一元二次方程知识点归纳
一元二次方程知识点总结归纳
一元二次方程知识点总结归纳1. 一元二次方程的定义及一般形式:(1) 只含有一个未知数(一元),并且未知数的最高次数式2(二次)的整式方程,叫做一元二次方程。
(2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
典例分析:1、下列方程中,是一元二次方程的是:( )A 、2x +3x +y=0 ;B 、 x+y+1=0 ;C 、 213122+=+x x ;D 、0512=++x x2、关于x 的方程(2a +a -2)2x +ax+b=0是一元二次方程的条件是( )A 、a ≠0 ;B 、 a ≠-2 ;C 、a ≠-2且 a ≠1 ;D 、a ≠13、一元二次方程2x -3x = 4的一般形式是 ,一次项系数为 。
4、判断下列方程是不是一元二次方程,如果是,指出它们的各项系数和常数项。
(1)2x(x-3)=10 (2)3m ²+2=2(2m+1) (3)x(3+x ²)+1=5(4)3y-5=4(2-y) (5)(2k-3)(k+5)=7k (6)2x(x+3)=6x2.一元二次方程的解法(1)直接开平方法:形如x²=m(m≥0)或2+=≥的方程可以用开平方法解,()(0)x a b b两边开平方得x=m、x a+=或者x=-m、x a+=,=-。
∴x=±m、x a注意:若m<0、 b<0,方程无解。
典例分析:1、用开平方法解下列方程(1)x²=121 (2)9y²=25 (3)3a²-27=0(4)(x-3)²=16 (5)4(t+4)²=9 (6)2(n-1)²-1=0(2)配方法:用配方法解一元二次方程20(0)++=≠的一般步骤ax bx c a①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一半的平方,把方程化为2+=≥的形式;()(0)x m n n④用直接开平方法解变形后的方程。
初中数学一元二次方程知识点汇总,基础全面考前必掌握
初中数学一元二次方程知识点汇总,基础全面考前必掌握一、一元二次方程的定义及一般形式:只含有一个未知数x,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程。
一元二次方程的一般形式:ax^{2}+bx+c =0 (a≠0),其中a 为二次项系数,b为一次项系数,c为常数项。
因此,一元二次方程必须满足以下3个条件:① 方程两边都是关于未知数的等式② 只含有一个未知数③ 未知数的最高次数为2如: 2x^{2}-4x+3=0 , 3x^{2}=5 为一元二次方程,而像就不是一元二次方程。
二、一元二次方程的特殊形式(1)当b=0,c=0时,有: ax^{2} =0,∴ x^{2} =0,∴x=0(2)当b=0,0≠0时,有: ax^{2}+c=0 ,∵a≠0,此方程可转化为:①当a与c异号时, -\frac{c}{a}>0 ,根据平方根的定义可知,x=±\sqrt{-\frac{c}{a}} ,即当b=0,c≠0,且a与c 异号时,一元二次方程有两个不相等的实数根,这两个实数根互为相反数。
②当a与c同号时, -\frac{c}{a}<0 ,∵负数没有平方根,∴方程没有实数根。
(3)当b≠0,c=0时,有 ax^{2}+bx=0 ,此方程左边可以因式分解,使方程转化为x(ax+b)=0,即x=0或ax+b=0,所以x1=0,x2=-b/a。
由此可见,当b≠0,c=0时,一元二次方程 ax^{2}+bx=0 有两个不相等的实数根,且两实数根中必有一个为0。
三、一元二次方程解法:1.第一步:解一元二次方程时,如果没有给出一元二次方程的通式,先将其化为一元二次方程的通式,再确定求解的方法。
2. 解一元二次方程的常用方法:(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。
解法步骤:①把常数项移到等号右边, ax^{2}=-c ;②方程中每项都除以二次项系数, x^{2}=-\frac{c}{a} ;③开平方求出未知数的值:x=±\sqrt{-\frac{c}{a}}(2)因式分解法:将一元二次方程化为通式后,如果方程左边的多项式可以因式分解,就可以用这种方法求解。
第十七章_一元二次方程知识点
第十七章 一元二次方程知识点第一节 一元二次方程的概念一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.三个条件:(1)是整式方程(2)含有一个未知数(3)未知数的最高次数是2,三个条件缺一不可。
一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.把一元二次方程化成一元二次方程的一般形式时,常要利用去括号、移项、合并同类项等步骤,同时注意项与项的系数。
