高中数学复习指导:直线与圆锥曲线问题之设而不求与设而求.doc

合集下载

设而不求,圆锥曲线中相交问题迎刃而解

设而不求,圆锥曲线中相交问题迎刃而解

设而不求,圆锥曲线中相交问题迎刃而解作者:郝文进来源:《中学生数理化·教与学》2011年第06期在解决直线或线段与圆锥曲线相交问题时,经常采用“设而不求,整体代换”的思想,应用这种思想方法,既可以避免繁杂的运算,又很容易找到解题的途径,它的规律性强,思路明确,易于学生掌握.“设而不求,整体代换”思想一般分为两种形式:一是设出交点坐标,通过解方程组,消去一个未知数,使之转化为关于x(或y)的一元二次方程,再利用韦达定理,中点坐标公式进行整体代换,实现设而不求,使问题得解.二是通过代点相减,把弦的两端点坐标代入圆锥曲线方程,作差整理可得到弦的中点坐标与弦所在直线斜率之间的等量关系,从而使问题迎刃而解.一、中点弦所在直线方程问题例1点P(1,1)为椭圆x24+y22=1内的一个定点,过点P作一弦,使该弦的中点为点P,求此弦所在直线方程.分析:可设弦与椭圆的交点为,P2(x2,y2),然后解弦所在直线2的方程与椭圆方程组成的方程组,结合韦达定理,中点坐标,实现设而不求,问题迎刃而解.解:设弦的两端点坐标分别为2(x2,y2).所求直线方程为y-1=k(x-1).由方程组y-1=k(x-1),x24+y22=1,消去y,整理,得(2k2+1)x2-4(k2-k)x+2k2-4k-2=0.由韦达定理得=4(k2-k)2k2+1,2=2k2-4k-22k2+1.2又∵2的中点坐标P(1,1),∴由中点坐标公式,得22=1,即12×4(k2-k)2k2+1=1,解得k=-12.故弦所在直线方程为y-1=-12(x-1).即x+2y-3=0.二、求弦中点的轨迹方程问题例2 设椭圆方程为x2+y24=1,过点M(0,1)的直线l交椭圆于A、B两点,O为坐标原点,点P满足OP→=12(OA→+OB→),当绕M旋转直线l时,求动点P的轨迹方程.分析:设交点),B(x2,y2)2,代入椭圆方程作差,得出中点坐标与斜率的关系式,斜率可用表示,故可得关于的方程,即中点P的轨迹方程求出.三、圆锥曲线中线段的垂直关系问题例3 椭圆E的中心在原点,焦点在x轴上,离心率为32,它与直线x+y-1=0交于A,B两点,且AO⊥BO,求椭圆E的方程.分析:垂直关系适合用“设而不求”法,因为有2+y2y2=0,首先设出交点坐标,由已知条件找出a与b的关系,设出椭圆方程,然后解方程组,利用韦达定理,实现设而不求,整体代入22=0,从而得出关于b2的方程,解之即可.四、圆锥曲线中有向线段(向量)的数量积问题例4 已知中心在原点的双曲线C的左焦点为(-2,0),C的右准线的方程为x=32.(1)求双曲线C的方程.(2)若过(0,2)点,斜率为k的直线与双曲线恒有两个不同的交点A和B,且满足OA→•OB→分析:因为有数量积22,所以需要运用韦达定理.因此,可设出交点坐标,通过解方程组,利用韦达定理,实施整体代入,再和直线与双曲线C恒有两交点满足的条件结合,问题可解.五、圆锥曲线上两点关于直线对称问题例6已知椭圆C的方程为x24+y23=1,椭圆C上有不同两点P、Q关于直线y=4x+m对称,试确定m的取值范围分析:对称问题涉及中点,垂直关系,这正是设而不求的典型应用,所以设出两点,y2)2,代入x24+y23=1作差,找出中点坐标和斜率关系式.又中点在直线上y=4x+m,联立两式,解出中点坐标--3m.因为(-m,-3m)在椭圆内,所以可得关于m的不等式,解出m范围即可.总之,解决直线与圆锥曲线相交问题,只要抓住了“设而不求,整体代换”这条主线,问题的脉络也就清晰地展现出来,几乎所有的曲直相交问题,都可以通过上述方法来解决,只有多总结,多归纳,才能达到事半功倍的效果.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

高考数学复习考点题型专题讲解 题型29 直线与圆锥曲线(解析版)

高考数学复习考点题型专题讲解 题型29 直线与圆锥曲线(解析版)

高考数学复习考点题型专题讲解题型:之直线与圆锥曲线【高考题型一】:直线与圆锥曲线在简答题中的步骤体现。

『解题策略』:答题规范模板:步骤1:设直线方程:注意设直线的技巧。

①当斜率不存在的直线不满足,斜率为零的直线满足时,一般设为b kx y +=; ②当斜率为零的直线不满足,斜率不存在的直线满足时,一般设为n my x +=;③两类直线均满足或均不满足时,两种设法均可,但两类直线均满足时,注意要对取不到的直线补充验证。

)。

步骤2:直线与曲线联立,整理成关于x(或y)的一元二次方程。

步骤3:写出根与系数的关系(如果求范围或直线与曲线不是恒有公共点,则写出)0(0≥∆>∆)。

步骤4:转化已知条件,转化为两根的关系。

步骤5:把根与系数的关系代入转化的条件中。

※注:若题目中不涉及根与系数,则.............步骤..4.\.步骤..5.可省略。

.... 弦长公式:弦长:直线与曲线相交中两交点的距离。

弦长公式:直线与曲线联立,若消y ,转化为关于x 的一元二次方程,20,ax bx c ++=则弦长=a ;若消x ,则转化为关于y 的一元二次方程:20,ay by c ++=则弦长。

【题型1】:直线与椭圆的位置关系。

『解题策略』:直线0:=++C By Ax l ,椭圆C :221(0,0,)mx ny m n m n +=>>≠;判定方法:∆法:直线与椭圆方程联立:220,00,10,Ax By c mx ny ∆>⎧++=⎧⎪⇒∆=⎨⎨+=⎩⎪∆<⎩相交相切相离。

1.(高考题)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。

(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由。

【解析】:(1)c=2,设椭圆方程为:142222=-+a y a x ,代入点A 得椭圆方程为2211612x y +=。

设而不求在圆锥曲线中的应用

设而不求在圆锥曲线中的应用

·解题研究·十‘7擞·7(2008年第9期.高中版)19“设而不求’’在圆锥曲线中的应用748300甘肃省漳县一中汪克明直线与圆锥曲线的关系问题,既是高考考查的重点,也是高中数学的难点.利用解析法解答时,往往因求交点而带来复杂的运算.本文通过例析介绍“设而不求”法在解决以下常见的六类问题中的运用.1相交弦问题例1过点A(2,1)的直线与双曲线工2一}=1交于P。

,P:两点,求弦P。

P:的中点P的轨迹方程.解设弦的两个端点P.(工.,Y.),P:(x:,Y:),中点P(工,Y)则(1)当直线P.P:的斜率存在时,《:羞作差可耻鬻了2x 又...J|}:是’...丝:皇,化简得2石2—4石一,+Y=0.(2)当直线P。

P:的斜率k不存在时,中点(2,0)也满足上方程.综上可知P点的轨迹方程是h2一缸一广+y=o.2定值、定点问题例2已知椭圆C的中心在坐标原点,焦点在z 轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线f:Y=kx+m与椭圆C相交于A,曰两点(A,B不是左右顶点),且以A B为直径的圆过椭圆c的右顶点.求证:直线f过定点,并求出该定点的坐标.解(1)易得椭圆的标准方程为争+争=1.r,,2kx+m,‘2’设A‘茗l’yI’’丑‘茗2’儿’’由i孚+{;_:1,得(3+4k2)茗2+8m kx+4(m2—3)=0,.·.△=64m2’2k一16(3+4k2)(m2—3)>0,8m k4f m2—3、z-+X2。

一3—+—4k2·茗-。

聋22—乌_驴Y l Y2=(缸l+m)(缸2+m)=k2石I菇2+,以(石l+菇2)+,n2:i(里二垒壁23+4矗2’.‘以A B为直径的圆过椭圆的右顶点D(2,0)。

.~∥‰一1,即是盎一l,.‘.Y t Y2+茗I x2—2(茗I+髫2)+4=0,即紫+譬≯+黑悱o.化简得7而2+16m k+4k2=0.解得m I=一2k,m2=一了2k,且满足3+4k=一m2>0.当m=一2后时,f:Y=k(石一2),直线过定点(2,0),与已知矛盾;当时m:一孳时,直线方程为y:后(茗一了2),直线过定点(÷,0).综上可知,直线z过定点,定点坐标为(鲁,o).3方程问题例3已知抛物线C:y2=4x,0为坐标原点,动直线f:Y=屉(z+1)与c交于A、B两个不同的点.(1)求k的取值范围;(2)求满足O M=O A+∞的点肘的轨迹方程.解(1)易得的取值范围,k∈(一1,0)U(0,1),(2)设M(石,,,),则(石,),)三(石。

直线与圆锥曲线的位置关系知识梳理

直线与圆锥曲线的位置关系知识梳理

直线与圆锥曲线的位置关系知识梳理1.直线与圆锥曲线的位置关系的判定(1)代数法:把圆锥曲线方程C 1与直线方程l 联立消去y ,整理得到关于x 的方程ax 2+bx +c =0.说明:(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 2-y 1|=1+1k2(y 1+y 2)2-4y 1y 2, |x 2-x 1|=||a ∆,|y 2-y 1|=||a ∆ 3.中点弦问题:中点弦问题常用“根与系数的关系”或“点差法”求解.(1)点差法设而不求,借用中点公式即可求得斜率.(2)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0; 在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0; 在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0. 典型例题题型一 直线与圆锥曲线的位置关系的判断及应用例1 若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( )条变式训练 若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________.题型二 中点弦问题例2 过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.变式训练 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为N (-12,-15),则E 的方程为____________.题型三 弦长问题例3 已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为________.课堂练习1.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.2.已知F 1、F 2为椭圆x 225+y 2169=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=30,则|AB |=________.3. 已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为________.4.(四川文)过双曲线x 2-y 23=1的右焦点与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.5.(课标全国I )已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.课下作业1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________.2.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为________.3.已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为________.4.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为________.5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,这样的直线有________.6.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是________.7.已知斜率为-12的直线l 交椭圆C :x 2a 2+y 2b 2=1(a >b >0)于A ,B 两点,若点P (2,1)是AB 的中点,则C 的离心率等于________.8.直线l :y =x +3与曲线y 29-x ·|x |4=1交点的个数为________. 9.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A 、B 两点,且A 、B 两点的横坐标之和为3,则抛物线的方程为________.10.已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1恒有公共点,则实数m 的取值范围是________.11.已知抛物线C 的顶点在坐标原点,焦点为F (0,-1),直线l 与抛物线C 相交于A 、B 两点,若AB 的中点为(2,-2),则直线l 的方程为________.12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的短半轴长b =1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4 2. (1)求椭圆M 的方程;(2)设直线l :x =my +t 与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的右顶点C ,求t 的值.13.(陕西文)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.。

圆锥曲线的经典求法 设而不求

圆锥曲线的经典求法 设而不求

圆锥曲线设而不求法典型试题在求解直线与圆锥曲线相交问题,特别是涉及到相交弦问题,最值问题,定值问题的时候,采用“设点代入”(即“设而不求”)法可以避免求交点坐标所带来的繁琐计算,同时还要与韦达定理,中点公式结合起来,使得对问题的处理变得简单而自然,因而在做圆锥曲线题时注意多加训练与积累.1.通常情况下如果只有一条直线,设斜率相对容易想一些,或者多条直线但是直线斜率之间存在垂直,互为相反数之类也可以设斜率需要注意的是设斜率的时候需要考虑:(1)斜率是否存在(2)直线与曲线必须有交点也就是判别式必须大于等于0 这种设斜率最后利用韦达定理来计算并且最终消参法,思路清晰,计算量大,特别需要仔细,但是大多也是可以消去高次项,故不要怕大胆计算,最终一定能得到所需要的结果。

2.设点比较难思考在于参数多,计算起来容易信心不足,但是在对于定点定值问题上,只要按题目要求计算,将相应的参数互带,,然后把点的坐标带入曲线方程最终必定能约分,消去参数。

这种方法灵活性强,思考难度大,但是计算简单。

例1:已知双曲线x2-y2/2=1,过点M(1,1)作直线L,使L与已知双曲线交于Q1、Q2两点,且点M是线段Q1Q2的中点,问:这样的直线是否存在?若存在,求出L的方程;若不存在,说明理由。

解:假设存在满足题意的直线L,设Q1(X1,Y1),Q2(X2,Y2)代人已知双曲线的方程,得x12-y12/2=1 ①, x22-y22/2=1 ②②-①,得(x2-x1)(x2+x1)-(y2-y1)(y2+y1)/2=0。

