第三部分 多自由度系统的振动
《机械振动学》教学大纲

《机械振动学》教学大纲一、一、课程性质和目标机械振动学是机械设计、制造及自动化专业的一门专业选修课,总学时32,学分3.2。
随着机器生产率的不断提高,导致了载荷的速度和加速度的增加,这就使得机械动力学的问题变得日益突出起来,机械动力学的一个重要组成部分机械振动同样也不会例外。
本课程就是为了适应生产实际的需要,为大学本科高年级学生开设的一门技术基础课。
本课程着重从工程实际的角度对机械振动的有关理论进行讨论,使学生在掌握基本理论的基础上,能够把工程中的实际机械抽象为力学模型,然后在正确的力学模型基础上运用已有的知识进行正确的力学分析,解决一些工程实际的问题,达到学与用的统一。
二、二、先选课程或知识理论力学、材料力学、高等数学、线性代数和相关的专业知识等。
三、三、教学内容基本要求绪论(1学时)第一章第一章单自由度系统的振动(10学时)振动系统的力学模型及自由度的概念;弹性元件的形式和刚度;振动微分方程的推导;无阻尼自由振动;固有频率的计算;粘性阻尼对自由振动的影响;无阻尼受迫振动;具有粘性阻尼的受迫振动;等效粘性阻尼的概念;单自由度系统振动的利用及振动分析;单自由度系统的减动;机械结构的动应力和动刚度的概念。
第二章第二章二自由度系统的振动(8学时)应用动静法建立方程式;应用拉格朗日方程建立方程式;振动方程的一般形式及其矩阵表示法;无阻尼二自由度系统的自由振动;无阻尼二自由度系统的受迫振动;具有粘性阻尼的二自由度系统的自由振动;具有粘性阻尼的二自由度系统的受迫振动;二自由度振动系统的利用及振动机械的振动分析;振动机械及测试机器的二次隔振;动力减振原理与动力减振器。
第三章第三章多自由度系统的自由振动(6学时)多自由度系统举例;刚度矩阵与刚度影响系数;柔度矩阵与柔度影响系数;惯性藕联和弹性藕联;固有频率与振型矩阵。
第四章第四章多自由度系统的受迫振动(3学时)无阻尼系统受迫振动的响应;多自由度系统的阻尼。
四、实践性环节基本要求25个自由度系统的计算机辅助振动分析4学时五、课程考核要求由主讲教师自定考核。
第3章 多自由度机械振动系统 作业答案

⎤ ⎡ x1 ⎤ ⎡ p1 ( t ) ⎤ ⎢x ⎥ = ⎢ p t ⎥ − k3 ⎥ ⎥ ⎢ 2 ⎥ ⎢ 2 ( )⎥ k3 + k 4 ⎥ ⎦⎢ ⎣ x3 ⎥ ⎦ ⎢ ⎣ p3 ( t ) ⎥ ⎦ 0
d ∂T ∂T ∂U ∂D ( )− + + = Qi i ∂qi ∂qi ∂q i dt ∂q
2、拉格朗日法:
1 1 2 12 + m2 x 2 T = m1 x 2 2
U=
1 2 1 1 2 ⎤ k1 x1 + k2 (2 x2 − x1 ) 2 = ⎡ (k1 + k2 ) x12 + 4k2 x1 x2 + 4k2 x2 ⎣ ⎦ 2 2 2
Dr. Rong Guo
School of automotive studies, tongji university
⎡ k1r 2 K =⎢ 2 ⎣ − k1r
⎡3 2 ⎢ 2 Mr ⎢ ⎢ 0 ⎢ ⎣ 0
⎤ ⎥ ( k1 + k2 ) r 2 ⎦ − k1r 2
− k1r 2 ⎤ ⎡θ1 ⎤ ⎡0 ⎤ ⎥⎢ ⎥ = ⎢ ⎥ θ 2 ⎦ ⎣0 ⎦ ( k1 + k2 ) r 2 ⎦ ⎣
⎤ ⎤ ⎡ k1r 2 ⎥ ⎡θ ⎥ ⎢ 1 ⎥ + ⎢ 3 −k r 2 θ Mr 2 ⎥ ⎣ 2 ⎦ ⎣ 1 ⎥ ⎦ 2
x1 2l + k1 x1 2l + m2 x2l = 0 ⎧m1 ⎨ ⎩m2 x2l + k2 ( 2 x2 − x1 ) 2l = 0 x1 + m2 x2l + 2k1 x1 = 0 ⎧2m1 ⎨ x2 − 2k2 x1 + 4k2 x2 = 0 ⎩ m2 ⎡ 2m1 ⎢ 0 ⎣ m2 ⎤ ⎡ x1 ⎤ ⎡ 2k1 ⎢ ⎥ + ⎢ −2 k m2 ⎥ x 2 ⎦⎣ 2⎦ ⎣ 0 ⎤ ⎡ x1 ⎤ ⎡0 ⎤ ⎢ x ⎥ = ⎢0 ⎥ 4k 2 ⎥ ⎦⎣ 2⎦ ⎣ ⎦
多自由度系统的振动