一元二次方程的解叫做一元二次方程的根第二节 一元二次方程的解法知识点1 特殊的一元二次方程的解法直接开平方法运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.由应用直接开平方法解形如x 2=p (p ≥0),那么x=±mx+n )2=p(p ≥0),那么mx+n=±因式分解法知识点2 一般的一元二次方程的解法1. 配方法:解方程ax 2+bx+c=0 (a ≠0)的一般步骤是:2.一元二次方程的求根公式问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1=2b a -,x 2=由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子x=2b a -就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.3 .一元二次方程根的判别式求根公式:b 2-4ac>0以一元一次方程的x 1=2b a -x 1=2b a-,即有两个不相等的实根.当b 2-4ac=0时,•,所以x 1=x 2=2b a-,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(结论)(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=2b a -,x 2=2b a -.(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=2b a.(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.第三节一元二次方程的应用知识点1二次三项式的因式分解1、二次三项式形如ax2+bx+c(a≠0)的多项式叫做x的二次三项式2、二次三项式因式分解的公式如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1、x2,则.从而得到二次三项式因式分解公式:ax2+bx+c=a(x-x1)(x-x2)(a≠0)条件对于二次三项式当△=b2-4ac≥0时,能分解因式;当△=b2-4ac<0时,不能分解因式.3、用公式法分解二次三项式的步骤(1)求二次三项式ax2+bx+c所对应的一元二次方程ax2+bx+c=0的两根x1、x2.(2)将求得的x1、x2的值代入因式分解的公式ax2+bx+c=a(x-x1)(x-x2)即可.说明:(1)在二次三项式的因式分解时,注意不要丢掉公式中的二次项系数a.(2)要注意公式中x1、x2前面的符号和x1、x2本身的符号不要混淆.(3)把x1、x2的值代入公式后,能化简整理的可以化简整理.1、二次三项式的因式分解例1、;(2)-4y2+8y-1.分析:这两个二次三项式都需要用公式法分解因式.解:(1)方程的根是(2)方程-4y2+8y-1=0的两根是点拨:(1)解方程时,如果二次项系数是负数,一般可将其化为正数再解,这样可提高解方程的准确性,如解-4y2+8y-1=0可化为4x2-8y+1=0再解;(2)写出二次三项式的分解因式时,不要漏掉第一个因数“-4”.(3)把4分解为2×2,两个2分别乘到每个括号内恰好能去掉两个括号内的分母,从而使分解式得到简化,要注意学习这种变形的技巧和变形过程中符号改变.2、形如Ax2+Bxy+Cy2的因式分解例2、分解因式5x2-2xy-y2分析:形如Ax2+Bxy+Cy2的多项式叫做关于x,y的二元二次多项式,我们可以选择其中一个变元作为未知数,另一个就看作已知数,这样一来,就可将多项式Ax2+Bxy+Cy2看作二次三项式来分解,如本题可看作关于x的二次三项式,其中a=5,b=-2y,c=-y2.解:关于x的方程5x2-2xy-y2=0的根是..点拨:本题将y视为常数,是利用公式法分解因式的需要,即把x视为主元,称为“主元法”,这样便于用公式解题.例3、分解因式3x2y2-10xy+4;分析:将3x2y2-10xy+4转化为关于xy为元的二次三项式,实际上是利用换元法进行因式分解.解:关于xy的方程3(xy)2-10xy+4=0的根是,.3、二次三项式因式分解的灵活运用例4、二次三项式3x2-4x+2k,当k取何值时,(1)在实数范围内能分解;(2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?分析:(1)二次三项式在实数范围内能因式分解的条件是方程有实数根,即△=b2-4ac≥0;(2)不能分解的条件是△<0;(3)△=0时,二次三项式是完全平方式.解:△=(-4)2-4×3×2k=16-24k(1)当△≥0时,即16-24k≥0,时,二次三项式3x2-4x+2k在实数范围内能分解因式;(2)当△<0时,即16-24k<0,时,3x2-4x+2k不能分解因式;(3)当△=0时,即16-24k=0,时,3x2-4x+2k是一个完全平方式.当时,例5、已知二次三项式9x2-(m+6)x+m-2是一个完全平方式,试求m的值.分析:若二次三项式为一个完全平方式,则其判别式△=0.解:对于二次三项式9x2-(m+6)x+m-2,其中a=9,b=-(m+6),c=m-2,∴△=b2-4ac=[-(m+6)]2-4×9×(m-2)=m2-24m+108.∵原二次三项式是一个完全平方式,∴△=0,即m2-24m+108=0,解得m1=6,m2=18.故当m=6或m=18时,二次三项式9x2-(m+6)x+m-2是一个完全平方式.点悟:解题规律是:若b2-4ac=0,则二次三项式ax2+bx+c(a≠0)是完全平方式;反之,若ax2+bx +c(a≠0)是完全平方式,则b2-4ac=0.知识点2 实际应用。
一元二次方程知识点总结(全章齐全)
一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。
②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。
(2)确定a,b,c的值。
(3)代入中计算其值,判断方程是否有实数根。