当x1=x2时,直线L的方程为x=1,此时L与双曲线只有一个交点(1,0)不满足题意;当x1≠x2时,有(y2-y1)/(x2-x1)=2(x2+x1)/(y2+y1)=2.故直线L的方程为y-1=2(x-1)检验:由y-1=2(x-1),x2-y2/2=1,得2x2-4x+3=0,其判别式⊿=-8 ﹤0,此时L与双曲线无交点。

【2020届】高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质

【2020届】高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质

圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

高中数学圆锥曲线系统讲解第19讲《韦达定理之设而不求》练习及答案

高中数学圆锥曲线系统讲解第19讲《韦达定理之设而不求》练习及答案

第19讲 韦达定理之设而不求知识与方法在圆锥曲线的大题中,将直线与圆锥曲线的方程联立,消去y (或x )整理得出关于x (或y )的一元二次方程是常规操作,如果设直线与圆锥曲线的交点分别是()11,A x y 、()22,B x y ,很多时候我们都不去求这两个交点的坐标,而是直接根据交点坐标会满足上面得到的关于x (或y )的一元二次方程,借助韦达定理来计算其他需要用到的量,这种处理方法叫做设而不求.一般地,若联立后得到的关键方程用20ax bx c ++=()0a ≠来表示,其判别式24b ac ∆=−,则:(1)12b x x a+=−;(2)12c x x a=;(3)12x x a−==;(4)()2222121212222b ac x x x x x x a −+=+−=;(5)12121211x x bx x x x c++==−.借助韦达定理及其推论,我们可以计算很多关于1x 和2x 的具有对称结构的代数式. 典型例题1.(★★★)设A 、B 为曲线2:4x C y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.【解析】(1)设()11,A x y ,()22,B x y ,则124x x +=,且21122244x y x y ⎧=⎪⎨=⎪⎩,两式作差得:()()()1212124x x x x y y +−=−,所以12121214y y x x x x −+==−,故直线AB 的斜率为1. (2)解法1:设200,4x M x ⎛⎫ ⎪⎝⎭,2x y '=,由(1)可得,012x =,故02x =,所以()2,1M ,设直线AB 的方程为y x t =+,联立24yx tx y ⎧⎨==+⎩消去y 整理得:2440x x t −−=,判别式16160t ∆=+>,故1t >−,由韦达定理,124x x +=,124x x t =−,1212242y y x x t t +=++=+,2212124x x y y t ⎛⎫== ⎪⎝⎭()112,1MA x y =−−,()222,1MB x y =−−,因为AMBM ⊥,所以0MA MB ⋅=,即()()()()()()2121212121212221125484250x x y y x x x x y y y y t t t −−+−−=−++−++=−−+−−+=解得:7t =或1−(舍去),所以直线AB 的方程为7y x =+.解法2:设200,4x M x ⎛⎫ ⎪⎝⎭,2x y '=,由(1)可得,012x =,故02x =,所以()2,1M ,设直线AB 的方程为y x t =+,联立24yx tx y ⎧⎨==+⎩消去y 整理得:2440x x t −−=,判别式16160t ∆=+>,故1t >−,由韦达定理,124x x +=,1212242y y x x t t +=++=+, 所以AB 中点为()2,2N t +,故211MN t t =+−=+而12AB x x =−==,因为AM BM ⊥,所以2AB MN =,故()21t =+,解得7t =或1−(舍去),所以直线AB 的方程为7y x =+.2.(★★★★)已知抛物线2:2C y px =过点()1,1P ,过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M 、N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A 、B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.【解析】(1)将点()1,1代入22y px =解得:12p =,故抛物线C 的方程为2y x =,其焦点坐标为1,04⎛⎫⎪⎝⎭,准线方程为14x =−.(2)设直线l 的方程为12y kx =+,设()11,M x y ,()22,N x y将2y x =代入12y kx =+消去x 整理得:22210ky y −+=()0k ≠判别式()22420k ∆=−−⨯>,所以12k <且0k ≠,由韦达定理,121y y k +=,1212y y k=,直线AB 的方程为1x x =,直线OP 的方程为y x =,直线ON 的方程为22y y x x =联立1x x y x =⎧⎨=⎩,解得:1y x =,所以1A y x =,联立122x x y y xx =⎧⎪⎨=⎪⎩,解得:122x y y x =,所以122B x y y x = 故()122212212121221221122112112222222222M BA x y y y y y y y y y y x x y x y y y y y x x y x x x x x ++−+++−−=−=−== 2211122202k k k x ⎛⎫⋅− ⎪⎝⎭== 所以2M B A y y y +=,故A 为线段BM 的中点.3.(2021·北京·20·★★★★)已知椭圆()2222:10x y E a b a b+=>>过点()0,2A −,以4个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点()0,3P −的直线l 斜率为k ,交椭圆E 于不同的两点B 、C ,直线AB 交3y =−于点M ,直线AC 交3y =−于点N ,若15PM PN +≤,求k 的取值范围.【解析】(1)由题意,2b =,四个顶点围成的四边形面积1222S a b =⨯⨯=,所以a =,即椭圆E 的标准方程为22154x y += (2)设()11,B x y ,()22,C x y ,直线l 的方程为3y kx =−, 直线AB 的斜率为112y x +,其方程为1122y y x x +=−, 联立11223y y x x y +⎧=−⎪⎨⎪=−⎩,解得:112x x y =−+, 所以112x PM y =+,同理,222x PN y =+,所以121222x x PM PN y y +=+++,联立223154y kx x y =−⎧⎪⎨+=⎪⎩消去y 整理得:()224530250k x kx +−+=,判别式()22900100450k k ∆=−+>.解得:1k <−或1k >,由韦达定理,1223045kx x k +=+,1222545x x k =+,显然120x x >,故1x 、2x 同号,而120y +>,220y +>,所以112x y +与222xy +同号, 故()()12121212122121212121222222111kx x x x x x x x x x PM PN y y y y kx kx k x x k x x −++=+=+=+=++++−−−++ 222222503045455253014545k k k k k k k k k −++==−+++,由题意,15PM PN +≤,所以515k ≤,故33k −≤≤, 综上所述,k 的取值范围为[)(]3,11,3−−.强化训练4.(★★★)已知椭圆()2222:10x y C a b a b +=>>,长轴长为(1)求椭圆C 的方程;(2)若直线:l y kx m =+()0k ≠与椭圆C 交于A 、B 两点,线段AB 的中垂线过点()1,0P ,求k 的取值范围.【解析】(1)由题意,椭圆C的离心率e=,长轴长2a =,所以a =,2b =,故椭圆C 的方程为22184x y +=.(2)设()11,A x y ,()22,B x y ,联立22184y kx m x y =+⎧⎪⎨+=⎪⎩消去y 整理得:()222214280k x kmx m +++−=, 判别式()()222216421280k m k m ∆=−+−>,化简得:()224210k m +−>①, 由韦达定理,122421km x x k +=−+,()121222221my y k x x m k +=++=+,所以AB 中点为222,2121m m G k k ⎛⎫− ⎪++⎝⎭,因为AB 的中垂线过点()1,0P ,所以PG AB ⊥,从而222112121m k k km k +⋅=−−−+,化简得:221k m k +=−,代入①得:()222214210k k k ⎛⎫++−−> ⎪⎝⎭解得:2k <或2k >,故k 的取值范围为2,,22⎛⎛⎫−∞−+∞ ⎪ ⎪⎝⎭⎝⎭.5.(★★★)已知椭圆()2222:10y x C a b a b +=>>的离心率为2,且过点2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)过点1,03D ⎛⎫− ⎪⎝⎭且不与y 轴垂直的直线l 交椭圆C 于P 、Q 两点,点()1,0A ,证明:AP AQ ⊥.【解析】(1)由题意,2213124a b =⎨⎪+=⎪⎩,解得:1a b ⎧=⎪⎨=⎪⎩,所以椭圆C 的方程为2212y x +=. (2)由题意,可设直线1的方程为13x my =−,代入2212yx +=消去x 整理得:()2241621039my my +−−=, 易得判别式0∆>,设()11,P x y ,()22,Q x y ,则()1224321my y m +=+,()12216921m y y m =−+ 所以()()12122223321x x m y y m +=+−=−+,()()221212122111839921m m x x m y y y y m −=−++=+ ()111,AP x y =−,()221,AQ x y =−,故()()()1212121212111AP AQ x x y y x x x x y y ⋅=−−+=−+++()()()()()222222211869211611821610921321921921m m m m m m m −+++−−=++−==++++ 所以AP AQ ⊥.。

高考第一轮复习数学直线与圆锥曲线的位置关系

高考第一轮复习数学直线与圆锥曲线的位置关系
评述:本题考查了两直线垂直的充要条件、三角形的面积公式、函数与方程的思想,以及分析问题、解决问题的能力.
例3在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围.
剖析:设B、C两点关于直线y=kx+3对称,易得直线BC:x=-ky+m,由B、C两点关于直线y=kx+3对称可得m与k的关系式,
答案:
5.求过点0,2的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.
解:设直线方程为y=kx+2,
把它代入x2+2y2=2,
整理得2k2+1x2+8kx+6=0.
要使直线和椭圆有两个不同交点,则Δ>0,即k<- 或k> .
设直线与椭圆两个交点为Ax1,y1、Bx2,y2,中点坐标为Cx,y,则
2.涉及直线与圆锥曲线相交弦的问题,主要有这样几个方面:相交弦的长,有弦长公式|AB|= |x2-x1|;弦所在直线的方程如中点弦、相交弦等、弦的中点的轨迹等,这可以利用“设点代点、设而不求”的方法设交点坐标,将交点坐标代入曲线方程,并不具体求出坐标,而是利用坐标应满足的关系直接导致问题的解决.
3.涉及到圆锥曲线焦点弦的问题,还可以利用圆锥曲线的焦半径公式即圆锥曲线的第二定义,应掌握求焦半径以及利用焦半径解题的方法.
条条条条
解析:数形结合法,同时注意点在曲线上的情况.
答案:B
2.已知双曲线C:x2- =1,过点P1,1作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有
条条条条
解析:数形结合法,与渐近线平行、相切.
答案:D
3.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点异于顶点,则直线PF的斜率的变化范围是