m1x1 2kx1 kx2 0 2mx2 kx1 2kx2 0
5.1 两自由度系统的模态
m
0
0 2m
xx12
2k k
k
2k
xx12
5.1 两自由度系统的模态
主振动 x(t) u cos(t )
代入运动微分方程 Mx Kx 0
化简可得代数齐次方程组 (K 2M )u 0
k1+k2
-k2
2
m1
-k2
k2+k3
2m2
uu12
0 0
上式存在非零解的充要条件:系数行列式为零,即:
K 2M 0
k1+k2 2m1
两自由度系统的振动
多自由度系统的特点:
各个自由度彼此相互联系,某一自由度的振动往 往导致整个系统的振动。
运动微分方程的变量之间通常相互耦合,需要求 解联立方程。
返回首页
两自由度系统的振动
多自由度系统是指具有两个以上自由度以上的动力学系 统,二自由度系统是最简单的多自由度系统。
汽车左右对称,化为平面系统
5.1 两自由度系统的模态
再将初始条件(2)代入式,得
A(1) 1
0,
1 0,
A(2) 1
1,
2 0
x1(t) cos2t cos 3
kt m
(cm)
x2 (t) cos2t cos 3
k t (cm)
m
这表明,由于初始位移之比等于该系统的第二振幅比,因 此,系统按第二主振型以频率ω2作谐振动。
机械振动学(第三章)-多自由度振动系统

装备制造学院
College of Equipment Manufacture
利用直接法,对下图所示的三自由度振动系统建立微分方程。。
装备制造学院
College of Equipment Manufacture
解:1)受力分析 选取 m1, m2和m3离开平衡位置的坐标x1, x2和 x3 为3 个独立 坐标。受力分析如图所示 2)建立振动微分方程 (c c ) x c x ( k k ) x k x p (t ) x m1: m 2 2 2 2 2 ( c 2 c 3 ) x 2 c2 x 1 c 3 x 3 ( k 2 k 3 ) x 2 k 2 x1 k 3 x 3 p 2 ( t ) x m2: m 2 2 2 2 3 c 3 x 3 c3 x 2 k 3 x3 k 3 x 2 p 3 (t ) x m3: m 3
装备制造学院
College of Equipment Manufacture
本章结束
装备制造学院 College of Equipment Manufacture
3 )如果将应为能量耗散函数 D 引起的阻尼力也从其他的非势 力的广义力中分离出来,并使Qi仅代表外部作用的广义激振力, 则可将非保守系统的拉格朗日方程改为:
d dt ( T i q ) T i q U qi D i q Q i ( i 1, 2 , 3 ,...., n )
车 身 车 轮 二 自 由 度 振 动 问 题
装备制造学院
College of Equipment Manufacture
装备制造学院
College of Equipment Manufacture
多自由度系统振动

(2)半正定系统
可能出现形如 的同步运动。
也可能出现形如 的同步运动
主振动
首先讨论正定系统的主振动:
M 正定,K 正定
主振动:
正定系统:
或
当 不是重特征根时,可以通过 B 的伴随矩阵 求得相应的主振型 。
根据逆矩阵定义 :
两边左乘 :
当 时 :
或
的任一非零列都是第 i 阶主振动
主振动的伴随矩阵求法:
伴随矩阵:矩阵A中的元素都用它们在行列式A中的代数余子式替换后得到的矩阵再转置,这个矩阵叫A的伴随矩阵。 A与A的伴随矩阵左乘、右乘结果都是主对角线上的元素全为A的行列式的对角阵。
画图: 横坐标表示静平衡位置,纵坐标表示主振型中各元素的值。
第一阶主振动:
m
2m
两个质量以w1为振动频率,同时经过各自的平衡位置,方向相同,而且每一时刻的位移量都相同。
同向运动
画图: 横坐标表示静平衡位置,纵坐标表示主振型中各元素的值
m
2m
第二阶主振动:
两个质量以w2为振动频率,同时经过各自的平衡位置,方向相反,每一时刻第一个质量的位移都第二个质量的位移的两倍。
设最后一个方程不独立,把它划去,并且把含有 的某个元素(例如 )的项全部移到等号右端.
当 不是特征多项式的重根时,上式 n 个方程中有且只有一个是不独立的 。 设最后一个方程不独立,把它划去,并且把含有 的某个元素(例如 )的项全部移到等号右端 。 若这个方程组左端的系数行列式不为零,则可解出用 表示的 否则应把含 的另一个元素的项移到等号右端,再解方程组。 多自由度系统振动 / 多自由度系统的自由振动/模态 n -1个方程 非奇次方程组
第三章 多自由度系统振动6.19

