第六章 校正1资料.
第六章自动控制原理自动控制系统的校正
第六章自动控制原理自动控制系统的校正自动控制原理是指通过一系列的传感器、执行器和控制器等装置,对待控制对象进行检测、判断和调节,以实现对系统的自动调控和校正。
在自动控制系统中,校正是一个重要的环节,对于确保系统的稳定性、准确性和可靠性具有至关重要的作用。
接下来,本文将简要介绍自动控制系统的校正方法和重要性。
首先,自动控制系统的校正主要包括以下几个方面:1.传感器校正:传感器作为自动控制系统中的重要组成部分,负责将物理量转化为电信号进而进行处理。
传感器的准确性直接影响着系统的测量和控制效果,因此需要对传感器的灵敏度、精度和线性度等进行校正,以提高系统的测量准确性。
2.执行器校正:执行器主要负责将控制信号转化为物理动作,控制系统的输出效果依赖于执行器的准确性和稳定性。
因此,需要对执行器的响应速度、灵敏度和动态补偿等进行校正,以确保系统的控制精度和稳定性。
3.控制器校正:控制器是自动控制系统的核心部分,负责对传感器数据进行处理和判断,并生成相应的控制信号。
对于不同类型的控制器,需要根据系统的需求和特点进行各种参数的校正和调整,以保证系统的控制效果。
4.系统校正:系统校正是指对整个自动控制系统进行整体的校准和调整。
由于控制系统中存在着多种参数和输入信号,这些参数和信号之间的相互作用会对系统的控制效果产生影响。
因此,需要对系统的整体参数进行校正,以确保系统的稳定性和性能达到预期的要求。
其次,自动控制系统的校正具有以下几个重要性:1.提高系统的准确性:通过对传感器、执行器和控制器进行校正,可以消除误差、降低噪声的影响,提高系统的测量和控制准确性。
这对于一些对测量和控制精度要求较高的系统而言尤为重要,如飞行器、自动化生产线等。
2.提高系统的稳定性:通过对控制器和系统参数的校正和调整,可以改善系统的阻尼特性和相应速度,增强系统的稳定性和快速响应能力。
这对于一些需要频繁变动的系统而言尤为重要,如电力系统、机械运动系统等。
山东大学 自动控制原理 6-1串联校正
5
加入校正装置后使未校正系统的缺陷得到补偿,这 就是校正的作用。 6.1.2 校正方式 常用的校正方式有串联校正、反馈校正、前馈校 正和复合校正四种。 串联校正装置一般接在系统误差测量点之后和放大 器之前,串接于系统前向通道之中;反馈校正装置接 在系统局部反馈通道之中。
串联 校正 控制 器 对 象
1 aTs Gc ( s ) 1 Ts
(1)零极点分布图:
∵a 1
1/T
1/aT
0
∴零点总是位于极点之右,二者的距离由常
14
数a决定。零点的作用大于极点,故为超前网络。
(2)对数频率特性曲线: L()/dB 20dB/dec
1 aTs Gc ( s ) 1 Ts
20lga
特性曲线G(s )/k1所示,但稳态误差也要随之增加,所 以开环放大系数是不能减小的。而改变未校正系统的 其它参数都是比较困难的。这样就得在原系统的基础 上采取另外一些措施,即对系统加以“校正”。 所谓的“校正”,就是在原系统中加入一些参数 可以根据需要而改变的机构或装置,使系统整个特性 发生变化,从而满足给定的各项性能指标。这一附加 的装置称为校正装置。
可见,m出现在1 =1/aT 和2 =1/T 的几何中点。
1 sin m a 1 sin m
上式表明,m仅与a有关。a值选得越大,则超前网络的 微分作用越强。但为了保持较高的系统信噪比,实际选用 的a值一般不大于20。此外,m处的对数幅频值为
Lc ( m ) 10 lg a
17
L()/dB 20dB/dec 10lga 0 20lga
1 aT
1 T
()
0
m m
m
《自动控制原理》第6章_自动控制系统的校正
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012
自动控制6第六章控制系统的综合与校正
复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标
第六章自动控制原理自动控制系统的校正
第6章第22页共116页
二、微分控制(D调节器)
具有微分控制作用的控制器称为微分控制器,其传递 函数为: Gc(s)=ds
d 输入偏差与输出控制信号的关系为: (t ) d m e(t ) dt
微分规律作用下输出信号与输入偏差的变化率成正比,
因此微分调节器能够根据偏差的变化趋势去产生相应的控
2013年6月8日星期六
第6章第6页共116页
对于这个系统采用串联校正方式,目的是
使其开环增益保持不变,而相角裕量增大。 如果采用一个校正装置,其对数幅频特性 和相频特性如图虚线所示.将其串联进去,幅 频特性和相频特性在 c 附近发生改变。利用其 相角超前的特点,使系统的相角裕量增大,达 到校正系统,满足给定性能指标的目的.
