高中数学易错题举例分析

合集下载

分析错因_走出误区——高考解析几何解答题易错题归类剖析

分析错因_走出误区——高考解析几何解答题易错题归类剖析

ʏ江苏省无锡市第六高级中学 陈 敏ʏ江苏省无锡市青山高级中学 张启兆解析几何是高中数学的重要内容,但有些同学由于对某些知识点理解不透彻,或考虑不周等原因,导致在解题过程中出现这样和那样的错误,下面对高考解析几何解答题的易错题型进行归类剖析,希望对同学们的复习备考能有所帮助㊂一、忽略直线斜率不存在的情形例1 已知F (2,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,且点P 2,55在椭圆上㊂(1)求椭圆的方程㊂(2)已知直线l 与椭圆交于M ,N 两点,且坐标原点O 到直线l 的距离为306,试问:øM O N 的大小是否为定值若是,求出该定值;若不是,请说明理由㊂错解:(1)由椭圆的定义得2a =(2-2)2+552+(2+2)2+552=25,解得a =5㊂因为c =2,所以b =1㊂故椭圆的方程为x 25+y 2=1㊂(2)设点M (x 1,y 1),N (x 2,y 2)㊂设直线l 的方程为y =k x +m ,由点到直线的距离公式得|m |k 2+1=306,则m 2=56(k 2+1)㊂联立y =k x +m ,x 2+5y 2=5,消去y 整理得(5k 2+1)x 2+10k m x +5m 2-5=0,Δ=100k 2m 2-20(m 2-1)(5k 2+1)=20(5k 2+1-m 2)>0,即m 2<5k 2+1㊂由韦达定理得x 1+x 2=-10k m5k 2+1,x 1x 2=5(m 2-1)5k 2+1,所以O M ң㊃O N ң=x 1x 2+y 1y 2=x 1x 2+(k x 1+m )(k x 2+m )=(k 2+1)㊃x 1x 2+k m(x 1+x 2)+m2=5(k 2+1)(m 2-1)-10k 2m25k 2+1+m2=6m 2-5(k 2+1)5k 2+1=0,所以O M ңʅO N ң,即øM O N =π2㊂剖析:第(1)问的解答正确,第(2)问的解答中忽略直线斜率不存在的情形㊂正解:(2)当直线l 的斜率存在时,同错解㊂当直线l 的斜率不存在时,则直线l 的方程为x =ʃ306,结合对称性不妨设直线l 的方程为x =306,联立x =306,x25+y 2=1,解得x =306,y =306,或x =306,y =-306,即得点M306,306,N 306,-306,此时O M ң㊃O N ң=0,故øM O N =π2㊂综上所述,øM O N =π2㊂易错提醒:本题的易错点有两个:一是忽略对直线斜率不存在的情形的讨论;二是øM O N =π2不是显性的,比较隐晦,识别出来有困难,但我们可以从特殊情况,即直线l 的斜率不存在入手,求出对应的定值,再利用82 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.向量的数量积证明这个值与变量无关㊂二㊁盲目应用判别式例2 若圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,求a 的取值范围㊂错解:由于圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,所以联立方程组(x -a )2+y 2=4,y2=6x ,消去y 得方程x 2-(2a -6)x +a 2-4=0无解,所以Δ=(2a -6)2-4a 2-4<0,解得a >136,故a 的取值范围为136,+ɕ ㊂剖析:这属于知识性错误,产生错误的原因是没有理解判别式Δ只适用于直线与二次曲线的位置关系的判断,而不适用于两个二次曲线之间的位置关系的判断㊂正解:由于圆的半径为2,当圆与抛物线外切时,a =-2,于是当a <-2时,圆与抛物线没有公共点㊂当圆与抛物线内切时,联立(x -a )2+y 2=4,y 2=6x ,消去y 整理得x 2-(2a -6)x +a 2-4=0㊂①Δ=(2a -6)2-4a 2-4=0,解得a =136,代入方程①得3x 2+5x +2512=0,解得x =-56,是负根,显然圆与抛物线不能内切,所以当x ȡ0时,问题等价于圆心(a ,0)到抛物线的距离d 的最小值大于2,求a 的取值范围㊂设P (x ,y )为抛物线上一点,则d 2=(x -a )2+y 2=(x -a )2+6x =[x -(a -3)]2+6a -9㊂设f (x )=[x -(a -3)]2+6a -9(x ȡ0),当a -3>0,即a >3时,f (a -3)最小,所以d m i n =6a -9>2,解得a >136,又a >3,所以a >3;当a -3ɤ0,即a ɤ3时,f (0)最小,所以d m i n =a >2,此时2<a ɤ3㊂综上可得,a >2㊂故a 的取值范围为a <-2或a >2㊂易错提醒:二次曲线与二次曲线的交点问题不能完全类比直线与二次曲线位置关系的探讨,仅用判别式法是不够的,这是因为二次曲线是有范围限制的,并且一般情况下具有对称性,要结合起来一起讨论㊂由于我们研究的是曲线与曲线之间的位置关系,图形未必能把细微处的走向描述清楚,必须与代数运算结合起来,即以数助形,数形结合㊂三㊁求取值范围时,未考虑直线与圆锥曲线的公共点的个数例3 已知双曲线C :x 2a2-y 2b2=1与椭圆x 24+y23=1的离心率互为倒数,且双曲线的右焦点到C 的一条渐近线的距离为3㊂(1)求双曲线C 的方程;(2)直线y =2x +m 与双曲线C 交于A ,B 两点,点M 在双曲线C 上,且O M ң=2O Aң+λO B ң,求λ的取值范围㊂错解:(1)因为椭圆x 24+y 23=1的离心率为12,所以a 2+b 2a =2,即a 2=b 23㊂因为双曲线的右焦点到C 的一条渐近线的距离为3,所以b =3,所以a =1,故双曲线C 的方程为x 2-y 23=1㊂(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),联立方程y =2x +m ,3x 2-y 2=3,消去y 整理得x 2+4m x +m 2+3=0,则x 1+x 2=-4m ,x 1x 2=m 2+3㊂因为O M ң=2O A ң+λO B ң,所以x 0=2x 1+λx 2,y 0=2y 1+λy 2㊂因为点M 在双曲线C 上,所以2x 1+λx 22-2y 1+λy 223=1,即4㊃x 21-y 213+λ2x 22-y 223+4λx 1x 2-43㊃λy 1y 2=1,所以4λx 1x 2-43λy 1y 2+λ2+3=4λx 1x 2-43λ(2x 1+m )(2x 2+m )+λ2+3=0,即λ2-4λ+3+8m 2λ=0,显然λʂ0,于是8m 2=-λ2-4λ+3λȡ0 (*),所以λ(λ2-92解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.4λ+3)ɤ0,λʂ0,解得λ<0,或1<λ<3㊂综上所述,λ的取值范围为-ɕ,0 ɣ1,3㊂剖析:第(1)问的解答正确,第(2)问的解答中未考虑直线与圆锥曲线的公共点的个数对m 的限制,故最后求λ的取值范围时出现错误㊂正解:(2)前面同错解㊂考虑Δ=16m 2-4(m 2+3)>0⇒m 2>1,将(*)式改为8m 2=-λ2-4λ+3λ>8㊂当λ>0时,得λ2+4λ+3<0,解得-3<λ<-1,与λ>0矛盾;当λ<0时,得λ2+4λ+3>0,解得λ>-1,或λ<-3,所以λ<-3,或-1<λ<0㊂综上所述,λ的取值范围为-ɕ,-3 ɣ-1,0㊂易错提醒:审题不仔细,马虎大意,忽视条件 直线与双曲线有两个交点 隐含着判别式Δ=16m 2-4m 2+3>0㊂四、恒成立意义不明导致定点问题错误例4 如图1,M 是圆A :x +32+y 2=16上的动点,点B 3,0,线段M B 的垂直平分线交半径A M 于点P ㊂图1(1)求点P 的轨迹E 的方程㊂(2)N 为轨迹E 与y 轴负半轴的交点,不过点N 且不垂直于坐标轴的直线l 交轨迹E 于S ,T 两点,直线N S ,N T 分别与x 轴交于C ,D 两点㊂若C ,D 的横坐标之积是2,试问:直线l 是否过定点?如果是,求出定点坐标;如果不是,请说明理由㊂易错分析:本题易错点有三个:一是在用参数表示直线S N 的方程时计算错误;二是不会利用 同构 的方法直接写出点D 的横坐标;三是在得到直线系S T 的方程后,对直线恒过定点的意义不明,找错方程的常数解㊂正解:(1)由题意可知|A P |+|P M |=|A M |=4,所以|P A |+|P B |=4>23=|A B |,所以点P 的轨迹是以A ,B 为焦点,长轴为4的椭圆㊂所以2a =4,c =3,所以b =a 2-c 2=1,所以椭圆的方程为x 24+y 2=1,即点P 的轨迹E 的方程为x 24+y 2=1㊂(2)由题意可知点N (0,-1),设直线S T 的方程为y =k x +m (m ʂ-1),设S (x 1,y 1),T (x 2,y 2),联立y =k x +m ,x 2+4y 2=4,消去y 整理得(1+4k 2)x 2+8k m x +4m 2-4=0,所以x 1+x 2=-8k m 1+4k 2,x 1x 2=4m 2-41+4k2,由Δ>0,得4k 2-m 2+1>0㊂所以直线S N 的方程为y +1=y 1+1x 1(x -0),令y =0,得x C =x 1y 1+1㊂同理x D =x 2y 2+1㊂因为x C x D =x 1y 1+1ˑx 2y 2+1=2,所以x 1x 2=2(y 1+y 2+y 1y 2+1)=2[k x 1+m +k x 2+m +(k x 1+m )(k x 2+m )+1]=2[k (x 1+x 2)(m +1)+k 2x 1x 2+(m +1)2],所以4m 2-41+4k 2=2k ˑ-8k m1+4k2(m +1)+ k 2ˑ4m 2-41+4k2+(m +1)2㊂因为m ʂ-1,所以m +1ʂ0,则4(m -1)=-16k 2m +8k 2(m -1)+2(1+4k 2)㊃(m +1),解得m =3,所以直线S T 的方程为y =k x +3㊂所以直线S T 过定点(0,3)㊂规律与方法:(1)若确定动直线l 过定点问题,可设动直线方程(斜率存在)为y =k x +t ,由题设条件将t 用k 表示为t =m k ,得到y =k (x +m ),即可说明动直线过定点(-m ,0)㊂(2)若确定动曲线C 过定点问题,可引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出对应的定点㊂(3)先通过特定位置猜测结论后进行一般性证明㊂对于客观题,通过特殊值法探求定点能取得事半功倍的效果㊂(责任编辑 王福华)3 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.。