第三章 多自由度系统振动多自由度系统和单自由度系统的振动特性是有区别的。
单自由度系统受初始扰动后,按系统的固有频率作简谐振动。
多自由度系统有多个固有频率,当系统按某一个固有频率作自由振动时,各独立坐标在振动过程中相互关系是固定的,这个关系叫振幅比,也叫作主振型或模态。
主振型是多自由度系统以及弹性体振动的重要特征。
多自由度系统的振动方程是多个二阶微分方程组,这些方程一般是耦合的。
多自由度振动的求解有两种方法:直接积分法和振型叠加法。
直接积分法可直接根据微分方程求出响应,涉及的概念不多且有应用软件,本章不做介绍。
振形叠加法要先求出系统的固有频率和振型,在此基础用叠加法求响应,物理概念清楚、并且是模态分析与参数识别的理论基础。
因此本章将先用较多的篇幅介绍多自由度系统的固有振动特性、振型叠加法和传递函数。
3.1 振动微分方程虽然一些多自由度系统数目较多,有些相当复杂,但建立多自由度系统振动微分方程并没有新理论和方法,都是动力学基本理论和方法,本节只通过例题介绍多自由度系统振动微分方程基本形式。
[例一] 试建立图3-1所示3自由度系统的运动微分方程。
三个质量只作水平方向的运动,并分别受到激振力()t P 1,()t P 2和()t P 3的作用,质量块的质量分别为1m ,2m 和3m ,弹簧刚度分别为1k ,2k 3k 和4k ,阻尼分别为1c ,2c 3c 和4c 。
图3-1 3自由度系统)(1t P 3m )(2t P 1m 2m )(3t P 1k 1c 2c 3c 2k 3k 4k 4c解:分别用三个独立坐标1x ,2x 和3x 描述三个质量块的运动,坐标原点分别取在1m ,2m 和3m 的静平衡位置。
质量块的速度分别为1x,2x 和3x ,加速度分别为1x,2x 和3x 。
每个质量块的受力图如3-2(a 、b 、c )所示,则由受力图根据牛顿第二定律,得系统的运动方程为:图3-2 (a) 图3-2(b)图3-2(c))()()(1212112121111t P x x c x c x x k x k xm +------= )()()()()(232321232321222t P x x c x x c x x k x x k x m +---+---= )()()(3343233432333t P x c x x c x k x x k xm +--+--= 或)()()(1221212212111t P x k x k k x c x c c xm =-++-++ )()()(23323212332321222t P x k x k k x k x c x c c x c x m =-++--++- )()()(3343233432333t P x k k x k x c c x c xm =++-++- 上述方程组可以用矩阵表示为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)()()(000032132143333222213214333322221321321t P t P t P x x x k k k k k k k k k k x x x c c c c c c c c c c x x x m m m三个二阶微分方程是耦合的,这是因为矩阵中有非零的非对角元素。
第三章(多自由度系统的振动)

固有振型的正交性
加权正交性的简洁表示
T r M s 0, r s
M s M r , r s
T r
rT M s M r rs
rs
def
1, r s 0, r s
rT K s 0, r s
rT K s K r , r s
x
x1 1
节点
x3 1
3 2
k m
x2 1
理解固有振型
理解固有振型
理解固有振型
返回
固有振型的正交性
1.固有振型的归一化
2 r 1 3 2 r 1 3
都是固有振型向量 ① 按某一自由度的幅值归一化
k m
理解固有振型
3k k 0 m 0 0 1 0 k 2k k 2 0 m 0 2 0 0 k 3k 0 0 m 3 0
u(t ) sin(t )
对任意时间都成立
( M ) 0, 2
特征方程 特征值
det( K M ) 0
r (r 1, 2, N )
有非零
r (r 1, 2, N )
特征向量
u(t ) ψa sin(t ) φ sin(t )
结论: 系统存在形如 形式的同步振动。
u(t ) φ sin(t )
多自由度系统的固有振动
2.多自由度系统的固有振动
Mu(t ) Ku(t ) 0
( K 2 M ) sin(t ) 0
第r阶模态质量
固有振型关于刚度矩阵加权正交性 T 当 rs 时 r K s 0 T r K s K r 当 rs时
振动力学(两自由度系统和多自由度系统)