(4)若代入求根公式求值,否则,原方程无实数根。
【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。
·步骤:(1)将方程化为一元二次方程的一般形式。
(2)把方程的左边分解为两个一次因式的积,右边等于0。
(3)令每一个因式都为零,得到两个一元一次方程。
(4)解出这两个一元一次方程的解,即可得到原方程的两个根。
根的判别情况判别式:b2-4ac的值x1、x2的关系根的具体值一元二次方程两根与系数的关系:。
初三数学一元二次方程知识点
初三数学一元二次方程知识点一元二次方程知识点概述一、一元二次方程的定义一元二次方程是指含有一个未知数,且未知数的最高次数为2的整式方程。
一般形式为:\[ ax^2 + bx + c = 0 \]其中,\( a \)、\( b \) 和 \( c \) 是已知的实数,且 \( a \neq 0 \)。
二、解的性质1. 判别式:\[ \Delta = b^2 - 4ac \]- 当 \( \Delta > 0 \) 时,方程有两个不相等的实数根。
- 当 \( \Delta = 0 \) 时,方程有两个相等的实数根(重根)。
- 当 \( \Delta < 0 \) 时,方程没有实数根,有一对共轭复根。
2. 根与系数的关系- 和的关系:\( x_1 + x_2 = -\frac{b}{a} \)- 积的关系:\( x_1 \cdot x_2 = \frac{c}{a} \)三、解法1. 配方法- 将方程 \( ax^2 + bx + c = 0 \) 通过配方,转化为 \( (x + h)^2 = k \) 的形式,进而求得方程的根。
2. 公式法- 使用一元二次方程的求根公式:\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \]其中,\( \Delta = b^2 - 4ac \)。
3. 因式分解法- 当方程能够分解为两个一次因式的乘积,即 \( (mx + n)(px + q) = 0 \),可以通过设置 \( mx + n = 0 \) 和 \( px + q = 0 \) 来求解。
4. 完全平方法- 类似于配方法,但适用于更广泛的情况,通过将方程左边变为完全平方的形式求解。
四、实际应用1. 面积问题- 利用一元二次方程解决实际问题中的面积最值问题。
2. 速度与加速度问题- 在物理学中,一元二次方程可以用来描述物体在一定加速度下的速度变化。
3. 几何图形的对称性- 通过一元二次方程分析抛物线的对称性等几何特性。
一元二次方程知识点归纳
一元二次方程知识点归纳一、一元二次方程的概念:1、含有1个未知数;2、未知数最高次数是2;3、必须整式方程(分母不能含有未知数)4、形式:)(002≠=++a c bx ax5、二次项:2ax ;一项:bx ;常数项 :c6、二次项系数:0≠a ;一次项系数 :b (全体实数);常数项 :c (全体实数)二、解方程的方法:直接开方法、配方法、公式法、因式分解法(1)02=+c ax c ax —=2 a c x —=2 ac x -±= (2)02=+bx ax 0=+)(b ax x a b x x -==210; (3)p n mx =+2)( p n mx ±=+ n p mx —±= mn p x -±=(4)0)()(=+++b ax N b ax M 0)(=++b ax N M )((5)02=++n mx x n m m mx x -=++222)2()2( 44)2(22n m m x —=+ 4422n m m x —±=+ 242m n m x --±= (6))0(02≠=++a c bx ax )(ac b b x 422-=∆∆±-=三、一元二次方程根的判别式——ac b 42-=∆1、一元二次方程根的情况: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<∆⎪⎩⎪⎨⎧==∆≠>∆≥∆(无解))(有两个相等实数根:):(有两个不相等实数根(有两个实数根)00002121x x x x 2、规律:(1)当0<ac 时,必定0>∆,即一元二次方程有两个不相等实数根(2)当c=0时,ab x x -==210;,即一元二次方程有一根为0 (3)当b=0时,ac x —±=,即一元二次方程两根互为相反数 (4)当a=c 时,一元二次方程两根互为倒数四、一元二次方程的“根”(1)“根”:代入原方程使得左右两边相等的未知数的值(2)韦达定理:a b x x -=+21;a c x x =21;cb x x —=+2111; 2122122212x x x x x x —)(+=+ ;212212214)(x x x x x x —)(+=-五、配方法的应用(1)解一元二次方程(2)讨论∆(3)讨论恒值(4)平方的非负性六、应用题(1)“围栏”问题①设宽为x ;利用周长用x 的代数式表示长(注意:有围墙与无围墙区别) ②利用矩形面积公式列出并列出方程③结合实际,列出关于长、宽取值范围的不等式组,解得x 的取值范围(2)“边框问题”(挖角)(3)“挖路问题”(平移计算)(4)平均增长率:n x a M )1(+=(M :后量;a :现量;x :增长率;n :经过次数)(5)“握手”问题——单循环:2)1(-n n ;双循环:)(1-n n (6)直角三角形问题(7)“黄金分割”:215-=x (8)多边形的对角线条数:2)3(-n n (9)利润问题:调价幅度与销量增减成比例关系①设调价为x ;根据题意得,销量增幅:kx②调价后单价=原售价±调价;调价后销量=原销量±销量增幅调价后总收入=调价后单价×调价后销量③进货量=调价后销量④总成本=单成本×进货量5调价后总利润=调价后总收入-总成本(2)①单利润=单售价—单成本②总利润=单利润×销量。