常见常新题型__注重解题方法——解三角形易错点扫描

常见常新题型__注重解题方法——解三角形易错点扫描

ʏ江苏省高邮市第一中学 袁达飞解三角形问题是高考中的常见题型,主要利用正弦定理㊁余弦定理来求解未知边角的关系或具体值,由于解三角形需要综合应用正余弦定理和有关角的一些变换,所以经常会出现一些顾此失彼的错误,现归纳如下,供同学们学习时参考㊂易错点一㊁忽视解的讨论致误例1 在әA B C中,已知a =2,b =2,A =45ʎ,求B ㊂错解:由正弦定理知s i n B =b s i n Aa=2s i n 45ʎ2=12㊂又0<B <180ʎ,故B =30ʎ或150ʎ㊂剖析:上述解法中忽现了A +B +C =180ʎ这一隐含条件,当B =150ʎ时,A +B =195ʎ,与三角形的内角和为180ʎ矛盾㊂正解:由正弦定理知s i n B =b s i n Aa=2s i n 45ʎ2=12㊂又0<B <180ʎ,故B =30ʎ或B =150ʎ㊂若B =150ʎ,则A +B >180ʎ,应舍去㊂故B =30ʎ㊂易错点二㊁忽视三角形中角的范围致误例2 在әA B C 中,已知(a 2+b 2)㊃s i n (A -B )=(a 2-b 2)s i n C ,判断әA B C 的形状㊂错解:原式可化为(a 2+b 2)(s i n A c o s B-c o s A c o s B )=(a 2-b 2)(s i n A c o s B +c o s A s i n B ),即a 2s i n B c o s A =b 2s i n A c o s B ㊂由正弦定理得b 2s i n 2As i n 2B㊃s i n B c o s A =b 2s i n A c o s B ,化简得s i n A c o s A =s i n B c o s B ,即s i n 2A =s i n 2B ,所以A =B ㊂所以әA B C 是等腰三角形㊂剖析:上述解法忽略了角的范围,s i n 2A=s i n 2B 是2A =2B 的必要但不充分条件,另外,有些同学也可能由于逻辑关系不清而出现以下错误的判断:由s i n 2A =s i n 2B ,得2A =2B ,又2A +2B =π,且A =B ,A +B =π2,所以әA B C 是等腰直角三角形㊂正解:将条件都化为有关角的关系形式,前面同错解,得s i n 2A =s i n 2B ㊂因为A ,B 是三角形的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2㊂故әA B C 是等腰三角形或直角三角形㊂易错点三㊁忽视隐含条件致误例3 在不等边әA B C中,a 为最大边,若a 2<b 2+c 2,则角A 的取值范围是㊂错解:因为a 2<b 2+c 2,所以b 2+c 2-a2>0,则c o s A =b 2+c 2-a22b c>0㊂又因为A 为әA B C 的内角,故A 为锐角,所以0<A <90ʎ㊂剖析:上述解法忽视了隐含条件:三角形的内角和为180ʎ,所以最大边所对的角应该大于60ʎ㊂正解:前面同错解,得0ʎ<A <90ʎ㊂又因为a 为最大边,所以A >60ʎ㊂所以60ʎ<A <90ʎ㊂故A 的取值范围是(60ʎ,90ʎ)㊂易错点四㊁忽视角之间的关系致误例4 在әA B C 中,若s i n 2A s i n 2B =t a n Ata n B ,则әA B C 的形状为㊂错解:已知s i n 2A s i n 2B =t a n A ta n B =s i n A c o s Bc o s A s i n B ㊂因为s i n A >0,s i n B >0,所以s i n A c o s A =s i n B c o s B ,即s i n 2A =s i n 2B ,所以2A =2B ,即A =B ㊂故әA B C 为等腰三角形㊂剖析:上述解法忽视了 在әA B C 中,由72解题篇 易错题归类剖析 高考数学 2023年10月Copyright ©博看网. All Rights Reserved.s i n 2A =s i n 2B ,可以得到2A +2B =π这种情况,导致漏解,结果错误㊂正解:前面同错解,得s i n 2A =s i n 2B ㊂所以2A =2B 或2A +2B =π,则A =B 或A +B =π2,故әA B C 为等腰三角形或直角三角形㊂易错点五㊁忽视三角形中三边的基本关系致误例5 已知钝角三角形的三边长分别是2a +1,a ,2a -1,求实数a 的取值范围㊂错解:因为2a +1,a ,2a -1是三角形的三边,所以2a +1>0,a >0,2a -1>0,解得a >12㊂又2a +1是三边长的最大值,设该边所对的角为θ,则c o s θ=a 2+(2a -1)2-(2a +1)22a (2a -1)<0,解得12<a <8㊂剖析:不是任意的三个正数都能作为三角形的三条边长,还需要满足三角形三边的基本关系,即两边之和大于第三边㊂上述解法中少了这个约束条件㊂正解:前面同错解,得12<a <8㊂又a +(2a -1)>2a +1,解得a >2㊂综上可得,实数a 的取值范围是(2,8)㊂易错点六㊁实际问题中题意不明致误图1例6 如图1,在海岛A 上有一座海拔1k m的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30ʎ东㊁俯角为60ʎ的B 处,到11时10分,又测得该船在岛北60ʎ西㊁俯角为30ʎ的C 处㊂(1)求该船的航行速度;(2)又经过一段时间后,船到达海岛的正西方向的D 处,试问:此时船距海岛A 有多远?易错分析:有的同学对题意没有理解透彻,方位确定不了,不能观察出әB A C 是直角三角形;有的同学在求A D 的长时不能放在әA C D 中利用正弦定理求解㊂剖析:实际应用问题中的有关名词㊁术语不能混淆㊂①仰角和俯角:与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角㊂②方向角:从指定方向线到目标方向线的水平角㊂③方位角:从指定方向线顺时针到目标方向线的水平角㊂④坡度:坡面与水平面所成的二面角的度数㊂正解:(1)在R tәP A B 中,øA P B =60ʎ,P A =1,所以A B =3(k m )㊂在R t әP A C 中,øA P C =30ʎ,所以A C=P A ㊃t a n 30ʎ=33(k m )㊂在әA C B 中,øC A B =30ʎ+60ʎ=90ʎ,所以B C =A C 2+A B 2=332+32=303(k m )㊂所以该船的航行速度为303ː16=230(k m /h)㊂(2)øD A C =90ʎ-60ʎ=30ʎ㊂s i n øD C A =s i n (180ʎ-øA C B )=s i n øA C B =A B B C =3303=31010㊂s i n øC D A =s i n (øA C B -30ʎ)=s i n øA C B ㊃c o s 30ʎ-c o s øA C B ㊃s i n 30ʎ=31010㊃32-1-310102㊃12=33-11020㊂在әA C D 中,由正弦定理得A Ds i n øD C A=A C s i n øC D A ,所以A D =A C ㊃s i n øD C As i n øC D A=33㊃3101033-11020=9+313(k m )㊂故当船到达海岛的正西方向的D 处时,船与海岛A 的距离为9+313k m ㊂(责任编辑 王福华)82 解题篇 易错题归类剖析 高考数学 2023年10月Copyright ©博看网. All Rights Reserved.。

高中数学高频错题总结 (含例题答案)