2
振动理论及应用
第3章 多自由度系统的振动
3.1 两自由度系统的振动方程 ——刚度矩阵和质量矩阵
建立运动微分方程的方法和单自由度系统基本一样, 但难 度更大。
3.1.1 运动微分方程
标准的m-k-c系统,对每一质量利用牛顿定律得:
3
振动理论及应用
坐标原点仍取在静平衡位置
具体求解时,只假设j坐标处的位移为1,其它各坐标的位 移均为0。
7
振动理论及应用
5.2.3 惯性影响系数与质量矩阵
第3章 多自由度系统的振动
质量矩阵[M]中的元素称为惯性(质量)影响系数,其 mij的力学意义是:仅在j坐标处产生单位广义加速度,需在i坐 标处施加的广义力。
具体求解时,只假设j坐标处的加速度为1,其它各坐标的 加速度均为0。
2
x1 5 kx1 5 kx2
V x2
2 5
kx1
1 5
kx2
26
振动理论及应用
第3章 多自由度系统的振动
计算广义力,设只有x1处产生虚位移x1,则
Q1
cx1 x1 x1
cx1
同样设x2处产生虚位移x2,则
Q2
c 0
x2
0
代入拉格朗日方程即可。
27
振动理论及应用
第3章 多自由度系统的振动
5l 3
48EI
k12
l3 3EI
k22
1
求出各个刚度系数即组 成刚度矩阵[K]。
17
振动理论及应用
第3章 多自由度系统的振动
用拉格朗日方程 建立振动系统的运动微分方程
对于非标准的m-k-c多自由度振动系统,用传统的动力学 方法建立运动微分方程比较困难,更适合使用拉格郎日方程和 能量的方法。拉格郎日方程为:
飞行器结构动力学_第1章_2014版 [兼容模式]
![飞行器结构动力学_第1章_2014版 [兼容模式]](https://img.taocdn.com/s3/m/1a6d4b0ede80d4d8d15a4f4f.png)
– 第四章:连续系统
• 杆的振动 轴的振动 • 梁的振动 薄板振动
– 第五章:结构动力学建模
• 有限元模型建立(第6章) • 结构模态分析(第7章)
第1章 概 论
第1章 概 论
现代有限元分析——结果
第1章 概 论
实验手段
地面静力实验
第1章 概 论
地面振动实验(Ground Vibration Test,GVT)
• 确保边界条件 • 激励方式
第1章 概 论
• 传感器布置 • 信号处理
F-16 GVT悬吊
第1章 概 论
风洞实验——颤振
第1章 概 论
NASA兰利
第1章 概 论
结构动力学建模(2)
• 原则 – 保持原有系统的动力学特性(或近似) – 必须和观察到的实际模型尽可能相似
• 初步设计阶段可采用一定简化,详细设计阶段 尽可能细化
• 方法 – 1.集中参数描述的离散系统 – 2.分布参数描述 – 3.两种方法的混合
• 例子: – 导弹在空中飞行;飞机在空中飞行
• 量子场理论(quantum field theory,QFT):具有很多自由度的量子一级
的问题 第1章 概 论
背景知识(续)
牛顿
• 牛顿三定律
– 奠定了经典力学基础 • 《自然哲学的数学原理》
– 对第2、3定律给出了合理的科学和数学描述 – 阐述了动量守恒和角动量守恒原理 • 万有引力定律 – 最先给出引力的科学、准确的表达式 • 牛顿运动定律和万有引力定律 – 对经典力学进行了最完整和最准确的描述 – 适用于日常物体和天体 • 发明了微积分 – 莱布尼茨发明了现在常用的求导和积分符号
多自由度系统振动理论及应用

对一些较简单的问题,用牛顿定律来建立振动微分方程是简便的.
图4-1所示为无阻尼三自由度弹簧质量系统,可参照二自由度系统的方
法,写出其微分方程:
下一页
返回
4.1
多自由度系统的振动微分方程
或更一般地写成
该式可简单地写成
式(4-2)称为用矩阵符号表示的作用力方程,它可以代表许多种运动方程
种心灵的孤独。
2. 与 个 别 人 难 以 相 处
一些学生能够与多数人保持良好的关系,但与个别人交往
不 良 。 因 此 ,常 会 影 响 情 绪 ,如 鲠 在 喉 。
上一页 下一页
返回
任 务 一了解自己与人交往的现状
3. 与 他 人 交 往 平 淡
一些学生虽然能与他人交往,但多属点头之交,没有关系
人际关系新起点
1
任 务 一 了解自己与人交往的现状
2
任 务 二 调整不良交际心态
任 务 一了解自己与人交往的现状
任 务 提 出 :了 解 自 己 与 人 交 往 的 现 状 。
任 务 目 标 :了 解 自 己 与 人 交 往 的 现 状 ,激 发 学 习 热 情 ,明 确 努
力方向。
喜欢独来独往。
(3) 嫉 妒 心 理 。 部 分 大 学 生 不 能 正 确 对 待 别 人 的 长 处 和 优
点,看到别人冒尖心里嫉妒,对比自己水平高的同学采取
讽 刺 、 挖 苦 、 打 击 、 嘲 笑 等 不 当 方 式 ,给 别 人 造 成 伤 害 ,严
重影响了同学之间的沟通。
上一页
多自由度系统的振动、响应和求解

