐标系中,直线y x与双曲线y(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D (0,4),则k的值为.三、解答题:本题共7题,共52分.解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:﹣12+()2+cos45°+|1|18.(8分)有3张正面分别写有数字﹣2,0,1的卡片,它们的背面完全相同,现将这3张卡片背面朝上洗匀,小明先从中任意抽出一张卡片记下数字为x;小亮再从剩下的卡片中任意取出一张记下数字为y,记作P(x,y).(1)用列表或画树状图的方法列出所有可能的点P的坐标;(2)若规定:点P(x,y)在第二象限小明获胜;点P(x,y)在第四象限小亮获胜,游戏规则公平吗?19.(5分)如图,一次函数y1=﹣x+2的图象与反比例函数y2(k≠0)的图象分别交于第二、四象限的A,B两点,点A的横坐标为﹣1.(1)求反比例函数的表达式;(2)根据图象回答:当x取何值时,y1<y2.请直接写出答案:.20.(8分)如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.21.(7分)天猫商城某网店销售某款蓝牙耳机,进价为100元.在元旦即将来临之际,开展了市场调查,当蓝牙耳机销售单价是180元时,平均每月的销售量是200件,若销售单价每降低2元,平均每月就可以多售出10件.(1)设每件商品降价x元,该网店平均每月获得的利润为y元,请写出y与x元之间的函数关系;(2)该网店应该如何定价才能使得平均每月获得的利润最大,最大利润是多少元?22.(9分)如图,在矩形ABCD中,AB=4,BC=2,点E是边BC的中点.动点P 从点A出发,沿着AB运动到点B停止,速度为每秒钟1个单位长度,连接PE,过点E作PE的垂线交射线AD与点Q,连接PQ,设点P的运动时间为t秒.(1)当t=1时,sin∠PEB=;(2)是否存在这样的t值,使△APQ为等腰直角三角形?若存在,求出相应的t值,若不存在,请说明理由;(3)当t为何值时,△PEQ的面积等于10?23.(10分)如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是x,点B的坐标为(4,0).(1)抛物线的解析式是;(2)若点P是直线BC下方抛物线上一动点,当∠ABP=2∠ABC时,求出点P的坐标;(3)若M为x轴上一动点,在抛物线上是否存在点N,使得点B,C,M,N构成的四边形是菱形?若存在,求出N点的坐标;若不存在,请说明理由.2018-2019学年广东省深圳市宝安区九年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下面的几何体中,俯视图为三角形的是()A.B.C.D.【解答】解:俯视图为三角形的是.故选:C.2.(3分)一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2【解答】解:(x﹣2)2=0,则x1=x2=2,故选:B.3.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°【解答】解:∵矩形ABCD中,对角线AC,BD相交于点O,∴DB=AC,OD=OB,OA=OC,∴OA=OD,∴∠CAD=∠ADO,∵∠COD=50°=∠CAD+∠ADO,∴∠CAD=25°,故选:B.4.(3分)已知﹣1是一元二次方程ax2+bx+1=0的一个根,则a﹣b的值是()A.﹣1B.0C.1D.无法确定【解答】解:把x=﹣1代入方程得:a﹣b+1=0,即a﹣b=﹣1,故选:A.5.(3分)已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是()A.B.C.D.【解答】解:由题意可知:10xy,∴y(x>0),故选:D.6.(3分)在不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其它差别.每次从袋子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.6,则袋中白球有()A.12个B.20个C.24个D.40个【解答】解:设袋中白球有x个,根据题意得:,解得:x=24,经检验:x=24是分式方程的解,故袋中白球有24个.故选:C.7.(3分)如图,这是某市政道路的交通指示牌.BD的距离为3m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A.3B.3C.33D.33【解答】解:由题意可得:∠CDB=∠DCB=45°,故BD=BC=3m,设AC=x,则tan60°,解得:x=33,故选:D.8.(3分)下列说法正确的是()A.两条对角线互相垂直且相等的四边形是正方形B.任意两个等腰三角形相似C.一元二次方程x2﹣ax﹣2=0,无论a取何值,一定有两个不相等的实数根D.关于反比例函数y,y的值随x值的增大而减小【解答】解:A、两条对角线互相垂直且相等的平行四边形是正方形,故错误;B、等腰三角形的对应角不一定相等,故错误;C、方程x2﹣ax﹣2=0中△=a2+8>0,一定有两个不相等的实数根,故正确;D、关于反比例函数y,在每一象限内y的值随x值的增大而减小,故错误,故选:C.9.(3分)如图,已知△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,点B的坐标为(﹣3,2),则点C的坐标为()A.(3,﹣2)B.(6,﹣4)C.(4,﹣6)D.(6,4)【解答】解:∵△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,∴△ABO与△DCO的相似比为1:2,∵点B的坐标为(﹣3,2),∴点C的坐标为(6,﹣4),故选:B.10.(3分)如图,在菱形ABCD中,∠A=60°,AB=2,点M为边AD的中点,连接BD交CM于点N,则BN的长是()A.1B.C.D.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∴BD=AB=2,∵AM=MD,∴BC=2DM,∵DM∥BC,∴△DMN∽△BCN,∴,∴BN BD,故选:B.11.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论中正确的是()A.abc<0B.4ac﹣b2>0C.当x<1时,y随x的增大而减小D.4a﹣2b+c>0【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∵c=﹣3,∴abc>0,故A错误;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵抛物线与x轴的两个交点分别为(﹣1,0),(2,0),∴对称轴方程为直线x,∴当x<时,y随x的增大而减小,故C错误;当x=﹣2时,y=4a﹣2b+c>0,故D正确;故选:D.12.(3分)如图,矩形ABCD,AB=8,AD=14,点M,N分别为边AD和边BC上的两点,且MN∥AB,点E是点A关于MN所在的直线的对称点,取CD的中点F,连接EF,NF,分别将△EDF沿着EF所在的直线折叠,将△CNF沿着NF所在的直线折叠,点D和点C恰好重合于EN上的点G.以下结论中:①EF⊥NF;②∠MNE=∠CNE;③△MNE∽△DEF;④四边形MNCD是正方形;⑤AM=5.其中正确的结论是()A.①②B.①④C.①③⑤D.①④⑤【解答】解:∵由折叠的性质得,∠DFE=∠GFE,∠GFN=∠CFN,∵∠DFE+∠GFE+∠GFN+∠CFN=180°,∴∠GFN+∠CFN=90°,∴∠NFE=90°,∴EF⊥NF;故①正确;连接AN,∵点E是点A关于MN所在的直线的对称点,∴∠ANM=∠ENM,∴∠ANB=∠CNE,而四边形ABNM不是正方形,∴∠ANB≠∠ANM,∴∠MNE≠∠CNE;故②错误;∵∠NEF≠90°,∠DFE+∠DEF=90°,∠DEF+∠MEN≠90°,∴∠DFE≠∠NEM,∴△MNE∽△DEF错误,故③错误;设DE=x,∴BN=AM,∴CN=14﹣BN,∵∠EFD+∠CFN=∠EFD+∠DEF=90°,∴∠DEF=∠CFN,∵∠D=∠C=90°,∴△DEF∽△CFN,∴,∵F是CD的在中点,∴CF=DF=4,∴,∴x=2,x=﹣16(不合题意舍去),∴DE=2,CN=8,∴CD=CN,∴四边形MNCD是正方形;故④正确;∵CN=DM=8,∴AM=6,故⑤错误,故选:B.二、填空题:本题共4小题,每小题3分,共12分.13.(3分)已知,则.【解答】解:设k,可得:x=2k,y=5k,把x=2k,y=5k代入,故答案为:.14.(3分)抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x﹣1)2﹣1.【解答】解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),。
2018-2019学年广东省深圳市福田区九年级数学(上)期末模拟试卷
2018-2019 学年广东省深圳市福田区九年级(上)期末数学试卷一.选择题(共12 小题,满分36 分,每小题3 分)1.若P1(x1,y1),P2(x2,y2)是函数y=5x图象上的两点,当x1>x2>0 时,下列结论正确的是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<02.正方形在太阳光下的投影不可能是()A.正方形B.一条线段C.矩形D.三角形3.在△ABC 中,点D、E 分别在AB、AC 上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC 的是()A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=254.下列关于x 的方程中一定没有实数根的是()A.x2﹣x﹣1=0 B.4x2﹣6x+9=0 C.x2=﹣x D.x2﹣mx﹣2=0 5.在Rt△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值为()A.35B.45C.34D.436.若△ABC∽△DEF,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 对应中线的比为()A.23B.8116C.94D.327.当A 为锐角,且12<cos∠A<2时,∠A 的范围是()A.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<45°8.关于反比例函数y=2x,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0 时,y 随x 的增大而减小C.函数图象经过点(1,2)D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y29.函数y=﹣2x2 先向右平移1 个单位,再向下平移2 个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣210.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1 和∠2 是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1 个B.2 个C.3 个D.4 个11.抛物线y=(x﹣2)2+3 的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)12.已知函数y=22(1)1(3)(5)1(3)x xx x⎧--≤⎨-->⎩,则使y=k 成立的x 值恰好有三个,则k 的值为()A.0 B.1 C.2 D.3 二.填空题(共4 小题,满分12 分,每小题3 分)13.已知菱形的周长为52,一条对角线长为10,则它的面积是.14.在Rt△ABC 中,∠C=90°,如果sin A=23,BC=4,那么AB=.15.已知23ab=,则aa b+的值是.16.如图,△ABC 中AB 的垂直平分线交AC 于点D,已知∠ABC=∠ACB,AB=9,△BCD 的周长等于11,则BC 的长是.三.解答题(共7 小题,满分52 分)17.计算:(﹣2)2﹣(2)0+2•tan45°18.解方程:(1)x2+4x﹣5=0.(2)x2﹣3x+1=0.19.不透明的袋中装有3 个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;(2)两次取的小球是一红一白的概率.20.如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的中线,过点B 作BE∥CD,过点C 作CE∥AB,BE,CE 相交于点E.求证:四边形BDCE 是菱形.21.如图,CD 是Rt△ABC 斜边AB 上的中线,过点D 垂直于AB 的直线交BC 于E,交AC 延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.22.如图,一次函数 y 1=k 1x +b 的图象与反比例函数 y 2=2k x(x >0)的图象交于 A 、B 两点,与 y 轴交于 C 点,已知 A 点坐标为(2,1),C 点坐标为(0,3)(1)求一次函数和反比例函数的解析式;(2)在 x 轴上找一点 P ,使得△PAB 的周长最小,请求出点 P 的坐标.23.如图,直线AB 和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C,与A,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P,连接PA,PB 使得△PAB 的面积最大,并求出这个最大值.。
2018-2019学年广东省深圳市福田区九年级(上)期末数学试卷(解析版)