第6章第27页共116页
KD Gc ( s) K P (1 s) KP
由伯德图可以看到,随
着频率的增大,比例微分
(PD)控制器的输出幅值 增大、相位超前。
2013年6月8日星期六
反映信号的变化率(即变化趋势)的“预 报”作用,在偏差信号变化前给出校正信号,防止系统过大 地偏离期望值和出现剧烈振荡的倾向,有效地增强系统的相 对稳定性,而比例部分则保证了在偏差恒定时的控制作用。 可见,比例—微分控制同时具有比例控制和微分控制的优 点,可以根据偏差的实际大小与变化趋势给出恰当的控制作 用。
控制系统的校正实质上就是根据系统性能 指标的要求和系统的原有部分,求出校正装置的 结构及其参数,目前对输出反馈系统来说有两种 校正方法:分析法和希望特性法。
2013年6月8日星期六
第6章第17页共116页
① 分析法:
基本思想:针对系统的性能指标要求和系统的原有部分开环 传递函数G0(s)进行分析,首先看一看是否需要校正,如需 要则根据经验确定校正方式,预选一个校正装置Gc(s),然 后检验性能指标是否满足要求,如不满足,则需要改变校正 装置的参数或校正方式,直到校正后的系统满足性能指标为 止。 因此,分析法实质上是一种试探法,如果设计人员具 有一定的实践经验,不需要多次试探就可以设计出较高性能 的控制系统。 步骤:选择一种校正装置,分析是否满足要求→再选择→再 分析。
自动控制原理第六章线性系统的校正方法
对数幅频特性曲线如下图
16
10 3) 预选Gc(s)=τs+1,则 Gk ( s ) = (τs + 1) s ( s + 1)
′ 要求τ使系统满足 γ ′′ 和 ω c′ 的要求。 ′ 选择 ω c′=4.4dB/dec,求τ,则:
" L( wc ) = 20 lg 10 − 20 lg 4.4 − 20 lg 4.4 + 20 lg 4.4τ
1 / 2T 则 Gk ( s ) = s (Ts + 1)
其相频特性为: ϕ (ω ) = −90o − arctan Tω
1 = 63.5o γ (ωc ) = 180 + ϕ (ωc ) = 180 − 90 − arctan T ⋅ 2T
o o o
h=∞
21
∴由 ξ = 0.707 得性能指标为:
2
N R E
串联 校正 控制器 对象
已知被控对象数学模型 G p (s),即根据生产要求而 得到的系统数学模型,称为 固有部分数学模型,在工程 实际中是不能改变的。
C
反馈 校正
根据固有数学模型和性能要求进行分析,若现有闭环情况 下没有满足的性能指标或部分没有满足要求的性能指标,则人 为的在固有数学模型基础上,另加一些环节,使系统全面满足 性能指标要求,这个方法或过程称为校正,也称为系统设计。 所附加的环节被称为控制器,其物理装置称为校正装置。 通常记为Gc(s)
2 2 典型二阶系统可表示为: ωn ωn Φ(s) = 2 Gk ( s) = 2 s ( s + 2ξω n ) s + 2ξω n s + ω n
ξ
19
2 ωn C ( jω ) Φ ( jω ) = = =1 2 2 R ( jω ) ( jω ) + 2ξωn ⋅ jω + ωn 2 ωn
机械控制工程基础第六章节资料
0.24 1 0.23s 83.4 1 0.055s s(1 0.5s)
20(1 0.23s) s(1 0.5s)(1 0.055s)
增大相位裕度,增大带宽, 加快响应速度
制作:华中科技大学
熊良才、吴波、陈良才
三、串联校正
2. 相位滞后校正——使某频段的相位滞后
第六章 系统的性能与校正
一、系统的性能指标
1. 时域性能指标
瞬态性能指标
延迟时间td ;上升时间tr ; 峰值时间tP ;最大超调量MP ;
调整时间tS (或过渡过程时间)
稳态性能指标 (稳态误差)
2. 频域性能指标
相位裕度 ;增益(或幅值)裕度Kg ; 复现频率m及复现带宽0~m ; 谐振频率r及谐振峰值Mr ; 截止频率b及截止带宽(简称带宽)0~b 。