D k vD
B Q2
A Q1
k vA
位移图
受力图
图(b) v21, v1v30时板的位移和受力图
(2)求刚度矩阵第二列 参见图 b,可得板的力平衡方程:
Q3 kvA kvD 0 Q1L (kvA kvD) L 0 Q1 Q2 kvE 0
;其中
k
12EI L3
解得 Q 1 2 k , Q 2 3 k , Q 3 0
微振动时, i ,
&
i
为小量,将以上能量保留到二阶小量,得
(注意:为了得到线性振动方程,能量表达式必须保留 到二阶微量)
T 12ml2[3&12 2&22 &32 4&1&2 2&2&3 2&3&1]
3
12ml2{&1,&2,&3}2
1
2 2 1
11&&12 1&3
V
1 2
mgl
(312
222
简支梁在横向集中力作用下的挠度公式为
P
f Pb(xl2x2b2), 0xa 6EIl
x
a
b
l
f Pb[l(xa)3(l2b2)xx3], axl
6EIlb
例4.1 写出图示梁的柔度矩阵,梁的抗弯刚度为EI。如果 将梁的质量按分段区间均分到区间的两个端点,写出梁的质
量矩阵,设梁单位长度的质量为 l。
;其中
k
12EI L3
Q1 Q2
2 2
(kvA
kvD
)
0
解得 Q 1 4 k , Q 2 2 k , Q 3 0
因此,刚度矩阵第一列为
第五章(第3节)多自由度系统的振动讲解

0
0 m
x
y
3 i 1
ki
sincosi 2cosi i
sin i
sin
cos
2 i
i
x y
Qx Qy
5.3 振型向量(模态向量)的正交性·展开定
理
1.固有振型的正交性——例题:正交性验证(例:5.3-1)
将以上各i值和k1=k2=k3=k代入刚度矩阵,得
3
i1
ki
cos2 i sini cosi
sini cosi
sin 2 i
k
1 0
0 0
k
1
4 3
4
3 34
4
k
34 34
3 4 1 4
k
2 0
0 1
或
Cr u(r)T Mw
单位矩阵,模态刚度矩阵为固有频率平方的对角
矩阵,即
1
Mr
uT Mu
I
1
(5.3-17)
1
5.3 振型向量(模态向量)的正交性·展开定 理
2.模态矩阵
12
Kr
uT Ku
Λ
22
(5.3-18)
n2
●由于振型向量只表示系统作固有振动时各 坐标间幅值的相对大小,所以模态质量和模态刚 度的值依赖于正则化方法,只有进行正则化后, 才能确定振型向量各元素的具体数值,也才能使 Mr和Kr具有确定的值。
第三章 多自由度系统振动

U = U ( q1 , q2 ,..., qn )
通常将静平衡位置作为势能零点, 并且以静平衡 通常将静平衡位置作为势能零点, 位置为坐标原点。 位置为坐标原点。 我们研究的是在静平衡位置附 近的微振动, 近的微振动,则将 U 在静平衡位置作泰勒展开有
∂U U = U0 + ∑ i =1 ∂qi
0
q
对应的广义力,阻尼力,耗散力。 对应的广义力,阻尼力,耗散力。系统的第 k 个 质点受到的阻尼力
& Rk = − β k ⋅ rk
与势能形式上对应存在一个耗散函数
m n 1 ∂rk dqi n ∂rk dq j 1 & & Φ = ∑ β k ⋅ rk ⋅ rk = ∑ β k ⋅ ∑ ⋅ ⋅∑ ⋅ dt j =1 ∂q j dt k =1 2 k =1 2 i =1 ∂qi
kn 2 − mn 2ωi2 ) ⋅ ϕ 2i + ... + ( knn − mnnωi2 ) ⋅ ϕ ni = ( mn1ωi2 − kn1 ) ϕ1i (
n − 1 个方程,n − 1 未知数, 个方程, 未知数, 最终可求出 ϕ2i ,..., ϕni 用 ϕ1i
表示,其余都与其成一定比例。 表示,其余都与其成一定比例。 与其成一定比例
系统的能量等于各阶主振动的能量之和不同阶之间能量不发生变换每一阶主振动的动能和势能在内部交换总和保持常数34多自由度系统的受迫振动mxcxkx1特征值分析求出无阻尼的各阶固有频率和各阶主振型2模态叠加方法分解解耦期望阻尼阵也和mk一样具有正交性即如果这样就可以使用模态叠加法进行解耦分析求解
结 构 动 力 学
1 n n ∂ 2U U = ∑∑ 0 qi q j 2 i =1 j =1 ∂qi ∂q j , 令
多自由度系统振动