2018-2019学年广东省深圳市福田区九年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)如图,墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是()A.B.C.D.2.(3分)下列所给各点中,反比例函数y=的图象经过的是()A.(﹣2,4)B.(﹣1,﹣8)C.(﹣4,2)D.(3,5)3.(3分)某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米4.(3分)已知x=1是一元二次方程x2+mx﹣2=0的一个解,则m的值是()A.1B.﹣1C.2D.﹣25.(3分)如果两个相似三角形的对应边上的高之比为1:3,则两三角形的面积比为()A.2:3B.1:3C.1:9D.1:6.(3分)甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.B.C.D.7.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan C的值是()A.2B.C.1D.8.(3分)如图,l1∥l2∥l3,直线a,b与11、l2、l3分别相交于A、B、C和点D、E、F,若=,DE=6,则EF的长是()A.9B.10C.2D.159.(3分)已知关于x的方程ax2+2x﹣2=0有实数根,则实数a的取值范围是()A.a≥﹣B.a≤﹣C.a≥﹣且a≠0D.a>﹣且a≠0 10.(3分)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)211.(3分)如图是二次函数y=ax2+bx+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=012.(3分)如图,A、C是反比例函数y=(x>0)图象上的两点,B、D是反比例函数y=(x>0)图象上的两点,已知AB∥CD∥y轴,直线AB、CD分别交x轴于E、F,根据图中信息,下列结论正确的有()①DF=;②=﹣;③;④A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)二次函数y=x2﹣4x+4的顶点坐标是.14.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x 轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为.15.(3分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为m.(结果保留根号)16.(3分)如图,点E是矩形ABCD的一边AD的中点,BF⊥CE于F,连接AF;若AB =4,AD=6,则sin∠AFE=.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:tan45°﹣tan260°+sin30°﹣cos30°.18.(6分)解方程:2(x﹣3)2=x﹣3.19.(7分)如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)20.(8分)如图,E、F是正方形ABCD对角线AC上的两点,且AE=EF=FC,连接BE、DE、BF、DF.(1)求证:四边形BEDF是菱形:(2)求tan∠AFD的值.21.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?22.(9分)如图,点P是反比例函数y=﹣(x<0)图象上的一动点,PA⊥x轴于点A,在直线y=x上截取OB=PA(点B在第一象限),点C的坐标为(﹣2,2),连接AC、BC、OC.(1)填空:OC=,∠BOC=;(2)求证:△AOC∽△COB;(3)随着点P的运动,∠ACB的大小是否会发生变化?若变化,请说明理由,若不变,则求出它的大小.23.(9分)如图,抛物线交x轴于A、B两点(点A在点B的左边),交y轴于点C,直线y=﹣x+3经过点C与x轴交于点D,抛物线的顶点坐标为(2,4).(1)请你直接写出CD的长及抛物线的函数关系式;(2)求点B到直线CD的距离;(3)若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使∠PDC=45°?请你求出此时的P点坐标.2018-2019学年广东省深圳市福田区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)如图,墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是()A.B.C.D.【分析】直接利用俯视图即从物体的上面往下看,进而得出视图.【解答】解:墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是:.故选:A.【点评】此题主要考查了简单组合体的三视图,注意观察角度是解题关键.2.(3分)下列所给各点中,反比例函数y=的图象经过的是()A.(﹣2,4)B.(﹣1,﹣8)C.(﹣4,2)D.(3,5)【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵﹣2×4=﹣8,﹣4×2=﹣8,3×5=15,﹣1×(﹣8)=8,∴点(﹣1,﹣8)在反比例函数y=的图象经上.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3.(3分)某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:∵同一时刻物高与影长成正比例.∴1.8:1.5=旗杆的高度:12∴旗杆的高度为14.4米故选:C.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.4.(3分)已知x=1是一元二次方程x2+mx﹣2=0的一个解,则m的值是()A.1B.﹣1C.2D.﹣2【分析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1,故选:A.【点评】本题考查了一元二次方程的解,正确掌握代入法是解题的关键.5.(3分)如果两个相似三角形的对应边上的高之比为1:3,则两三角形的面积比为()A.2:3B.1:3C.1:9D.1:【分析】根据对应高的比等于相似比,相似三角形的面积比等于相似比的平方解答.【解答】解:∵相似三角形对应高的比等于相似比,∴两三角形的相似比为1:3,∴两三角形的面积比为1:9.故选:C.【点评】本题考查对相似三角形性质的理解,相似三角形对应高的比等于相似比.6.(3分)甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.B.C.D.【分析】先求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【解答】解:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是=.故选:A.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan C的值是()A.2B.C.1D.【分析】在直角三角形ACD中,根据正切的意义可求解.【解答】解:如图在RtACD中,tan C=,故选:B.【点评】本题考查锐角三角函数的定义.将角转化到直角三角形中是解答的关键.8.(3分)如图,l1∥l2∥l3,直线a,b与11、l2、l3分别相交于A、B、C和点D、E、F,若=,DE=6,则EF的长是()A.9B.10C.2D.15【分析】根据平行线分线段成比例可得=,代入计算即可解答.【解答】解:∵l1∥l2∥l3,∴=,即=,解得:DF=15,∴EF=15﹣6=9.故选:A.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.9.(3分)已知关于x的方程ax2+2x﹣2=0有实数根,则实数a的取值范围是()A.a≥﹣B.a≤﹣C.a≥﹣且a≠0D.a>﹣且a≠0【分析】当a≠0时,是一元二次方程,根据根的判别式的意义得△=22﹣4a×(﹣2)=4(1+2a)≥0,然后解不等式;当a=0时,是一元一次方程有实数根,由此得出答案即可.【解答】解:当a≠0时,是一元二次方程,∵原方程有实数根,∴△=22﹣4a×(﹣2)=4(1+2a)≥0,∴a≥﹣;当a=0时,2x﹣2=0是一元一次方程,有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.进行分类讨论是解题的关键.10.(3分)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)2【分析】设平均每次增长的百分数为x,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%”,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为x”,得到商品现在关于x的价格,整理后即可得到答案.【解答】解:设平均每次增长的百分数为x,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%),∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程和有理数的混合运算,正确找出等量关系,列出一元二次方程是解题的关键.11.(3分)如图是二次函数y=ax2+bx+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=0【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:a<0,c>0,对称轴x=>0,∴b>0,∴abc<0,故A正确;(B)由对称轴可知:=1,∴2a+b=0,故正确;(C)当x=﹣2时,y<0,∴4a﹣2b+c<0,故C错误;(D)(﹣1,0)与(3,0)关于直线x=1对称,∴9a+3b+c=0,故D正确;故选:C.【点评】本题考查二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.12.(3分)如图,A、C是反比例函数y=(x>0)图象上的两点,B、D是反比例函数y=(x>0)图象上的两点,已知AB∥CD∥y轴,直线AB、CD分别交x轴于E、F,根据图中信息,下列结论正确的有()①DF=;②=﹣;③;④A.1个B.2个C.3个D.4个【分析】设E(a,0),F(b,0),由A、B、C纵横坐标积等于k可确定a,b的数量关系,从而说明各个结论的正误.【解答】解:设E(a,0),F(b,0),则3a=b=k1,﹣4a=﹣DF•b=k2,∴DF=,,故①②正确;∵,∴③正确;∵,∴④正确,故选:D.【点评】本题考查反比例函数的图象和性质,理解运用k的几何意义是解答此题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)二次函数y=x2﹣4x+4的顶点坐标是(2,0).【分析】先把一般式配成顶点式,然后利用二次函数的性质解决问题.【解答】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线的顶点坐标为(2,0).故答案为(2,0).【点评】本题考查了二次函数的性质:熟练掌握二次函数的顶点坐标公式,对称轴方程和二次函数的增减性.14.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为y=.【分析】延长BA交y轴于D,则BD⊥y轴,依据点A的坐标为(3,4),即可得出B (8,4),再根据∠AOC的角平分线所在直线经过点B,即可得到函数关系式.【解答】解:如图所示,延长BA交y轴于D,则BD⊥y轴,∵点A的坐标为(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4),设∠AOC的角平分线所在直线的函数关系式为y=kx,∵菱形OABC中,∠AOC的角平分线所在直线经过点B,∴4=8k,即k=,∴∠AOC的角平分线所在直线的函数关系式为y=x,故答案为:y=x.【点评】此题主要考查了一次函数图象上点的坐标特征以及菱形的性质的运用,正确得出B点坐标是解题关键.15.(3分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为(30﹣10)m.(结果保留根号)【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE 的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=30m,∠ADF=45°,∴DF=AF=30m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(30﹣10)m.答:障碍物B,C两点间的距离为(30﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.(3分)如图,点E是矩形ABCD的一边AD的中点,BF⊥CE于F,连接AF;若AB=4,AD=6,则sin∠AFE=.【分析】延长CE交BA的延长线于点G,由题意可证△AGE≌△DCE,可得AG=CD=4,根据直角三角形的性质可得∠AFE=∠AGF,由勾股定理可求CG=10,即可求sin∠AFE的值.【解答】解:延长CE交BA的延长线于点G,∵四边形ABCD是矩形,∴AB∥CD,AB=CD=4,AD=BC=6,∴∠G=∠GCD,且AE=DEA,∠AEG=∠DEC∴△AGE≌△DCE(AAS)∴AG=CD=4,∴AG=AB,且BF⊥GF,∴AF=AG=AB=4∴∠AFE=∠AGF,∵BG=AG+AB=8,BC=6∴GC==10∴sin∠AFE=sin∠AGF==故答案为:【点评】本题考查了矩形的性质,全等三角形的判定和性质,直角三角形的性质,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:tan45°﹣tan260°+sin30°﹣cos30°.【分析】利用特殊角的三角函数值求解即可【解答】解:原式=1﹣+﹣•=1﹣3+﹣=﹣3【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.18.(6分)解方程:2(x﹣3)2=x﹣3.【分析】方程移项后,利用因式分解法求出解即可.【解答】解:方程移项得:2(x﹣3)2﹣(x﹣3)=0,分解因式得:(x﹣3)(2x﹣7)=0,可得x﹣3=0或2x﹣7=0,解得:x1=3,x2=3.5.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.19.(7分)如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)【分析】(1)依据第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,即可得到小明继续游戏可以获胜的概率;(2)依据小明第一次摸出的数字是3,画出树状图,即可得到6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况,进而得出小明获胜的概率.