2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF1+S△OPN S △OF 2N 为定值.2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y1,Q x2,y2代入圆锥曲线方程作差,得到关于y1-y2x1-x2,x1+x2,y1+y2的关系式,再结合题中条件求解.6中心在原点的双曲线E焦点在x轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A2,3;②该曲线的渐近线与圆x2-8x+y2+4=0相切;③点P在该双曲线上,F1、F2为该双曲线的焦点,当点P的纵坐标为32时,恰好PF1⊥PF2.(1)求双曲线E的标准方程;(2)过定点Q1,1能否作直线l,使l与此双曲线相交于Q1、Q2两点,且Q是弦Q1Q2的中点?若存在,求出l的方程;若不存在,说明理由.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,椭圆的短轴端点与双曲线y22-x2=1的焦点重合,过点P4,0且不垂直于x轴的直线l与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)若点B关于x轴的对称点为点E,证明:直线AE与x轴交于定点.4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P到定直线x=4的距离,是它与定点F1,0的距离的两倍.(1)求点P的轨迹方程C;(2)过F点作两条互相垂直的直线l1,l2(直线l1不与x轴垂直).其中,直线l1交曲线C于A,B两点,直线l2交曲线C于E,N两点,直线l2与直线x=m m>2交于点M,若直线MB,MF,MA的斜率k MB,k MF,k MA构成等差数列,求m的值.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy中,已知点F(2,0),直线l:x=12,点M到l的距离为d,若点M满足|MF|=2d,记M的轨迹为C.(1)求C的方程;(2)过点F(2,0)且斜率不为0的直线与C交于P,Q两点,设A(-1,0),证明:以P,Q为直径的圆经过点A.7(2023届河南省安阳市高三上学期10月月考)已知椭圆M1:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,F1F2=2,面积为487的正方形ABCD的顶点都在M1上.(1)求M1的方程;(2)已知P为椭圆M2:x22a2+y22b2=1上一点,过点P作M1的两条切线l1和l2,若l1,l2的斜率分别为k1,k2,求证:k1k2为定值.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1(-1,0)且与x轴不重合的直线与椭圆C交于A,B两点,△ABF2的周长为8.(1)若△ABF2的面积为1227,求直线AB的方程;(2)过A,B两点分别作直线x=-4的垂线,垂足分别是E,F,证明:直线EB与AF交于定点.9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.10(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.11(2022届天津市第二中学高三上学期12月月考)已知椭圆x2a2+y2b2=1a>b>0的长轴长是4,且过点B0,1.(1)求椭圆的标准方程;(2)直线l:y=k x+2交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.14(2022届广东省佛山市高三上学期期末)已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.15(2022届江苏省盐城市、南京市高三上学期1月模拟)设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.16(2022届浙江省普通高中强基联盟高三上学期统测)如图,已知椭圆C1:x24+y23=1,椭圆C2:y29+x24=1,A-2,0、B2,0.P为椭圆C2上动点且在第一象限,直线PA、PB分别交椭圆C1于E、F两点,连接EF交x轴于Q点.过B点作BH交椭圆C1于G,且BH⎳PA.(1)证明:k BF⋅k BG为定值;(2)证明直线GF过定点,并求出该定点;(3)若记P、Q两点的横坐标分别为x P、x Q,证明:x P x Q为定值.17(2022届湖北省新高考联考协作体高三上学期12月联考)已知圆O :x 2+y 2=2,椭圆C :x 2a 2+y 2b2=1a >b >2 的离心率为22,P 是C 上的一点,A 是圆O 上的一点,PA 的最大值为6+2.(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:PO 2=PM ⋅PN .18已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为8,离心率e =54.(1)求双曲线C 的方程;(2)直线l 与双曲线C 相交于P ,Q 两点,弦PQ 的中点坐标为A 8,3 ,求直线l 的方程.圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF 1+S △OPN S △OF 2N为定值.【解析】(1)由题意得a =2,设PF 1 ,PF 2 的长分别为m ,n ,m +n =2a =4则cos ∠F 1PF 2=m 2+n 2-4c 22mn =m +n 2-4c 2-2mn 2mn =2b 2mn-1≥2b 2m +n 22-1=2b 2a2-1,当且仅当m=n 时取等号,从而2b 2a 2-1=12,得b 2a 2=34,∴b 2=3,则椭圆的标准方程为x 24+y 23=1;(2)由(1)得F 1-1,0 ,F 21,0 ,设M x 1,y 1 ,N x 2,y 2 ,设直线PM 的方程为x =x 0+1y 0y -1,直线PN 的方程为x =x 0-1y 0y +1,由x =x 0+1y 0y -1x 24+y 23=1,得3x 0+1 2y 02+4 y 2-6x 0+1 y 0y -9=0,则y 0y 1=-93x 0+1 2y 02+4=-9y 023x 0+1 2+4y 02=-9y 023x 02+4y 02+6x 0+3=-3y 022x 0+5,∴y 1=-3y 02x 0+5,同理可得y 2=-3y 05-2x 0,所以S △OPF 1S △OMF 1+S △OPN S △OF 2N =12OF 1 y 0 12OF 1 y 1 +12OF 2y 0 +y 2 12OF 2 y 2 =-y 0y 1+y 0y 2+1=-y 0-3y 02x 0+5+y 0-3y 05-2x 0+1=133.所以S △OPF 1S △OMF 1+S △OPN S △OF 2N 为定值133.2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-2k k 2+22+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk ,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1 得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y2x 2+1(x +1)y =y 1x 1-1(x -1) 可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k 2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-k t,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.【解析】(1)∵椭圆离心率e =c a =22,∴c 2=12a 2,则b 2=a 2-c 2=12a 2,当C 为椭圆右焦点时,PC =b 2a =12a ;∵S △PAC =2S △POC =2×12c ⋅12a =12ac =24a 2=2,解得:a 2=4,∴b 2=2,∴椭圆E 的方程为:x 24+y 22=1.(2)由题意可设直线AP :y =kx k >0 ,P x 0,kx 0 ,B x 1,y 1 ,则A -x 0,-kx 0 ,C x 0,0 ,∴k AC =kx 0x 0+x0=k2,∴直线AC :y =k2x -x 0 ;由y =k 2x -x 0x24+y22=1得:k 2+2 x 2-2k 2x 0x +k 2x 20-8=0,∴-x 0+x 1=2k 2x 0k 2+2,则x 1=2k 2x 0k 2+2+x 0,∴y 1=k 2x 1-x 0 =k 22k 2x 0k 2+2+x 0-x 0=k 3x 0k 2+2,∴B 2k 2x 0k 2+2+x 0,k 3x 0k 2+2;∴PB =2k 2x 0k 2+2,-2kx 0k 2+2,又PA =-2x 0,-2kx 0 ,∴PA ⋅PB =-2x 0⋅2k 2x 0k 2+2+-2kx 0 ⋅-2kx 0k 2+2=0,则PA ⊥PB ,∴∠APB 为定值90°.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2 +2m =m ,所以x 0=-m 3y 0=m 2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知PA ,PB 的斜率分别为k PA =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k PA +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k PA +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k PA +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△PAB 的内切圆的圆心在x =2这条直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,因离心率为32,则c a =32,由椭圆性质知,椭圆短轴的端点到直线F 1F 2的距离最大,则有S △F 1PF 2max =12⋅2c ⋅b =bc ,于是得bc =3,又a 2=b 2+c 2,联立解得a =2,b =1,c =3,所以椭圆C 的方程为:x 24+y 2=1.(2)由(1)知,点F 23,0 ,当直线斜率存在时,不妨设l :y =k (x -3),A x 1,y 1 ,B x 2,y 2 ,由y =k (x -3)x 2+4y 2=4消去y 并整理得,(1+4k 2)x 2-83k 2x +12k 2-4=0,x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k2,假定在x 轴上存在定点Q 满足条件,设点Q (t ,0),则QA ⋅QB=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+k 2(x 1-3)(x 2-3)=(1+k 2)x 1x 2-(3k 2+t )(x 1+x 2)+t 2+3k 2=(1+k 2)⋅12k 2-41+4k 2-(3k 2+t )⋅83k 21+4k 2+t 2+3k2=(4t 2-83t +11)k 2+t 2-41+4k 2,当t 2-4=4t 2-83t +114,即t =938时,QA ⋅QB =t 2-4=-1364,当直线l 斜率不存在时,直线l :x =-3与椭圆C 交于点A ,B ,由对称性不妨令A 3,12 ,B 3,-12,当点Q 坐标为938,0时,QA =-38,12 ,QB =-38,-12 ,QA ⋅QB =-38,12⋅-38,-12 =-1364,所以存在定点Q 938,0,使得QA ⋅QB 为定值-1364.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y 1 ,Q x 2,y 2 代入圆锥曲线方程作差,得到关于y 1-y 2x 1-x 2,x 1+x 2,y 1+y 2的关系式,再结合题中条件求解.6中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】(1)设双曲线E 的标准方程为x 2a 2-y 2b 2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±bax ,由题意可得4b a 1+b a2=23,解得ba=3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2,由题意可得x 21-y 213=1x 22-y 223=1,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 23,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1 ,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.【解析】(1)由题意可得b =3e =c a =12a 2=b 2+c 2,解得a =2b =3c =1,故椭圆C 的方程x 24+y 23=1.(2)λ+μ为定值-83,理由如下:由(1)可得F 1,0 ,由题意可知直线l 的斜率存在,设直线l :y =k x -1 ,P x 1,y 1 ,Q x 2,y 2 ,则M 0,-k ,联立方程y =k x -1x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2x +4k 2-12=0,则Δ=-8k 2 2-44k 2+3 4k 2-12 =144k 2+1 >0,x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,MP =x 1,y 1+k ,PF =1-x 1,-y 1 ,MQ =x 2,y 2+k ,QF=1-x 2,-y 2 ,∵MP =λPF ,MQ =μQF ,则x 1=λ1-x 1 x 2=μ1-x 2 ,可得λ=x11-x 1μ=x 21-x2,λ+μ=x 11-x 1+x 21-x 2=x 1+x 2 -2x 1x 21-x 1+x 2 +x 1x 2=8k 24k 2+3-24k 2-12 4k 2+31-8k 24k 2+3+4k 2-124k 2+3=-83(定值).2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.【解析】(1)由题意可知2a =4,a =2,则椭圆方程C :x 2a 2+y 2b 2=1a >b >0 即x 24+y 2b 2=1,当直线PQ 的斜率为22时,PQ =23,故设P x 0,22x 0 ,∴x 20+22x 0 2=3,解得x 20=2,将P x 0,22x 0 代入x 24+y 2b 2=1得x 024+x 022b 2=1,即24+22b2=1,故b 2=2,所以椭圆的标准方程为x 24+y 22=1;(2)设P (x 0,y 0),x 0∈[-2,2],则Q (-x 0,-y 0),则x 204+y 202=1,∴x 20+2y 20=4,由椭圆方程x 24+y 22=1可得A (-2,0),∴直线PA 方程为︰y =y 0x 0+2(x +2),令x =0可得M 0,2y 0x 0+2,直线QA 方程为:y =y 0x 0-2(x +2),令x =0得N 0,2y 0x 0-2,假设存在定点T ,使得∠MTN =90°,则定点T 必在以MN 为直径的圆上,以MN 为直径的圆为x 2+y -2x 0y 0x 02-42=16y 02x 20-42,即x 2+y 2-4x 0y 0x 20-4y +4y 20x 20-4=0,∵x 20+2y 20=4,即x 20-4=-2y 20,∴x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2,∴以MN 为直径的圆过定点(±2,0),即存在定点T (±2,0),使得∠MTN =90°.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P 4,0 且不垂直于x 轴的直线l 与椭圆相交于A ,B 两点.(1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点为点E ,证明:直线AE 与x 轴交于定点.【解析】(1)由双曲线y 22-x 2=1得焦点0,±3 ,得b =3,由题意可得b =3a 2=b 2+c 2e =c a =12 ,解得a =2,c =1,故椭圆C 的方程为;x 24+y 23=1.(2)设直线l :y =k x -4 ,点A x 1,y 1 ,B x 2,y 2 ,则点E x 2,-y 2 .由y =k x -4x 24+y 23=1,得4k 2+3 x 2-32k 2x +64k 2-12=0,Δ=32k 2 2-44k 2+3 64k 2-12 >0,解得-12<k <12,从而x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,直线AE 的方程为y -y 1=y 1+y 2x 1-x 2x -x 1 ,令y =0得x =x 1y 2+x 2y 1y 1+y 2,又∵y 1=k x 1-4 ,y 2=k x 2-4 ,则x =kx 1x 2-4 +kx 2x 1-4 k x 1-4 +k x 2-4 =2x 1x 2-4x 1+x 2x 1+x 2-8,即x =2⋅64k 2-124k 2+3-4⋅32k 24k 2+332k 24k 2+3-8=1,故直线AE 与x 轴交于定点1,0 .4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b 2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b 2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB =0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2+m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P 到定直线x =4的距离,是它与定点F 1,0 的距离的两倍.(1)求点P 的轨迹方程C ;(2)过F 点作两条互相垂直的直线l 1,l 2(直线l 1不与x 轴垂直).其中,直线l 1交曲线C 于A ,B 两点,直线l 2交曲线C 于E ,N 两点,直线l 2与直线x =m m >2 交于点M ,若直线MB ,MF ,MA 的斜率k MB ,k MF ,k MA 构成等差数列,求m 的值.【解析】(1)设点P x ,y ,由题,有PFx -4 =12,即x -1 2+y 2x -4=12,解得3x 2+4y 2=12,所以所求P 点轨迹方程为x 24+y 23=1(2)由题,直线l 1的斜率存在且不为0,设直线l 1的方程为y =k x -1 ,与曲线C 联立方程组得y =k x -1x 24+y 23=1,解得4k 2+3 x 2-8k 2x +4k 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3依题意有直线l 2的斜率为-1k ,则直线l 2的方程为y =-1k x -1 ,令x =m ,则有M 点的坐标为m ,-m -1k,由题,k MF =m -1k 1-m =-1k ,k MA +k MB =y 1+m -1kx 1-m+y 2+m -1kx 2-m=y 1x 1-m +y 2x 2-m +1k m -1x 1-m+m -1x 2-m=k x 1-1 x 1-m +k x 2-1 x 2-m +1k m -1x 1-m+m -1x 2-m=k ×2x 1x 2-1+m x 1+x 2 +2m x 1x 2-x 1+x 2 m +m 2+1k ×m -1 x 1+x 2-2m x 1x 2-x 1+x 2 m +m 2=k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2,因为2k MF =k MA +k MB ,所以k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m 2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2=-2k解得m -4 k 2+1 =0,则必有m -4=0,所以m =4.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =12,点M 到l 的距离为d ,若点M 满足|MF |=2d ,记M 的轨迹为C .(1)求C 的方程;(2)过点F (2,0)且斜率不为0的直线与C 交于P ,Q 两点,设A (-1,0),证明:以P ,Q 为直径的圆经过点A .【解析】(1)设点M x ,y ,则d =x -12,MF =(x -2)2+y 2,由MF =2d ,得(x -2)2+y 2=2x -12,两边平方整理得3x 2-y 2=3,则所求曲线C 的方程为x 2-y 23=1.(2)设直线m 的方程为x =ty +2,P x 1,y 1 ,Q x 2,y 2 ,联立方程x =ty +2,3x 2-y 2=3,消去x 并整理得3t 2-1 y 2+12ty +9=0,,因为直线m 与C 交于两点,故t ≠±33,此时Δ=(12t )2-43t 2-1 ⋅9=36t 2+1 >0,所以y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,而x 1+x 2=t y 1+y 2 +4,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4.又AP =x 1+1,y 1 ,AQ=x 2+1,y 2 ,所以AP ⋅AQ=x 1+1 x 2+1 +y 1y 2=y 1y 2+x 1+x 2+x 1x 2+1=t 2+1 y 1y 2+3t y 1+y 2 +9=9t 2+93t 2-1-36t 23t 2-1+9=9-3t 2+1 3t 2-1+9=0.所以AP ⊥AQ ,即以P ,Q 为直径的圆经过点A .7(2023届河南省安阳市高三上学期10月月考)已知椭圆M 1:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,F 1F 2 =2,面积为487的正方形ABCD 的顶点都在M 1上.(1)求M 1的方程;(2)已知P 为椭圆M 2:x 22a 2+y 22b 2=1上一点,过点P 作M 1的两条切线l 1和l 2,若l 1,l 2的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)根据对称性,不妨设正方形的一个顶点为A x ,x ,由x 2a 2+x 2b 2=1,得x 2=a 2b 2a 2+b 2,所以2a 2b 2a 2+b 2×2a 2b 2a 2+b2=487,整理得12a 2+b 2 =7a 2b 2.①又a 2-b 2=F 1F 222=1,②由①②解得a 2=4,b 2=3,故所求椭圆方程为x 24+y 23=1.(2)由已知及(1)可得M 2:x 28+y 26=1,设点P x 0,y 0 ,则y 20=61-x 208.设过点P 与M 1相切的直线l 的方程为y -y 0=k x -x 0 ,与x 24+y 23=1联立消去y 整理可得4k 2+3 x 2+8k y 0-kx 0 x +4y 0-kx 0 2-3 =0,令Δ=8k y 0-kx 0 2-4×4k 2+3 ×4y 0-kx 0 2-3 =0,整理可得x 20-4 k 2-2kx 0y 0+y 20-3=0,③根据题意k 1和k 2为方程③的两个不等实根,所以k 1k 2=y 20-3x 20-4=61-x 28 -3x 20-4=-34x 20-4 x 20-4=-34,即k 1k 2为定值-34.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1(-1,0)且与x 轴不重合的直线与椭圆C 交于A ,B 两点,△ABF 2的周长为8.(1)若△ABF 2的面积为1227,求直线AB 的方程;(2)过A ,B 两点分别作直线x =-4的垂线,垂足分别是E ,F ,证明:直线EB 与AF 交于定点.【解析】(1)因△ABF 2的周长为8,由椭圆定义得4a =8,即a =2,而半焦距c =1,又a 2=b 2+c 2,则b 2=3,椭圆C 的方程为x 24+y 23=1,依题意,设直线AB 的方程为x =my -1,由x =my -13x 2+4y 2=12消去x 并整理得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=6m 3m 2+42+363m 2+4=12m 2+13m 2+4,因此S △F 2AB =12F 1F 2 ⋅y 1-y 2 =12×2×12m 2+13m 2+4=1227,解得m =±1,所以直线AB 的方程为x -y +1=0或x +y +1=0.(2)由(1)知A x 1,y 1 ,B x 2,y 2 ,则E -4,y 1 ,F -4,y 2 ,设直线EB 与AF 交点为M (x ,y ),则FA =(x 1+4,y 1-y 2),FM =(x +4,y -y 2),EB =(x 2+4,y 2-y 1),EM =(x +4,y -y 1),而FA ⎳FM ,EB ⎳EM ,则(x +4)(y 1-y 2)=(y -y 2)(x 1+4),(x +4)(y 2-y 1)=(y -y 1)(x 2+4),两式相加得:y (x 1+x 2+8)-y 2(my 1+3)-y 1(my 2+3)=0,而x 1+x 2+8>0,则y (x 1+x 2+8)=2my 1y 2+3(y 1+y 2)=2m ⋅-93m 2+4+3⋅6m3m 2+4=0,因此y =0,两式相减得:2(x +4)(y 1-y 2)=-y 2(x 1+4)+y 1(x 2+4)=-y 2(my 1+3)+y 1(my 2+3)=3(y 1-y 2),而y 1-y 2≠0,则x =-52,即M -52,0 ,所以直线EB 与AF 交于定点M -52,0 .9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.【解析】(1)由题意得2c =4,得c =2,所以a 2+b 2=4,因为点P 2,33在双曲线上,所以4a 2-13b 2=1,解得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1,(2)F (-2,0),设直线l 1方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2),由y =k 1(x +2)x 23-y 2=1,得(1-3k 12)x 2-12k 12x -12k 12-3=0则x 1+x 2=12k 121-3k 12,x 1x 2=-12k 12-31-3k 12,所以x 1+x 22=6k 121-3k 12,所以AB 的中点M 6k 121-3k 12,2k 11-3k 12,因为k 1⋅k 2=-1,所以用-1k 1代换k 1,得N 6k 12-3,-2k 1k 12-3,当6k 121-3k 12=61-3k 12,即k 1=±1时,直线MN 的方程为x =-3,过点E (-3,0),当k 1≠±1时,k MN =2k 11-3k 12--2k 1k 12-36k121-3k 12-6k 12-3=-2k 13(k 12-1),直线MN 的方程为y -2k 11-3k 12=-2k 13(k 12-1)x -6k 121-3k 12,令y =0,得x =3(k 12-1)1-3k 12+6k 121-3k 12=-3,所以直线MN 也过定点E (-3,0),所以S △OMN S △FMN =12y N-y M OE 12y M-y N FE =OE FE =310(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.【解析】(1)将点A 0,-1 代入x 23+y 2b 2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1又c 2=a 2-b 2=3-1=2,离心率e =c 2a 2=23=63(2)联立y =k x -1x 23+y 2=1,整理得(1+3k 2)x 2-6k 2x +3k 2-3=0设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2)由韦达定理得:x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2直线AE 的方程为y +1=y 1+1x 1x ,令x =3,得y =3y 1+3x 1-1,即M 3,3y 1+3x 1-1直线AF 的方程为y +1=y 2+1x 2x ,令x =3,得y =3y 2+3x 2-1,即N 3,3y 2+3x 2-1MN =3y 2+3x 2-1-3y 1+3x 1-1=3×x 1y 2-x 2y 1+x 1-x 2x 1x 2 =3×k -1 x 1-x2x 1x 2=3×k -1x 1+x 22-4x 1x 2x 1x 22=3×k -1 ×232k 2+1k 2-1 =23×2k 2+1k +1 所以△AMN 的面积S =12×MN ×3=32×MN =33×2k 2+1k +1 =33即2k 2+1k +1 =1⇒2k 2+1=k +1 ,解得k =0或k =2所以k 的值为0或211(2022届天津市第二中学高三上学期12月月考)已知椭圆x 2a 2+y 2b 2=1a >b >0 的长轴长是4,且过点B 0,1 .(1)求椭圆的标准方程;(2)直线l :y =k x +2 交椭圆于P ,Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【解析】(1)由题意,得2a =4,b =1,所以椭圆的标准方程为x 24+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),联立y =k (x +2)x 24+y 2=1,得x 2+4k 2(x +2)2-4=0,即(1+4k 2)x 2+16k 2x +16k 2-4=0,则x 1+x 2=-16k 21+4k 2,因为直线y =k x +2 恒过椭圆的左顶点(-2,0),所以x 1=-2,y 1=0,则x 2=-16k 21+4k 2+2=2-8k 21+4k 2,y 2=k (x 2+2)=4k1+4k 2,因为点B 始终在以PQ 为直径的圆内,所以π2<∠PBQ ≤π,即BP ·BQ <0,又BP =-2,-1 ,BQ=(x 2,y 2-1),则BP ·BQ=-2x 2-y 2+1<0,即4-16k 21+4k 2+4k 1+4k 2-1>0,即20k 2-4k -3<0,解得-310<k<12,所以实数k的取值范围为-310<k<12.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.【解析】(1)设椭圆C1的半焦距为c.依题意,可得a=p2,则C2:y2=4ax,代入x=c,得y2=4ac,即y=±2ac,所以4ac=42,则有ac=2ca=12a2=b2+c2,所以a=2,b=3,所以椭圆C1的方程为x24+y23=1,抛物线C2的方程为y2=8x.(2)依题意,当直线l的斜率不为0时,设其方程为x=ty-4,由x=ty-43x2+4y2=12,得(3t2+4)y2-24ty+36=0.设M(x1,y1),N(x2,y2),则E(x1,-y1).由Δ>0,得t<-2或t>2,且y1+y2=24t3t2+4,y1y2=363t2+4.根据椭圆的对称性可知,若直线EN过定点,此定点必在x轴上,设此定点为Q(m,0).因为k NQ=k EQ,所以y2x2-m=-y1x1-m,(x1-m)y2+(x2-m)y1=0,即(ty1-4-m)y2+(ty2-4-m)y1=0,2ty1y2-(m+4)(y1+y2)=0,即2t·363t2+4-(m+4)·24t3t2+4=0,得(3-m-4)t=(-m-1)t=0,由t是大于2或小于-2的任意实数知m=-1,所以直线EN过定点Q(-1,0).当直线l的斜率为0时,直线EN的方程为y=0,也经过点Q(-1,0),所以当直线l绕点A旋转时,直线EN恒过一定点Q(-1,0).13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.。