的方法。
传递矩阵法适用于线性时不变系 统,能够处理多自由度系统的振
动问题,计算效率较高。
传递矩阵法的精度取决于系统参 数和边界条件的准确性,对于复 杂系统和非线性问题,需要采用
其他方法进行求解。
模态叠加法
模态叠加法是一种基于模态展开的数值 计算方法,通过将系统的振动表示为一 系列模态的线性组合,求解每个模态的
振动方程,得到系统的动态特性。
模态叠加法适用于线性时不变系统,能 够处理多自由度系统的振动问题,计算
精度较高。
模态叠加法需要选择合适的模态数目和 模态提取方法,对于大规模系统和复杂
未来研究方向
深入研究多自由度系统振动的 非线性特性,探索更精确的数
学模型和数值模拟方法。
针对复杂多自由度系统,研究 多因素耦合振动和多场耦合振
动的理论和方法。
发展多自由度系统振动主动控 制和智能控制技术,提高系统 振动控制精度和响应速度。
将多自由度系统振动理论应用 于实际工程领域,解决重大装 备和结构的振动问题,提高其 稳定性和安全性。
THANKS FOR WATCHING
感谢您的观看
02
它涉及到多个振动子之间的相互 作用和耦合,其动力学行为比单 自由度系统更为复杂。
研究背景和意义
随着科技的发展,多自由度系统在许多领域中得到了广泛应用,如大型机械装备、 精密仪器、高层建筑等。
由于多自由度系统在受到外部激励或内部参数变化时,会产生复杂的振动行为,这 不仅会影响系统的性能和稳定性,还可能引发安全问题。
航天器振动控制
总结词
多自由度系统的振动__1

多自由度系统的振动 / 拉格朗日法
d T T U ( ) 0 dt q q q
引入拉格朗日算子: 则:
保守系统
L T V
d L L ( ) Qi i qi dt q
多自由度系统的振动 / 拉格朗日法
: 如图所示
图 刚体微幅运动
多自由度系统的振动 / 拉格朗日法
————————
———————
多自由度系统的振动 / 坐标耦合与坐标变换
—————
———
多自由度系统的振动 / 坐标耦合与坐标变换
———
————————————
—————————————
多自由度系统的振动 / 坐标耦合与坐标变换
多自由度系统的振动 / 坐标耦合与坐标变换
多自由度系统的振动 / 坐标耦合与坐标变换
多自由度系统的振动 / 多自由度系统的运动微分方程
——————
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动 / 多自由度系统的运动微分方程
————————
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动 / 多自由度系统的运动微分方程
多自由度系统的振动
————————
——————————— —
———————— ————
——————————————————
多自由度系统的振动
线性变换 —— 将描述实际问题 的广义坐标用一组新的
坐标代替
多自由度系统与单自由度系统的一个重要区别是 它有多个固有频率和相应的振型。由此引出了特征值 —————————————— 问题及其解答(固有频率与主振型),这是模态分析 法的基础。
结构动力学之多自由度体系的振动问题ppt课件

448 (1 536)2
m1m2l 6 (EI )2
0
解得
21
23l3 (m1 m2 2 1 536EI
)
529(m1 m2 )2l6 41 5362 (EI )2
448m1m2l 6 1 5362 (EI )2
从而得第一和第二阶自振频率
1
1
1
2
1
2
为了确定第一阶振型,可将1代入平衡方程。
其展开式是关于λ的n次代数方程,先求出λi再求 出频率ωi
柔度法
(11m1 )
12m2
...
21m1 ( 22m2 ) ...
...
...
...
1n mn 2nmn 0
...
n1m1
n2m2 ... ( nnmn )
将λi代入 ( [δ] [M] - λi [I ] ){Y(i)}={0} 可求出n个主振型。
多个自由度体系的自由振动
结构在受迫振动时的动力响应与结构的动力特性 密切相关;另外,当用振型叠加法计算任意干扰力 作用下结构的动力响应时,往往要用到自由振动的 频率(frequency)和振型(mode)。
为此,要需要首先分析自由振动。
自振频率和振型的计算
m1
m2
mi
mn
y1(t) y2(t)
yi(t)
刚度法
其中最小的频率1 称为最低自振频率,或称
基本频率。 通常将上述每一个频率所对应的振动都称为
主振动,对应于每一个主振动的形状称为主振 型。
1)如果各质体的初速度为零,而初位移和某 一振型成比例,然后任其自然,则系统就按 这个振型作简谐自由振动,此解答就相应于 该振动的一组特解;
多自由度体系的振动

振动的基本概念
振动定义
振动是指物体在平衡位置附近进行的往复运动。在多自由度体系中,各质点间的振动相互 作用和能量传递使得整个体系呈现出复杂的振动行为。
振动分类
根据振动频率的不同,可以分为低频振动和高频振动;根据振动原因的不同,可以分为自 然振动和受迫振动。
振动分析方法
对多自由度体系的振动进行分析时,可以采用模态分析法、直接积分法、传递矩阵法等多 种方法。模态分析法是一种常用的简化分析方法,通过求解体系的特征值和特征向量来确 定体系的模态参数,进而分析其振动特性。
振动控制的方法
01
02
03
主动控制
通过向系统输入能量或信 号,主动改变系统的振动 状态,以达到减振的目的。
被动控制
通过吸收、隔离或阻尼系 统振动能量,被动地抑制 系统振动。
混合控制
结合主动和被动控制方法 的优点,以提高减振效果。
主动控制
主动控制利用外部能源向系统提供控 制力,通过实时监测和反馈系统振动 状态,主动调整控制力的大小和方向 ,以达到减振的目的。
将结构划分为有限个单元,通过建立单元 间的传递矩阵来描述振动能量的传递和散 射。
模态分析
模态振型
描述结构在不同频率下的振动 形态。
模态频率
结构的固有频率,对应于特定 的模态振型。
模态刚度和模态阻尼
描述模态的力学特性和能量耗 散特性。
模态分析的应用
用于结构的动力学特性分析、 振动控制和优化设计等。
响应分析
数据采集系统
将振动传感器采集到的信号进行放大、 滤波和模数转换,以便进行后续处理 和分析。
振动隔离技术
主动控制技术
通过传感器检测多自由度体系的 振动,并使用主动控制算法产生
多自由度(线性)阻尼系统振动讲义