【解答】解:(1)小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,∴可以获胜的概率为,故答案为:;(2)画树状图如下:共有6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况:(3,1,2),则P(小明能获胜)=.【点评】此题主要考查了概率的意义以及树状图法与列表法的运用,当有两个元素时,可用树形图列举,也可以列表列举.利用树状图或者列表法列举出所有可能是解题关键.20.(8分)如图,E、F是正方形ABCD对角线AC上的两点,且AE=EF=FC,连接BE、DE、BF、DF.(1)求证:四边形BEDF是菱形:(2)求tan∠AFD的值.【分析】(1)连接BD交AC于点O,根据正方形的性质得到OA=OC,OB=OD,AC ⊥BD,证明OE=OF,得到四边形BEDF是平行四边形,根据菱形的判定定理证明;(2)根据正方形的性质得到OD=3OF,根据正切的定义计算,得到答案.【解答】(1)证明:连接BD交AC于点O,∵四边形ABCD是正方形,∴OA=OC,OB=OD,且AC⊥BD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,又∵OB=OD,∴四边形BEDF是平行四边形,又∵AC⊥BD,∴平行四边形BEDF是菱形;(2)解:∵EF=2OF,EF=CF,∴CF=2OF,∴OC=3OF,又OD=OC,∴OD=3OF,在正方形ABCD中,AC⊥BD,∴∠DOF=90°,在Rt△DOF中,tan∠AFD==3.【点评】本题考查的是正方形的性质、菱形的判定、正切的定义,掌握正方形的四条边相等、四个角相等是解题的关键.21.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x (元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【分析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意得,解得,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣15300,∵W=﹣x2+260x﹣15300=﹣(x﹣130)2+1600,而a=﹣1<0,∴当x=130时,W有最大值1600.答:售价定为130元时,每天获得的利润最大,最大利润是1600元.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=没件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.22.(9分)如图,点P是反比例函数y=﹣(x<0)图象上的一动点,PA⊥x轴于点A,在直线y=x上截取OB=PA(点B在第一象限),点C的坐标为(﹣2,2),连接AC、BC、OC.(1)填空:OC=4,∠BOC=60°;(2)求证:△AOC∽△COB;(3)随着点P的运动,∠ACB的大小是否会发生变化?若变化,请说明理由,若不变,则求出它的大小.【分析】(1)过点C作CE⊥x轴于点E,过点B作BF⊥x轴于点F,由点C的坐标可得出OE,CE的长度,进而可求出OC的长度及∠AOC的度数,由直线OB的解析式可得出∠BOF的度数,再利用∠BOC=180°﹣∠AOC﹣∠BOF即可求出∠BOC的度数;(2)由(1)可知∠AOC=∠BOC,由点P是反比例函数y=﹣(x<0)图象上的一动点,利用反比例函数图象上点的坐标特征可得出PA•OA=16,结合OB=PA及OC=4,可得出=,结合∠AOC=∠BOC即可证出△AOC∽△COB;(3)由△AOC∽△COB利用相似三角形的性质可得出∠CAO=∠BCO,在△AOC中,利用三角形内角和定理可求出∠CAO+∠OCA=120°,进而可得出∠BCO+∠OCA=120°,即∠ACB=120°.【解答】(1)解:过点C作CE⊥x轴于点E,过点B作BF⊥x轴于点F,如图所示.∵点C的坐标为(﹣2,2),∴OE=2,CE=2,∴OC==4.∵tan∠AOC==,∴∠AOC=60°.∵直线OB的解析式为y=x,∴∠BOF=60°,∴∠BOC=180°﹣∠AOC﹣∠BOF=60°.故答案为:4;60°.(2)证明:∵∠AOC=60°,∠BOC=60°,∴∠AOC=∠BOC.∵点P是反比例函数y=﹣(x<0)图象上的一动点,∴PA•OA=16.∵PA=OB,∴OB•OA=16=OC2,即=,∴△AOC∽△COB.(3)解:∠ACB的大小不会发生变化,理由如下:∵△AOC∽△COB,∴∠CAO=∠BCO.在△AOC中,∠AOC=60°,∴∠CAO+∠OCA=120°,∴∠BCO+∠OCA=120°,即∠ACB=120°.【点评】本题考查了特殊角的三角函数值、勾股定理、反比例函数图象上点的坐标特征、相似三角形的判定与性质以及三角形内角和定理,解题的关键是:(1)利用勾股定理及角的计算,找出OC的长及∠BOC的度数;(2)利用反比例函数图象上点的坐标特征、OC=4及OB=PA,找出=;(3)利用相似三角形的性质及三角形内角和定理,找出∠BCO+∠OCA=120°.23.(9分)如图,抛物线交x轴于A、B两点(点A在点B的左边),交y轴于点C,直线y=﹣x+3经过点C与x轴交于点D,抛物线的顶点坐标为(2,4).(1)请你直接写出CD的长及抛物线的函数关系式;(2)求点B到直线CD的距离;(3)若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使∠PDC=45°?请你求出此时的P点坐标.【分析】(1)求出点C,D的坐标,再用勾股定理求得CD的长;设抛物线为y=a(x ﹣2)2+4,将点C坐标代入求得a,即可得出抛物线的函数表达式;(2)过点B直线CD的垂线,垂足为H,在Rt△BDH中,利用锐角三角函数即可求得点B到直线CD的距离;(3)把点C(0,3)向上平移4个单位,向右平移3个单位得到点E(3,7),可得△OCD≌△FEC,则△DEC为等腰直角三角形,且∠EDC═45°,所以直线ED与抛物线的交点即为所求的点P.【解答】解:(1)∵,∴C(0,3),D(4,0),∵∠COD=90°,∴CD=.设抛物线为y=a(x﹣2)2+4,将点C(0,3)代入抛物线,得3=4a+4,∴,∴抛物线的函数关系式为;(2)解:过点B作BH⊥CD于H,由,可得x1=﹣2,x2=6,∴点B的坐标为(6,0),∵OC=3,OD=4,CD=5,∴OB=6,从而BD=2,在Rt△DHB中,∵BH=BD•sin∠BDH=BD•sin∠CDO=2×,∴点B到直线CD的距离为.(3)把点C(0,3)向上平移4个单位,向右平移3个单位得到点E(3,7),∵CF=OD=4,EF=OC=3,∠CFE=∠DOC=90°,∴△OCD≌△FEC,∴∠FCE=∠ODC,EC=DC,∴∠ECD=180°﹣(∠FCE+∠OCD)=180°﹣(∠ODC+∠OCD)=180°﹣90°=90°,∴△DEC为等腰直角三角形,且∠EDC═45°,因而,ED与抛物线的交点即为所求的点P.由E(3,7),D(4,0),可得直线ED的解析式为:y=﹣7x+28,由得(另一组解不合题意,已舍去.)所以,此时P点坐标为(,).【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力。
2019届广东省深圳市福田区九年级上学期期末数学试卷【含答案及解析】
2019届广东省深圳市福田区九年级上学期期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. sin30°的值是()A. B. C.1 D.2. 已知反比例函数y=,下列各点不在该函数图象上的是()A.(2,3) B.(﹣2,﹣3) C.(2,﹣3) D.(1,6)3. 一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=24. 下面四个几何体中,主视图与俯视图不同的共有()A.1个 B.2个 C.3个 D.4个5. 抛物线y=2(x﹣1)2+1的顶点坐标是()A.(1,1) B.(1,﹣1) C.(﹣1,1) D.(﹣1,﹣1)6. 口袋里有除颜色不同外其它都相同的红、蓝、白三种颜色的小球共30个,摸到红球的概率是,摸到蓝球的概率是,则袋子里有白球()个.A.15 B.10 C.5 D.67. 华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程()A.20000(1+x)2=80000B.20000(1+x)+20000(1+x)2=80000C.20000(1+x2)=80000D.20000+20000(1+x)+20000(1+x)2=800008. 如图,某汽车在路面上朝正东方向匀速行驶,在A处观测到楼H在北偏东60°方向上,行驶1小时后到达B处,此时观测到楼H在北偏东30°方向上,那么该车继续行驶()分钟可使汽车到达离楼H距离最近的位置.A.60 B.30 C.15 D.459. 如图,在△ABC中,D、E分别是线段AB、AC的中点,则△ABC与△ADE的面积之比为()A.1:2 B.1:4 C.4:1 D.2:110. 身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是()A.10米 B.9米 C.8米 D.10.8米11. 如图,直线y=1与抛物线y=x2﹣2x相交于M、N两点,则M、N两点的横坐标是下列哪个方程的解?()A.x2﹣2x+1=0 B.x2﹣2x﹣1=0 C.x2﹣2x﹣2=0 D.x2﹣2x+2=012. 如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是3,则k的值为()A.2 B.4 C.﹣2 D.﹣4二、填空题13. 二次函数y=ax2﹣2ax+3的对称轴是x= .14. 已知菱形的两条对角线长分别为10和24,则菱形的边长为.15. 二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b的图象如图所示,当y2>y1时,根据图象写出x的取值范围.16. 如图,在Rt△ABC中,∠B=90°,∠ACB=45°,∠D=30°,B、C、D在同一直线上,连接AD,若AB=,则sin∠CAD= .三、计算题17. 2cos60°﹣sin245°+(﹣tan45°)2016.四、解答题18. 解方程:2(x+1)2=x+1.五、计算题19. 小鹏和小娟玩一种游戏:小鹏手里有三张扑克牌分别是3、4、5,小娟有两张扑克牌6、7,现二人各自把自己的牌洗匀,小鹏从小娟的牌中任意抽取一张,小娟从小鹏的牌中任意抽取一张,计算两张数字之和,如果和为奇数,则小鹏胜;如果和为偶数则小娟胜.(1)用列表或画树状图的方法,列出小鹏和小娟抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平?并说明理由.六、解答题20. 如图,AD∥BC,AF平分∠BAD交BC于点F,BE平分∠ABC交AD于点E.求证:(1)△ABF是等腰三角形;(2)四边形ABFE是菱形.21. 某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?22. 如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.23. 已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交与点E,已知点B(﹣1,0).(1)点A的坐标:,点E的坐标:;(2)若二次函数y=﹣x2+bx+c过点A、E,求此二次函数的解析式;(3)P是AC上的一个动点(P与点A、C不重合)连结PB、PD,设l是△PBD的周长,当l取最小值时,求点P的坐标及l的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】兰亭序永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。
南京市联合体2018-2019学年九年级上期末数学试卷及答案
2019–2019学年度第一学期期末学情分析样题九年级数学(考试时间120分钟,试卷满分120分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.16 的值等于( ▲ )A .4B .–4C .±4D .2 2.二次函数y = x 2-2x +3的图象的顶点坐标是( ▲ )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)3.平行四边形、矩形、菱形、正方形都具有的性质是( ▲ )A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直4.顺次连接等腰梯形ABCD 各边中点E 、F 、G 、H ,则四边形EFGH 的形状为( ▲ )A .矩形B .菱形C .正方形D .平行四边形5.如图,在△ABC 中,点O 为△ABC 的内心,则∠OAC +∠OCB +∠OBAA .45°B .60°C .90°D .120° 6.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的 ⌒EF 上, 若OA =2cm ,∠1=∠2,则 ⌒EF的长为( ▲ ) A .π3 cm B .2π3 cmC .4π3 cmD .8π3 cm二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案填写在题中横线上.....) 7.要使2–x 在实数范围内有意义,那么x 的取值范围是 ▲ .8.如图,AB 是⊙O 的一条弦,AB =6,圆心O 到AB 的距离为4,则⊙O 的半径为 ▲ . 9.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,. 如果60APB ∠=,8PA =,那么弦AB 的长是 ▲ .10.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 ▲ cm 2.第8题第6题A P第9题11.如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB =80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值应为___▲__°. 