① 原系统(P=0) ————不稳定
② 减小K ———稳定,但对稳态性能不利
③ 加入新环节(改变系统的频率特性曲线) ————稳定,但不改变稳态性能
制作:华中科技大学 熊良才、吴波、陈良才
二、系统的校正
1. 校正的概念
① 原系统(P=0) ————稳定,但相位裕度小,调整时间长 减小K,不改变相位裕度
dB
增大K
传递函数:Gc (s)
(Ts 1)
(Ts 1)
1
-0° -90° -180°
ω
相位滞后校正原理在于保持低频
增益不变,而使高频增益下降。
而不在于相位滞后效应。
制作:华中科技大学 熊良才、吴波、陈良才
三、串联校正 2. 相位滞后校正——使某频段的相位滞后
增大K增益(减小稳态 误差)的同时保证稳定 性和快速性
第六章 线性系统的校正方法
L(ω)
60 40 20 0.01 0.24 0.1 0.27 1 2.7 10
L(ω)
-900
460
-1800
{
由 得 c ' =12rad / s,因 算 图 ω 而 得
γ = 900 arctg(0.1 c ' ) arctg(0.2ωc ' ) = 27.60 ω
说明未校正系统不稳定,此系统即为截止频率处 相角迅速减小的情况,不宜采用超前校正。
γ "= m + γ (ωc ")
若不满足要求,重选ω 增大, 若不满足要求,重选ωm=ωc”,使ωc”增大, 重复(3)(4) (3)(4), 0, 重复(3)(4),若算出 a >> 0,则超前校正已 无能为力,需另选它法。 无能为力,需另选它法。
例6-3.如下系统 要求ess≤0.1(在单位斜坡输入下 如下系统,要求 在单位斜坡输入下), 如下系统 要求 在单位斜坡输入下 开环截止频率ω ”≥4.4rad/s,相角裕度 开环截止频率ωc”≥4.4rad/s,相角裕度 γ”≥450,幅值裕度 幅值裕度h”≥10dB,试设计超前网络 试设计超前网络. 幅值裕度 试设计超前网络
要点:利用超前环节的相位超前特性,使交接频率 要点:利用超前环节的相位超前特性 使交接频率 1/aT 和 1/T 位于穿越频率的两旁,用 m 来补偿系统 位于穿越频率的两旁, 的相位裕量。 的相位裕量。 步骤: 步骤: (1)根据稳态误差要求,确定开环增益 K。 根据稳态误差要求, 。 根据稳态误差要求 (2)计算未校正系统的相角裕度。 计算未校正系统的相角裕度。 计算未校正系统的相角裕度 (3)根据 或设定试探 ωc”的要求,计算超前网络 根据(或设定试探 的要求, 根据 或设定试探) 的要求 的参数a和 。 的参数 和T。 ωc”的选定,一方面要根据系统响应速度来确定, 的选定, 的选定 一方面要根据系统响应速度来确定, 也要根据相角裕度等综合考虑。 也要根据相角裕度等综合考虑。
自动控制原理第六章控制系统的校正
自动控制原理第六章控制系统的校正控制系统的校正是为了保证系统的输出能够准确地跟随参考信号变化而进行的。
它是控制系统运行稳定、可靠的基础,也是实现系统优化性能的重要步骤。
本章主要讨论控制系统的校正方法和常见的校正技术。
一、校正方法1.引导校正:引导校正是通过给系统输入一系列特定的信号,观察系统的输出响应,从而确定系统的参数。
最常用的引导校正方法是阶跃响应法和频率扫描法。
阶跃响应法:即给系统输入一个阶跃信号,观察系统输出的响应曲线。
通过观察输出曲线的形状和响应时间,可以确定系统的参数,如增益、时间常数等。
频率扫描法:即给系统输入一个频率不断变化的信号,观察系统的频率响应曲线。
通过观察响应曲线的峰值、带宽等参数,可以确定系统的参数,如增益、阻尼比等。
2.通用校正:通用校正是利用已知的校准装置,通过对系统进行全面的测试和调整,使系统能够输出符合要求的信号。
通用校正的步骤通常包括系统的全面测试、参数的调整和校准装置的校准。
二、校正技术1.PID控制器的校正PID控制器是最常用的控制器之一,它由比例、积分和微分三个部分组成。
PID控制器的校正主要包括参数的选择和调整。