一元二次方程总复习知识点梳理
一元二次方程总复习知识点梳理一元二次方程总复考点1:一元二次方程的概念一元二次方程是只含有一个未知数,未知数的最高次数是2,且系数不为0的方程。
一般形式为ax2+bx+c=0(a≠0)。
判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程,两边直接开平方而转化为两个一元一次方程的方法。
解法为x1=-a+√b,x2=-a-√b。
2.配方法:用配方法解一元二次方程:ax2+bx+c=0(a≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解。
3.公式法:公式法是用求根公式求出一元二次方程的解的方法。
它是通过配方推导出来的。
一元二次方程的求根公式是x=(-b±√(b2-4ac))/2a(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法。
理论根据:若ab=0,则a=0或b=0.步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。
因式分解的方法有提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因为当a=0时,不含有二次项,即不是一元二次方程。
⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解。
⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式。
一元二次方程知识点总结
一元二次方程知识点总结
一元二次方程是数学中的一个重要概念,它在数学、物理、化学等领域中都有广泛的应用。
以下是一元二次方程的知识点总结:
1. 一元二次方程的基本概念:一元二次方程是一个含有一个未
知数的二次方程,通常表示为 ax2+bx+c=0(a、b、c 为已知常数,x 为未知数)。
2. 一元二次方程的解法:一元二次方程的解法包括配方法、公
式法、因式分解法等。
其中,配方法是最常用的解法,它可以使一元二次方程化为一个完全平方公式的形式,从而方便解出未知数的值。
3. 一元二次方程的性质:一元二次方程的性质包括根的分布性质、根的符号性质、根的近似计算等。
其中,根的分布性质指出,一元二次方程的根的分布情况取决于系数 a、b、c 的大小。
4. 一元二次方程的应用:一元二次方程在数学、物理、化学等
领域中都有广泛的应用。
例如,在物理中,一元二次方程可以用来描述物体的运动轨迹;在化学中,一元二次方程可以用来表示化学反应
的平衡状态等。
5. 一元二次方程的判别式:一元二次方程的判别式是指 b2-4ac,它可以用来判断一元二次方程是否有实数根、有几个实数根等。
6. 一元二次方程的逆用:一元二次方程的逆用是指利用一元二
次方程的根的判别式和根的分布性质来求解未知数的方法。
例如,如果已知一元二次方程 ax2+bx+c=0 有两个不等实数根,可以利用逆用定理求解未知数的值。
以上是一元二次方程的知识点总结。
在学习一元二次方程时,需要掌握基本概念、解法、性质、应用和判别式等方面的知识,并且结合实际问题进行理解和应用。
一元二次方程知识点总结
第二十章 一元二次方程一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。
一元二次方程知识点总结
2 1 章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。
注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:ax2 bx c 0(a 0),它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前—面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如ax2 bx c 0不一定是一元二次方程,当且仅当a 0时是一元二次方程。
二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当x 2时,2 2X 3x 2 0所以X 2是x 3x 2 0方程的解。
一兀二次方程的解也叫一元二次方程的根。
一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
根据平方根的定义可知,x a是b的平方根,当b 0时,x a . b,x a . b,当b<0时,方程没有实数根。
三种类型:(1)x2a a 0的解是x a ;(2)x m 2n n 0 的解是x 、n m ;22、配方法:配方法的理论根据是完全平方公式 a 2 2ab b 2 (a b)2,把公式中的a 看 做未知数x ,并用x 代替,则有x 2 2bx b 2 (x b)2。
(一) 用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式(2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数; (3) 把原方程变为x m 2 n 的形式。