高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。

(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。

高考数学易错题分析与总结

高考数学易错题分析与总结

高考数学易错题分析与总结高考数学作为众多考生心中的“拦路虎”,其难度和重要性不言而喻。

在备考过程中,对易错题的分析与总结是提高成绩的关键。

以下将为大家详细剖析一些常见的高考数学易错题类型及应对策略。

一、函数部分1、定义域问题函数的定义域是函数存在的基础,很多同学在求解函数问题时容易忽略定义域的限制。

例如,函数\(f(x) =\frac{1}{\sqrt{x 1}}\),这里的根号下不能为负数,且分母不能为零,所以\(x 1 >0\),即\(x > 1\)。

若在后续的计算中忽略了这一限制,就容易出错。

2、单调性与奇偶性判断函数的单调性和奇偶性是函数部分的重点和难点。

在判断单调性时,需要正确使用导数或者定义法。

对于奇偶性,要牢记奇函数满足\(f(x) = f(x)\),偶函数满足\(f(x) = f(x)\)。

有些同学在运用这些性质解题时,会因为对概念理解不清晰而出错。

例如,函数\(f(x) = x^3 + sin x\),判断其奇偶性。

首先,\(f(x) =(x)^3 + sin(x) = x^3 sin x =(x^3 + sin x) = f(x)\),所以\(f(x)\)为奇函数。

二、三角函数部分1、诱导公式三角函数的诱导公式众多,容易记混。

例如,\(\sin(\pi \alpha) =\sin \alpha\),\(\cos(\pi +\alpha) =\cos \alpha\)等。

在解题时,如果不能准确运用诱导公式进行化简,就会导致错误。

2、图像变换三角函数图像的平移、伸缩等变换也是易错题点。

比如,将函数\(y =\sin 2x\)的图像向左平移\(\frac{\pi}{6}\)个单位,得到的函数应为\(y =\sin 2(x +\frac{\pi}{6})=\sin(2x +\frac{\pi}{3})\),而不是\(y =\sin(2x \frac{\pi}{6})\)。

三、数列部分1、通项公式与求和公式求数列的通项公式和前\(n\)项和公式是数列部分的核心内容。

高三数学常见易错题解析

高三数学常见易错题解析

高三数学常见易错题解析在高三数学学习中,有些题目看似简单,却是学生们常犯错误的地方。

本文将对一些高三数学中常见的易错题进行解析,帮助同学们更好地理解和掌握这些知识点。

一、函数与方程1. 高次多项式的根求解错误常见错误:对于高次多项式,同学们解方程时容易漏掉一些根,或者将非实数根误认为实数根。

解析:对于高次多项式的解题,应采取以下步骤:a. 利用因式定理进行因式分解,将多项式表示为一些一次因式的乘积;b. 将每个一次因式等于零,求解出每个一次因式的根;c. 判断每个根的重复次数,以确定多项式的所有根。

2. 对数函数的定义域错误常见错误:对于对数函数,同学们容易忘记对定义域的限制条件,将定义域限制错误,导致计算结果错误。

解析:对于对数函数,应注意以下几点:a. 底数必须大于0且不等于1;b. 对数函数中的真数必须大于0。

二、几何与三角学1. 三角函数值的计算错误常见错误:在计算三角函数值时,同学们容易忘记将角度转换为弧度制,或者将角度输入错误,导致计算结果错误。

解析:在计算三角函数值时,应注意以下几点:a. 角度制和弧度制之间的转换关系:1弧度= 180°/π;b. 确保输入的角度是正确的,特别是在使用计算器时,应仔细检查输入的角度是否与题目要求一致。

2. 直角三角形的边长比例错误常见错误:在直角三角形中,同学们容易将边长比例记错,或者将长边与短边混淆,导致计算结果错误。

解析:在解决直角三角形问题时,应注意以下几点:a. 确定直角三角形中的直角边、斜边和对边的位置关系;b. 判断使用何种三角函数计算边长比例,常用的有正弦、余弦和正切。

三、概率与统计1. 事件概率计算错误常见错误:在计算事件概率时,同学们容易将事件的排列组合数计算错误,或者将事件的可能性估计错误,导致计算结果错误。

解析:在计算事件概率时,应注意以下几点:a. 根据实际情况判断事件的可能性,合理估计事件发生的次数;b. 根据排列组合原理计算事件的总数和有利结果的总数;c. 根据概率公式计算事件的概率。

高中数学易错题大汇总及其解析

高中数学易错题大汇总及其解析

【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。

而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。

本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。

二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。

解析:首先利用已知条件列方程,得到三元一次方程组。

然后利用切线的斜率性质,得到关于a和b的关系式。

最后代入已知条件解方程组即可求得a、b、c的值。

(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。

解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。

2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。

解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。

(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。

解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。

3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。

解析:利用向量的夹角公式求出a与b的夹角。

(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。

解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。

高中高考数学易错易混易忘题分类汇总及解析

高中高考数学易错易混易忘题分类汇总及解析

高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。

本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。

【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

例1、设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B = ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B = 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。

解析:集合A 化简得{}3,5A =,由A B B = 知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a=或15。

综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。

AB时,【练1】已知集合{}2|40A x x x =+=、()22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是。

答案:1a=或1a ≤-。

【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。

例2、已知()22214y x ++=,求22x y +的取值范围【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于x 的函数最值求解,但极易忽略x、y 满足()22214y x ++=这个条件中的两个变量的约束关系而造成定义域范围的扩大。

高三数学错题整理与解析

高三数学错题整理与解析

高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。

对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。

本文将对高三数学错题进行整理分类,并给出详细的解答和解析。

一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。

解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。

2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。

求$a$、$b$、$c$的值。

解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。

将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。

将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。

根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。

将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。

综上所述,$a = b$,$c = \frac{1}{4}$。

二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。

高中数学易错点(附配套例题与答案)

高中数学易错点(附配套例题与答案)