参数选择:比例参数决定控制系统的响应速度和稳定性,积分参数决定系统对稳态误差的响应能力,微分参数决定系统对突变干扰的响应能力。
选择合适的参数可以使系统具有较好的稳定性和性能。
参数调整:通过参数调整,可以进一步改善系统的性能。
常见的参数调整方法有经验法、试错法和优化算法等。
2.校正装置的使用校正装置是进行控制系统校正的重要工具,常见的校正装置有标准电压源、标准电阻箱、标准电流源等。
标准电压源:用于产生已知精度的参考电压,可以用来校正控制系统的电压测量装置。
标准电阻箱:用于产生已知精度的电阻,可以用来校正控制系统的电流测量装置。
标准电流源:用于产生已知精度的电流,可以用来校正控制系统的电流测量装置。
校正装置的使用可以提高系统的测量精度和控制精度,保证系统的稳定性和可靠性。
第六章系统校正
第六章系统校正第六章系统校正系统校正在各个领域中扮演着至关重要的角色。
它通过对系统的精确调整和纠正,保证了系统的准确性、稳定性和可靠性。
本文将探讨系统校正的概念、目的、方法以及在不同领域中的应用。
一、概念和目的系统校正是指对系统中的各个要素进行调整和纠正,使其达到预期的目标和规范。
系统可以是任何有组成部分的整体,例如机械系统、电子系统、网络系统等。
校正的目的是通过对系统的调整,消除误差、偏差和不稳定性,从而提高系统的性能和可靠性。
二、方法在进行系统校正之前,需要先确定校正的目标和标准。
然后,根据系统的性质和要求选择合适的校正方法。
下面介绍几种常见的校正方法。
1. 跟踪校正跟踪校正是一种实时的校正方法,它通过对系统的输出进行持续的监测和调整,使输出保持在预期的范围内。
这种方法适用于实时性要求高的系统,如自动控制系统和通信系统。
2. 零点校正零点校正是对系统的初始状态进行调整,使系统在没有输入时保持在零点或预定的初始状态。
这种方法适用于需要精确以零为基准的系统,如称重仪器和测量仪表。
3. 比较校正比较校正是将系统的输出与参考标准进行比较,通过调整系统的参数使输出与标准一致。
这种方法适用于需要与外界标准对比的系统,如温度控制系统和光学测量系统。
4. 多点校正多点校正是通过对系统多个点进行校正,从而提高整个系统的精度和稳定性。
这种方法适用于需要在不同工作条件下保持稳定性的系统,如环境监测系统和能源管理系统。
三、应用领域系统校正在各个领域中都有广泛的应用。
以下列举几个常见的应用领域。
1. 工业制造在工业制造过程中,各种机械设备和生产线需要经过定期的校正,以确保其准确性和稳定性。
例如,汽车制造中的机器人系统需要进行校正,以保证其精确的动作和位置控制。
2. 电子通信在电子通信领域,无线电设备、卫星导航系统和电信网络都需要进行系统校正,以消除干扰和提高信号质量。
校正可以帮助提高通信的可靠性和传输速度。
3. 医疗诊断医疗诊断设备如X射线机、核磁共振仪等需要经过精确的校正,以确保其测量结果的准确性。
第六章频率法校正
图6-2
返回
图6-3
返回
表6-2
下一页
表6-2
上一页 下一页
表6-2
上一页 返回
图6-8
返回
上一页 下一页
§6-3 串联校正
4)确定滞后校正网络的传递函数 5)绘制校正后的开环系统对数频率特性,并检查ωc’、 γ’、Kg’是否满足设计指标。若不满足,重复上述过程。 6)确定滞后网络的结构及物理参数。 三、串联滞后—超前校正 四、串联PID调解器校正
1型系统PI调解器的设计步骤如下: 1)取积分时间常数等于未校系统中最大惯性环节的时间常数 2)调解放大系数满足相位裕度 3)确定PI调节器的结构及参数 五、串联带阻滤波器校正
上一页 返回
§6-4 反馈校正
一、反馈校正的一般特性 二、比例反馈包围惯性环节
比例反馈包围惯性环节的效果为:1)减小了被包围的惯性 环节时间常数;2)减低开环增益,但这可以通过提高未被包围 部分的增益来补偿。 三、微分反馈包围积分环节和惯性环节相串联的元件
此种反馈的效果是:1)保存了原有的积分环节;2)减小了 惯性环节的时间常数;3)减低了开环增益,这也可以通过提高