解圆锥曲线大题的精髓——设而不求

解圆锥曲线大题的精髓——设而不求

解圆锥曲线大题的精髓——设而不求(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除解圆锥曲线大题的精髓——设而不求侯胜哲(华南师范大学数学科学学学院,广州)摘要:主要针对高中成绩在中等的学生,让他们对解圆锥曲线大题有一定方向性的认识,理清解题思路.对成绩较好的学生有解题思路的补充参考价值,对老师有教学参考价值,希望老师先将复杂问题简化,先解决主要矛盾,使题有一定的规律感,最后再使之丰满,提升.这对学生的理解有好处.关键词:圆锥曲线大题韦达定理设而不求Abstract This paper helps the high school students understanding how to solve conic curve questions who are in the middle. And it is supplementary reference value for good students. Teachers are benefited from this paper in teaching .Keywords:conicquestionVieta theoremisnot seeking很多高中学生觉得求解圆锥曲线大题很困难,这让我们陷入思考:求解圆锥曲线大题难在哪它和初中的几何题有什么不同呢很多同学可能和我有同感:对圆锥曲线题的思路大体都知道,可就是解不出.现阶段的解题方法与初中几何的解题不同,需要优化思路,可试着用“设而不求”的思想.如果真正理解其含义,就会自信的说:“不建立坐标系,我也能把答案写出了”.一、回顾韦达定理“设而不求”的方法的依据是韦达定理,很多老师对韦达定理的理解只是形式上的理解.没有让学生明确韦达定理最主要也是最重要的用途是什么,遇到何种情况适用.根据观察,如果已知a ,b ,c ,我们通过应用韦达定理,可以不用知道21,x x 的具体值,就能求出21x x +,21x x ⋅的值. 二、深入探索(结合圆锥曲线)设直线m kx y l +=:,圆锥曲线)0,0(1:2222>>=+b a by a x C ,直线l 与曲线C 相交于两交点1122(,),(,)A x y B x y .联立方程:⎪⎩⎪⎨⎧+==+.12222m kx y b y a x ,可求出交点横坐标所满足的一元二次方程: 根据题设条件,经过计算,得到此方程的判别式为:2222212b k a mk a x x +-=+∴,.)(22222221bk a b m a x x +-=⋅经过观察思考,发现有两个字母系统:系统①:交点坐标系统:21,x x (注:知21,x x 等同知21,y y ). 系统②:方程系数系统:m k b a ,,,.假若我们知道①和②中任意四个量,就能根据韦达定理解出其它两个量.但实际解题中,题设往往没给出那么多量,所给条件比较苛刻.一般只给出②中的部分未知量,不给出①中的量.那怎么办?我们便尽可能简化,即用韦达定理表示出21x x +和21x x ⋅ ,代入等量关系式中,以解决问题.分析至此,我们试想:什么样的等量关系式中会出现表达式21x x +,21x x ⋅我们可以联系到弦长公式2122124)(1B A x x x x k ⋅-++=,中点公式(对称问题))2,2(2121y y x x ++,重心公式)3,3(321321y y y x x x ++++,以及斜率2121x x y y k --=,......结合高考题目,大部分圆锥曲线题都不会让你直接求解21,x x ,而是替换21x x +和21x x ⋅,化简等量关系式,然后解出所求.体会到这一点时,相信学生找到新的解题方向,明白出题老师的一贯手法,解题压力轻松了许多. 三、实战训练(涉及:抛物线,向量,求轨迹问题)例1[1]:已知抛物线x y C 4:2=,O 为坐标原点,动直线)1(:+=x k y l 与C 交于A 、B 两个不同的点.(1)求k 的取值范围;(2)求满足OM +=的点M 的轨迹方程. 解:(1)易得)1,0()0,1(⋃-∈k .(2)要求点M 的轨迹方程,就得求点),(y x M 中坐标x 与y 的关系.设),(A 11y x 和),(22y x B ,根据OB OA OM +=,有要想得到x , y 表达式,得先处理21x x +和21y y +.一见到这种形式,就让我们想到韦达定理.联立方程求解: 消去k 可得842+=x y .又由2224k k x -=,且)1,0()0,1(⋃-∈k ,经计算,得出2>x .继而,点M 的轨迹方程为)2(842>+=x x y .从上题解题过程看出:我们并没有解出21,x x ,而是将21x x +21y y +整体解出,整体解题思路不变.是不是其它题也可这样解题呢?(涉及:椭圆,弦长,两点间距离公式,斜率)例2[2]:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.解: (1)易得椭圆的标准方程为13422=+y x .(2)要想证明直线l 过定点,求出定点,则要得到l 的方程.而现在m kx y l +=:中有两个参变量,我们只要一个参数,所以要找到k 与m 的关系,消去一个参数.方案一:利用已知条件,列等量关系:圆心到定点的距离弦长=2. 弦长:2122124)(1B A x x x x k ⋅-++= . (3-1) 圆心:)2,2(2121y y x x ++,椭圆右顶点)0,2(. (3-2)结合(3-1)、(3-2),利用两点间距离公式得到:221221212212)2()22(24)(1yy x x x x x x k +--+=⋅-++.我们发现:在上式中又见到21x x +,21x x ⋅了!同样,我们又可应用韦达定理加以代换,做到简化运算. (注:)()(2121m kx m kx y y +⋅+=⋅)但就算是理论上此种方法可行,我们依然觉得计算量大。