12.已知关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根,则k 的取值范围是 ▲ . 13.等腰梯形的两条对角线互相垂直,中位线长为8cm ,则它的高为 ▲ cm .14.如图,两个半径为2cm 的等圆互相重叠,且各自的圆心都在另一个圆上,则两圆重叠部分的面积是 ▲cm 2.(结果保留π)15.二次函数y =-x 2+bx +c 的部分图象如图所示,图象的对称轴为过点(-1,0)且平行于y 轴的直线,图象与x 轴交于点(1,0),则一元二次方程-x 2+bx +c =0的根为 ▲ .16.如图,平行于x 轴的直线AC 分别交函数y 1=x 2(x ≥0)与y 2=x 23(x ≥0)的图象于B 、C 两点,过点C作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC ,交y 2的图象于点E ,则DEAB = ▲ .三、解答题(本大题共11小题,共计88分.解答应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(212 -313)×6 .18.(6分)解方程: 2x 2+4x -1=0 .19.(6分)解方程: x (x –1)=2–2x .20.(6分)为了迎接2019年江苏省“时代杯”数学竞赛,某校要从小孙和小周两名同学中挑选一人参加比第14题第11题赛,在最近的五次选拔测试中,两人的成绩等有关信息如下表所示: (1)根据题中已知信息,完成上述统计表(填入上表即可,不写过程);(2)根据以上信息,若你是数学老师,你会选择谁参加比赛,理由是什么? (参考公式:s 2= 1n[(x 1-_x )2+(x 2-_x )2+ … +(x n -_x )2] .)21.(7分)已知二次函数y = x 2-2x .(1)在给定的平面直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y <0时,x 的取值范围; (3)若将此图象沿x 轴向右平移3个单位,再沿y 轴向上平移1个单位,请直接写出平移后图象所对应的函数关系式.22.(8分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是E 、F ,且DE =DF . (1)求证:△ADE ≌△CDF ;(2)判断四边形ABCD 的形状,并说明理由.23.(9分)如图,AP 是∠MAN 的平分线,B 是射线AN 上的一点,以AB 为直径作⊙O 交AP 于点C ,过第一次 第二次 第三次 第四次 第五次 平均分 方差 小孙 75 90 75 90 70 70 小周708080908080AC点C 作CD ⊥AM 于点D .(1)判断直线DC 与⊙O 的位置关系,并说明理由; (2)若OA = 6,AD = 10,求CD 的长.24.(9分)如图,函数y =x -3的图象分别交x 轴、y 轴于点A 、B ,点C 坐标为(–1,0).一条抛物线经过A 、B 、C 三点.(1)求抛物线所对应的函数关系式;(2)设点D 是线段AB 上的动点,过点D 作y 轴的平行线交抛物线于点E ,求线段DE 长度的最大值.25.(9分)七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:A三角形的三条高(或三条高所在直线)相交于一点.其实,有很多八年级、九年级的问题均可用此结论解决.【运用】如图,已知:△ABC 的高AD 与高BE 相交于点F ,且∠ABC =45°,过点F 作FG ∥BC 交AB 于点G ,求证:FG +CD =BD .小方同学在解答此题时,利用了上述结论,她的方法如下: 连接CF 并延长,交AB 于点M , ∵△ABC 的高AD 与高BE 相交于点F , ∴CM 为△ABC 的高.(请你在下面的空白处完成小方的证明过程.)【操作】如图AB 是圆的直径,点C 在圆内,请仅用无刻度的直尺........画出△ABC 中AB 边上的高.BAAE CDG BFBCA D EF G M HN 26.(11分)如图,梯形ABCD 是某世纪广场的示意图,上底AD=90m ,下底BC =150m ,高100m ,虚线MN 是梯形ABCD 的中位线.要设计修建宽度均x m 的一条横向和两条纵向大理石通道,横向通道EGHF 以MN 为中心线,两条纵向通道均与BC 垂直. (1)试用含x 的代数式表示横向通道EGHF 的面积1s ;(2)若三条通道的面积之和恰好是梯形ABCD 面积的14时,求通道宽度x ; (3)经测算大理石通道的修建费用1y (万元)与通道宽度为x m 的关系式为:114y x ,广场其余部分的绿化修建费用为0.05万元/2m ,若设计要求通道宽度x ≤8m ,则宽度x 为多少时,世纪广场修建总费用最少?最少费用为多少?27.(11分)如图,在矩形ABCD 中,AB =6,BC =8,动点P 以2个单位/秒的速度从A 点出发,沿对角线AC 向C 移动,同时动点Q 以1个单位/秒的速度从C 点出发,沿CB 向点B 移动,当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)求△CPQ 的面积S 与时间t 之间的函数关系式;(2)以P 为圆心,P A 为半径的圆与以Q 为圆心,QC 为半径的圆相切时,求出t 的值. (3)在P 、Q 移动的过程中,当△CPQ 为等腰三角形时,直接写出....t 的值;备用图2019-2019学年第一学期期末学情分析样题(2)九年级数学答卷纸(考试时间120分钟,试卷满分120分)注意事项:1.答题前务必将密封线内的项目填写清楚.2.请用钢笔或圆珠笔(蓝色或黑色)在答卷纸上按照题号顺序,在各题目的答题区域内作答书写,字体工整、笔迹清楚.在草稿纸、试卷上答题无效.一、选择题(每小题2分,共16分)二、填空题(每小题2分,共16分)7..12..8..13..9..14..10..15..11..16..三、计算与求解17.(6分)计算:(212 -313)×6 .18.(6分)解方程:2x2+4x-1=0 .19.(6分)解方程:x(x–1)=2–2x.20.平均分方差小孙70小周80数学试卷21.22. 23.AAC数学试卷24.25.运用:连接CF 并延长,交AB 于点M , ∵△ABC 的高AD 与高BE 相交于点F , ∴CM 为△ABC 的高.BAAE CDGBF数学试卷BCA D E F G M HN 26. 27.备用图2019–2019学年度第一学期期末学情试卷参考答案及评分标准九年级数学说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每题2分,共12分)1.A 2.D 3.B 4.B 5.C 6.C二、填空题 (每小题2分,共20分)7.x ≤2 8.5 9.8 10.3π 11.40 12.k >-2且k ≠-113.8 14.83π-2 3 15.x 1=1,x 2=-3 16.3- 3 三、解答题 (共88分)17.解:原式=(43-3)×6………………………………………………………………2分=33×6 …………………………………………………………………………4分= 9 2 …………………………………………………………………………6分18.解:(x +1)2 = 32………………………………………………………………………………3分 x 1=-1+62,x 2=-1-62………………………………………………………………6分 19.解:(x +2)( x -1)=0 …………………………………………………………………………3分x 1 =-2, x 2 = 1……………………………………………………………………………6分20.解:(1)80; 40. ………………………………………………………………………4分(2)选择小周参加比赛. ……………………………………………………………5分理由:小孙、小周两人成绩的平均数相同,但小周成绩的方差小于小孙,因此小周的成绩更稳定,所以选择小周参加数学比赛.……………………………………………6分21.解:(1)画图正确;…………………………………………………………………………2分(2)0<x <2; …………………………………………………………………………4分(3)y =(x -4)2.(或y =x 2-8x+16)……………………………………………………7分22.解:(1)∵DE ⊥AB ,DF ⊥BC ∴∠AED =∠CFD =90°, ……………………………1分∵四边形ABCD 是平行四边形,∴∠A =∠C ,………………………………………………………………………3分在△AED 和△CFD 中, ∠AED =∠CFD ,∠A =∠C ,DE =DF ,∴△AED ≌△CFD (AAS ); ……………………………………………………5分(2)四边形ABCD 是菱形. …………………………………………………………6分理由如下:∵△AED ≌△CFD ∴AD =CD , ……………………………………7分又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形. ………………8分23.解:(1)直线DC 与⊙O 相切. …………………………1分理由如下:连接OC , …………………………2分在⊙O 中,OA=OC ,∴∠OAC = ∠OCA ,∵AP 平分∠MAN ,∴∠DAC = ∠CAO ,∴∠DAC = ∠OCA ,∴AD ∥OC , ……………3分又∵AD ⊥CD ,∴OC ⊥CD ,且OC 为⊙O 半径,∴直线DC 与⊙O 相切. ………………………4分(2)解法一:连接CB ,………………………………………………………………5分∵AB 为⊙O 的直径,∴∠ACB =90°, …………………………………………6分∵AD ⊥CD ,∴∠ADC =90°,又∵∠DAC = ∠CAB ,∴△DAC ∽△ CAB , …………………………………7分∴DA CA = CA BA ,即10CA = CA 12,CA 2=120, ………………………………………8分 ∴在Rt △ADC 中,CD =AC 2-AD 2 =20=25.………………………………9分解法二:作OE ⊥AD 于E ,………………………………………………………5分证OEDC 为矩形,…………………………………………………………………7分在Rt △OAE 中,OE =AO 2-AE 2=25=CD .……………………………………9分24.解:(1)令x = 0,则y =-3,∴B (0, -3);…………………………1分令y = 0,则x =3,∴A (3,0)…………………………………2分设抛物线所对应的函数关系式为y =ax 2+bx +c ,……………3分由题意得⎩⎪⎨⎪⎧ c =-3 0 =9a +3 b + c 0 = a - b + c . 解之,得a = 1,b =-2 ,c = -3, 故函数的关系式为y = x 2 -2x -3.………………………………………5分(2)设D (x ,x -3),E (x ,x 2 -2x -3),(0≤x ≤3) ………………………6分则DE = x -3-(x 2 -2x -3)……………………………………………7分=-x 2 +3x =-(x -32)2+94, ………………………………………8分 故x = 32 时,DE 的最大值为 94 . ……………………………………9分A25.解:(1)在Rt △ADB 中,AD =BD ,………………………1分∵在Rt △BCM 中,∠MBC =45°,∴∠BCM =45°,即∠DCF =45°,…………………2分∴在Rt △CFD 中,CD =DF , ……………………3分∵FG ∥BC ,∴∠AGF =∠ABC =45°,∴在Rt △AFG 中,AF =FG ,………………………4分∴FG +CD =AF +DF =AD =BD . ……………………5分(2)如右图,CG 即为所画的高,画图正确. ………9分26.解:(1)1120s x = ……………………………………………………2分(2)根据题意得: 21112021002(90150)10042x x x +⨯-=⨯⨯+⨯ …………4分 解得:110x =,2150x =(不合题意,舍去) ……………6分(3)y=0.05(12000-320x+2x 2)+14x ……………7分20.1(10)590x =-+ ……………9分∵x ≤8∴当x =8时,y 有最小值590.4(万元). ……………11分27.解:在矩形ABCD 中,∠B =90°,AB =6,BC =8,则AC =10,由题意得:AP =2t ,CP =10-2t ,CQ =t ,(1)过点P 作PF ⊥BC 于F ,可得△CPF ∽△ CAB ,∴PF AB = CP CA ,即PF 6 = 10-2t 10, ∴PF =6-65t , ………2分 ∴S =12×QC ×PF =-35t 2+3t (0≤t ≤5). ……………………3分 (2)∵△PCF ∽△ACB , ∴PF PC FC AB AC BC ==,即1026108PF t FC -==,∴PF =665t -,FC =885t -, 则在Rt △PFQ 中,2222226841(6)(8)56100555PQ PF FQ t t t t t =+=-+--=-+. …………4分 ①当⊙P 与⊙Q 外切时,有PQ =P A +QC =3t , 此时222415610095PQ t t t =-+=,整理得:2701250t t +-=, 解得t 1=156-35, t 2=-156-35(舍去).………………………………6分A②当⊙P 与⊙Q 内切时,有PQ =P A -QC =t , 此时22241561005PQ t t t =-+=,整理得:29701250t t -+=, 解得t 1= 259,t 2=5.……………………………………………………………8分 综上所述:⊙P 与⊙Q 相切时t =259或t =5或t =156-35. (3)当t = 103秒(此时PC =QC ),t = 259秒(此时PQ =QC ),或t = 8021秒(此时PQ =PC )△CPQ 为等腰三角形. ……………………………………………………………………11分。
2018-2019学年广东省广州市越秀区九年级(上)期末数学试卷--附答案解析
故选:C .
【点评】此题是相似三角形的判定和性质,主要考查了平行四边形的性质,同高的三角形的
面积比是底的比,用相似三角形的性质得出 , 是解本 S∆ABF = 2S∆BEF = 2 S∆ADF = 4S∆BEF = 4
题的关键.