高中数学各章节关注点1.4 否定形式命题可考虑用逆否命题来研究.例1.4 已知R b a ∈,,则条件"21≠≠b a 或"是"2≠ab "的 条件.1.5 “且”与“或”的区分.例1.5.1 判断真假:(1) 10232≠⇔≠+-x x x 或2≠x ;(2)33≥.例1.5.2 已知 013:1=+-y ax l ,01)21(:2=---ay x a l ,根据下列条件分别求a 的取值范围.(1) 21l l 与相交;(2) 21l l ⊥.2、函数2.1求函数关系式时必须包含定义域;对数问题也应注意定义域.例2.1 (1)在ABC ∆中,BC AC BC x AB ,3,4,===边上的中线长y AM =,求y 关于x 的函数关系式;(2)函数x x y ln 22-=的单调递增区间是 .2.2 函数的零点问题通常利用函数图像.例2.2 (1)若函数m x x x y -+-=4423在区间),(251-有且只有一个零点,则实数m 的取值范围是 ;(2) 若函数m x x x y -+-=4423在区间),(251-至少有一个零点,则实数m 的取值范围是 .例2.5.2 已知函数)(x f 是周期为2的周期函数,当20≤<x 时,13)(2+-=x x x f ,求当75<<x 时,函数)(x f 的表达式.2.6 关注二次函数二次项系数是否为零,注意∆、开口、对称轴与特殊值四要素.例2.6 (1)已知方程0)3(42=++-a x ax 有两个大于1的不等实根,求实数a 的取值范围; (2) 已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.2.7 指对数的运算法则.例2.7 (1)已知02ln =+x ,求x ;(2)已知)00(02≠>=-a a a x且,求x ; (3)解不等式)10(2log <<->a x a ;(4)已知()1,12log 2log >>>b a b a ,求b a , 的大小关系.3、数列3.1 注意题中n 取值,如:⎩⎨⎧≥-==-2n ,S S 1,n ,S a 1n n1n 的公式应用.例3.1 (1)已知数列{}n a 的前n 项的和为)(+∈+-=N n n n S n 1322,求数列{}n a 的通项公式;(2) 已知数列{}n a 的前n 项的和为n S ,若),2(0321+-∈≥=+N n n a S S n n n ,又31=a ,求n a ;(3) 已知数列{}n a 的前n 项的和为n S ,若,)(31++∈=N n a S n n 又31=a ,求n a .3.2 等比数列求和注意对q=1与q ≠1的分类;等比数列证明注意首项0a 1≠的说明.例3.2 (1) 若等比数列{}n a 的前n 项和为n S ,公比1-≠q .求证:n n n n n S S S S S 232,,--也成等比;(2) 若数列{}n a 中,)(23,411++∈-==N n a a a n n .求证数列{}1-n a 是等比数列.3.3 求和:观察通项、 注意首项、 点清项数,并注意结果的验证.例3.3 求和nn S )2(8421-++-+-= .3.4 应用性问题:逐步列式,保留原始数据,便于观察规律.例3.4 小王2012年5月向银行借款100万元用于购房,年利率7.8%,2013年5月开始偿还,每年还a 万元,2032年5月全部还清,求每年还款额a (其中2078.110≈).3.5 等差数列、等比数列常用定义、公式或性质解决.例3.5.1 已知数列{}n a 的前n 项的和为n S ,42,293==S S .(1)若数列{}n a 成等差,求12S ; (2) 若数列{}n a 成等比,求12S .例3.5.2 已知等差数列{}n a 与{}n b 的前n 项的和分别为n n T S , , 若1423--=n n T S n n , 求2020b a .3.6 数列与函数的单调性、最值研究的方法“区别”.例3.6 (1) 已知数列{}n a 的通项公式是nnn C a )31(2012⋅=,求数列{}n a 的最大项;(2)已知函数xex x f 2012)(-=,求函数)(x f 在区间),0(∞+上的最大值.3.7 熟练掌握利用错位相减法或裂项法进行数列求和. 例3.7 (1) 求和:n n n S )21)(12()21(7)21(5)21(321432--++-+-+-+-= ;(2) 求和:)12(753197531753153131++++++++++++++++=n S n .(3) 求数列⎭⎬⎫⎩⎨⎧+++)23(3522n n n n 的前n 项的和n T .3.8 通常递推关系转化为“新数列”的思想运用. 例3.8 已知数列{}n a 中,311=a ,根据下列各递推公式,求数列的通项公式: (1) 131-=+n n a a ;(2)131+=+n nn a a a ;(3)()112++-=n n n n a a a a ;(4)nn n a a 331=+-.5.4 三角形问题应注意内角的判断一个或两个解.例5.4 (1) 在ABC ∆中,若32cos ,36sin ==B A , 求C sin ;(2) 在ABC ∆中,若3,31cos ,33sin ===a B A , 求边c 的长.5.5 熟练掌握正弦、余弦定理,面积公式.例5.5.1 在ABC ∆中, 面积32=S ,,6,600=+=c b A (1)求边a 的长; (2)求)(sin C B -.例5.5.2 在ABC ∆中, 三内角C B A ,,成等差数列 , 角C B A ,,所对应的边分别为c b a ,,, 外接圆半径为2 , 求22c a +的取值范围.6.5 熟练掌握不等式应用的两种题型.例6.5 (1) 已知+∈R y x ,,212=+yx ,求y x +的最小值;(2)已知c ax x f +=2)(,1)1(2≤≤-f ,4)2(0≤≤f ,求)3(f 的取值范围.7、直线和圆7.1 求直线问题注意斜率存在与不存在,掌握斜率变化与倾斜角变化的规律.例7.1 (1) 已知过点(0,1)的直线l 与圆)0()1(222>=++R R y x 交于B A ,两点,O 为坐标原点,若52<⋅<-OB OA ,求半径R 的取值范围;(2) 已知过点(-2,0)的直线l 与圆16)1(22=++y x 交于B A ,两点,O 为坐标原点,若1213-<⋅<-OB OA ,求直线l 的倾斜角取值范围.高中数学各章节关注点答案3.1解:(1) ⎩⎨⎧≥== 2.n ,5-4n ,1n ,0a n (2) ,0)(3211=-+--n n n n S S S S 32111=--n n S S , 数列⎭⎬⎫⎩⎨⎧n S 1是首项为31,公差为32的等差数列,所以3121-=n S n ,即123-=n S n ,从而得⎪⎩⎪⎨⎧≥---==.2,)32)(12(61,3n n n n a n , (3) ,43111n n n n n n S S S S a S =⇒-==+++数列{}n S 是公比为4 , 首相为3的等比数列 ,所以143-⋅=n n S , 从而⎩⎨⎧≥⋅==-.2,49,1,32n n a n n 3.2解:(1)当公比1=q 时,,,,0123121na S S na S S na S n n n n n =-=-≠=结论成立;当公比1≠q 时,222212131123)1()1()1)1(1)1((1)1()(q q q a q q a q q a q q a S S S nn n n n n n n --=-----⋅--=-, 22221212122)1()1(1)1(1)1()(q q q a q q a q q a S S n n n n n n--=⎥⎦⎤⎢⎣⎡-----=-, 1,0,01±≠≠≠q q a ,0)()(2322≠-=-∴n n n n n S S S S S ,结论成立.(2),)1(311-=-+n n a a 又0311≠=-a ,所以数列{}1-n a 是以3为首项,以3为公比的等比数列.3.3解: []11)2(131)2(1)2(1++--=----=n n n S . 3.4解:201819%)8.71(100%)8.71(%)8.71(%)8.71(+=+++++++a a a a ,2020%)8.71(100%)8.71(1%)8.71(1+=+-+-⋅a , 4.103078.0400=⨯≈a (万元).3.5.1解:(1)由91269363,,,S S S S S S S ---成等差,得,)42(2)2(266S S -+=-166=S ,所以38912=-S S ,8012=∴S .(2) 由91269363,,,S S S S S S S ---成等比,得,)42(2)2(626S S -=-86-=S 或106=S ,从而128912=-S S 或250912-=-S S ,所以17012=S 或20812-=S .3.5.2解:利用等差数列求和公式n n a n S )12(12-=-得312315511539392020===T S b a . 3.6解:(1)1)1(3201231!)2011(!)1(!2012!)2012(!!2012312012120121≥+-=⋅-+-=⋅=++n nn n n n C C a a n n n n ,得25.502≤n ,即12502503a a a a >>>> , >>>505504503a a a ,所以数列{}n a 的最大项为5035032012503)31(C a =.(2)2013,02013)('==-=x exx f x得,函数↑∞+↑),(,),)在((201320130x f . 所以函数)(x f 在区间),0(∞+上的最大值是2013)2013-=ef (.3.7解:(1) 运用错位相减法,15432)21)(12()21)(32()21(7)21(5)21(3)21(21+--+--++-+-+-+-=-n n n n n S15432)21)(12(])21()21()21()21()21[(22123+----++-+-+-+-+-=n n n n S 1111)(12()21(13121)21)(12()21(1)21(141221+-+---⎥⎦⎤⎢⎣⎡--+-=---⎥⎦⎤⎢⎣⎡----⋅+-=n n n n n n n n )21(61661-++-=, nn n S )21(91691-++-=∴.(2) )211(21)2(1)12(7531+-=+=+++++n n n n n,⎥⎦⎤⎢⎣⎡+-++--++-+-+-+-=∴)211()1111()6141()5131()4121()311(21n n n n S n )2)(1(23243211121121+++-=⎥⎦⎤⎢⎣⎡+-+-+=n n n n n . (3) )2(31)1(31)23(35212+-+=+++-n n n n n n n n,))2(31)1(31()531431()431331()33121(1322+-+++⨯-⨯+⨯-⨯+⨯-=∴-n n T n n n)2(3121+-=n n .4.9解:y x y x 32cos 2sin -=+,22)32()2(1y y -≥+,031252≤+-y y ,52165216+≤≤-y , ∴值域为⎥⎦⎤⎢⎣⎡+-5216,5216. 4.10解:321sin 121,21sin 23,1sin 21,326<+≤≤+<≤<∴≤<x x x x ππ, 所以1sin 43+-=x y 的值域为⎥⎦⎤ ⎝⎛1,31.4.11解: 2tan 11tan )4tan(=-+=+x x x π, 得31tan =x . (1)原式671tan 32tan =++=x x .(2)原式7201tan tan )1(tan 2)cos (sin cos sin )cos (sin 2222222-=--+=+-+=x x x x x x x x x . 5.1 (1)51- 解析:CB AB AC AB CB BC AB CB AM ⋅-+=⋅+=⋅)](32[)32( 51)2716236(31231)()2(3122-=--=⎥⎦⎤⎢⎣⎡⋅+-=-⋅+=AC AB AC AB AC AB AC AB .(2)42- 解析:以A 为原点,分别以AB ,AC 所在直线为x ,y 轴,建立直角坐标系,A (0,0),B (6,0),C (0,9),M (2,6),425412),9,6(,)6,2(-=-=⋅-==CB AM CB AM .5.2解:(1)213,0372)2(1)1)(23(2-=-==++⇒-⋅=++x x x x x x x 或得. (2) 26,03201)23()1)(2(2±==-⇒=⋅+++-x x x x x 得. 5.3解:(1)错 解析:0应该为0.(2)错 解析:c b a )(⋅与向量c 共线 , )(c b a ⋅与向量a 共线. (3)错 解析:正确形式为AC BC AB =+;(4) 错 解析:正确形式为CB AC AB =-.5.4解:(1),,sin 35sin A B A B <∴<=33cos ±=∴A , B A B A B A C sin cos cos sin )(sin sin +=+= 9156235)33(3236±=±+⋅=. (2) 36cos ,,sin 322sin =∴>∴>=A A AB A B ,必为锐角角 ,935322363133sin cos cos sin )(sin sin =+⋅=+=+=B A B A B A C ; 由正弦定理得539353sin sin =⋅⋅==A C a c .5.5.1解:(1) 83260sin 210=⇒==bc bc S , 又,或22,4,6===∴=+b c b c b 4=c ,32,12cos 2222==-+=a A bc c b a . (2) 当4,2==c b 时,由正弦定理,C B sin 4sin 260sin 320==,得1sin ,21sin ==C B ,23)sin(,90,3000-=-==C B C B ,同理当2,4==c b 时,23)sin(=-C B . 5.5.2解:三角C B A ,,成等差060=⇔B , 由正弦定理42sin sin ===R CcA a , 所以[][])2240cos(2cos 28)120(sin sin 1602222A A A A c a ---=-+=+)602cos(8160+-=A , 由于001200<<A , 00030060260<+<A ,所以21)602cos(10<+≤-A , 从而241222≤+<c a . 5.6.1 解: (1)真. (2)假.(3)假. 解析:正确的应是等腰三角形或直角三角形. 例5.6.2 (1) 若角A 为锐角, 则A A cos sin +的取值范围是 ; (2)若角A 为钝角, 则A A cos sin +的取值范围是 .5.6.2 (1)(]2,1 解析:)45sin(2cos sin +=+A A A ,A 为锐角,900<<∴A , 1354545<+<∴A ,1)45sin(22≤+<∴A ,即有2cos sin 1≤+<A A .. (2)()1,1- 解析: A 为钝角,即18090<<A ,22545135<+<∴A ,22)45sin(22<+<-∴ A ,即有1cos sin 1<+<-A A . 6.1解:(1)027322132≥--=---x x x x x , 由此得解集[)⎪⎭⎫⎢⎣⎡∞+,372,0 .6.4 1024或 解析:)52()(1+=-⋅x x x ,得0=x 或3-=x ,44224)42(222++=++=-x x x x ,40=-=x ;1023=--=x .6.5 解:(1))223(21)2(321)12)((21+≥⎥⎦⎤⎢⎣⎡++=++=+y x x y y x y x y x , 即y x +的最小值为)223(21+. (2))1(35)2(389)3(,4)2(,)1(f f c a f c a f c a f -=+=+=+=;332)2(380≤≤f ,310)1(3535≤-≤-f ,14)3(35≤≤-∴f .则当1=t 时,1=k ,当1≠t 时,0)3)(1(44,0)3(2)1(2≥---=∆=-+--t t t k k t ,得;2222+≤≤-t ,所以24322-<<-R .综上所述,半径R 的取值范围是⎪⎭⎫ ⎝⎛-24,0.(2) 当x l ⊥轴时,)15,2(-A ,)15,2(--B ,11-=⋅OB OA ,不合, 当l 与x 轴不垂直时,设直线)2(:+=x k y l 代入圆方程,得0154)12(2)1(2222=-++++k x k x k ,由韦达定理,222122211154,1)12(2kk x x k k x x +-=++-=+, 2212212212214)(2)1()2)(2(k x x k x x k x x k x x OB OA ++++=+++=⋅)12,13(1151141)12(41542222222--∈++-=+++--=kk k k k k k ,得312<<k , 13-<<-k 或31<<k ,所以直线l 倾斜角的范围是⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛43,323,4ππππ .7.2解:圆心(-1,0)到直线的距离53=d ,所以5109235322=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=R . 8.1.1解:(1)513解析:因为02=+FQ PF ,所以点Q 为线段PF 的中点, O 为原点,椭圆另一焦点为'F ,则OQ PF //', 4'=PF , 由椭圆定义:42-=a PF ,'PF PF PF OQ ⊥⇒⊥,由勾股定理;52)42(162=-+a , 得5=a , 所以椭圆的离心率513=e . (2) 228- 解析:如图,椭圆左焦点)0,2(-F , 右焦点即为B ,如图,由椭圆的定义得2288)(8-=-≥--=+AF PA PF PB PA .8.1.2解: (1) 1622=+y x 解析:不妨设点P 在双曲线的右支上,设直线1与2PF 交于点Q ,O 为坐标原点,4221)(21)(21212122==⋅=-=-==a a PF PF PF PQ Q F OM , 所以点M 的轨迹方程是1622=+y x .(2) 2 解析:抛物线的焦点()1,0F ,准线1:-=y l ,连AF 、BF ,设A 、B 、M 到准线l 的距离分别为1d 、2d 、d 则322221=≥+=+=AB BF AF d d d , ∴点M 到x 轴的最近距离为2.8.2解:(1)9或964解析:当焦点在x轴上时,3181=-m ,得9=m ;当焦点在y轴上时,3181=-m ,得964=m . (2) 3171--或 解析:当焦点在x 轴上时,7)28(2=+++n n ,得1-=n ;当焦点在y 轴上时,7)2()82(=--+--n n ,得317-=n .(3) )161,0(a 解析:抛物线方程的标准式为y ax 412=.8.3解:(1)(基本轨迹法) 设)0,5(,)0,5(21F F -,动圆半径为R ,则31+=R PF ,12+=R PF ,221=-PF PF ,由双曲线定义,点P 的轨迹是以1F 、2F 为焦点的双曲线的一支,1=a ,24,52==b c ,它的轨迹方程是)1(12422≥=-y x y . (2) (转移法) 设),(),,(00y x C y x G ,则3,300yy x x ==,即y y x x 3,300==,代入椭圆得1144)3(324)3(22=+y x ,又三角形中三点不共线,0≠∴x , 所以重心G 的轨迹方程是)0(1163622≠=+x y x .8.4 解: )0,2()0,2(21F F -,当x PQ ⊥轴时, )3,2(,)3,2(-Q P ,12=S ; 当AB 与x 轴不垂直时, 设直线)0)(2(:≠-=k x k y PQ ,代入椭圆方程得0481616)43(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则22212221434816,4316kk x x k k x x +-=+=+, 2222243)1(24431241k k k k k PQ ++=+++= , 点1F 到直线PQ 的距离 214kk d +=,由此得222222)43()1(484314821k k k k k k d PQ S ++=++== , 设t k =+243,其中3>t ,则232112t t S --=随t 的增大而增大,120<<S , 所以PQ F 1∆面积S 的取值范围是(]12,0.(2)设直线2)1(:+-=x k y l , 代入双曲线方程4422=-y x 得[]01)2(4)2(8)41(222=+-----k x k k x k ,[]0)543(161)2()41(16)2(6422222=+--=+--+-=∆k k k k k k ,得3192±-=k , 双曲线的渐近线斜率为21±,如图,可知直线l 的斜率范围是)21,3192(---. 8.6解:)0,2(-F ,当x l ⊥轴时,)214,1(P ,)214,1(-Q ,不合. 设直线)1(:-=x k y l ,代入椭圆得0824)21(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则 ,2142221kk x x +=+22212182k k x x +-=, 2212212212214))(1()1()1)(2()2)(2(k x x k x x k x x k x x FQ FP +++-++=--+++=⋅=2222222421)2(421)82)(1(k k k k k k k +++-++-+=02141122=+-k k ,得112±=k , 所以直线的方程为)1(112-±=x y .9.1解:(1) 373)4242(433122=⋅⨯++=V . (2)表面积ππππ425)41(4122=⋅++⋅+⋅=S ,体积ππ284)4161(31=⋅++=V . 9.2解:(1)取AB 中点O ,连OC ,则AB PO ⊥,ABC PAB 面面⊥ ,ABC PO 面⊥∴, ABC PC PCO 与面就是∠∴所成的角,103010232tan 10232==∠==PCO OC PO ,,, 所以所求角的正切值为1030.。