圆锥曲线问题中的“设而不求”

圆锥曲线问题中的“设而不求”
设 而 不 求 是 解 析 几 何 中 一 种 常 用 的 重 要 方 法 和 技 巧 , 能 使 问 题 简 化 。 但 如 何 使 用 这 种 方 法 , 使 用 中 它 在 应 注 意 哪 些 问 题 , 经 常 困 扰 着 同 学 们 。在 此 笔 者 愿 跟 却 大家谈 谈 对上 述 问题 的看法 与认 识 。
2U l 6
形 , A( 4) 若 AABC的 重 心 恰 为 椭 圆 的 右 焦 点 , 且 0, , 求 B 边 所 在直 线 的方程 。 C 解 : 求 得 椭 圆 的 右 焦 点 为 F ( 0) 令 B( lY) c 易 2, , x,。,

一 一
点 评 : 弦 中点有 关 的问题 , 用 “ 分法 ” 而不 与 常 差 设 求 , 弦所 在 的直 线 斜 率 、 的 中点 坐标 联 系起 来 , 将 弦 相 互 转 化 。 同 时 还 应 充 分 挖 掘 题 目的 隐 含 条 件 , 找 量 与 寻 量 之 间的关 系灵 活转 化 , 往 能事半 功倍 。 往
. ,

. .
kc B=丝 = 。
X2 iX ・ )

由点 斜 式 , c边 所 在 直 线 的 方 程 为 y 2 B +=
即6一 y2 = 。 x 5 一 8 0
x 3) 一 ,

.. 2
例 1 已知 aA , BC是 椭 圆 — + = 的 一 个 内 接 三 角 1
有 品读 、 流环 节 , 有 引导 学 生在 情感 和文 本 之 间走 交 没
他 们 朗 读 中 的 优 点 , 怕 是 一 个 词 , 句 话 , 给 予 肯 哪 一 都 定 。老 师 的评价 不 是 简单 的 甑别 , 应 侧重 于 小 结 、 更 引 导 、 升 。这 样 既 评 价 了 朗 读 , 指 导 了 朗 读 ; 训 练 了 提 又 既

2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)

2023届高三数学一轮复习专题  直线与圆锥曲线的综合运用  讲义 (解析版)

直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。

高三二轮复习:圆锥曲线(教师)

高三二轮复习:圆锥曲线(教师)

高三数学二轮复习——圆锥曲线的综合一、直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.二、有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.三、圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2.②A (m ,n )为一定点,则|PA |+|PF |有最小值. 小题一览例1、(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 答案 D 解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18. 例2、 (2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .-3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33).例3、 (2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线PA 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线PA 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38. 同理,当直线PA 2的斜率为-1时,直线PA 2方程为y =-(x -2), 代入椭圆方程, 消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.例4、 (2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△FAB的周长最大时,△FAB 的面积是________.答案 3解析 直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.例5、(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______.答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0.∴x =13或x =3. 又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.综合题演练:题型一 圆锥曲线中的范围、最值问题例6、已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎪⎨⎪⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A +x B=62k1-3k2<0,x A x B=-91-3k 2>0,解得33<k <1.所以当33<k <1时,直线l 与双曲线的左支有两个交点.(3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-22.∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练(2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5 =2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例7、(2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q , 证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 2-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立, 所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 2,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎪⎫0,-74.故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, 所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 变式训练 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2.由题意得⎩⎪⎨⎪⎧ca =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例8、如图,椭圆的中心为原点O ,离心率e =22,且a 2c=22.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上. 解 (1)由e =c a=22,a 2c=22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4, 故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2252+y 2102=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =252-102=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0), 所以DQ →=(x -x 0,y ),DP →=(0,y 0), 又DQ →=23DP →,故⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,因为P 在圆O 上,故有x 20+y 20=9, 所以x 2+⎝ ⎛⎭⎪⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎪⎨⎪⎧ x 1+x 22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎪⎨⎪⎧x 219+y 214=1,x 229+y224=1,两式相减,得x 1-x 2x 1+x 29+y 1-y 2y 1+y 24=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.例9、抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分] 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2, y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·-2--2-2|22+-12=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4·-4=410. 于是,△ABP 面积的最大值为12×410×455=82.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值. 课后练习:1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于( )A .1B .2C .3D .4 答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM . ∴M 为焦点,即p 2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ) A .-2B .-8116C .1D .0 答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y 2b 2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为 ( ) A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|PA |=m |PB |,则m 的最大值为( ) A .3B .2C.3D.2答案 C解析 据已知设P (x ,y ), 则有m =|PA ||PB |=x +12+y 2x -12+y 2=x +12+2x x -12+2x=x 2+4x +1x 2+1=1+4xx 2+1=1+4x +1x,据基本不等式有m = 1+4x +1x≤ 1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b 2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23. 7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2, 所以|AB |·|CD |=x 1x 2=y 214·y 224=y 1y 2216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,22B.⎝ ⎛⎦⎥⎥⎤0,33C.⎣⎢⎢⎡⎭⎪⎪⎫22,1D.⎣⎢⎢⎡⎭⎪⎪⎫33,1解析 设P ⎝ ⎛⎭⎪⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,当kQF 2存在时,则kF 1P =cya 2+c 2,kQF 2=cyb 2-2c 2,由kF 1P ·kQF 2=-1,得y 2=a 2+c 2·2c 2-b 2c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c-c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎢⎢⎡⎭⎪⎪⎫33,1.9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝ ⎛⎭⎪⎫-95,15解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x +27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝ ⎛⎭⎪⎫-95,15.10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎪⎫-1,14解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝ ⎛⎭⎪⎫-1,14即为所求点P 的坐标,此时|PF |+|PA |最小.11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥l ′, 抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交 A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32 解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值. 解 (1)设F (-c,0),由c a=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c , 代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b3, 于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =x -02+y -22=x 2+y -22=3b 2-3y 2+y -22=-2y +12+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2≤⎝ ⎛⎭⎪⎫1m 2+n2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝ ⎛⎭⎪⎪⎫62,22,⎝ ⎛⎭⎪⎪⎫62,-22,⎝ ⎛⎭⎪⎪⎫-62,22或⎝ ⎛⎭⎪⎪⎫-62,-22,此时△OAB 的面积为12.。