10.(3 分)(2018 秋•越秀区期末)若关于 x 的方程 x2 − 2x + m −1 = 0 有两个实根 x1 、 x2 ,
.A 3
.B 4
.C 5
.D 6
【考点】S9:相似三角形的判定与性质; L5:平行四边形的性质
【专题】55D :图形的相似
【分析】首先证明 AD = 2BE ,BE / / AD ,进而得出 ∽ ∆BEF ∆DAF ,即可得出 ∆ABF ,∆ABD ,
第 4 页(共 23 页)
的面积,用面积的和差即可得出结论. 【解答】解:Q四边形 ABCD 是平行四边形, , ∴ AD / /BC , ∴∠DAE = ∠AEB 平分 , Q AE ∠DAB , ∴∠DAE = ∠BAE , ∴∠BAE = ∠AEB , ∴ BA = BE , Q BC = 2AB , , ∴ AD = BC = 2BE BE / / AD ∽ , ∴∆BEF ∆DAF
, ∴ EF = BE = 1 AF AD 2
, ∴ S∆BEF = ( BE )2 = 1
S∆ADF AD
4
Q∆BEF 的面积为 1,
, , ∴ S∆ABF = 2S∆BEF = 2 S∆ADF = 4S∆BEF = 4
, ∴ S∆ABD = S∆ABF + S∆ADF = 6
, 四边形 ∴ S
DCEF = S∆BCD − S∆BEF = S∆ABD − S∆BEF = 5
2018-2019学年广东省深圳市福田区六年级(上)月考数学试卷
2018-2019学年广东省深圳市福田区六年级(上)月考数学试卷试题数:29,满分:01.(填空题,0分)用恰当的百分数表示下列各成语:百里挑一___喜忧参半___2.(填空题,0分)___ ÷24= 3=___ %=15:___ =___ (填小数)83.(填空题,0分)一双皮鞋以七五折出售,现价是原价的___ %.4.(填空题,0分)一个由小正方形搭成的物体,从正面看到的形状是,从左面看到的形状是.搭成这样的立体图形至少需要___ 块小正方体.5.(填空题,0分)圆的面积计算公式也可以这样推导:我发现:(1)所拼成的梯形面积与原来的圆形面积___ ;(2)所拼成的梯形的上底等于原来周长的___ ,下底等于原来周长的___ .(3)所拼成的梯形的高是原来圆的___ .通过转化,根据梯形面积的计算公式可以推出:圆的面积S=___ .6.(填空题,0分)如图是六(1)班同学最喜欢的球类运动统计图.(1)最受欢迎的球类运动是___ .(2)___ 和___ 运动受欢迎的程度差不多.(3)图中“6%”表示___ .(4)图中所有的百分比之和是___ .7.(填空题,0分)六一班今天到校47人,缺席3人,六一班今天出勤率是___ .8.(填空题,0分)在一块长是4m,宽是2m的长方形铁板上截下一块最大的半圆形铁板,这个半圆形铁板的面积是___ .9.(填空题,0分)新星小学16名同学参加羽毛球比赛,如果每2人都要赛一场,一共要赛___ 场.10.(单选题,0分)如图图案中,是轴对称图形的有()个.A.2B.3C.4D.511.(单选题,0分)下面语句中正确的是()A.半径是2cm的圆的面积和周长相等B.4m的35和3m的45一样长C.一袋饼干的质量是35千克,也就是60%千克D.如果水结成冰时,体积增加了10%,那么当冰完全融化成水后,体积减少10%12.(单选题,0分)一批货物第一次运走38,第二次又运走38吨,两次运走的货物相比较,()A.第一次运的多B.第二次运的多C.一样多D.无法确定13.(单选题,0分)下面哪个问题解决对应的算式是240×(1- 18)?()A.少先队员采集植物标本240件,采集的昆虫标本比植物标本多1,采集的昆虫标本有多少8件?,已经包好了多B.甜甜与福利院的小朋友共进晚餐,准备包240个饺子,已经包了其中的18少个饺子?,二年级学生有多少C.某学校今年秋季共招了一年级新生240人,二年级学生比一年级少18人?,还剩240米没修.这条水渠长多少米?D.某工程队修一条水渠,已经修好了全长的1814.(单选题,0分)两辆汽车从摄影师面前开过,摄影师拍下了以下三张照片,选项()可以正确反映摄影师的拍摄顺序.A. ① ② ③B. ① ③ ②C. ③ ① ②D. ③ ② ①15.(填空题,0分)如图是甲、乙两校男女生情况统计图.根据图中信息,选择合适选项.(1)男生人数多的学校是___A.甲校 B.乙校 C.一样多 D.由学校总人数决定(2)女生人数占学校人数比例大的学校是___A.甲校 B.乙校 C.一样多 D.由学校总人数决定16.(单选题,0分)如图是甜甜从家出发到莲花山公园去玩再返回的图,根据图中的信息,下面说法错误的是()A.甜甜家距莲花山公园6千米B.甜甜在去的路上休息了20分钟C.甜甜在莲花山公园玩了1小时D.甜甜返回时的速度是18千米/小时17.(单选题,0分)要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是()平方厘米的正方形纸片(π取3.14).A.12.56B.14C.16D.2018.(单选题,0分)方格中哪幅图与原图相像?()A.AB.BC.CD.D19.(问答题,0分)直接写出得数.3 7:3= 25%×8= 4.8:0.8= 3÷10%= 13×3%=20.(问答题,0分)求未知数的值.1 3 ÷x= 3410%y+1.2=4.621.(问答题,0分)用恰当的方法,递等式计算.7 9 ÷ 34× 92834×2018+2018×0.25(37 +21)÷ 3722.(问答题,0分)按要求作答.(1)用圆规画出图2的图形.(2)计算出图2阴影部分的周长.(π取3.14)23.(问答题,0分)请在如图方格纸中画出下面立体图形从正面、左面、上面看到的形状.24.(问答题,0分)请在如图方格纸(每个小正方形的边长表示1cm)中画一个周长30厘米,长与宽的比是3:2的长方形.25.(问答题,0分)看图列式计算.(可以用方程解)26.(问答题,0分)鹏鹏可以给希望工程捐多少元?27.(问答题,0分)如图几种套圈游戏中,哪种方式更公平,为什么?28.(问答题,0分)将下列各问题与对应的算式用线段连接起来.已知男生25人,女生20人29.(填空题,0分)某空调厂2018年上半年各月产量如下表:月份一二三四五六合计产量(台)2400 2600 3000 3300 3600 4000(2)要能看出每月生产量的多少,应绘制___ 统计图.(3)要能清楚地看出每月生产量与上半年生产量之间的关系,应绘制___ 统计图.(4)要能清楚地看出每月生产量的变化趋势,应绘制___ 统计图.2018-2019学年广东省深圳市福田区六年级(上)月考数学试卷参考答案与试题解析试题数:29,满分:01.(填空题,0分)用恰当的百分数表示下列各成语:百里挑一___喜忧参半___【正确答案】:[1]1%; [2]50%【解析】:表示一个数是另一数百分之几的数叫百分数,百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示,百分数的分母固定为100;由此解答即可.【解答】:解:百里挑一 1%喜忧参半 50%故答案为:1%,50%.【点评】:本题主要考查了百分数的意义及表示方法.=___ %=15:___ =___ (填小数)2.(填空题,0分)___ ÷24= 38【正确答案】:[1]9; [2]37.5; [3]40; [4]0.375=3÷8,再根据商不变的性质被除数、除数都乘3就是【解析】:根据分数与除法的关系38=3:8,再根据比的基本性质比的前、后项都乘5就是15:40;9÷24;根据比与分数的关系383÷8=0.375;把0.375的小数点向右移动两位添上百分号就是37.5%.=37.5%=15:40=0.375.【解答】:解:9:24= 38故答案为:9,37.5,40,0.375.,根据小数、分数、百分数、除法、比之间的关系及商不变的【点评】:解答此题的关键是38性质、比的基本性质即可进行转化.3.(填空题,0分)一双皮鞋以七五折出售,现价是原价的___ %.【正确答案】:[1]75【解析】:七五折是把原价看成单位“1”,是指现价是原价的75%,由此求解.【解答】:解:七五折=75%一双皮鞋以七五折出售,现价是原价的 75%.故答案为:75.【点评】:本题关键是理解打折的含义:打几折,现价就是原价的百分之几十;打几几折,现价就是原价的百分之几十几.4.(填空题,0分)一个由小正方形搭成的物体,从正面看到的形状是,从左面看到的形状是.搭成这样的立体图形至少需要___ 块小正方体.【正确答案】:[1]3【解析】:根据从正面、左面看到的形状,用3个相同的小正方体,分前后两行交错放置,即可搭成符合题意的物体.【解答】:解:如图一个由小正方形搭成的物体,从正面看到的形状是,从左面看到的形状是.搭成这样的立体图形至少需要3块小正方体.故答案为:3.【点评】:本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.5.(填空题,0分)圆的面积计算公式也可以这样推导:我发现:(1)所拼成的梯形面积与原来的圆形面积___ ;(2)所拼成的梯形的上底等于原来周长的___ ,下底等于原来周长的___ .(3)所拼成的梯形的高是原来圆的___ .通过转化,根据梯形面积的计算公式可以推出:圆的面积S=___ .【正确答案】:[1]相等; [2] 16 ; [3] 13; [4]直径; [5]πr2【解析】:(1)根据圆面积公式的推导过程可知:把圆平均分成若干份,然后沿半径剪开,再拼成一个近似梯形,只是形状变了,但面积不变,所以拼成梯形的面积与原来圆的面积相等.(2)所拼成的梯形的上底等于原来周长的16,下底等于原来周长的13.(3)所拼成的梯形的高是原来圆的直径.(4)根据梯形的面积公式:S=(a+b)h÷2,所以圆的面积公式:S=πr2.据此解答.【解答】:解:(1)把圆剪拼成一个计算梯形后,只是形状变了,但面积不变,所以拼成梯形的面积与原来圆的面积相等.(2)所拼成的梯形的上底等于原来周长的16,下底等于原来周长的13.(3)所拼成的梯形的高是原来圆的直径.(4)根据梯形的面积公式:S=(a+b)h÷2,所以圆的面积公式:S=πr2.故答案为:相等;16、13;直径;πr2.【点评】:此题考查的目的是理解掌握圆面积公式的推导过程,以及圆面积公式的应用.6.(填空题,0分)如图是六(1)班同学最喜欢的球类运动统计图.(1)最受欢迎的球类运动是___ .(2)___ 和___ 运动受欢迎的程度差不多.(3)图中“6%”表示___ .(4)图中所有的百分比之和是___ .【正确答案】:[1]足球; [2]篮球; [3]排球; [4]乒乓球、羽毛球等运动项目; [5]100%【解析】:(1)通过观察扇形统计图可知:最受欢迎的球类运动是足球.(2)喜欢篮球的人数占总人数的20%,喜欢排球的人数占总人数的18%,所以喜欢篮球和喜欢排球的人数差不多.(3)图中的6%表示喜欢乒乓球或羽毛球等运动项目.(4)根据加法的意义,用加法把喜欢各种运动项目的百分比变化起来即可.【解答】:解:(1)答:最受欢迎的球类运动是足球.(2)喜欢篮球的人数占总人数的20%,喜欢排球的人数占总人数的18%,所以喜欢篮球和喜欢排球的人数差不多.(3)图中的6%表示喜欢乒乓球或羽毛球等运动项目.(4)32%+18%+24%+6%+20%=100%答:图中所有的百分比之和是100%.故答案为:足球;篮球、排球;乒乓球;羽毛球等运动项目;100%.【点评】:此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.7.(填空题,0分)六一班今天到校47人,缺席3人,六一班今天出勤率是___ .【正确答案】:[1]94%【解析】:出勤率是指出勤的人数占全班总人数的百分之几,先求出全班的总人数,再用出勤的人数除以全班总人数乘上100%可解.【解答】:解:47÷(47+3)×100%=48÷50×100%=94%答:该班这天的出勤率是94%.故答案为:94%.【点评】:此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘以百分之百,代入数据计算即可.8.(填空题,0分)在一块长是4m,宽是2m的长方形铁板上截下一块最大的半圆形铁板,这个半圆形铁板的面积是___ .【正确答案】:[1]6.28平方米【解析】:根据题意可知:在这个长方形铁板上截下一块最大的半圆形铁板,半圆形铁板的半径等于长方形的宽,根据圆的面积公式:S=πr2,把数据代入公式求出这个半圆的面积即可.【解答】:解:3.14×22÷2=3.14×4÷2=6.28(平方米)答:半圆形铁板的面积是6.28平方米.故答案为:6.28平方米.【点评】:此题主要考查圆的面积公式的灵活运用,关键是熟记公式.9.(填空题,0分)新星小学16名同学参加羽毛球比赛,如果每2人都要赛一场,一共要赛___ 场.【正确答案】:[1]120【解析】:每个人都要和其他的15个人赛一场,共赛:16×15=240场,由于两个人只赛一场,去掉重复的情况,实际只赛了240÷2=120场,据此解答.【解答】:解:16×(16-1)÷2=16×15÷2=240÷2=120(场)答:一共要赛120场.故答案为:120.【点评】:本题是典型的握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:n(n-1)÷2解答.10.(单选题,0分)如图图案中,是轴对称图形的有()个.A.2B.3C.4D.5【正确答案】:C【解析】:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】:解:根据对称轴的意义可知,在上面图形中是轴对称图形的有,共4个;故选:C.