上一页 下一页
§6-3 串联校正
串联带阻滤波器校正步骤如下: 1)根据稳态精度要求确定系统开环增益K。 2)绘制上面K值时的未校系统对数频率特性,查出ωc、γ、Kg 的数值。 3)根据未校系统中低阻尼比二阶振荡环节的参数选择T型滤波 器的传递函数,进而确定超前网络的传递函数。 4)绘制校正后的系统开环对数频率特性,从图上查出ωc’、 γ’、Kg’的数值。 5)如果经上述校正后的系统仍不满足要求,可继续进行其他 形式的校正。 6)确定校正装置的结构和参数。
§6-1 校正的基本概念
第六章 系统校正
常用的有源校正网络见书。
三、串联校正 1 频率响应法校正设计
用频率法对系统进行校正的基本思路是通过校正装置 的引入改变开环频率特性中频部分的形状,即使校正后系 统的开环频率特性具有如下的特点:低频段增益满足稳态 精度的要求;中频段对数幅频特性渐近线的斜率为-20dB /dec,并具有一定宽度的频带,使系统具有满意的动态性 能;高频段幅值能迅速衰减,以抑制高频噪声的影响。
3)积分(Ⅰ)控制规律 具有积分控制规律的控制器,称为Ⅰ控制器。Ⅰ控制器的输出信
号m(t)与其输入信号e(t)的积分成正比,即
其中Ki为可调比例系数。 在串联校正时,采用Ⅰ控制器可以提高系 统的型别(无差度),有利于系统稳态性能的提高,但积分控制使 系统增加了一个位于原点的开环极点,使信号产生90°的相角滞后, 对系统不利。因此,在控制系统的校正设计中,通常不宜采用单一 的Ⅰ控制器。
控制系统方框图
R(s)
+_
K s(s 1)
C(s)
若要求系统在单位斜坡输入信号作用时,稳态误
差ess≤0.1,开环系统剪切频率c≥4.4 (弧度/秒),相 角裕度g ≥45°,幅值裕度h(dB) ≥10.试选择串联无
源超前网络的参数。
为首Ⅰ先型调系整统开,所环以增有益Ke.s本s 例K1未校0正.1系统
待校正系统相角迅速减小,使已校正系统的相角裕度 改善不大,很难得到足够的相角超前量。在一般情况 下,产生这种相角迅速减小的原因是,在待校正系统 截止频率的附近,或有两个交接频率彼此靠近的惯性
环节;或有两个交接频率彼此相等的惯性环节;或有 一个振荡环节。 在上述情况下,系统可采用其它方法进行校正。
自动控制原理(第三版)第6章 控制系统的校正
在研究系统校正装置时,为了方便,将系统 中除了校正装置以外的部分,包括被控对象及控 制器的基本组成部分一起称为“固有部分”。
因此控制系统的校正,就是按给定的固有部 分和性能指标,设计校正装置。
KPLeabharlann e(t) 1 TI
t
e(t)dt
0
TD
de(t) dt
u(t为) 控制器的输出; e(为t) 系统给定量与输出量的偏差
K为P 比例系数; T为I 积分时间常数; TD 为微分时间常数
相应的传递函数为
Gc
(s)
K
P
1
1 TI s
TD
s
KP
KI s
KDs
KP 为比例系数;K I为积分系数;KD 为微分系数。
(1) 原理简单,使用方便。
(2) 适应性强,可广泛应用于各种工业生产部 门,按PID控制规律进行工作的控制器早已商品化, 即使目前最新式的过程控制计算机,其基本控制 功能也仍然是PID控制。
(3) 鲁棒性强,即其控制品质对被控对象特性 的变化不太敏感。
自动控制原理
基本PID控制规律可以描述为
u(t)
自动控制原理
2. 频域性能指标
频域性能指标,包括开环频域指标和闭环频 域指标。 (1) 开环频域指标 一般要画出开环对数频率特性,并给出开环频域 指标如下:开环剪切频率c 、相位裕量 和幅值 裕量K g 。 (2) 闭环频域指标 一般给出闭环幅频特性曲线,并给出闭环频域指 标如下:谐振频率 r 、谐振峰值 M r 和频带宽度b 。
第六章_线性系统的校正方法
中频区
0 ~ M
噪声信号主要作用的频带为:
1 ~ n
而且使
1 ~ n
b (5 ~ 10) M
处于
0 ~ b 之外。
0