第3章 多自由度线性系统的振动 3. 1 振动微分方程 3 多自由度线性系统的振动
例3.2 建立三自由度系统的振动微分方程
柔度系数:单位外力所引起的系统位移 ,定 义系统第j个坐标上作用的单位力在第i个广 义坐标上所引起的位移为柔度系数 h 。 ij
三自由度系统
在质量m 上施加单位力,质量m 、 m 和m 的位移: x =1/k , x =1/k , 1 1 2 3 1 1 2 1 x =1/k ,即h = h = k = 1/k ; 3 1 11 21 31 1 在质量m 上施加单位力,质量m 、 m 和m 的位移: x =1/k , 2 1 2 3 1 1 x =1/k +1/k , x = 1/k +1/k ,即柔度系数h = 1/k , h = k = 1/k +1/k ,; 2 1 2 3 1 2 12 1 22 32 1 2 在质量m 上施加单位力,质量m 、 m 和m 的位移: x =1/k , 3 1 2 3 1 1 x =1/k +1/k , x =1/k +1/k +1/k 。即柔度系数x =1/k , x =1/k +1/k , x = 2 1 2 3 1 2 3 1 1 2 1 2 3 1/k +1/k +1/k 。 1 2 é1 3 ù 1 1 振动 ê k m x ü k k ú é 1 0 0 ùì &&1 ü ì x ü ì 0 1 1 1 1 ï ê ú ê 0 m 0 ú ï && ï +ï x ï =ï0 1 1 + 1 x ý í 2 ý í ý 微分 ê 1 k 1 k + k 2 ú í 2 úê k k 1 1 2 1 2 ï ï ï ï ï ï 1 + 1 1 +1 + 1 ú ê 0 0 m ú î&&3 þ îx þ î0 3 û x 3 ë þ 方程 ê 1 ê k k k k k k ú 1 2 1 2 3 û ë 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q t uη(t) u r t
r
r 1
n
u11 u12 u1n u u u 21 22 2n 1 (t ) 2 (t ) n (t ) un1 un 2 unn
(r )
1
r
u
(r )
r u
( r )T
Mu( r )
正则振型
主振型 正则化因子
组成正则振型矩阵
u u
(1)
u
(2)
u
(n )
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的基本步骤: (4)用正则振型矩阵进行坐标变换(方程组解耦)
q t uη t 令 代入无阻尼自由振动系统,并用uT左乘方程
2 r t 2 rrr t r r t Nr (t )
r 1,2,, n
(5)按单自由度相关方法求各正则坐标下的响应 各正则坐标下单自由度自由振动系统,对初始条件的 响应 1)原坐标下的初始条件变换为正则坐标下的初始条件
η0 u q0 T η0 u Mq0 ,
u( s )T Ku(r ) 0
(r s )
u( r )T Ku(r ) r2
M r u Mu
T
K r uT Ku 12 2 2 Λ 2 n
1 1 I 1
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的类型: 无阻尼振动系统对初始条件的响应 无阻尼振动系统对任意激励的响应 有阻尼振动系统对各种激励的响应 (简谐激励、周期激励、任意激励)
5k 0 0 2m K 2 k 其中, M 0 1 . 5 m 0 0 m 0 0 2 k 3k k 0 k k
0 F(t) Q sin t 2 0
u'(2) 已知该振动系统的二阶振型为,
则系统的微分方程为
CX KX Q MX
系统的特征矩阵为
2.5k 2 m 1.5k 0 H K 2 M 1.5k 3.5k 2 m 2k 2 0 2 k 3 k m
第三部分 多自由度系统的振动 5 例题 响应求解 Kq F(t) 某振动系统的运动微分方程为:Mq
Q3
m3
k4 r4 x3
解:
m1 M 0 0
0 m2 0
0 0 m3
k1 k2 K k2 0
k2 k 2 k3 k3
k3 k3 k 4 0
第三部分 多自由度系统的振动 5 例题 求解振动方程
1)简谐激励,
F t F0 sin t
2 r r
r t 2 rr r t t N0r sin(t )
r 1,2,, n
N0r u
r T
F0
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的基本步骤: 2)周期激励,F t F (t jT )
u
u Mu M1 Mr M2 Mn
T
( s )T
Ku
(r )
0
(r s )
uT Ku K1 Kr K2 Kn
u( r )T Ku(r ) Kr
第三部分 多自由度系统的振动 3 固有振型的正交性(正则振型) u( s )T Mu(r ) 0 (r s ) u( r )T Mu( r ) 1
r t 2 rr r t r t
2 r
a0 N r t a j cos j t b j sin j t 2 j 1 r 1,2,, n