【点评】:此题考查了利用轴对称图形的定义,确定图形对称轴条数的方法.11.(单选题,0分)下面语句中正确的是()A.半径是2cm的圆的面积和周长相等B.4m的35和3m的45一样长C.一袋饼干的质量是35千克,也就是60%千克D.如果水结成冰时,体积增加了10%,那么当冰完全融化成水后,体积减少10%【正确答案】:B【解析】:A.因为圆的周长和面积不是同类量,所以无法进行比较,因此,半径是2cm的圆的面积和周长相等.这种说法是错误的.B,根据一个数乘分数的意义,用乘法分别求出4米的35和3米的45,然后进行比较即可.C,因为百分数只不是两个数之间的关系,而不能不是具体数量,也就是百分数后面不能带任何单位名称,所以,一袋饼干的质量是35千克,也就是60%千克.这种说法是错误的.D,水结成冰时,体积增加了10%,是把水的体积看作单位“1”;那么当冰完全融化成水后,体积减少10%是把冰的体积看作单位“1”;两个10%所对应的“1”不同,所以,如果水结成冰时,体积增加了10%,那么当冰完全融化成水后,体积减少10%.这种说法是错误的.【解答】:解:由分析得:A.因为圆的周长和面积不是同类量,所以无法进行比较,因此,半径是2cm的圆的面积和周长相等.这种说法是错误的.B,4× 35=2.4(米),3× 45=2.4(米),2.4米=2.4米,故4m的35和3m的45一样长.此说法正确.C,因为百分数只不是两个数之间的关系,而不能不是具体数量,也就是百分数后面不能带任何单位名称,所以,一袋饼干的质量是35千克,也就是60%千克.这种说法是错误的.D,水结成冰时,体积增加了10%,是把水的体积看作单位“1”;那么当冰完全融化成水后,体积减少10%是把冰的体积看作单位“1”;两个10%所对应的“1”不同,所以,如果水结成冰时,体积增加了10%,那么当冰完全融化成水后,体积减少10%.这种说法是错误的.故选:B.【点评】:此题考查的知识点比较多,目的是培养学生认真审题,分析数量关系,解决数据问题的能力.12.(单选题,0分)一批货物第一次运走38,第二次又运走38吨,两次运走的货物相比较,()A.第一次运的多B.第二次运的多C.一样多D.无法确定【正确答案】:D【解析】:如果这批货物是1吨,1吨的38就是38吨,再次运的货物吨数相同;如果这批货物少于1吨,它的38也少于38吨,第二次运的多;如果这批货物多于1吨,它的38也多于38吨,第一次运的多.由于这批货物的吨数不知,因此,无法确定哪次运的多或少.【解答】:解:当这批货物是1吨,1吨的38就是38吨,再次运的货物吨数相同;当这批货物少于1吨,它的38也少于38吨,第二次运的多;当这批货物多于1吨,它的38也多于38吨,第一次运的多.这批货物的吨数不确定,因此,两次运走的货物相比较哪次多或少也无法确定.故选:D.【点评】:关键明白:38吨是一个固定的量,这批货物的38受这批货物的制约,它是一个不确定的量.13.(单选题,0分)下面哪个问题解决对应的算式是240×(1- 18)?()A.少先队员采集植物标本240件,采集的昆虫标本比植物标本多18,采集的昆虫标本有多少件?B.甜甜与福利院的小朋友共进晚餐,准备包240个饺子,已经包了其中的18,已经包好了多少个饺子?C.某学校今年秋季共招了一年级新生240人,二年级学生比一年级少18,二年级学生有多少人?D.某工程队修一条水渠,已经修好了全长的18,还剩240米没修.这条水渠长多少米?【正确答案】:C【解析】:(1)根据题意要把采集植物标本的数量看作是单位“1”,采集的昆虫标本是单位“1”的(1+ 18),单位“1”已知,用乘法计算;(2)根据题意要把240个饺子看作是单位“1”,已经包了其中的18,已经包好了多少个饺子单位“1”已知,用乘法计算;(3)根据题意要把一年级新生人数看作是单位“1”,二年级学生比一年级少18,二年级学生占一年级新生人数的(1- 18),单位“1”已知,用乘法计算,据此解答;(4)把全长看着单位“1”,已经修好了全长的18,还剩下(1- 18),还剩240米没修,求全长,根据已知一个数的几分之几是多少,求这个数,用除法解答.【解答】:解:(1)120×(1+ 18)=120× 98=135(件)答:采集昆虫标本有135件.(2)240× 18=30(个)答:已经包了30个饺子.(3)120×(1- 18)=120× 78=105(人)答:二年级有105人.)(4)240÷(1- 18=240 ÷78(米)= 19207米答:这条水渠长19207故选:C.【点评】:本题的重点是找出单位“1”,确定要求出数量占了单位“1”的几分之几,再进行解答.14.(单选题,0分)两辆汽车从摄影师面前开过,摄影师拍下了以下三张照片,选项()可以正确反映摄影师的拍摄顺序.A. ① ② ③B. ① ③ ②C. ③ ① ②D. ③ ② ①【正确答案】:B【解析】:根据题干分析可得,摄影师首先拍到的是汽车的前面,然后是汽车的侧面,最后是汽车经过摄影师离去的后面;据此即可标出.【解答】:解:根据题干分析,可以得出摄影师的拍摄顺序如下:① ③ ②故选:B.【点评】:此题主要考查从不同方向观察物体的能力,要注意结合生活经验进行解答.15.(填空题,0分)如图是甲、乙两校男女生情况统计图.根据图中信息,选择合适选项.(1)男生人数多的学校是___A.甲校 B.乙校 C.一样多 D.由学校总人数决定(2)女生人数占学校人数比例大的学校是___A.甲校 B.乙校 C.一样多 D.由学校总人数决定【正确答案】:[1]D; [2]B【解析】:(1)甲、乙两个学校的学生人数不一定相同,所以男生人数的多的学校是由学校总人数决定.(2)甲校女生人数占总人数的50%,乙校女生人数占总人数的48%,所以女生人数占学校人数比例大的学校是乙校.据此解答.【解答】:解:(1)甲、乙两个学校的学生人数不一定相同,所以男生人数的多的学校是由学校总人数决定.(2)甲校女生人数占总人数的50%,乙校女生人数占总人数的48%,所以女生人数占学校人数比例大的学校是乙校.故答案为:D;B.【点评】:此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.16.(单选题,0分)如图是甜甜从家出发到莲花山公园去玩再返回的图,根据图中的信息,下面说法错误的是()A.甜甜家距莲花山公园6千米B.甜甜在去的路上休息了20分钟C.甜甜在莲花山公园玩了1小时D.甜甜返回时的速度是18千米/小时【正确答案】:C【解析】:根据图象分析出甜甜从家出发到莲花山公园去玩再返回的家的过程,进而判断即可.【解答】:解:由折线统计图可以看出,纵轴上数据表示路程,单位是千米,每格代表1千米,甜甜家到莲花山公园相距6格,即6千米,所以A说法正确;根据图示可以看出甜甜从家出发到莲花山公园的路上休息了20分钟,所以B说法正确;10时到达莲花山公园,10时40分开始回家,所以在莲花山公园玩了40分钟,不是玩了1小时,所以C说法错误;=18(千米),所以D计算正确;用路程除以甜甜返回用的时间就是甜甜返回时速度,6÷ 13故选:C.【点评】:本题主要考查了学生能正确根据折线统计图发现问题并解决问题的能力.17.(单选题,0分)要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是()平方厘米的正方形纸片(π取3.14).A.12.56B.14C.16D.20【正确答案】:C【解析】:由题意可知:需要的正方形纸张的边长应等于圆的直径,圆的面积已知,于是可以利用圆的面积求出半径的平方值,而正方形的边长等于2×半径,从而可以求出正方形纸张的面积.【解答】:解:设圆的半径为r,则正方形纸张的边长为2r,则r2=12.56÷3.14,=4;正方形的面积:2r×2r,=4r2,=4×4,=16(平方厘米);故选:C.【点评】:解答此题的关键是明白:正方形纸张的边长应等于圆的直径.18.(单选题,0分)方格中哪幅图与原图相像?()A.AB.BC.CD.D【正确答案】:A【解析】:与原图相像,即与原图相似,只有图形放大或缩小后与原图相似,原图与放大或缩小后图形的对应边成比例.先求出原图长与宽的比,再分别求出A、B、C、D四个图形长与宽的比,哪个图形长与宽的比与原图长与宽的比相等,哪个图形就是原图放大或缩小后的图形,就与原图相似.【解答】:解:原图长、宽之比:6:4=3:2图形A的长、宽之比:3:2,与原图的比相等,与原图相似,即此图与原图相像图形B的长、宽之比:8:3,与原图的比不相等,与原图不相似,即即此图与原图不相像图形C的长、宽之比:9:8,与原图的比不相等,与原图不相似,即即此图与原图不相像图形B的长、宽之比:10:2=5:1,与原图的比不相等,与原图不相似,即即此图与原图不相像故选:A.【点评】:只有一个图形放大或缩小后与原图相似,相似图形的对应边成比例.关键是看哪个图形长、宽之比与原图长、宽之比相等,即对应边成比例.19.(问答题,0分)直接写出得数.3 7:3= 25%×8= 4.8:0.8= 3÷10%= 13×3%=【正确答案】:【解析】:求比值,就用比的前项除以比的后项;含有百分数的算式可以先把百分数化成小数再计算.【解答】:解:3 7:3= 1725%×8=2 4.8:0.8=6 3÷10%=30 13×3%=0.01【点评】:本题属于基本的计算,在平时注意积累经验,逐步提高运算的速度和准确性.20.(问答题,0分)求未知数的值.1 3 ÷x= 3410%y+1.2=4.6【正确答案】:【解析】:(1)首先根据等式的性质,两边同时乘x,然后两边再同时除以34即可.(2)首先根据等式的性质,两边同时减去1.2,然后两边再同时除以10%即可.【解答】:解:(1)13 ÷x= 341 3 ÷x×x= 34x34x= 133 4 x÷ 34= 13÷ 34x= 49(2)10%y+1.2=4.610%y+1.2-1.2=4.6-1.2 10%y=3.410%y÷10%=3.4÷10% y=34【点评】:此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等. 21.(问答题,0分)用恰当的方法,递等式计算. 79 ÷ 34 × 92834 ×2018+2018×0.25 ( 37 +21)÷ 37【正确答案】:【解析】:(1)按照从左到右的顺序计算; (2)根据乘法分配律简算;(3)先把除法变成乘法,再根据乘法分配律简算.【解答】:解:(1) 79÷ 34× 928= 2827 × 928 = 13(2) 34 ×2018+2018×0.25 =(0.75+0.25)×2018 =1×2018 =2018(3)( 37+21)÷ 37=( 37 +21)× 73 = 37 × 73 +21× 73 =1+49 =50【点评】:此题是考查四则混合运算,要仔细观察算式的特点,灵活运用一些定律进行简便计算.22.(问答题,0分)按要求作答.(1)用圆规画出图2的图形.(2)计算出图2阴影部分的周长.(π取3.14)【正确答案】:【解析】:(1)用圆规画出图形即可;(2)根据半圆的周长公式C=πd÷2+d列式计算即可求解.【解答】:解:(1)如图所示:(2)3.14×2÷2×2+2×2=6.28+4=10.28(cm)答:图2阴影部分的周长是10.28cm.【点评】:考查了圆的周长,关键是熟练掌握半圆的周长公式.23.(问答题,0分)请在如图方格纸中画出下面立体图形从正面、左面、上面看到的形状.【正确答案】:【解析】:这个立方体图形由5个相同的小正方体组成,从正面能看到4个正方形,分两行,下行3个,上行1个,居左;从左能看到3个正方形,分两行,下行2个,上行1个,居左;从上面能看作4个正方形,分两行,上行3个,下行1个,居中.【解答】:解:画图如下:【点评】:本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.24.(问答题,0分)请在如图方格纸(每个小正方形的边长表示1cm)中画一个周长30厘米,长与宽的比是3:2的长方形.【正确答案】:【解析】:知道长方形的周长是30厘米,长与宽的比为3:2,可用按比例分配的解题思路求出长和宽,然后再作图即可.【解答】:解:长和宽的和:30÷2=15(厘米)2+1=3长方形的长为:15× 33+2=15× 35=9(厘米)长方形的宽为:15× 23+2=15× 25=6(厘米),作图如下:【点评】:此题综合考查按比例分配应用题以及长方形的画法的知识.25.(问答题,0分)看图列式计算.(可以用方程解)【正确答案】:【解析】:根据图形,设前年的排水量是x毫米,去年的排水量比前年少20%,则去年的排水量表示为(1-20%)x,去年的排水量是288毫米,列出方程解答即可.【解答】:解:设前年的排水量是x毫米,(1-20%)x=2880.8x=288x=360答:前年的排水量是360毫升.【点评】:本题考查了列方程解应用题,解决本题的关键是先设前年的排水量为x毫升,然后根据288=(1-20%)×前年排水量.26.(问答题,0分)鹏鹏可以给希望工程捐多少元?【正确答案】:【解析】:根据题意,本金是500元,利率是1.5%,时间是1年,求利息,根据关系式:利息=本金×利率×时间,解决问题.【解答】:解:500×1.5%×1=7.5×1=7.5(元)答:鹏鹏可以给希望工程捐7.5元.【点评】:此题属于利息问题,考查了关系式:利息=本金×利率×时间.27.(问答题,0分)如图几种套圈游戏中,哪种方式更公平,为什么?【正确答案】:【解析】:同学距离目标的远近不同,会有不同的效果,距离越近越准确,套中的可能性越大,逐个分析,即可得解.【解答】:解:(1)组同学站在一条线上,被套圈的目标离他们的远近不同,需要用力的大小就不一样,所以不公平;(2)组同学围成一个正方形,目标靠近无人的一边,导致对边的同学距离大,所以不公平;(3)组同学围成一个圆,目标在圆心上,他们距离目标大小都是圆的半径,所以最公平.答:第(3)组的方式最公平.【点评】:此题考查了游戏规则的公平性,套圈游戏,相同的距离最公平.28.(问答题,0分)将下列各问题与对应的算式用线段连接起来.已知男生25人,女生20人【正确答案】:【解析】:(1)要求男生人数占女生人数的百分之几,用男生人数除以女生人数即可.(2)要求女生人数占全班人数的百分之几,用女生人数除以全班人数即可.(3)要求男生人数比女生人数多百分之几,用男生比女生多的人数除以女生人数即可.(4)要求女生人数比男生人数少百分之几,用女生比男生少的人数除以男生人数即可.。