数学(文)一轮教学案:第十章第4讲 直线与圆锥曲线的位置关系 Word版含解析

数学(文)一轮教学案:第十章第4讲 直线与圆锥曲线的位置关系 Word版含解析

第4讲 直线与圆锥曲线的位置关系考纲展示 命题探究1 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元二次方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y 得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切或相交; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2 直线与圆锥曲线的相交弦的弦长(1)将直线方程与圆锥曲线方程联立,消去y (或x )后得到关于x (或y )的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0).(2)当Δ>0时,直线与圆锥曲线有两个交点A (x 1,y 1),B (x 2,y 2),由根与系数的关系求出x 1+x 2=-b a ,x 1x 2=ca ,则弦长为|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2(k 为直线的斜率且k ≠0),当A ,B 两点坐标易求时也可直接用|AB |=(x 1-x 2)2+(y 1-y 2)2求出.3 圆锥曲线以P (x 0,y 0)(y 0≠0)为中点的弦所在直线的斜率椭圆:x 2a 2+y 2b 2=1(a >0,b >0) k =b 2x 0a 2y 0双曲线:x 2a 2-y 2b 2=1(a >0,b >0)k =b 2x 0a 2y 0抛物线:y 2=2px (p >0)k =p y 0其中k =y 1-y 2x 1-x 2(x 1≠x 2),(x 1,y 1),(x 2,y 2)为弦的端点坐标.注意点 直线与圆锥曲线的相切与只有一个公共点的关系 直线与椭圆(圆)只有一个公共点是直线与椭圆(圆)相切的充要条件,而直线与双曲线(抛物线)只有一个公共点,只是直线与双曲线(抛物线)相切的必要不充分条件.1.思维辨析(1)直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点.( )(2)直线l 与双曲线C 相切的充要条件是:直线l 与双曲线C 只有一个公共点.( )(3)直线l 与抛物线C 相切的充要条件是:直线l 与抛物线C 只有一个公共点.( )(4)如果直线x =ty +a 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |=1+t 2|y 1-y 2|.( )(5)若抛物线C 上存在关于直线l 对称的两点,则需满足直线l 与抛物线C 的方程联立消元后得到的一元二次方程的判别式Δ>0.( )答案 (1)√ (2)× (3)× (4)√ (5)×2.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab 的值为( )A.32B.233C.932D.2327答案 A解析 联立椭圆方程与直线方程,得ax 2+b (1-x )2=1,即(a +b )x 2-2bx +b -1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2ba +b ,y1+y 2=1-x 1+1-x 2=2-2b a +b =2aa +b ,AB 中点坐标为⎝ ⎛⎭⎪⎫b a +b ,a a +b ,AB 中点与原点连线的斜率k =aa +b b a +b=a b =32.故选A.3.直线l 经过抛物线y 2=4x 的焦点F ,与抛物线相交于A ,B 两点,若|AB |=8,则直线l 的方程为________.答案 x -y -1=0或x +y -1=0解析 设直线l 的斜率为k ,则方程为y =k (x -1),与y 2=4x 联立得:k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2, |AB |=x 1+x 2+p =2k 2+4k 2+2=8得k 2=1,∴k =±1,∴l 的方程为:x -y -1=0或x +y -1=0.[考法综述] 直线与圆锥曲线位置关系的判断、相交弦的弦长计算、中点弦问题等是考查热点,同时与函数、数列、平面向量等知识综合考查,难度较大.命题法1 直线与圆锥曲线的位置关系典例1 (1)若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-153,153 B.⎝ ⎛⎭⎪⎫0,153 C.⎝⎛⎭⎪⎫-153,0 D.⎝⎛⎭⎪⎫-153,-1 (2)若直线l :y =(a +1)x -1与曲线C :y 2=ax 恰好有一个公共点,则实数a 的取值为( )A.⎩⎨⎧⎭⎬⎫-1,-45,0 B .{-1,0}C.⎩⎨⎧⎭⎬⎫-1,-45 D.⎩⎨⎧⎭⎬⎫-45,0 [解析] (1)由⎩⎪⎨⎪⎧y =kx +2x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0Δ=16k 2-4(1-k 2)×(-10)>0x 1+x 2=4k 1-k2>0x 1x 2=-101-k 2>0解得-153<k <-1.(2)因为直线l 与曲线C 恰好有一个公共点,所以方程组⎩⎪⎨⎪⎧y =(a +1)x -1y 2=ax有唯一一组实数解,消去y ,得[(a +1)x -1]2=ax ,整理得(a +1)2x 2-(3a +2)x +1=0 ①(ⅰ)当a +1=0,即a =-1时,方程①是关于x 的一元一次方程,解得x =-1,这时,原方程组有唯一解⎩⎪⎨⎪⎧x =-1y =-1.(ⅱ)当a +1≠0,即a ≠-1时,方程①是关于x 的一元二次方程,判别式Δ=(3a +2)2-4(a +1)2=a (5a +4),令Δ=0,解得a =0或a =-45.当a =0时,原方程组有唯一解⎩⎪⎨⎪⎧x =1y =0;当a =-45时,原方程组有唯一解⎩⎪⎨⎪⎧x =-5y =-2.综上,实数a 的取值集合是⎩⎨⎧⎭⎬⎫-1,-45,0.故选A.[答案] (1)D (2)A【解题法】 直线与圆锥曲线位置关系的判断(1)直线与圆锥曲线相交或相离时,可直接联立直线与曲线的方程,结合消元后的一元二次方程求解.(2)直线与圆锥曲线相切时,尤其是对于抛物线与双曲线,要结合图形,数形结合求解.(3)当条件中含有参数时,要注意对参数进行讨论,尤其是在双曲线与抛物线中,必须要保证联立后的方程为二次方程才能由“Δ”进行判定.命题法2 直线与圆锥曲线的弦长问题典例2 已知椭圆E 的中心在坐标原点、对称轴为坐标轴,且抛物线x 2=-42y 的焦点是它的一个焦点,又点A (1,2)在该椭圆上.(1)求椭圆E 的方程;(2)若斜率为2的直线l 与椭圆E 交于不同的两点B 、C ,当△ABC 的面积最大时,求直线l 的方程.[解] (1)由已知得抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1(a >2). 将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去), 故所求椭圆方程为y 24+x 22=1.(2)设直线l 的方程为y =2x +m ,B 、C 的坐标分别为(x 1,y 1),(x 2,y 2),由⎩⎨⎧y =2x +m ,y 24+x 22=1,得4x 2+22mx +m 2-4=0,则Δ=8m 2-16(m 2-4)=8(8-m 2)>0, ∴0≤m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44, 得|BC |=3|x 1-x 2|=3·16-2m 22. 又点A 到BC 的距离为d =|m |3, 故S △ABC =12|BC |·d =m 2(16-2m 2)4≤142·2m 2+(16-2m 2)2=2, 当且仅当2m 2=16-2m 2,即m =±2时取等号. 当m =±2时,满足0≤m 2<8. 故直线l 的方程为y =2x ±2.【解题法】 直线与圆锥曲线相交时弦长的求法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(客观题常用)(2)点距法:将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(不常用)(3)弦长公式法:它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(常用方法)命题法3 中点弦问题典例3 平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.[解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎨⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎪⎨⎪⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎨⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±2(9-n 2)3. 因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=43 9-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863. 【解题法】 弦中点问题的解题策略(1)涉及直线与圆锥曲线相交弦的中点和弦所在直线的斜率问题时,常用“点差法”“设而不求法”,并借助一元二次方程根的判别式、根与系数的关系、中点坐标公式及参数法求解.但在求得直线方程后,一定要代入原方程进行检验.(2)点差法求解弦中点问题的基本步骤为: ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程.③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解. 1.过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53B.75 C.97 D .2答案 A解析 设A (x 1,y 1)、B (x 2,y 2),分别过点A 、B 作直线x =-2的垂线,垂足分别为点D 、E .∵|P A |=12|AB |,∴⎩⎪⎨⎪⎧ 3(x 1+2)=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938 C.6332 D.94答案 D解析 由已知得F ⎝⎛⎭⎪⎫34,0,故直线AB 的方程为y =tan30°·⎝⎛⎭⎪⎫x -34,即y =33x -34.设A (x 1,y 1),B (x 2,y 2),联立 将①代入②并整理得13x 2-72x +316=0, ∴x 1+x 2=212,∴线段|AB |=x 1+x 2+p =212+32=12.又原点(0,0)到直线AB 的距离为d =3413+1=38. ∴S △OAB =12|AB |d =12×12×38=94.3.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43答案 D解析 由题意可知准线方程x =-p2=-2,∴p =4,∴抛物线方程为y 2=8x .由已知易得过点A 与抛物线y 2=8x 相切的直线斜率存在,设为k ,且k >0,则可得切线方程为y -3=k (x +2).联立方程⎩⎪⎨⎪⎧y -3=k (x +2),y 2=8x ,消去x 得ky 2-8y +24+16k =0.(*)由相切得Δ=64-4k (24+16k )=0,解得k =12或k =-2(舍去),代入(*)解得y =8,把y =8代入y 2=8x ,得x =8,即切点B 的坐标为(8,8),又焦点F 为(2,0),故直线BF 的斜率为43.4.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728 D.10答案 B解析 设AB 所在直线方程为x =my +t .由⎩⎪⎨⎪⎧x =my +t ,y 2=x ,消去x ,得y 2-my -t =0. 设A (y 21,y 1),B (y 22,y 2)(不妨令y 1>0,y 2<0), 故y 21+y 22=m ,y 1y 2=-t .而OA →·OB →=y 21y 22+y 1y 2=2. 解得y 1y 2=-2或y 1y 2=1(舍去). 所以-t =-2,即t =2. 所以直线AB 过定点M (2,0).而S △ABO =S △AMO +S △BMO =12|OM ||y 1-y 2|=y 1-y 2,S△AFO=12|OF|×y1=12×14y1=18y1,故S△ABO+S△AFO=y1-y2+18y1=98y1-y2.由98y1-y2=98y1+(-y2)≥298y1×(-y2)=298×2=3,得S△ABO+S△AFO的最小值为3,故选B.5.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c 的最大值为________.答案2 2解析直线x-y+1=0与双曲线x2-y2=1的一条渐近线x-y=0平行,这两条平行线之间的距离为22,又P为双曲线x2-y2=1右支上的一个动点,点P到直线x-y+1=0的距离大于c恒成立,则c≤22,即实数c的最大值为22.6.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若|FQ|=2,则直线l 的斜率等于________.答案±1解析设直线AB方程为x=my-1(m≠0),A(x1,y1),B(x2,y2),联立直线和抛物线方程,整理得,y2-4my+4=0,由根与系数关系得y1+y2=4m,y1y2=4.故Q(2m2-1,2m).由|FQ|=2知(2m)2+(2m2-1-1)2=2,解得m2=1或m2=0(舍去),故直线l的斜率等于±1(此时直线AB与抛物线相切,为满足题意的极限情况).7.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解 (1)由题意有a 2-b 2a =22,4a 2+2b 2=1, 解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22. (1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由. 解 解法一:(1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎪⎨⎪⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).由⎩⎨⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 20=⎝ ⎛⎭⎪⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516. |AB |24=(x 1-x 2)2+(y 1-y 2)24=(1+m 2)(y 1-y 2)24 =(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0,所以|GH |>|AB |2.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外. 解法二:(1)同解法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝⎛⎭⎪⎫x 1+94,y 1,GB →=⎝⎛⎭⎪⎫x 2+94,y 2.由⎩⎨⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA →·GB →=⎝⎛⎭⎪⎫x 1+94⎝⎛⎭⎪⎫x 2+94+y 1y 2=⎝⎛⎭⎪⎫my 1+54⎝⎛⎭⎪⎫my 2+54+y 1y 2=(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3(m 2+1)m 2+2+52m2m 2+2+2516=17m 2+216(m 2+2)>0,所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外.9.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时, x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 所以,当△OPQ 的面积最大时,l 的方程为 y =72x -2或y =-72x -2.10.圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:x 2a 2-y 2b 2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.解 (1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0,知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).由题意知⎩⎨⎧2a 2-2b2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1, 解得b 21=3.因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+23my -3=0,又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-23mm 2+2, ①y 1y 2=-3m 2+2. ②由x 1=my 1+3,x 2=my 2+3,得因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2). 由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0.⑤ 将①,②,③,④代入⑤式整理,得 2m 2-26m +46-11=0,解得m =362-1或m =-62+1.因此直线l 的方程为x -⎝ ⎛⎭⎪⎫362-1y -3=0或x +⎝ ⎛⎭⎪⎫62-1y -3=0. 11.如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.解 (1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,得A 1⎝ ⎛⎭⎪⎫2p 1k 21,2p 1k 1,由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝ ⎛⎭⎪⎫2p 2k 21,2p 2k 1.同理可得B 1⎝ ⎛⎭⎪⎫2p 1k 22,2p 1k 2,B 2⎝ ⎛⎭⎪⎫2p 2k 22,2p 2k 2. 所以A 1B 1→=⎝⎛⎭⎪⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.A 2B 2→=⎝⎛⎭⎪⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1=2p 2⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2.(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2.所以△A 1B 1C 1∽△A 2B 2C 2.因此S 1S 2=⎝ ⎛⎭⎪⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2A 2B 2→知|A 1B 1→||A 2B 2→|=p 1p 2.故S 1S 2=p 21p 22.已知抛物线y 2=4x 的焦点为F ,过F 作两条相互垂直的弦AB ,CD ,设弦AB ,CD 的中点分别为M ,N .求证:直线MN 恒过定点.[错解][错因分析] 直线恒过定点是指无论直线如何变动,必有一个定点的坐标适合这条直线的方程,问题就归结为用参数把直线的方程表示出来,无论参数如何变化这个方程必有一组常数解.本题容易出错的地方有两个:一是在用参数表示直线MN 的方程时计算错误;二是在得到了直线系MN 的方程后,对直线恒过定点的意义不明,找错方程的常数解.[正解] 设M (x M ,y M ),A (x 1,y 1),B (x 2,y 2).由题设,知F (1,0),直线AB 的斜率存在且不为0,设直线AB 的斜率为k ,其方程为y =k (x -1)(k ≠0),代入y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0,得x M =x 1+x 22=k 2+2k 2,又y M =k (x M -1)=2k ,故M ⎝ ⎛⎭⎪⎫k 2+2k2,2k .设直线CD 的斜率为k ′,因为CD ⊥AB ,所以k ′=-1k .同理,可得N (2k 2+1,-2k ).所以直线MN 的方程为⎝⎛⎭⎪⎫2k 2+1-k 2+2k 2(y +2k )=⎝ ⎛⎭⎪⎫-2k -2k (x -2k 2-1),化简整理,得yk 2+(x -3)k -y =0,该方程对任意k 恒成立,故⎩⎪⎨⎪⎧y =0,x -3=0,-y =0,解得⎩⎪⎨⎪⎧x =3,y =0.故不论k 为何值,直线MN 恒过定点(3,0). [心得体会]………………………………………………………………………………………………时间:90分钟基础组1.[2016·衡水二中预测]抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8答案 C解析 ∵y 2=4x ,∴F (1,0),l :x =-1,过焦点F 且斜率为3的直线l 1:y =3(x -1),与y 2=4x 联立,解得A (3,23),∴AK =4,∴S △AKF =12×4×23=4 3.