M
1
n
b
第一节 系统的设计与校正问题 三、 校正方式 串联校正、反馈校正、前馈校正、复合校正 1、串联校正与反馈校正
R( s )
N (s)
(Ta s 1)( T20 1)a b s log Gc ( s) , (T1s 1 Ts ()( Ta 1)1) 2s 网络的滞后 T1T2 TaTb , ( aTa s 1) 部分: T1 T2 Ta Tb Tab
a
T2 1 T1 Ta , , T1 Tb a Tb T1 aTa , T2 a (Ta s 1) (Tb s 1) Gc ( s) , (aTa s 1) Tb ( s 1) a
1 4 2
4
2
第一节 系统的设计与校正问题 相角裕度
arctg
2 1 4 4 2 2
1 2
超调量
% e
ts
100%
调节时间
3.5
n
7 c t s tg
第一节 系统的设计与校正问题 二、 系统带宽的确定
一般要求系统的稳定裕度在45o左右 的斜率为-20dB/dec
2
第三节 串联校正
2.超前校正装置的设计
超前校正是利用相位超前特性来增加系 统的相角稳定裕量,利用幅频特性曲线的正斜 率段增加系统的穿越频率。从而改善系统的平 稳性和快速性。为此,要求校正装臵的最大超 前角出现在系统校正后的穿越频率处。
第六章 线性系统的校正方法
1 Mr sin
, %
c , t s
k ts
c
k 2 1.5 M r 1) 2.5 M r 1)2 ( (
2)稳态性能指标
L()
26 20 6 10 [-20]
G (s )H (s )
K ( is 1) s (Tjs 1)
Gc (s)G0 (s)H(s)
()
90
c t s % 快速性 稳定性
m
90 180
m
L()
40 20 0.1 -20 1
m c
L() L() Lc () L() 10 lg 0 c c c c
G0 (s)H(s)
Gc (s)G0 (s)H(s)
()
90
m
90 180
m
2、无源滞后校正
1 bTs G c (s ) 1 Ts
b 1
1 bTs G c (s ) 1 Ts
Bode图为:
L( )
b 1
有 m
1 T b
0
1 T
[-40]
90
180
90 arctan arctan 0.45 arctan 0.11 c c c 49.9 50 h
L()
[-20] 40 20 0.1 -20 1 [-80] 10
m ( 5) m
0
Gc (s)G0 (s)H(s)
m
1 T
1)设计步骤(对相角裕度提出要求)
, , h(dB ) c
自动控制原理第六章线性系统的校正方法
5 • 20 •c • 6 •c 1 c •1• • 200 •cc
c 3rad s
230
验算指标(相角裕度) c 2.1rad s
(20j 1)(6j 1) • 5
1
(200j 1)(0.3j 1)j(j 1)(0.25j 1)
180 0+(c)
(2)画出未校正系统的伯德图,计算未校正系统的
相角裕度和截止频率。
(3)根据设计要求,确定期望相角裕度和截止频率。
Mr
1
sin
,
350 900
超调量 0.16 0.4(Mr 1), 1 Mr 1.8
调节时间
ts
K c
K 2 1.5(M r 1) 2.5(M r 1)2
超调量 0.3 0.16 0.4( 1 1) , 1 1.35 460
装置:
(1)
Kv
70
1 s
(2)
ts 0.1S
(3) % 30%
解(1) 根据I型系统和速度误差系统要求取:K=70
G( j)
70
j(0.12 j 1)(0.02 j 1)
70
exp j 90 tg-10.12 tg-10.02
(0.12)2 1 (0.02)2 1
(2)绘制未校正系统的伯德图,如图红线所示。由图可知
1
2
1 10
1.35 1.35
= 1
1 2.6
,
2=2
rad s
1 1 1.35 = 1 ,
3 10 1.35 1 17.4
3
20
ra
d s
L( )dB
60