2018-2019学年九年级(上)期末数学试卷(有答案和解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
3广东省深圳市福田区九校联考九年级(上)期末数学试卷
2014-2015深圳市福田区九校联考九年级(上)期末数学试卷一、选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项中,只有一个是正确的)1、下列各点在反比例函数x y 8-=的图象上的是 ( ) A .(-1,-8) B .(-2,4) C .(-4,-2) D .(1,8)2、已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( )A .B .C .D .3.如图所示的物体是一个几何体,其主视图是( )A .B .C .D .4.已知三角形两边分别为3和6,第三边长是方程(x ﹣5)•(x ﹣2)=0的根,则该三角形的周长是( )A . 14B . 11C . 14或11D . 135.下列说法不正确的是( )A . 顺次连接任意四边形的各边中点都可得到平行四边形B . 对角线互相垂直的矩形是正方形C . 顺次连接等腰梯形的各边中点得到的是矩形D . 三角形的三内角平分线交于一点且到三边的距离相等6.已知甲、乙两地相距100km ,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h)的函数关系图象大致是( )7.从标有1,2,3,4,5的5个小球中任取2个,它们的和是偶数的概率是( )A .B .C .D . 以上均不对 8.正方形网格中,∠AOB 如图放置,则sin ∠AOB=( )A .B .C .D . 29.如图,点A 为双曲线图象上一点,AB ⊥x 轴,垂足为点B ,连接AO ,若S △ABO =3,则k 值为( )A . 3B . ﹣3C . 6D . ﹣6x 220x x m --=m 0m <2m <-0m ≥1m >-t /h v /(km/O t /h v /(km/O t /h v /(km/O t /h v /(km/O A . B . C . D .10.已知正方形ABCD,点E 在边AB 上,以CE 为边作正方形CEFG ,如图所示,连接DG .求证:△BCE ≌△DCG .甲、乙两位同学的证明过程如下,则下列说法正确的是( )甲:∵四边形ABCD 、四边形CEFG 都是正方形∴CB=CD CE=CG ∠BCD=∠ECG=90°∴∠BCD ﹣∠ECD=∠ECG ﹣∠ECD∴∠BCE=∠GCD∴△BCE ≌△DCG (SAS )乙:∵四边形AB,CD 、四边形CEFG 都是正方形∴CB=CD CE=CG且∠B=∠CDG=90°∴△BCE ≌△DCG(HL )A . 甲同学的证明过程正确B . 乙同学的证明过程正确C . 两人的证明过程都正确D . 两人的证明过程都不正确11.如图,在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .12.如图,在等腰梯形ABCD 中,AB ∥CD ,DC=3cm,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是( )A . 21cmB . 18cmC . 15cmD . 12cm二、填空题(本题共4小题,每小题3分,共12分) 13.抛物线y=﹣2(x ﹣3)2+4的顶点坐标是 _________ .14.张明同学想利用影子测量校园内的树高.他在某一时刻测得小树高为1。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年九年级(上)期末数学试卷(含解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年广东省深圳市福田区九年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)如图,墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是()A.B.C.D.2.(3分)下列所给各点中,反比例函数y=的图象经过的是()A.(﹣2,4)B.(﹣1,﹣8)C.(﹣4,2)D.(3,5)3.(3分)某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米4.(3分)已知x=1是一元二次方程x2+mx﹣2=0的一个解,则m的值是()A.1B.﹣1C.2D.﹣25.(3分)如果两个相似三角形的对应边上的高之比为1:3,则两三角形的面积比为()A.2:3B.1:3C.1:9D.1:6.(3分)甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.B.C.D.7.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan C的值是()A.2B.C.1D.8.(3分)如图,l1∥l2∥l3,直线a,b与11、l2、l3分别相交于A、B、C和点D、E、F,若=,DE=6,则EF的长是()A.9B.10C.2D.159.(3分)已知关于x的方程ax2+2x﹣2=0有实数根,则实数a的取值范围是()A.a≥﹣B.a≤﹣C.a≥﹣且a≠0D.a>﹣且a≠0 10.(3分)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)211.(3分)如图是二次函数y=ax2+bx+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=0 12.(3分)如图,A、C是反比例函数y=(x>0)图象上的两点,B、D是反比例函数y=(x>0)图象上的两点,已知AB∥CD∥y轴,直线AB、CD分别交x轴于E、F,根据图中信息,下列结论正确的有()①DF=;②=﹣;③;④A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)二次函数y=x2﹣4x+4的顶点坐标是.14.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为.15.(3分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为m.(结果保留根号)16.(3分)如图,点E是矩形ABCD的一边AD的中点,BF⊥CE于F,连接AF;若AB=4,AD=6,则sin∠AFE=.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:tan45°﹣tan260°+sin30°﹣cos30°.18.(6分)解方程:2(x﹣3)2=x﹣3.19.(7分)如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)20.(8分)如图,E、F是正方形ABCD对角线AC上的两点,且AE=EF=FC,连接BE、DE、BF、DF.(1)求证:四边形BEDF是菱形:(2)求tan∠AFD的值.21.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?22.(9分)如图,点P是反比例函数y=﹣(x<0)图象上的一动点,P A⊥x轴于点A,在直线y=x上截取OB=P A(点B在第一象限),点C的坐标为(﹣2,2),连接AC、BC、OC.(1)填空:OC=,∠BOC=;(2)求证:△AOC∽△COB;(3)随着点P的运动,∠ACB的大小是否会发生变化?若变化,请说明理由,若不变,则求出它的大小.23.(9分)如图,抛物线交x轴于A、B两点(点A在点B的左边),交y轴于点C,直线y=﹣x+3经过点C与x轴交于点D,抛物线的顶点坐标为(2,4).(1)请你直接写出CD的长及抛物线的函数关系式;(2)求点B到直线CD的距离;(3)若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使∠PDC=45°?请你求出此时的P点坐标.2018-2019学年广东省深圳市福田区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)如图,墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是()A.B.C.D.【分析】直接利用俯视图即从物体的上面往下看,进而得出视图.【解答】解:墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是:.故选:A.【点评】此题主要考查了简单组合体的三视图,注意观察角度是解题关键.2.(3分)下列所给各点中,反比例函数y=的图象经过的是()A.(﹣2,4)B.(﹣1,﹣8)C.(﹣4,2)D.(3,5)【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵﹣2×4=﹣8,﹣4×2=﹣8,3×5=15,﹣1×(﹣8)=8,∴点(﹣1,﹣8)在反比例函数y=的图象经上.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3.(3分)某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:∵同一时刻物高与影长成正比例.∴1.8:1.5=旗杆的高度:12∴旗杆的高度为14.4米故选:C.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.4.(3分)已知x=1是一元二次方程x2+mx﹣2=0的一个解,则m的值是()A.1B.﹣1C.2D.﹣2【分析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1,故选:A.【点评】本题考查了一元二次方程的解,正确掌握代入法是解题的关键.5.(3分)如果两个相似三角形的对应边上的高之比为1:3,则两三角形的面积比为()A.2:3B.1:3C.1:9D.1:【分析】根据对应高的比等于相似比,相似三角形的面积比等于相似比的平方解答.【解答】解:∵相似三角形对应高的比等于相似比,∴两三角形的相似比为1:3,∴两三角形的面积比为1:9.故选:C.【点评】本题考查对相似三角形性质的理解,相似三角形对应高的比等于相似比.6.(3分)甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.B.C.D.【分析】先求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【解答】解:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是=.故选:A.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan C的值是()A.2B.C.1D.【分析】在直角三角形ACD中,根据正切的意义可求解.【解答】解:如图在RtACD中,tan C=,故选:B.【点评】本题考查锐角三角函数的定义.将角转化到直角三角形中是解答的关键.8.(3分)如图,l1∥l2∥l3,直线a,b与11、l2、l3分别相交于A、B、C和点D、E、F,若=,DE=6,则EF的长是()A.9B.10C.2D.15【分析】根据平行线分线段成比例可得=,代入计算即可解答.【解答】解:∵l1∥l2∥l3,∴=,即=,解得:DF=15,∴EF=15﹣6=9.故选:A.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.9.(3分)已知关于x的方程ax2+2x﹣2=0有实数根,则实数a的取值范围是()A.a≥﹣B.a≤﹣C.a≥﹣且a≠0D.a>﹣且a≠0【分析】当a≠0时,是一元二次方程,根据根的判别式的意义得△=22﹣4a×(﹣2)=4(1+2a)≥0,然后解不等式;当a=0时,是一元一次方程有实数根,由此得出答案即可.【解答】解:当a≠0时,是一元二次方程,∵原方程有实数根,∴△=22﹣4a×(﹣2)=4(1+2a)≥0,∴a≥﹣;当a=0时,2x﹣2=0是一元一次方程,有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.进行分类讨论是解题的关键.10.(3分)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)2【分析】设平均每次增长的百分数为x,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%”,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为x”,得到商品现在关于x的价格,整理后即可得到答案.