故选C.2.[2016·枣强中学月考]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点C ,过双曲线中心的直线交双曲线于A ,B 两点,记直线AC ,BC 的斜率分别为k 1,k 2,当2k 1k 2+ln |k 1|+ln |k 2|最小时,双曲线离心率为( )A. 2B. 3C.2+1 D .2答案 B解析 设点A (x 1,y 1),C (x 2,y 2),由于点A ,B 为过原点的直线与双曲线的交点,所以根据双曲线的对称性可得A ,B 关于原点对称,即B (-x 1,-y 1).则k 1·k 2=y 2-y 1x 2-x 1·y 2-(-y 1)x 2-(-x 1)=y 22-y 21x 22-x 21, 由于点A ,C 都在双曲线上,故有x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减,得x 21-x 22a 2-y 21-y 22b 2=0,所以k 1k 2=y 21-y 22x 21-x 22=b 2a 2>0.则2k 1k 2+ln |k 1|+ln |k 2|=2k 1k 2+ln (k 1k 2),对于函数y =2x+ln x (x >0)利用导数法可以得到当x =2时,函数y =2x +ln x (x >0)取得最小值.故当2k 1k 2+ln |k 1|+ln |k 2|取得最小值时,k 1k 2=b 2a 2=2,所以e=1+b 2a 2=3,故选B.3.[2016·衡水二中猜题]斜率为1的直线l 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.8105答案 C解析 设A 、B 两点的坐标分别为(x 1,y 1)、(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0. Δ=(2t )2-5(t 2-1)>0,即t 2<5. 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. ∴|AB |=1+k 2|x 1-x 2|=1+k 2· (x 1+x 2)2-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5 =4255-t 2,当t =0时,|AB |max =4105.4. [2016·衡水二中一轮检测]直线y =kx -2与抛物线y 2=8x 交于A 、B 两点,且AB 中点的横坐标为2,则k 的值是________.答案 2解析 设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0,由题意得⎩⎨⎧Δ=[-4(k +2)]2-4×k 2×4>0,x 1+x 2=4(k +2)k 2=2×2,∴⎩⎪⎨⎪⎧k >-1,k =-1或k =2,即k =2. 5.[2016·冀州中学周测]已知两定点M (-1,0),N (1,0),若直线上存在点P ,使|PM |+|PN |=4,则该直线为“A 型直线”.给出下列直线,其中是“A 型直线”的是________(填序号).①y =x +1;②y =2;③y =-x +3;④y =-2x +3. 答案 ①④解析 由题意可知,点P 的轨迹是以M ,N 为焦点的椭圆,其方程是x 24+y 23=1,①把y =x +1代入x 24+y 23=1并整理得,7x 2+8x -8=0, ∵Δ=82-4×7×(-8)>0,直线与椭圆有两个交点, ∴y =x +1是“A 型直线”.②把y =2代入x 24+y 23=1,得x 24=-13不成立,直线与椭圆无交点,∴y =2不是“A 型直线”.③把y =-x +3代入x 24+y 23=1并整理得,7x 2-24x +24=0,Δ=(-24)2-4×7×24<0,∴y =-x +3不是“A 型直线”.④把y =-2x +3代入x 24+y 23=1并整理得,19x 2-48x +24=0,∵Δ=(-48)2-4×19×24>0,∴y =-2x +3是“A 型直线”.6.[2016·冀州中学热身]已知焦点在y 轴上的椭圆C 1:y 2a 2+x 2b 2=1经过点A (1,0),且离心率为32.(1)求椭圆C 1的方程;(2)过抛物线C 2:y =x 2+h (h ∈R )上点P 的切线与椭圆C 1交于两点M 、N ,记线段MN 与P A 的中点分别为G 、H ,当GH 与y 轴平行时,求h 的最小值.解 (1)由题意可得⎩⎪⎨⎪⎧1b 2=1,c a =32,a 2=b 2+c 2,解得a =2,b =1,所以椭圆C 1的方程为y 24+x 2=1. (2)设P (t ,t 2+h ),由y ′=2x ,得抛物线C 2在点P 处的切线斜率为k =y ′|x =t =2t , 所以MN 的方程为y =2tx -t 2+h , 代入椭圆方程得4x 2+(2tx -t 2+h )2-4=0, 化简得4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0. 又MN 与椭圆C 1有两个交点,故 Δ=16[-t 4+2(h +2)t 2-h 2+4]>0,①设M (x 1,y 1),N (x 2,y 2),MN 中点的横坐标为x 0,则 x 0=x 1+x 22=t (t 2-h )2(1+t 2),设线段P A 中点的横坐标为x 3=1+t2, 由已知得x 0=x 3,即t (t 2-h )2(1+t 2)=1+t2,②显然t ≠0,所以h =-⎝ ⎛⎭⎪⎫t +1t +1,③ 当t >0时,t +1t ≥2,当且仅当t =1时取等号,此时h ≤-3,不满足①式,故舍去;当t <0时,(-t )+⎝⎛⎭⎪⎫-1t ≥2,当且仅当t =-1时取等号,此时h ≥1,满足①式.综上,h 的最小值为1.7. [2016·枣强中学周测]已知圆O :x 2+y 2=49,直线l :y =kx +m与椭圆C :x 22+y 2=1相交于P 、Q 两点,O 为原点.(1)若直线l 过椭圆C 的左焦点,与圆O 交于A 、B 两点,且∠AOB =60°,求直线l 的方程;(2)若△POQ 的重心恰好在圆上,求m 的取值范围.解 (1)左焦点坐标为F (-1,0),设直线l 的方程为y =k (x +1),由∠AOB =60°,得圆心O 到直线l 的距离d =13,又d =|k |k 2+1,∴|k |k 2+1=13,解得k =±22. ∴直线l 的方程为y =±22(x +1).(2)设P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧x 22+y 2=1,y =kx +m得(1+2k 2)x 2+4kmx +2m 2-2=0.由Δ>0得1+2k 2>m 2①,且x 1+x 2=-4km1+2k 2.∵△POQ 的重心恰好在圆x 2+y 2=49上, ∴(x 1+x 2)2+(y 1+y 2)2=4, 即(x 1+x 2)2+[k (x 1+x 2)+2m ]2=4, 即(1+k 2)(x 1+x 2)2+4km (x 1+x 2)+4m 2=4. ∴16(1+k 2)k 2m 2(1+2k 2)2-16k 2m 21+2k2+4m 2=4, 化简得m 2=(1+2k 2)24k 2+1,代入①式得2k 2>0,∴k ≠0,又m 2=(1+2k 2)24k 2+1=1+4k 44k 2+1=1+44k 2+1k 4.∵k ≠0,∴m 2>1,∴m >1或m <-1.8.[2016·冀州中学预测]已知F 1、F 2是双曲线x 2-y 215=1的两个焦点,离心率等于45的椭圆E 与双曲线x 2-y215=1的焦点相同,动点P (m ,n )满足|PF 1|+|PF 2|=10,曲线M 的方程为x 22+y 22=1.(1)求椭圆E 的方程;(2)判断直线mx +ny =1与曲线M 的公共点的个数,并说明理由;当直线mx +ny =1与曲线M 相交时,求直线mx +ny =1截曲线M 所得弦长的取值范围.解 (1)∵F 1、F 2是双曲线x 2-y 215=1的两个焦点,∴不妨设F 1(-4,0),F 2(4,0).∵椭圆E 与双曲线x 2-y215=1的焦点相同,∴设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),根据已知得⎩⎨⎧c =4,c a =45,b 2=a 2-c 2,解方程组得⎩⎪⎨⎪⎧c =4,a =5,b 2=9.∴椭圆E 的方程为x 225+y 29=1.(2)∵动点P (m ,n )满足|PF 1|+|PF 2|=10, ∴P (m ,n )是椭圆E 上的点.∴m 225+n 29=1. ∵m 225+n 29≤m 29+n 29=m 2+n 29,∴m 2+n 2≥9. ∵曲线M 是圆心为(0,0),半径r =2的圆,圆心(0,0)到直线mx +ny =1的距离d =1m 2+n 2≤13<2,∴直线mx +ny =1与曲线M 有两个公共点.设直线mx +ny =1截曲线M 所得弦长为l ,则l =22-1m 2+n2. ∵m 225+n 225≤m 225+n 29=1, ∴m 2+n 2≤25.∴9≤m 2+n 2≤25.∴125≤1m 2+n 2≤19,∴179≤2-1m 2+n 2≤4925. ∴173≤2-1m 2+n 2≤75. ∴2173≤l ≤145.∴直线mx +ny =1截曲线M 所得弦长的取值范围为⎣⎢⎡⎦⎥⎤2173,145. 9.[2016·衡水二中期中]如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.解 (1)由已知得焦点坐标为F (1,0).因为线段AB 的中点在直线y =2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),则⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4. 又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消元得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0.|AB |=m 2+1|y 1-y 2| =m 2+1·(y 1+y 2)2-4y 1y 2=m 2+1·(4m )2-4×(-4)=4(m 2+1). 所以4(m 2+1)=20,解得m =±2, 所以直线l 的方程是x =±2y +1, 即x ±2y -1=0.10.[2016·枣强中学模拟]已知点A 、B 的坐标分别是(-1,0)、(1,0).直线AM ,BM 相交于点M ,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.解 (1)设M (x ,y ).因为k AM ·k BM =-2,所以y x +1·yx -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1),即为动点M 的轨迹方程. (2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,则C ⎝ ⎛⎭⎪⎫12,62,D ⎝ ⎛⎭⎪⎫12,-62,此时线段CD 的中点不是点N ,不合题意.故设直线l 的方程为y -1=k ⎝ ⎛⎭⎪⎫x -12.将C (x 1,y 1),D (x 2,y 2)代入2x 2+y 2=2(x ≠±1),得2x 21+y 21=2,① 2x 22+y 22=2.②①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×12=-1.所以直线l 的方程为y -1=-⎝ ⎛⎭⎪⎫x -12,即2x +2y -3=0.11.[2016·衡水二中期末]已知定点G (-3,0),S 是圆C :(x -3)2+y 2=72上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M .(1)求M 的方程;(2)是否存在斜率为1的直线l ,使得l 与曲线M 相交于A ,B 两点,且以AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题意,知|EG |=|ES |,∴|EG |+|EC |=|ES |+|EC |=62, 又|GC |=6<62,∴点E 的轨迹是以G ,C 为焦点,长轴长为62的椭圆.故动点E 的轨迹M 的方程为x 218+y 29=1.(2)假设存在符合题意的直线l 与椭圆M 相交于A (x 1,y 1),B (x 2,y 2)两点,其方程为y =x +m ,由⎩⎨⎧y =x +m ,x 218+y 29=1,消去y ,化简得3x 2+4mx +2m 2-18=0.∵直线l 与椭圆M 相交于A ,B 两点, ∴Δ=16m 2-12(2m 2-18)>0, 化简得m 2<27,解得-33<m <33, ∴x 1+x 2=-4m3,x 1x 2=2(m 2-9)3. ∵以线段AB 为直径的圆恰好经过原点, ∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,又y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,∴x 1x 2+y 1y 2=2x 1x 2+m (x 1+x 2)+m 2=4(m 2-9)3-4m 23+m 2=0,解得m =±23,由于±23∈(-33,33),∴符合题意的直线l 存在,所求的直线l 的方程为 y =x +23或y =x -2 3.12.[2016·武邑中学猜题]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,F 为椭圆在x 轴正半轴上的焦点,M ,N 两点在椭圆C 上,且MF →=λFN →(λ>0),定点A (-4,0).(1)求证:当λ=1时,MN →⊥AF →;(2)若当λ=1时有AM →·AN →=1063,求椭圆C 的方程;(3)在(2)的条件下,M ,N 两点在椭圆C 上运动,当AM →·AN →·tan ∠MAN 的值为63时,求出直线MN 的方程.解 (1)证明:设M (x 1,y 1),N (x 2,y 2),F (c,0), 则MF →=(c -x 1,-y 1),FN →=(x 2-c ,y 2), 当λ=1时,MF →=FN →, ∴-y 1=y 2,x 1+x 2=2c , 由M ,N 两点在椭圆上, ∴x 21=a 2⎝⎛⎭⎪⎫1-y 21b 2,x 22=a 2⎝⎛⎭⎪⎫1-y 22b 2,∴x 21=x 22.若x 1=-x 2,则x 1+x 2=0≠2c (舍去), ∴x 1=x 2,∴MN →=(0,2y 2),AF →=(c +4,0),MN →·AF →=0, ∴MN →⊥AF →.(2)当λ=1时,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,∴AM →·AN →=(c +4)2-b 4a 2=1063, ∵c a =63,∴a 2=32c 2,b 2=c 22, ∴56c 2+8c +16=1063, ∴c =2,a 2=6,b 2=2, 故椭圆C 的方程为x 26+y 22=1.(3)因为AM →·AN →·tan ∠MAN =2S △AMN =|AF ||y M -y N |=63, 由(2)知点F (2,0),所以|AF |=6,即得|y M -y N |= 3.当MN ⊥x 轴时,|y M -y N |=|MN |=2b 2a =2×26≠3,故直线MN 的斜率存在,不妨设直线MN 的方程为y =k (x -2)(k ≠0).联立⎩⎨⎧y =k (x -2),x 26+y 22=1,得(1+3k 2)y 2+4ky -2k 2=0,y M +y N =-4k 1+3k 2,y M ·y N =-2k 21+3k 2,∴|y M -y N |=24k 4+24k 21+3k 2=3,解得k =±1.此时,直线MN 的方程为x -y -2=0或x +y -2=0.能力组13.[2016·冀州中学仿真]已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右两个焦点,以线段F 1F 2为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N (设点M 、N 均在第一象限),当直线MF 1与直线ON 平行时,双曲线的离心率的取值为e 0,则e 0所在的区间为( )A .(1,2)B .(2,3)C .(3,2)D .(2,3)答案 A解析 由⎩⎨⎧x 2+y 2=c 2,x 2a 2-y2b 2=1,x >0,y >0可得N ⎝⎛⎭⎪⎫a b 2+c 2c ,b 2c , 由⎩⎨⎧x 2+y 2=c 2,y =ba x ,x >0,y >0可得M (a ,b ),又F 1(-c,0),则kMF 1=ba +c,k ON =b 2a b 2+c2,∵MF 1∥ON , ∴b a +c =b 2a b 2+c 2,∴a b 2+c 2=b (a +c ),又b 2=c 2-a 2,∴2a 2c -c 3=2ac 2-2a 3,∴2e 0-e 30=2e 20-2,设f (x )=x 3+2x 2-2x -2,f ′(x )=3x 2+4x -2,当x >1时,f ′(x )>0,所以f (x )在(1,+∞)上单调递增,即f (x )在(1,+∞)上至多有1个零点,f (1)=1+2-2-2<0,f (2)=22+4-22-2>0,∴1<e 0< 2.故选A.14.[2016·武邑中学预测]已知中心在坐标原点的椭圆和双曲线有公共焦点(左、右焦点分别为F 1、F 2),它们在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是( )A .(0,+∞)B.⎝ ⎛⎭⎪⎫13,+∞ C.⎝ ⎛⎭⎪⎫15,+∞ D.⎝ ⎛⎭⎪⎫19,+∞ 答案 B解析 设椭圆的长轴长为2a ,双曲线的实轴长为2m ,焦距为2c ,则有⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|-|PF 2|=2m ,得|PF 2|=a -m ,又|PF 2|=|F 1F 2|=2c ,∴a -m =2c ,又由e 1=c a ,e 2=c m ,得a =c e 1,m =c e 2,从而有c e 1-c e 2=2c ,得e 2=e 11-2e 1,从而e 1e 2=e 1·e 11-2e 1=e 211-2e 1,由e 2>1,且e 2=e 11-2e 1,可得13<e 1<12,令1-2e 1=t ,则0<t <13,e 1e 2=⎝ ⎛⎭⎪⎫1-t 22t =14⎝ ⎛⎭⎪⎫t +1t -2.又f (t )=t +1t -2在⎝ ⎛⎭⎪⎫0,13上为减函数,则0<t <13时,f (t )>f ⎝ ⎛⎭⎪⎫13,∴0<t <13时,f (t )>43,故e 1e 2>13.15.[2016·衡水二中模拟]如图,F 是椭圆的右焦点,以点F 为圆心的圆过原点O 和椭圆的右顶点,设P 是椭圆上的动点,点P 到椭圆两焦点的距离之和等于4.(1)求椭圆和圆的标准方程;(2)设直线l 的方程为x =4,PM ⊥l ,垂足为M ,是否存在点P ,使得△FPM 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得2a =4,a =2c ,解得a =2,c =1,b 2=a 2-c 2=3.∴椭圆的标准方程为x 24+y 23=1,圆的标准方程为(x -1)2+y 2=1.(2)设P (x ,y ),则M (4,y ),F (1,0),其中-2≤x ≤2,∵P (x ,y )在椭圆上,∴x 24+y 23=1,∴y 2=3-34x 2.∴|PF |2=(x -1)2+y 2=(x -1)2+3-34x 2=14(x -4)2,|PM |2=|x -4|2,|FM |2=32+y 2=12-34x 2. ①若|PF |=|FM |,则14(x -4)2=12-34x 2,解得x =-2或x =4(舍去),当x =-2时,P (-2,0),此时P 、F 、M 三点共线,不符合题意,∴|PF |≠|FM |;②若|PM |=|PF |,则(x -4)2=14(x -4)2,解得x =4,不符合题意; ③若|PM |=|FM |,则(x -4)2=12-34x 2,解得x =4(舍去)或x =47,当x =47时,y =±3157,∴P ⎝ ⎛⎭⎪⎫47,±3157,满足题意. 综上可得,存在点P ⎝ ⎛⎭⎪⎫47,3157或⎝ ⎛⎭⎪⎫47,-3157,使得△FPM 为等腰三角形.16.[2016·枣强中学期末]如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左,右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解 (1)设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0).因为△AB 1B 2是直角三角形,又|AB 1|=|AB 2|,所以∠B 1AB 2为直角,因此|OA |=|OB 2|,则b =c 2,又c 2=a 2-b 2,所以4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c 2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5. 又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16 =-16m 2-64m 2+5, 由PB 2⊥QB 2,得B 2P →·B 2Q →=0,即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.。