一元二次方程知识点框架
一元二次方程知识点框架
一元二次方程知识点框架如下:
一、定义:一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。
二、一般形式:ax^2 + bx + c = 0,其中a ≠0。
三、解法:
1. 直接开平方法:对于形如x^2 = b(b≥0)的方程,可以直接开平方求得解。
2. 因式分解法:通过因式分解将方程化为两个一次因式的乘积等于0,然后分别令每个因式等于0,解出x的值。
3. 公式法:使用求根公式ax^2 + bx + c = 0的解为x = [-b ±sqrt(b^2 - 4ac)] / (2a)。
当判别式Δ=b^2 - 4ac≥0时,方程有两个实根;当Δ<0时,方程无实根。
4. 配方法:先将方程化为一般形式,然后配方得到(x + p)^2 = q的形式,再根据q的正负性求得方程的解。
四、根的判别式:判别式Δ=b^2 - 4ac。
当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根。
五、根与系数的关系:若方程的两个实根为x1和x2,则x1 + x2 = -b/a,x1 * x2 = c/a。
六、应用:一元二次方程在实际问题中有着广泛的应用,如几何、三角、代数等问题中都需要用到一元二次方程的知识点。
一元二次方程知识点总结
21章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。
注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b 叫做一次项系数;c叫做常数项.注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如不一定是一元二次方程,当且仅当时是一元二次方程。
二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。
一元二次方程的解也叫一元二次方程的根。
一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
根据平方根的定义可知,是b的平方根,当时,,,当b〈0时,方程没有实数根。
三种类型:(1)的解是;(2)的解是;(3)的解是。
2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
(一)用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数; (3)把原方程变为的形式.(4)若,用直接开平方法求出的值,若n﹤0,原方程无解。
(二)用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为时,用配方法解一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为的形式;(4)若,用直接开平方法或因式分解法解变形后的方程。
一元二次方程知识点
一元二次方程一、相关概念1.定义:把含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2、一般形式: ax 2 +bx+c=0(a ≠0).(1.判断一个方程是否是一元二次方程抓住的五点: “化简后”;“一个未知数”; “未知数的最高次数是2” ; “二次项系数不等于0” ; “整式方程”.2.确定一元二次方程各项的系数的方法是:将一元二次方程化成一般形式ax 2 +bx+c=0(a ≠0)..) 二、直接开平方法1.利用直接开平方法求一元二次方程的解时,必须把方程化为x ²=a(a ≥0),(x-a)²=b(b ≥0)的形式,否则不能用直接开平方法求一元二次方程的解. 三、配方法1. 配方法: 通过配成完全平方公的形式来解一元二次方程的方法叫做配方法.2. 解二次项系数是1的方程的具体配方方法是:方程两边同时加上一次项系数一半的平方,使方程左边化为完全平方,右边化为非负数.(1、注意学生对求一个数的一半的方法逐一的要求,检查是否达到目的. 2.用配方法解一元二次方程时,最关键的一步是必须把二次项的系数化为1;再把方程化为(x-a)²=b(b ≥0)的形式后,就可用直接开平方法求一元二次方程的解.3.一次项系数的符号决定了左边的完全平方式是完全平方和或完全平方差.4.配方作为一种求解的方法,比其它方法要复杂,为此,一般不用该方法,除非是题目指明用配方法,但配方法是一种重要的数学方法,应用较广,应掌握好.)四、公式法1. 判别式ac b 42-=∆判断方程的根的情况(1)ac b 42-=∆>0⇔方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根. (2)ac b 42-=∆=0⇔方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3)ac b 42-=∆<0⇔方程ax 2+bx+c=0(a ≠0)没有实数根. (4)ac b 42-=∆≥0⇔方程ax 2+bx+c=0(a ≠0)有实数根.一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为x 1,x 2,aac b b x 2421-+-=,aac b b x 24-22--=(1.