【解答】解:设平均每次增长的百分数为x,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%),∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程和有理数的混合运算,正确找出等量关系,列出一元二次方程是解题的关键.11.(3分)如图是二次函数y=ax2+bx+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=0【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:a<0,c>0,对称轴x=>0,∴b>0,∴abc<0,故A正确;(B)由对称轴可知:=1,∴2a+b=0,故正确;(C)当x=﹣2时,y<0,∴4a﹣2b+c<0,故C错误;(D)(﹣1,0)与(3,0)关于直线x=1对称,∴9a+3b+c=0,故D正确;故选:C.【点评】本题考查二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.12.(3分)如图,A、C是反比例函数y=(x>0)图象上的两点,B、D是反比例函数y=(x>0)图象上的两点,已知AB∥CD∥y轴,直线AB、CD分别交x轴于E、F,根据图中信息,下列结论正确的有()①DF=;②=﹣;③;④A.1个B.2个C.3个D.4个【分析】设E(a,0),F(b,0),有A、C纵横坐标积等于k可确定a,b的数量关系,从而说明各个结论的正误.【解答】解:设E(a,0),F(b,0),则3a=b=k1,﹣4a=﹣DF•b=k2,∴DF=,,故①②正确;∵,∴③正确;∵,∴④正确,故选:D.【点评】本题考查反比例函数的图象和性质,理解运用k的几何意义是解答此题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)二次函数y=x2﹣4x+4的顶点坐标是(2,0).【分析】先把一般式配成顶点式,然后利用二次函数的性质解决问题.【解答】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线的顶点坐标为(2,0).故答案为(2,0).【点评】本题考查了二次函数的性质:熟练掌握二次函数的顶点坐标公式,对称轴方程和二次函数的增减性.14.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为y=.【分析】延长BA交y轴于D,则BD⊥y轴,依据点A的坐标为(3,4),即可得出B(8,4),再根据∠AOC的角平分线所在直线经过点B,即可得到函数关系式.【解答】解:如图所示,延长BA交y轴于D,则BD⊥y轴,∵点A的坐标为(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4),设∠AOC的角平分线所在直线的函数关系式为y=kx,∵菱形OABC中,∠AOC的角平分线所在直线经过点B,∴4=8k,即k=,∴∠AOC的角平分线所在直线的函数关系式为y=x,故答案为:y=x.【点评】此题主要考查了一次函数图象上点的坐标特征以及菱形的性质的运用,正确得出B 点坐标是解题关键.15.(3分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为(30﹣10)m.(结果保留根号)【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=30m,∠ADF=45°,∴DF=AF=30m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(30﹣10)m.答:障碍物B,C两点间的距离为(30﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.(3分)如图,点E是矩形ABCD的一边AD的中点,BF⊥CE于F,连接AF;若AB=4,AD=6,则sin∠AFE=.【分析】延长CE交BA的延长线于点G,由题意可证△AGE≌△DCE,可得AG=CD=4,根据直角三角形的性质可得∠AFE=∠AGF,由勾股定理可求CG=10,即可求sin∠AFE的值.【解答】解:延长CE交BA的延长线于点G,∵四边形ABCD是矩形,∴AB∥CD,AB=CD=4,AD=BC=6,∴∠G=∠GCD,且AE=DEA,∠AEG=∠DEC∴△AGE≌△DCE(AAS)∴AG=CD=4,∴AG=AB,且BF⊥GF,∴AF=AG=AB=4∴∠AFE=∠AGF,∵BG=AG+AB=8,BC=6∴GC==10∴sin∠AFE=sin∠AGF==故答案为:【点评】本题考查了矩形的性质,全等三角形的判定和性质,直角三角形的性质,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:tan45°﹣tan260°+sin30°﹣cos30°.【分析】利用特殊角的三角函数值求解即可【解答】解:原式=1﹣+﹣•=1﹣3+﹣=﹣3【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.18.(6分)解方程:2(x﹣3)2=x﹣3.【分析】方程移项后,利用因式分解法求出解即可.【解答】解:方程移项得:2(x﹣3)2﹣(x﹣3)=0,分解因式得:(x﹣3)(2x﹣7)=0,可得x﹣3=0或2x﹣7=0,解得:x1=3,x2=3.5.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.19.(7分)如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)【分析】(1)依据第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,即可得到小明继续游戏可以获胜的概率;(2)依据小明第一次摸出的数字是3,画出树状图,即可得到6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况,进而得出小明获胜的概率.【解答】解:(1)小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,∴可以获胜的概率为,故答案为:;(2)画树状图如下:共有6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况:(3,1,2),则P(小明能获胜)=.【点评】此题主要考查了概率的意义以及树状图法与列表法的运用,当有两个元素时,可用树形图列举,也可以列表列举.利用树状图或者列表法列举出所有可能是解题关键.20.(8分)如图,E、F是正方形ABCD对角线AC上的两点,且AE=EF=FC,连接BE、DE、BF、DF.(1)求证:四边形BEDF是菱形:(2)求tan∠AFD的值.【分析】(1)连接BD交AC于点O,根据正方形的性质得到OA=OC,OB=OD,AC⊥BD,证明OE=OF,得到四边形BEDF是平行四边形,根据菱形的判定定理证明;(2)根据正方形的性质得到OD=3OF,根据正切的定义计算,得到答案.【解答】(1)证明:连接BD交AC于点O,∵四边形ABCD是正方形,∴OA=OC,OB=OD,且AC⊥BD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,又∵OB=OD,∴四边形BEDF是平行四边形,又∵AC⊥BD,∴平行四边形BEDF是菱形;(2)解:∵EF=2OF,EF=CF,∴CF=2OF,∴OC=3OF,又OD=OC,∴OD=3OF,在正方形ABCD中,AC⊥BD,∴∠DOF=90°,在Rt△DOF中,tan∠AFD==3.【点评】本题考查的是正方形的性质、菱形的判定、正切的定义,掌握正方形的四条边相等、四个角相等是解题的关键.21.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【分析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意得,解得,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1530,∵W=﹣x2+260x﹣1530=﹣(x﹣130)2+1600,而a=﹣1<0,∴当x=130时,W有最大值1600.答:售价定为130元时,每天获得的利润最大,最大利润是1600元.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=没件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.22.(9分)如图,点P是反比例函数y=﹣(x<0)图象上的一动点,P A⊥x轴于点A,在直线y=x上截取OB=P A(点B在第一象限),点C的坐标为(﹣2,2),连接AC、BC、OC.(1)填空:OC=4,∠BOC=60°;(2)求证:△AOC∽△COB;(3)随着点P的运动,∠ACB的大小是否会发生变化?若变化,请说明理由,若不变,则求出它的大小.【分析】(1)过点C作CE⊥x轴于点E,过点B作BF⊥x轴于点F,由点C的坐标可得出OE,CE的长度,进而可求出OC的长度及∠AOC的度数,由直线OB的解析式可得出∠BOF的度数,再利用∠BOC=180°﹣∠AOC﹣∠BOF即可求出∠BOC的度数;(2)由(1)可知∠AOC=∠BOC,由点P是反比例函数y=﹣(x<0)图象上的一动点,利用反比例函数图象上点的坐标特征可得出P A•OA=16,结合OB=P A及OC=4,可得出=,结合∠AOC=∠BOC即可证出△AOC∽△COB;(3)由△AOC∽△COB利用相似三角形的性质可得出∠CAO=∠BCO,在△AOC中,利用三角形内角和定理可求出∠CAO+∠OCA=120°,进而可得出∠BCO+∠OCA=120°,即∠ACB=120°.【解答】(1)解:过点C作CE⊥x轴于点E,过点B作BF⊥x轴于点F,如图所示.∵点C的坐标为(﹣2,2),∴OE=2,CE=2,∴OC==4.∵tan∠AOC==,∴∠AOC=60°.∵直线OB的解析式为y=x,∴∠BOF=60°,∴∠BOC=180°﹣∠AOC﹣∠BOF=60°.故答案为:4;60°.(2)证明:∵∠AOC=60°,∠BOC=60°,∴∠AOC=∠BOC.∵点P是反比例函数y=﹣(x<0)图象上的一动点,∴P A•OA=16.∵P A=OB,∴OB•OA=16=OC2,即=,∴△AOC∽△COB.(3)解:∠ACB的大小不会发生变化,理由如下:∵△AOC∽△COB,∴∠CAO=∠BCO.在△AOC中,∠AOC=60°,∴∠CAO+∠OCA=120°,∴∠BCO+∠OCA=120°,即∠ACB=120°.【点评】本题考查了特殊角的三角函数值、勾股定理、反比例函数图象上点的坐标特征、相似三角形的判定与性质以及三角形内角和定理,解题的关键是:(1)利用勾股定理及角的计算,找出OC的长及∠BOC的度数;(2)利用反比例函数图象上点的坐标特征、OC=4及OB=P A,找出=;(3)利用相似三角形的性质及三角形内角和定理,找出∠BCO+∠OCA=120°.23.(9分)如图,抛物线交x轴于A、B两点(点A在点B的左边),交y轴于点C,直线y=﹣x+3经过点C与x轴交于点D,抛物线的顶点坐标为(2,4).(1)请你直接写出CD的长及抛物线的函数关系式;(2)求点B到直线CD的距离;(3)若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使∠PDC=45°?请你求出此时的P点坐标.【分析】(1)求出点C,D的坐标,再用勾股定理求得CD的长;设抛物线为y=a(x﹣2)2+4,将点C坐标代入求得a,即可得出抛物线的函数表达式;(2)过点B直线CD的垂线,垂足为H,在Rt△BDH中,利用锐角三角函数即可求得点B 到直线CD的距离;(3)把点C(0,3)向上平移4个单位,向右平移3个单位得到点E(3,7),可得△OCD ≌△FEC,则△DEC为等腰直角三角形,且∠EDC═45°,所以直线ED与抛物线的交点即为所求的点P.【解答】解:(1)∵,∴C(0,3),D(4,0),∵∠COD=90°,∴CD=.设抛物线为y=a(x﹣2)2+4,将点C(0,3)代入抛物线,得3=4a+4,∴,∴抛物线的函数关系式为;(2)解:过点B作BH⊥CD于H,由,可得x1=﹣2,x2=6,∴点B的坐标为(6,0),∵OC=3,OD=4,CD=5,∴OB=6,从而BD=2,在Rt△DHB中,∵BH=BD•sin∠BDH=BD•sin∠CDO=2×,∴点B到直线CD的距离为.(3)把点C(0,3)向上平移4个单位,向右平移3个单位得到点E(3,7),∵CF=OD=4,EF=OC=3,∠CFE=∠DOC=90°,∴△OCD≌△FEC,∴∠FCE=∠ODC,EC=DC,∴∠ECD=180°﹣(∠FCE+∠OCD)=180°﹣(∠ODC+∠OCD)=180°﹣90°=90°,∴△DEC为等腰直角三角形,且∠EDC═45°,因而,ED与抛物线的交点即为所求的点P.由E(3,7),D(4,0),可得直线ED的解析式为:y=﹣7x+28,由得(另一组解不合题意,已舍去.)所以,此时P点坐标为(,).【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力。