高考数学易错题解题方法 15例

高考数学易错题解题方法 15例

设直线 PF1 的斜率为 k,则 PF1: y k (x 4) 4 , 即 kx y 4k 4 0 . ∵ 直 线 PF1 与 圆 C 相 切 ,
∴ | k 0 4k 4 | 5 .解得 k 11, 或k 1 .
k2 1
2
2
当 k= 11 时,直线 PF1 与 x 轴的交点横坐标为 36 ,不合题意,舍去.
(1)求 m 的值与椭圆 E 的方程;
(2)设 Q 为椭圆 E 上的一个动点,求 AP AQ 的取值范围.
【错解分析】本题易错点(1)在于计算椭圆的方程的量本 身就大,方法和计算技巧的运用很重要。
解:(1)点 A 代入圆 C 方程,得 (3 m)2 1 5 .
∵m<3,∴m=1.圆 C: (x 1)2 y2 5 .
13
12
y
P2
P1
P0
O
x
2
坐标为 4 ,则 cos 的值等于
.
5
答案: 3 3 4 10
【错解分析】本题常见错误写成 3 3 4 的相反数,这样的错误常常是忽略角度所在的象限。 10
【解题指导】本题主要考察三角函数的定义,及对两角和与差公式的理解。
【练习 7】已知 sin x sin cos , cos x sin cos ,则cos 2x
6 7 8 9
为( ) A.(1005,1004) C.(2009,2008)
B.(1004.1003) D.(2008,2007)
5
0
1
10 x
4
3
2
11
【范例 7】如图,点 P 是单位圆上的一个顶点,它从初始位置 P0 开
始沿单位圆按逆时针方向运动角

0

高中数学易错题举例解析

高中数学易错题举例解析

高中数学易错题举例分析高中数学中有很多题目,求解的思路不难,但解题时,对某些特别情况的议论,却很简单被忽视。

也就是在转变过程中,没有注意转变的等价性,会常常出现错误。

本文经过几个例子,分析致错原由,希望能对同学们的学习有所帮助。

增强思想的严实性训练。

●忽视等价性变形,以致错误。

x>0x +y>0x>1x +y>3y>0xy>0,但y>2与xy>2不等价。

【例 1】已知 f(x) =a x +x3 f (1)0, 3 f (2) 6, 求 f (3) 的范围。

b ,若3 a b0①错误会法由条件得32a b6②2②× 2-①6a15③①× 2-②得8b2④333③+④得103a b43,即10 f (3)43.33333x 错误会析采纳这类解法,忽视了这样一个事实:作为知足条件的函数 f ( x) ax,b 其值是同时受 a和b 限制的。

当a取最大(小)值时, b 不必定取最大(小)值,因此整个解题思路是错误的。

f (1) a b正确解法由题意有f ( 2)b,解得:2a2a1[ 2 f (2) f (1)], b2[ 2 f (1)f (2)],33f (3)3a b16f (2)5f (1).把 f (1) 和 f (2) 的范围代入得39916 f (3)37.33在本题中能够检查出解题思路错误,并给出正确解法,就表现了思想拥有反省性。

只有坚固地掌握基础知识,才能反省性地看问题。

●忽视隐含条件,以致结果错误。

【例 2】(1)设、是方程 x 22kx k 6 0 的两个实根,则 (1) 2(1) 2的最小值是( A )49(B)8(C) 18(D)不存在4思路分析 本例只有一个答案正确,设了3 个圈套,很简单受骗。