40 20 0 0.1 -20
-20
LLc () -40
第六章校正第一节第二节.ppt
第二页,编辑于星期二:二十三点 四十七分。
第三页,编辑于星期二:二十三点 四十七分。
第四页,编辑于星期二:二十三点 四十七分。
第五页,编辑于星期二:二十三点 四十七分。
第六页,编辑于星期二:二十三点 四十七分。
第七页,编辑于星期二:二十三点 四十七分。
第八页,编辑于星期二:二十三点 四十七分。
第九页,编辑于星期二:二十三点 四十七分。
第十页,编辑于星期二:二十三点 四十七分。
第十一页,编辑于星期二:二十三点 四十七分。
第十二页,编辑于星期二:二十三点 四十七分。
第十三页,编辑于星期二:二十三点 四十七分。
第十四页,编辑于星期二:二十三点 四十七分。
第二十二页,编辑于星期二:二十三点 四十七 分。
第二十三页,编辑于星期二:二十三点 四十七 分。
第二十四页,编辑于星期二:二十三点 四十七 分。
ห้องสมุดไป่ตู้
第二十五页,编辑于星期二:二十三点 四十七 分。
第二十六页,编辑于星期二:二十三点 四十七 分。
第二十七页,编辑于星期二:二十三点 四十七 分。
第十五页,编辑于星期二:二十三点 四十七分。
第十六页,编辑于星期二:二十三点 四十七分。
第十七页,编辑于星期二:二十三点 四十七分。
第十八页,编辑于星期二:二十三点 四十七分。
第十九页,编辑于星期二:二十三点 四十七分。
第二十页,编辑于星期二:二十三点 四十七分。
第二十一页,编辑于星期二:二十三点 四十七 分。
第二十八页,编辑于星期二:二十三点 四十七 分。
第二十九页,编辑于星期二:二十三点 四十七 分。
第三十页,编辑于星期二:二十三点 四十七分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 线性系统的校正方法
➢ 引言 ➢ 6.1 系统校正设计基础 ➢ 6.2 线性系统的基本控制规律 ➢ 6.3 串联校正 ➢ 6.4 反馈校正和复合校正
引言
1.线性控制系统理论的基本内容 系统建模:微分/差分方程、传递函数、方框图、 信号流图、频率特性、状态空间表达式等 系统分析:时域分析、频域分析、根轨迹分析、 状态空间分析等 系统综合:校正、状态空间综合法、鲁棒优化 法等
则图6-2中
Gc (s) K p
称为比例控制器增益。
R(s) +
E(s)
M(s)
控制器Gc(s)
被控对象Go(s)
C(s)
-
图6-2 控制系统
举例:
k
j [s]
. k 3 . k 2
k 0
k 1 2
. k 3
0
k
➢ 改变了系统的极点
jY ()
-1
0
X ()
可采用某种组合。
三、校正设计的方法
1. 频率法 基本思想:利用适当校正装置的Bode图,配合 开环增益调整来修改原来开环系统Bode图,使 得开环系统经校正和增益调整后的Bode图符合 性能指标要求。
原开环Bode图+校正环节Bode图+增益调 整=校正后的开环Bode图
2.根轨迹法
➢ 在系统中加入校正装置,相当于增加了新的开环 零极点,这些零极点将使校正后的闭环根轨迹, 向有利于改善系统性能的方向改变,系统闭环零 极点重新布置,从而满足闭环系统性能要求。
R(s) +
校正装置
Gc(s)
-
原有部分 C(s) Go(s)
(a)串联校正
+
+
原有部分
C(s)
Go(s)
-
-
校正装置 Gc(s)
(b)反馈校正
R(s) +
校正装置 +
Gc1(s)
-
-
原有部分 C(s) Go(s)
校正装置 Gc2(s)
(c)串联反馈校正
相当于 对给定 值信号 进行整 R(s) 形和滤 波后再 送入反 馈系统
3. 常用的复数域指标 通常以系统闭环极点在复平面的分布区域来定义。
η
θ
几点说明: ➢ 上述这些性能指标之间有一定的换算关系,但有时
很复杂。 ➢ 动态性能各指标之间对系统的参数与结构的要求往
往存在矛盾。 稳态误差与稳定性对系统开环增益、积分环节