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的基本步骤: 3)任意激励,
第三部分 多自由度振动系统
基本知识点
1 多自由度系统运动微分方程
2 多自由度系统特征值问题(固有频率及固有振型) 3 固有振型的正交性 4 对多自由度系统振动求响应 5例题
第三部分 多自由度系统的振动 1 多自由度系统运动微分方程
Cq Kq Q Mq
●牛顿力学方法: 这种方法必须考虑约束反力并画出物体系统的受力 图,对于一些简单问题,采用这种方法比较直观简便。 ●分析力学方法: 这种方法首先应该合理选取系统的广义坐标,然后 根据拉格朗日方程等分析力学方法,建立系统的运动方 程,由于这种方法仅涉及动能、势能和功等标量形式的 物理量,对于复杂的多自由度振动系统建立运动微分方 程较为方便。 d T T U ( j 1 , 2 , , n ) Q ( t ) j q q dt q j j j
正则振型 一个很简便的正则化方法就是令
u
有
( r )T
Mu
(r )
1
(r 1, 2,, n)
(r 1, 2,, n)
u( r )T Ku( r ) r2
第三部分 多自由度系统的振动 3 固有振型的正交性(主振型)
u( s )T Mu(r ) 0 (r s )
u( r )T Mu(r ) M r
r1 r2 C r2 0 r2 r2 r3 r3
1 x1 0 x Q1 X x X x r3 Q Q2 2 2 3 x3 x Q r3 r4 3 x1 X x 2 x3
r 0 r t r 0 cos r t sin r t r
r
1
t 0
N r sin r t d
(5.6-14)
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 各正则坐标下单自由度有阻尼振动系统对各种激振的 响应 1)简谐激励(稳态响应)
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 求解的基本步骤: (2)求系统的特征值和特征向量(固有频率及主振型)
( ) det( K M ) 0
2 2
( K r2 M )u(r ) 0 (r 1, 2,, n)
(3)将固有振型转换成正则振型
u
第三部分 多自由度系统的振动 2 多自由度系统特征值问题(固有频率及固有振型) 按无阻尼自由振动方程进行求解 固有频率求解:
Kq 0 Mq
( 2 ) det( K 2 M ) 0
2 n a1 2( n1) a2 2( n2) an1 2 an 0
1
0 u1q 0 η T 0 u Mq 0 η
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 2)初始条件响应求解公式
r 0 r t r 0 cos r t sin r t (r 1,2,,n) r
各正则坐标下单自由度无阻尼任意激振振动系统的响 应 1)原坐标下的初始条件变换为正则坐标下的初始条件 2)任意激振响应求解公式
第三部分 多自由度系统的振动 5 例题 求解振动方程 k1 k 4 k 图示三自由度有阻尼受迫振动系统。已知: k 2 1.5k , k3 2k , m1 m2 m3 m 试建立该系统的振 动微分方程,并写出系统的特征矩阵。
k1 Q1
r1
m1
k2 r2
x1
Q2
m2
k3 r3 x2
r t
N0 r
2 r
1 2
2 2 r r r
1
2
sin t r
2 r r r tg 1 r2
r r
N0r u
r T
F0
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 2)周期激励(稳态响应) 1 a0 r t 2 H rj j a j cos jt rj b j sin jt rj r 2 j 1 式中
H rj j
1
2 r jr rj tg 2 2 1 j r r r
1
1 j 2
2 2 2 r
r
jr
2
第三部分 多自由度系统的振动 4 对多自由度系统振动求响应 3)任意激励 r 0 rrr 0 r r t r t e sin dr t r 0 cos dr t dr 1 t r r t N e sin dr t d r
dr
0
dr 1 r r 0 u
2 r
r T
Mq0 ,
r 0 u
r T
0 Mq
经过上述步骤可求得正则坐标下的响应
η(t) 1 (t ) 2 (t ) n (t )
T
第三部分ห้องสมุดไป่ตู้多自由度系统的振动 4 对多自由度系统振动求响应 (5)变换为原坐标下的响应
固有振型求解: 将求得的固有频率r (r=1,2,…,n)分别代入下面的方 程,得
( K M )u
2 r
(r )
0 (r 1, 2,, n)
第三部分 多自由度系统的振动 振型向量可以排列成为n阶方阵,称为模态矩阵(或 振型矩阵),即
(1) u u
u(2) u( n )
0.679 0.6066 1.000
试用模态分析法求对应于二阶振型的强迫振动解。