用公式解方程时,在教学中应注意两个问题:①a ≠0,②Δ=b ²-4ac ≥0. 2.代入公式时一定先把方程化为一般形式ax 2+bx+c=0(a ≠0),才能准确的确定a 、b 、c 的符号.3.学生容易把表示的字母都写成x ,如解方程t 2+2t=3,写成x 1=1,x 2=-3.4.当Δ=b ²-4ac=0时,,方程的根要写成x 1=x 2= 的形式,从而说明方程有两个根,而不是一个根.)五、因式分解法解方程的步骤: 1. 因式分解法:将一个一元二次方程化为两个一次因式的积等于0的形式,再使这两个一次因式分别等于0,从而实现降次,这种解法叫做因式分解法. ①移项使方程的右边为0;②将方程的左边分解为两个一次因式的积;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.展开方程(x-x 1)(x-x 2)=0得x 2-(x 1+x 2)x+x 1x 2=0,其中p=-( x 1+x 2),q= x 1x 2.实际上x 1,x 2是方程x 2+px+q=0的两根.即x 1+x 2 =-p , x 1x 2= q 用十字相乘法解一元二次方程我们知道()()22356x x x x ++=++,反过来,就得到二次三项式256x x ++的因式分解形式,即()()25623x x x x ++=++,其中常数项6分解成2,3两个因数的积,而且这两个因数的和等于一次项的系数5,即6=2×3,且2+3=5。
一元二次方程 知识点总结
一元二次方程知识点总结一、一元二次方程的概念。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 判断方程是否为一元二次方程。
- 首先看方程是否为整式方程。
- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。
例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。
二、一元二次方程的解法。
1. 直接开平方法。
- 对于方程x^2=p(p≥0),解为x=±√(p)。
- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
2. 配方法。
- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。
- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。
- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。
- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。
- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。
3. 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 步骤:- 确定a、b、c的值。
- 计算b^2-4ac的值,判断方程是否有实数根。
- 当b^2-4ac≥0时,代入求根公式求解。
一元二次方程知识点总结
考点四、一元二次方程根与系数的关系
两边同时除于 a ,展开后可得:
x2
b c x 0 x 2 ( x1 x2 ) x x1 x2 0 a a
2
b c x1 x2 ; x1 x2 a a
法 3:如果一元二次方程 ax bx c 0 ( a 0) 定的两个根为 x1 , x2 ;那么
(4)因式分解法:提公因式,平方公式,平方差,十字相乘法
步骤:把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字 相乘,如果可以,就可以化为乘积的形式 如: ax bx 0( a, b 0) x( ax b) 0
2
此类方程适合用提供因式,而且其中一个根为 0
b b 2 4ac b b 2 4ac (b) 2 ( b 2 4ac ) 2 4ac c 2 2a 2a a (2a) 2 4a
2
法 2:如果一元二次方程 ax bx c 0 ( a 0) 定的两个根为 x1 , x2 ;那么
ax 2 bx c 0 a ( x x1 )( x x2 ) 0
4 x 2 12 x 9 0 (2 x 3) 2 0 2 x 2 5 x 12 0 (2 x 3)( x 4) 0
考点三、一元二次方程解的情况,即根的判别式
一元二次方程 ax 2 bx c 0(a 0) 中, b 2 4ac 叫做一元二次方程 ax 2 bx c 0(a 0) 的根的 判别式,通常用“ ”来表示,即 b 2 4ac
(完整版)一元二次方程知识点总结
一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。
其中a为二次项系数,b为一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。
注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程知识点
一、知识清单梳理
知识点一:一元二次方程及其解法关键点拨及对应举例
1. 一元二次方程的相关概念
2.一元二
次方程
的解法(1)定义:只含有一个未知数,且未知数的最高次数是 2 的整式方程.