利用一元二次方程根与系数的关系易得:2k,k6,( 1) 2(1) 222 1 2 21( ) 2 22() 24( k3) 2 49 .44有的学生一看到49,常受选择答案( A )的迷惑,盲从附和。

高一数学错题集锦与讲解

高一数学错题集锦与讲解

高一数学错题集锦与讲解1. 周长与面积题目:一个正方形的周长为16cm,求它的面积。

解析:设正方形的边长为a,则周长可以表示为4a,根据题目可得4a=16cm,解方程得到a=4cm。

正方形的面积可以表示为a²,代入已知的边长得到面积为4²=16cm²。

所以,这个正方形的面积为16平方厘米。

2. 相似三角形题目:两个三角形的两个内角分别为45°和90°,它们的两边分别成比例,则这两个三角形相似吗?解析:根据三角形的内角和定理可知,三角形的内角和为180°。

已知其中一个三角形的两个内角分别为45°和90°,则第三个内角为180°-45°-90°=45°。

另一个三角形的两个内角分别为45°和90°,则第三个内角也为45°。

因此,这两个三角形的内角完全相同,所以它们是相似三角形。

3. 平行线与相交线题目:如图,AB//CD,AD是两平行线AB和CD的相交线段。

已知∠ABC=80°,求∠CDA的度数。

解析:根据平行线的性质,平行线AB和CD之间的对应角是相等的。

所以∠ABC=∠CDA。

已知∠ABC=80°,代入已知条件可得∠CDA=80°。

4. 三角函数的计算题目:已知cosθ=1/2,求sinθ的值。

解析:根据三角函数的定义可知,sinθ=√(1-cos²θ)。

已知cosθ=1/2,代入公式可得sinθ=√(1-(1/2)²)=√(1-1/4)=√(3/4)=√3/2。

所以,sinθ的值为√3/2。

5. 数列的求和题目:求等差数列1, 4, 7, 10, …, 100的前n项和Sn。

解析:已知第一项a₁=1,公差d=3(等差数列的公差是指相邻两项之间的差值)。

根据等差数列的求和公式,Sn=n(a₁+an)/2。

高考数学试卷错题

高考数学试卷错题

一、错题分析1. 错题类型:函数与导数题目:已知函数$f(x)=x^3-3x+1$,求$f(x)$的极值。

错因分析:在求极值时,没有正确运用导数的方法。

在求导数时,误将$f'(x)$求错,导致极值求解错误。

2. 错题类型:立体几何题目:已知长方体$ABCD-ABCD_1$,$AB=3$,$AD=4$,$AA_1=5$,求长方体的体积。

错因分析:在计算长方体体积时,误将底面积和高相乘,导致计算结果错误。

3. 错题类型:数列题目:已知数列$\{a_n\}$,$a_1=1$,$a_{n+1}=2a_n+1$,求$a_n$的通项公式。

错因分析:在求解数列通项公式时,没有正确运用递推公式。

在推导通项公式时,误将等式两边同时除以$a_n$,导致通项公式错误。

4. 错题类型:概率与统计题目:袋中有5个红球、4个蓝球和3个绿球,从中随机取出3个球,求取出2个红球和1个蓝球的概率。

错因分析:在计算概率时,没有正确运用组合数公式。

在计算组合数时,误将分子分母的项数写错,导致概率计算错误。

二、反思1. 错题原因分析:从以上错题分析可以看出,错题产生的原因主要有以下几个方面:(1)基础知识掌握不牢固,对公式、定理理解不透彻;(2)解题思路不清晰,没有正确运用解题方法;(3)粗心大意,审题不仔细,导致计算错误。

2. 改进措施:(1)加强基础知识的学习,熟练掌握公式、定理,提高解题能力;(2)总结解题方法,形成解题思路,提高解题效率;(3)培养细心审题的习惯,避免粗心大意导致的错误;(4)多做练习题,提高解题速度和准确率。

总之,高考数学试卷错题是我们提高数学成绩的重要资源。

通过分析错题,找出错误原因,制定改进措施,有助于我们更好地提高数学水平。

在今后的学习中,我们要认真对待错题,总结经验教训,不断提高自己的数学能力。

高中数学各章易错点精析6-数列

高中数学各章易错点精析6-数列

第6章 数列【易错点1:n=1的讨论】例1、数列{}n a 前n 项和n s 且1111,3n n a a s +==。

(1)求234,,a a a 的值及数列{}n a 的通项公式。

【易错点分析】此题在应用n s 与n a 的关系时误认为1n n n a s s -=-对于任意n 值都成立,忽略了对n=1的情况的验证。

易得出数列{}n a 为等比数列的错误结论。

解析:易求得2341416,,3927a a a ===。

由1111,3n n a a s +==得()1123n n a s n -=≥故()111112333n n n n n a a s s a n +--=-=≥得()1423n n a a n +=≥又11a =,213a =故该数列从第二项开始为等比数列故()()21114233n nn a n -=⎧⎪=⎨⎛⎫≥⎪ ⎪⎝⎭⎩。

例2、 已知数列{a n }的首项为a 1=3,通项a n 与前n 项和S n 之间满足2a n =S n ·S n -1(n ≥2). (1)求证:{1S n}是等差数列,并求其公差;(2)求数列{a n }的通项公式.解: (1)当n ≥2时,2(S n -S n -1)=S n ·S n -1,两端同除以S n ·S n -1,得1S n -1S n -1=-12,根据等差数列的定义,知{1S n }是等差数列,且公差为-12.(2)由第(1)问的结果可得1S n =13+(n -1)×(-12),即S n =65-3n .当n =1时,a 1=3;当n ≥2时,a n =S n -S n -1=18(3n -5)(3n -8).所以a n=⎩⎨⎧3 (n =1),18(3n -5)(3n -8)(n ≥2).【易错点2:n 的分类讨论】例3、已知:函数23()3x f x x+=,数列}{n a 对N n n ∈≥,2总有111(),1n n a f a a -==;(1)求{n a }的通项公式。

高中常见易错题解析

高中常见易错题解析

高中常见易错题解析在高中阶段,学生们经常会遇到各种难题,有些题目看似简单,却常常容易出错。

本文将对高中常见易错题进行解析,帮助同学们更好地理解和解答这些题目。

1. 数学题常见的高中数学易错题主要集中在代数、几何和概率统计三个方面。

其中,关于代数的易错题主要与因式分解、二次方程和不等式相关。

比如以下题目:题目一:求解2x² - 7x + 3 = 0的解。

解析:我们可以尝试用因式分解的方法解这个方程,将其分解为(2x - 1)(x - 3) = 0,得到两个解:x = 1/2 和 x = 3。

题目二:将4x² + 12x - 20化为最简的形式。

解析:我们可以先将该式子进行因式分解,得到 4(x + 2)(x - 1)。

因此,该式子的最简形式为 4(x + 2)(x - 1)。

2. 物理题物理题主要考察学生对物理概念和公式的理解。

在求解物理题时,需要注意清晰地理解题目的要求,并运用适当的公式进行计算。

以下是一个物理题的示例:题目:一个质量为1kg的物体自由下落,经过2s后的速度是多少?解析:根据自由落体的公式 v = gt,其中 g 是重力加速度(约等于9.8m/s²),t是落地时间。

代入已知条件,可以得到 v = 9.8m/s² × 2s = 19.6m/s。

3. 化学题常见的化学易错题主要涉及元素周期表、化学方程式和溶液计算等内容。

以下是一个化学题的解析:题目:铝在氯气中燃烧生成的化合物是什么?解析:铝和氯气反应生成的化合物是铝氯化物(AlCl₃)。

在该反应中,铝的原子与氯气分子发生化学反应,生成AlCl₃。

4. 英语题英语题主要包括语法、词汇和阅读理解等方面。

以下是一个英语题的解析:题目:There are too many people here. Can you tell me ______?A. where are the restroomsB. where the restrooms areC. the restrooms are whereD. are where the restrooms解析:正确的答案是 B。