高考数学复习:圆锥曲线7大题型及解答技巧总结

高考数学复习:圆锥曲线7大题型及解答技巧总结

学好圆锥曲线的几个关键点1核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。

2计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。

后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。

当然也要掌握一些解题的小技巧,加快运算速度。

3拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。

老师建议:山重水复疑无路,没事你就算两步。

大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。

一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。

二联立:通过快速计算或者口算得到联立的二次方程。

三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。

走完三部曲之后,在看题目给出了什么条件,要求什么。

例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。

总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。

4圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。

2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。

3、圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4、定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值。

解析几何问题中的“设而不求”与“设而求之”

解析几何问题中的“设而不求”与“设而求之”
2 2 例 1 ( 过 2 0 1 5 上海理 )已知椭圆 狓 +2 狔 =1,
学生难以通过联立方程组利用韦达定理 “ 设 而 不 求” 得出答案 .而用 “ 设而求之 ” , 求出所设, 即 求 出 犃, 犆 两点的横坐标就能拨云见日 , 逐步得到正 确 结 果 . 正 所谓 : 远山初见疑无路 , 曲径徐行渐有村 . 2 设而求之 以简驭繁 例 2 ( 2 0 1 4 陕 西 理)如
2 狔 图 1, 曲线犆 由上半椭圆犆1 : 2+ 犪 2 狓 ( ) 和部分 1 犪 >犫>0, 狔 ≥0 2 = 犫 2 抛物线 犆 ( ) 狔 =-狓 +1 狔 ≤0 2:
连 接 而 成, 犆 1 与犆 2 的公共点为 3 槡 其中 犆 犃, 犅, . 1 的离心率为 2 ( )求 犪, 1 犫 的值 ;
2 犽 -4 -8 2 即 犽 因犽≠ ·( +1,2 犽) 0. -犽, -犽 -2 = 2 犽 犽 +4 +4
狓 狓 1 2 犽 狓1 +狓 2· 2 犽 Nhomakorabea=
2 2 犽 +1 犽狘 狘
· 狘
狓 狓 1 2
狘 =


2 ( ) 2 犽 2狘 犽狘 +1 槡 , 整理得 犛 =槡 2. 2 2 ·槡 犽狘 槡 1+2 犽 2 犽 狘 +1
原点的两条直线犾 犅和 1 和犾 2 分 别 与 椭 圆 交 于 点 犃, 记得到的平行四边形 犃 犆, 犇. 犅 犆 犇 的面积为犛. ( ) 设 犃( , , 用 犃, 1 狓 犆( 狓 犆 的坐标表示 狔 狔 1, 1) 2, 2) 点犆 到直线 并证明犛= ; 犾 2狘狓 狔 狔 1 的距离 , 1 2 -狓 2 1狘 1, ( )设犾 求 犛 的值 . 2 1 与犾 2 的斜率之积为 - 2 1 解 ( ) 略. ( ) 设犾 则犾 1 2 犽 狓, 狔= 狔= - 狓. 1: 2: 2 犽 设 犃( , ,由 狓 犆( 狓 狔 狔 1, 1) 2, 2)

高中数学 圆锥曲线问题中的“设而不求”含答案

高中数学  圆锥曲线问题中的“设而不求”含答案

圆锥曲线问题中的“设而不求”设而不求是解析几何中一种常用的重要方法和技巧,它能使问题简化。

但如何使用这种方法,在使用中应注意哪些问题,却经常困扰着同学们。

在此笔者愿跟大家谈谈对上述问题的看法与认识。

一、 哪些问题适合“设而不求”一般说来,解题中涉及不到但又不具体求出的中间量(称为相关量)可采取“设而不求,整体思想”。

具体体现在:①与弦的中点有关的问题;②定值与定点问题;③对称性问题。

中点坐标公式、斜率公式和根与系数的关系是“设而不求,整体思想”的马前卒。

1、与弦中点有关的问题例1、 已知ABC ∆是椭圆1162022=+y x 的一个内接三角形,且)4,0(A ,若ABC ∆的重心恰为椭圆的右焦点,求BC 边所在直线的方程。

2、定点问题例2、 设抛物线)0(22>=p px y 的焦点为F ,经过焦点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明直线AC 经过原点O 。

3、对称问题例3、 已知椭圆13422=+y x 上存在两个不同的点关于直线m x y +=4对称,试确定m 的取值范围。

二、“设而不求,整体思想”中应注意的两个问题1、注意隐含条件例4、 已知双曲线12422=-y x ⑴过)1,1(M 的直线交双曲线于A 、B 两点,若M 为弦AB 中点,求直线AB 的方程。

⑵是否存在直线l ,使点)21,1(N 是直线l 被双曲线所截弦的中点?若存在,求出直线l 的方程 ,若不存在,说明理由。

2、注意参数对取值范围的影响例5、 求过点)2,0(P 的直线被椭圆2222=+y x 所截弦的中点的轨迹方程。

圆锥曲线问题中的“设而不求”的思想1、过点A ()21,的直线与双曲线x y 2221-=交于M N 、两点,求弦MN 的中点P 的轨迹方程。

2 、已知A 、B 是抛物线y px p 240=>()上原点O 外的两个动点,已知OB OA ⊥,求证:AB 所在直线必过一个定点。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“设而不求”与“设而求”
一般地,我们解答直线与圆锥曲线问题,已经形成一种习惯,利用一元二次方程的判别式 研
究范围,利用根与系数的关系研究有关参数的关系,还美其名曰“设而不求”,事实上,“设而 求”也可能比“设而不求”更加简单,避开了一元二次方程的判别式与根与系数的关系研究有关 参数的关系,也许另有一种更好的解法等待着你去探究,不信请看下面的例题:
丫2
例1、己知椭圆方程为y+/=l,过定点P(0,2)的直线交椭圆于不同的两点A 、B (在
A 、P 之间),且满足西=2顾,求的取值范围.
解析1:设AB 的方程为)=尬+ 2, A3」),Ba ,%),贝9
PA = (x },y }-2), PB = (x 2,y 2 -2),由 PB = ZPA ,得 X 2 1
3
由 Q + * '得(1 + 2比2)严+池+6二0.又△二64疋一24(1 + 2/)= 0>0,得k 2>~. y = kx + 2,
Sk
6 由根与系数关系,坷+禺=一 ,=
- 1+2F - 1 + 2亡 把七=2西代入坷+召=_] + 2加 有西(1+2) = _] +朮,(1)
6 0 6
把x 2=^代入“2=仃乔有彷=匚乔,(2)
由(1)、(2)可以消去西得到含有入比的关系式,这个过程比较复杂,这个关系式是
32k 2
(1+A)2 3 1 3(1+2/) 2 八 3 _― =—■—, 或者变为__+?7 =—石刁—= — , 由* >二,可以求得
召=2坷,
y 2-2 = A(y l -2).
3(1+2Q A 32k「 16 32k~(1 + 久)「2
初于是建立了关于2的不等式 '2 v£,又0vQvl,解得£v2vl. 32K I O O (1+A ) O 3
当初没有斜率时,宀亍所以扫<「
解析2:构造2 + ]=玉+玉=(召+兀T ,如此可以直接把年+召=一£「
/ x } x 2 x }x 2 l + 2k
6 1 ao&2 3
也=砲代入得到'+君茹莎r"込百-2,由解法1知:宀亍可以 求得2<丐<罟,又061,解得打<1•当仙殳有斜率时,4,所以押<1.
解析3:设人(西,刃),8也,%),则
力4 =(兀[,刃一2), PB = (X 2,>2-2),由 PB = APA ,得v 4+^=i,
2 O 1
又人(召,刃),3(%,%)在二+b=l 上,所以]2
2 - + ^=1.
〔2 -
事实上仅用以上这四个等式就可以求出2与西,必,兀2,%中任意一个的关系.
j 吕+*=1,⑴
F 字+(勿 _2Q +2)2=[.(2)
(l)x A 2
_(2)得:(Ay.)2 -(心 -22 + 2)2 = / 一 1, (22-2)(22^ -2A + 2) = -1,注意到0<2<1,所以4仇开 一2 + 1) = 2 + 1,解得
气J) _ 3
斥彳一3 1 ”=—,注意到—1S)[S1,所以—is — <1,解得一5/153,又0V/lvl,
1 4A 1 4
2 3
所以-<2<1. 3
解法评价:解法1与解法2都是利用一元二次方程根的判别式与根与系数的关系,是解析 几何常用的方法,但是用这种方法必须对直线方程进行讨论,还应注意,有些时候仅仅使用其中 的根与系数的关系而没有用根的判别式,但是由于根与系数的关系是从整体上建立有关系数的关 系的,所以无法保证实数根的存在性,因此一定要检验判别式大于零.解法3
32k 1 冷=岔,
y 2-2 = /l(y l -2).
全面利用向量共线所得到两个关系式(横坐标与纵坐标的关系都利用了,而解法1、2实际上只用了横坐标的关系), 通过巧妙的解方程,最终把2看成常数,刃看成未知数,用久表示刃,进一步利用)}的范围限定2的范围.对于这个题目来说,解法3优于解法1、2,因为这种解法避开了分类讨论(这是共线向量的作用),避开了根的判别式(另用了变量的范围,范围,也是圆锥曲线中建立不等式的常用方法,在变量易用参数关系表示的情况下比用判别式简单)•解法3虽然没有用整体思想(这里指解法1、2中对西+甩与丙吃的整体代入变形),但是计算量并不大,比解法1、2还要小,而且由于没有新的参数比,使得字母较少,变形的目标更加明确•因此我们解答直线与圆锥曲线的问题时,不要过分依赖一元二次方程根的判別式与根与系数的关系,当解方程组比较简单时,不妨直接求岀有关未知数的解,然后利用未知数的取值范I韦I建立不等式.
例2、如图1,已知椭圆长轴端点为A、B,眩EF与AB交于点D,原点0为椭圆中心,且
OD = 1, 2DE+DF = 0,乙FDO = =.求椭圆长轴长的取值范围.
4
2 2
解:设椭圆方程为刍+与=1 (d>b>0),设由2旋+丽=0得: a
2 2 2 2
2(召 +1,必)+(左+1,%)二(0, 0),即2xj +勺+3 = 0,2必 +% =0,又屯 + 仝=1,二 + 与=1. cr Zr lr 联立四个等式先消去 尼,%有:(2%弓3) +彗二],再联立斗+艺二1消去刃可以解得 cr tr
a" tr
=~a ~3.又因为-a<x x <a,于是一QV~a ~3<tz,即4Q +3V 0,解得 1VQV 3 4
4
(1)
71 又因为ZFDO = -f 所以EF 得方程为尸兀+ 1, Z )代入»沪侮(咛讣+(三与
€/4-6(22+5<0,解得 1 <(72 <5 (2) 由(1) (2)的1 <。

<亦,所以2v2av2亦,即椭圆长轴长的取值范围是(2,2亦). 此题有关资料多用根与系数的关系建立之间的一个相等关系,有兴趣的读者可以用这个 方法解一解,并与上面的方法作比较,看看哪种方法更简单•笔者写此短文,不是贬低一元二次方 程的判别式与根与系数的关系的作用,而是告诉同学们,要善于观察思考,具体问题具体分析, 选用合理的方法,突破思维定势,提高创新思维能力. 一。

2_3
-a 1 +1 由占=-^-'得 害+务6,又皿所以
3+3)2 |(/一])2 去分母整理得:。

相关文档
最新文档