(2)一般形式: ax2+ bx+ c= 0(a≠0),其中 ax2、 bx、 c 分别叫做二次项、
、、
一次项系数、常数项.
一次项、常数项, a b c 分别称为二次项系数、
( 1)直接开平方法:形如(x+m)2=n(n≥ 0)的方程,可直接开平方求解 .
( 2 )因式分解法:可化为(ax+m) (bx+n)=0 的方程,用因式分解法求解 .
2
( 3 )公式法 :一元二次方程
2bb 4ac
ax + bx+ c=0 的求根公式为 x=2a
( b2-4ac≥ 0) .
(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,
也可以考虑用配方法.
例:方程 ax a20 是关于x的
一元二次方程,则方程的根为- 1.
解一元二次方程时,注意观
察,先特殊后一般,即先考
虑能否用直接开平方法和因
式分解法,不能用这两种方法
解时,再用公式法.
例:把方程x2+6x+3=0 变形为
(x+h) 2=k 的形式后, h=-3 ,k=6.
知识点二:一元二次方程根的判别式及根与系数的关系
(1)当= b24ac0时,原方程有两个不相等的实数根.
3.根的判(2)当= b24ac0时,原方程有两个相等的实数根.
别式
= b2
(3)当4ac0 时,原方程没有实数根.
( 1)基本关系:若关于x 的一元二次方程ax2+bx+c=0( a≠ 0)有两个根分别为 x1、x2,则 x1+x2=;x1x2=。
注意运用根与系数关系的* 4. 根与系前提条件是△≥ 0.
( 2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,数的关
系先把所求代数式变形为含有 x1+x 2、 x1x2的式子,再运用根与系数的关系求解 .
知识点三:一元二次方程的应用
( 1)解题步骤:①审题;②设未知数;③ 列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.
4.列一元( 2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用 .
①平均增长率(降低率)问题:公式:b= a(1± x)n, a 表示基数, x 表示
二次方平均增长率(降低率), n 表示变化的次数, b 表示变化 n 次后的量;程解应②销售问题 ;利润问题 ,利润 =售价 -成本;利润率 =利润 /成本× 100%;
用题③比赛问题:
④面积问题: a.直接利用相应图形的面积公式列方程; b.将不规则图形通
过割补或平移形成规则图形,运用面积之间的关系列方程.例:方程 x22x10 的判别式等于 8,故该方程有两个不相等的实数根;方程x2 2 x 3 0的判别式等于-8,故该方程没有实数
根.
与一元二次方程两根相关代数式的常见变
形: x 12+x22=(x1+x2)2-2x1x2, (x1+1)(x 2+1)=x 1x2 +(x 1+x2 )+1,
11x1x2等.
x1x2x1 x2
失分点警示
在运用根与系数关系解题时,注意前
提条件时△ =b2-4ac≥0.a≠0
运用一元二次方程解决实际问
题时,方程一般有两个实数根,则必须要根据题意检验根是否
有意义 .。