高中数学例题错题详解

高中数学例题错题详解

高中数学经典例题、错题详解【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是M NA M NBM NCM ND映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射;函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数;函数的本质是建立在两个非空数集上的特殊对应映射与函数的区别与联系:函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应;映射与函数特殊对应的共同特点:错误!可以是“一对一”;错误!可以是“多对一”;错误!不能“一对多”;错误!A中不能有剩余元素;错误!B中可以有剩余元素;映射的特点:1多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;2方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;3映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;4唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;5一一映射是一种特殊的映射方向性上题答案应选C分析根据映射的特点错误!不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数特殊对应的全部5个特点;本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题;【例2】已知集合A=R,B={x、y︱x、y∈R},f是从A到B的映射fx:→x+1、x2,1求2在B中的对应元素;22、1在A中的对应元素分析1将x=2代入对应关系,可得其在B中的对应元素为2+1、1;2由题意得:x+1=2,x2=1 得出x=1, 即2、1在A中的对应元素为1【例3】设集合A={a、b},B={c、d、e},求:1可建立从A到B的映射个数;2可建立从B到A的映射个数分析如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8例4 若函数fx为奇函数,且当x﹥0时,fx=x-1,则当x﹤0时,有A、fx ﹥0B、fx ﹤0C、fx·f-x≤0D、fx-f-x ﹥0奇函数性质:1、图象关于原点对称;2、满足f-x = - fx;3、关于原点对称的区间上单调性一致;4、如果奇函数在x=0上有定义,那么有f0=0;5、定义域关于原点对称奇偶函数共有的偶函数性质:1、 图象关于y 轴对称;2、满足f-x = fx ;3、关于原点对称的区间上单调性相反;4、如果一个函数既是奇函数有是偶函数,那么有fx=0;5、定义域关于原点对称奇偶函数共有的 基本性质:唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数即对所有x,fx=0; 通常,一个偶函数和一个奇函数的相加不会是奇函数也不会是偶函数;如x + x 2; 两个偶函数的相加为偶函数,且一个偶函数的任意常数倍亦为偶函数; 两个奇函数的相加为奇函数,且一个奇函数的任意常数倍亦为奇函数; 两个偶函数的乘积为一个偶函数; 两个奇函数的乘积为一个偶函数;一个偶函数和一个奇函数的乘积为一个奇函数; 两个偶函数的商为一个偶函数; 两个奇函数的商为一个偶函数;一个偶函数和一个奇函数的商为一个奇函数; 一个偶函数的导数为一个奇函数; 一个奇函数的导数为一个偶函数;两个奇函数的复合为一个奇函数,而两个偶函数的复合为一个偶函数; 一个偶函数和一个奇函数的复合为一个偶函数分析 fx 为奇函数,则f-x = -fx,当X ﹤0时,fx = -f-x = ---x – 1 = -x+1>0,所以A 正确,B 错误; fx·f-x=x-1-x+1﹤0,故C 错误; fx-f-x= x-1--x+1﹤0,故D 错误例5 已知函数fx 是偶函数,且x ≤0时,fx=xx-+11,求:1f5的值; 2fx=0时x 的值;3当x >0时,fx 的解析式考点 函数奇偶性的性质 专题计算题,函数的性质及应用 分析及解答1根据题意,由偶函数的性质fx= f-x,可得f5= f-5=)()(5--15-1+=—322当x ≤0时,fx=0 可求x,然后结合fx= f-x,即可求解满足条件的x, 即当x ≤0时,xx-+11=0 可得x=—1;又f1= f-1,所以当fx=0时,x=±1 3当x >0时,根据偶函数性质fx= f-x=)(1)(1x x ---+=xx+-11例6 若fx=e x +ae -x 为偶函数,则fx-1<ee 12+的解集为A.2,+∞B.0,2C.-∞,2D.-∞,0∪2,+∞考点 函数奇偶性的性质 专题转化思想;综合法;函数的性质及应用 分析及解答根据函数奇偶性的性质先求出a 值,结合函数单调性的性质求解即可∵fx=e x +ae -x 为偶函数,∴f-x=e -x +ae x = fx= e x +ae -x ,∴a=1, ∴fx=e x +e -x 在0,+∞上单调递增,在-∞,0上单调递减,则由fx-1<ee 12+=e+e 1, ∴ -1 <x-1<1, 求得 0 <x <2 故B 正确点评 本题主要考查不等式的求解,根据函数奇偶性的性质先求出a 值是解题关键 例7 函数fx=21xb ax ++是定义在-1,1上的奇函数,且f 21=52,1确定函数fx 的解析式;2证明fx 在-1,1上为增函数;3解不等式f2x-1+ fx <0考点 函数奇偶性与单调性的综合 专题函数的性质及应用 分析及解答(1) 因为fx 为-1,1上的奇函数,所以f0=0,可得b=0,由f 21=52,所以2)21(121+a=52,得出a=1,所以fx= 21x x + (2) 根据函数单调性的定义即可证明任取-1 <x 1<x 2<1,fx 1—fx 2=2111x x +—2221x x +=)1)(1()1)((22212121x x x x x x ++--因为-1 <x 1<x 2<1,所以x 1-x 2<0,1—x 1x 2>0,所以fx 1—fx 2 <0, 得出fx 1 <fx 2,即fx 在-1,1上为增函数(3) 根据函数的奇偶性、单调性可去掉不等式中的符号“f ”,再考虑到定义域可得一不等式组,解出即可:f2x-1+ fx= <0,f2x-1 <—fx,由于fx 为奇函数,所以f2x-1 <f —x,因为fx 在-1,1上为增函数,所以2x-1<—x 错误!, 因为-1 <2x-1<1错误!,-1 <x <1错误!,联立错误!错误!错误!得0 < x <31,所以解不等式f2x-1+ fx <0的解集为0,31 点评 本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性的常用方法,而抽象不等式常利用性质转化为具体不等式处理;例8 定义在R 上的奇函数fx 在0,+∞上是增函数, 又f-3=0,则不等式x fx <0的解集为 考点 函数单调性的性质 专题综合题;函数的性质及应用分析及解答 易判断fx 在-∞,0上的单调性及fx 图像所过特殊点,作出fx 草图,根据图像可解不等式; 解:∵ fx 在R 上是奇函数,且fx 在0,+∞上是增函数,∴ fx 在-∞,0上也是增函数,由f-3=0,可得- f3=0,即f3=0,由f-0=-f0,得f0=0 作出fx 的草图,如图所示:由图像得:x fx <0⇔⎩⎨⎧〈〉0)(0x f x 或⎩⎨⎧〉〈0)(0x f x ⇔0﹤x ﹤3或-3﹤x ﹤0,∴ x fx <0的解集为:-3,0∪0,3,故答案为:-3,0∪0,3点评 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键; 例9 已知fx+1的定义域为-2,3,则f2x+1的定义域为抽象函数定义域求法总结:1函数y=fgx 的定义域是a,b,求fx 的定义域:利用a <x <b,求得gx 的范围就是fx 的定义域;2函数y=fx 的定义域是a,b,求y=fgx 的定义域:利用a <gx <b,求得x 的范围就是y=fgx 的定义域;考点 函数定义域极其求法分析及解答 由fx+1的定义域为-2,3,求出 fx 的定义域,再由2x+1在函数fx 的定义域内求解x 的取值集合,得到函数f2x+1的定义域;解:由fx+1的定义域是-2,3,得-1≤x+1≤4 ;再由-1≤2x+1≤4 0≤x ≤25 ∴ f2x+1的定义域是0,25,故选A 点评 本题考查了复合函数定义域的求法,给出函数fgx 的定义域是a,b,求函数fx 的定义域,就是求x ∈a,b 内的gx 的值域;给出函数fx 的定义域是a,b,只需由a <gx <b,求解x 的取值集合即可; 例10 已知函数fx=x 7+ax 5+bx-5,且f-3= 5,则f3=A. -15B. 15 考点 函数的值;奇函数分析及解答 令gx= x 75当时,函数图像如图,由图知:只有当时,函数的图像在x 轴上方,即时,因为函数收偶函数,偶函数的图像关于y 轴对称,所以时,函数的图像在x 轴上方时,只有则不等式的解集为故选D 18、如果函数fx=x2+2a-1x+2在区间-∞,4行单调递减,那么实数a 的取值范围是 ≦-3 ≧-3 ≦5 ≧519、定义在R 上的函数)(x f 对任意两个不相等实数a,b,总有ba b f a f --)()(>0成立,则必有_______ A. )(x f 在R 上是增函数 B. )(x f 在R 上是减函数 C.函数)(x f 是先增加,后减少 D.函数)(x f 是先减少,后增加解:利用函数单调性定义,在定义域上任取x 1,x 2∈R,且x 1<x 2,因为ba b f a f --)()(>0 所以fa-fb<0,所以)(x f 在R 上是增函数;20、对于定义域R 上的函数fx,有下列命题:1若fx 满足f2>f1,则fx 在R 上时减函数;2若fx 满足f-2=f2,则函数fx 不是奇函数;3若函数fx 在区间-∞,0上是减函数,在区间0,+∞也是减函数,则fx在R 上也是减函数;4若fx 满足f-2=f2,则函数fx 不是偶函数;其中正确的是_____________________21、函数fx=x ∣x-2∣,1求作函数Y=fx 的图象;2写出函数fx 的单调区间并指出在各区间上是增函数还是减函数不必证明3已知fx=1,求x 的值22、函数Fx 是定义域为R 的偶函数,当x ≧0 时,fx=x2-x,1画出函数fx 的图象不列表;2求函数fx的解析式;3讨论方程fx-k=0的根的情况23、已知fx 的定义域为-2,3,则f2x-1的定义域为A.0,5/2B.-4,4C.-5,5D.-3,724、已知函数⎪⎩⎪⎨⎧〉-≤++=)0(10)0(63)(2x x x x a x f 且fa=10,则a= 或125、已知函数fx=x7+ax 5+bx-5,则f3=26、若函数fx=4x 2-kx-8在区间5,8上是单调函数,则k 的取值范围是A.-∞,0B.40,64C.- ∞,40∪64,+∞D.64,+ ∞27、已知二次函数fx=x 2+x+aa>0,若fm<0,则fm+1的值为A.正数B.负数C.零D.符号与a 有关 28、函数fx=∣x 2-2x ∣-m 有两个零点,m 的取值范围__________29、已知函数fx 和gx 均为奇函数,hx=afx+bgx+2,在区间0,+∞有最大值5,那么hx 在区间0,+∞的最小值为________30、对于每个实数x,设fx 取y=x+1,y=2x+1,y=-2x 三个函数中的最大值,用分段函数的形式写出fx 的解析式,求出fx 的最小值由方程组y=x+1,y=2x+1,解得x=0,y=1,得到交点A0,1;由方程组y=x+1,y=-2x,解得x=-1/3,y=2/3,得到交点B-1/3,2/3;由方程组y=2x+1,y=-2x,解得x=-1/4,y=1/2,得到交点C-1/4,1/2.由图像容易看出:1x <-1/3时,三直线的最大值是y=-2x,所以在此时fx=-2x;2-1/3≤x ≤0时,三直线的最大值是y=x+1,所以此时的fx=x+1;3x >0时,三直线中最大值是y=2x+1,所以此时的fx=2x+1.所以fx=-2x ;x <-1/3,x+1;-1/3≤x ≤0,2x+1.x >01考察函数的图像由射线—线段—射线组成的折线可以看出函数的最小值是x=1/3时的y=2/3.31、已知函数fx=x 2+ax+3,1当X ∈R 时,fx ≧a 恒成立,求a 的取值范围;2当X ∈-2,2时,fx ≧a 恒成立,求a 的取值范围;3若对一切a ∈-3,3,不等式fx ≥a 恒成立,那么实数x 的取值范围是什么 1fx ≥a 即x 2+ax+3-a ≥0,要使x ∈R 时,x 2+ax+3-a ≥0恒成立,应有△=a 2-43-a ≤0,即a 2+4a-12≤0,解得-6≤a ≤2;2当x ∈-2,2时,令gx=x 2+ax+3-a,当x ∈-2,2时,fx ≥a 恒成立,转化为gx min ≥a,分以下三种情况讨论:①当-a/2≤-2,即a ≥4时,gx 在-2,2上是增函数,∴gx 在-2,2上的最小值为g-2=7-3a,∴a ≤4 7-3a ≥0,解得a 无解②当-a/2≥-2,即a ≤4时,gx 在-2,2上是递减函数,∴gx 在-2,2上的最小值为g2=7+a,∴a ≤-4 7+a ≥0 解得-7≤a ≤-4③当-2<a/2<2时,即-4<a <4时,gx 在-2,2上的最小值为34)2(22+--=a a a g ⇒ ⇒⎪⎩⎪⎨⎧〈〈-+-4434a -2a a -4<a ≤2,解得-4<a ≤2,综上所述,实数a 的取值范围是-7≤a ≤2;3不等式fx ≥a 即x 2+ax+3-a ≥0.令ha=x-1a+x 2+3,要使ha ≥0在-3,3上恒成立,只需⎩⎨⎧≥≥-0)3(0)3(h h 即⎩⎨⎧≥+≥+-030632x x x x 解得:x ≥0或x ≤-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎨⎧ x >0 y >0 ⇔ ⎩⎨⎧ x + y >0 xy >0 ,但 ⎩⎨⎧ x >1 y >2 与 ⎩⎨⎧ x + y >3 xy >2不等价。