数目的要求; 系统快速性与抑制噪声能力对带宽的要求。
对扰动
信号直
接或间
测 量 , R(s) +
形成附
加扰动
-
补偿通
道
校正装置 Gc(s)
+ -
+
+
原有部分 C(s)
Go(s)
(d)前馈补偿
校正装置
N(s)
Gc(s)
+
原有部分 +
+ 原有部分 C(s)
+
Go2(s)
Go2(s)
(e)扰动补偿
说明: ➢ 串联校正和反馈校正属于主反馈回路之内的校
正。 ➢ 前馈补偿和扰动补偿属于主回路之外校正。 ➢ 对系统校正可采取以上几种方式中任何一种,也
➢ 评价控制系统优劣的性能指标是由系统在典型输入 下输出响应的某些特点统一规定的。
1. 常用时域性能指标(主要对阶跃响应定义) 超调量、调节时间、上升时间、无差度、稳态 误差或开环增益等。
2. 常用的频域指标 闭环频域指标:峰值比Mr /M0、峰值频率、带宽 开环频域指标:剪切频率、稳定裕度
➢ 具有不同比例关系的校正器可改变微分方程系数, 调整系统零极点分布,从而改变系统响应。
➢ 具有微分和积分功能的校正器可在更大程度上改变 系统运动方程,使系统具有所要求的暂态和稳态性 能。
PID控制具有以下优点:
(1) 原理简单,使用方便; (2) 适应性强, 按PID控制规律进行工作的控制器早 已商品化,即使目前最新式的过程控制计算机, 其基本控制功能也仍然是PID控制; (3) 鲁棒性强,即其控制品质对被控制对象特性的 变化不大敏感。
6.2 线性系统的基本控制规律
问题的提出
➢ 确定校正装置的具体形式时,应先了解校正装置 所提供的控制规律,以便选择相应的元件。
➢ 比例(P)、积分(I)、微分(D),或其组合, 如比例-微分(PD)、比例-积分(PI)、比例- 积分-微分(PID)等,是最基本的控制规律。
➢ 增加校正装置,可改变描述系统运动过程的微分方 程,从而改变系统响应。
系统性能时,需要增加附加装置来改善系统性 能——需设计(未知) 4. 校正的实质
➢ 通过改变系统的零极点来改变系统性能。
5.校正装置的实现
通常是参数易于调整的专用装置(模电或数电装 置)
校正方式多样化:串联校正、反馈校正、前馈补 偿等
注意:校正方案不唯一
6.1 系统校正设计基础
一、性能指标
➢ 两者区别:设计问题要求设计整个控制器(包括设备 选型、可靠性、经济性等实际问题),而校正问题设 计的只是控制器的一部分(校正装置)。
3.校正问题的三要素
① 系统基本部分(原有部分、固有部分):被控对 象、控制器基本部分(放大元件、测量元件)。 放大元件增益可调,其余参数固定——给定
② 系统的性能要求——给定 ③ 校正装置:当通过调整放大元件增益仍不能满足
在控制系统的设计与校正中,PID控制规律的 优越性是明显的,它的基本原理却比较简单。基
本PID控制规律可描述为
Gc (s)
KP
KI s
KDs
这里 KP 、KI 、KD 为常数。设计者的问题是如何
恰当地组合这些元件或环节,确定连接方式以及它
们的参数,以便使系统全面满足所要求的性能指标。
一、比例( P )控制规律 ➢ 具有比例控制规律的控制器,称为比例(P)控制器。
➢ 加大控制器增益Kp,会降低系统的相对稳定性
➢ 性能指标通常由控制系统的使用单位或被控对象的 制造单位提出。
➢ 一个具体系统对指标的要求应有所侧重 调速系统对平稳性和稳态精度要求严格; 随动系统对快速性期望很高。
➢ 性能指标的提出要有依据,不能脱离实际 负载能力的约束; 能源功率的约束等。
二、几种校正方式
➢ 根据校正装置加入系统的方式和所起的作用不同, 可将其作如下分类:
2.控制系统设计和校正
➢ 设计问题:根据给定被控对象和自动控制的技术要 求,进行控制器设计,使控制器与被控对象组成的 系统能较好地完成自动控制任务。
➢ 校正问题:一种原理性的局部设计。在系统的基本 部分(通常指对象、执行机构、测量元件等主要部 件)已确定的条件下,设计校正装置的传函和调整 系统放大倍数,使系统动态性能满足一定的要求。