已知f(x) = a x + xb,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

错误解法 由条件得⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32338-≤≤-b ④ ③+④得 .343)3(310,34333310≤≤≤+≤f b a 即错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数bxax x f +=)(,其值是同时受b a 和制约的。

当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。

正确解法 由题意有⎪⎩⎪⎨⎧+=+=22)2()1(ba f ba f , 解得:)],2()1(2[32)],1()2(2[31f fb f f a -=-= ).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .337)3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。

只有牢固地掌握基础知识,才能反思性地看问题。

●忽视隐含条件,导致结果错误。

(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。

利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα.449)43(42)(22)(1212)1()1(222222--=++--+=+-++-=-+-∴k βααββαββααβα有的学生一看到449-,常受选择答案(A )的诱惑,盲从附和。

这正是思维缺乏反思性的体现。

如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。

Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒ .3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8; 当2-≤k 时,22)1()1(-+-βα的最小值是18。

这时就可以作出正确选择,只有(B )正确。

(2)已知(x+2)2+y 24=1, 求x 2+y 2的取值范围。

错解 由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 , ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283 ]。

分析 没有注意x 的取值范围要受已知条件的限制,丢掉了最小值。

事实上,由于(x+2)2+y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1, 从而当x=-1时x 2+y 2有最小值1。

∴x 2+y 2的取值范围是[1,283]。

注意有界性:偶次方x 2≥0,三角函数-1≤sinx ≤1,指数函数a x >0,圆锥曲线有界性等。

●忽视不等式中等号成立的条件,导致结果错误。

已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b )2的最小值。

错解 (a+a 1)2+(b+b 1)2=a 2+b 2+21a +21b+4≥2ab+ab 2+4≥4ab ab 1•+4=8,∴(a+a 1)2+(b+b1)2的最小值是8. 分析 上面的解答中,两次用到了基本不等式a 2+b 2≥2ab ,第一次等号成立的条件是a=b=21,第二次等号成立的条件是ab=ab 1,显然,这两个条件是不能同时成立的。

因此,8不是最小值。

事实上,原式= a 2+b 2+21a +21b +4=( a 2+b 2)+(21a +21b)+4=[(a+b)2-2ab]+[(a 1+b 1)2-ab 2]+4= (1-2ab)(1+221ba )+4,由ab ≤(2b a +)2=41 得:1-2ab ≥1-21=21, 且221b a ≥16,1+221b a ≥17,∴原式≥21×17+4=225 (当且仅当a=b=21时,等号成立),∴(a + a 1)2 + (b + b1)2的最小值是252 。

●不进行分类讨论,导致错误(1)已知数列{}n a 的前n 项和12+=nn S ,求.n a错误解法 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 错误分析 显然,当1=n 时,1231111=≠==-S a 。

错误原因:没有注意公式1--=n n n S S a 成立的条件是。

因此在运用1--=n n n S S a 时,必须检验1=n 时的情形。

即:⎩⎨⎧∈≥==),2()1(1N n n S n S a nn 。

(2)实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

错误解法 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y ,得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a错误分析 (如图2-2-1;2-2-2)显然,当0=a 时,圆与抛物线有两个公共点。

要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。

当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

思考题:实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=,(1) 有一个公共点;(2)有三个公共点;(3)有四个公共点;(4)没有公共点。

●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。

(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q.错误解法 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131,.012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由。

错误分析 在错解中,由qq a q q a q q a --⋅=--+--1)1(21)1(1)1(916131,01q q 2(q 363)=整理得--时,应有1q 0a 1≠≠和。

在等比数列中,01≠a 是显然的,但公比q 完全可能为1,因此,在解题时应先讨论公比1=q 的情况,再在1≠q 的情况下,对式子进行整理变形。

正确解法 若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ qq a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q 说明 此题为1996年全国高考文史类数学试题第(21)题,不少考生的解法同错误解法,根据评分标准而痛失2分。

(2)求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

错误解法 设所求的过点)1,0(的直线为1+=kx y ,则它与抛物线的交点为⎩⎨⎧=+=xy kx y 212,消去y 得.02)1(2=-+x kx 整理得 .01)22(22=+-+x k x k Θ直线与抛物线仅有一个交点,,0=∆∴解得∴=.21k 所求直线为.121+=x y 错误分析 此处解法共有三处错误:第一,设所求直线为1+=kx y 时,没有考虑0=k 与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的。

第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况。

原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透。

第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即,0≠k 而上述解法没作考虑,表现出思维不严密。

正确解法 ①当所求直线斜率不存在时,即直线垂直x 轴,因为过点)1,0(,所以,0=x 即y 轴,它正好与抛物线x y 22=相切。

②当所求直线斜率为零时,直线为y = 1平行x 轴,它正好与抛物线x y 22=只有一个交点。

③一般地,设所求的过点)1,0(的直线为1+=kx y )0(≠k ,则⎩⎨⎧=+=xy kx y 212,∴.01)22(22=+-+x k x k 令,0=∆解得k = 12 ,∴ 所求直线为.121+=x y 综上,满足条件的直线为:.121,0,1+===x y x y《章节易错训练题》1、已知集合M = {直线} ,N = {圆} ,则M ∩N 中元素个数是 A(集合元素的确定性) (A) 0 (B) 0或1 (C) 0或2 (D) 0或1或22、已知A = {}x | x 2 + tx + 1 = 0 ,若A ∩R * = Φ ,则实数t 集合T = ___。

{}2t t ->(空集) 3、如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是C(等号) (A) -1≤k ≤0 (B) -1≤k<0 (C) -1<k ≤0 (D) -1<k<04、命题:1A x -<3,命题:(2)()B x x a ++<0,若A 是B 的充分不必要条件,则a 的取值范围是C(等号)(A )(4,)+∞ (B )[)4,+∞ (C )(,4)-∞- (D )(],4-∞- 5、若不等式x 2-log a x <0在(0, 12 )内恒成立,则实数a 的取值范围是A(等号)(A) [116 ,1) (B) (1, + ∞)(C) (116,1)(D) (12,1)∪(1,2)6、若不等式(-1)n a < 2 + (-1)n + 1n 对于任意正整数n 恒成立,则实数a 的取值范围是A(等号) (A) [-2,32)(B) (-2,32)(C) [-3,32)(D) (-3,32)7、已知定义在实数集R 上的函数()f x 满足:(1)1f =;当0x <时,()0f x <;对于任意 的实数x 、y 都有()()()f x y f x f y +=+。

相关文档
最新文档