2020年秋季高一数学开学分班考试(三)

合集下载

高一新生分班考试数学试卷含答案

高一新生分班考试数学试卷含答案

高一新生分班考试数学试卷(含答案)满分150分,考试时间120 分钟)、选择题(每题 5 分,共40 分)1.化简 a a2()A. a B.a C.a D.a22.分式x x 2的值为0,则x 的值为()| x| 1A.1或2B.2 C .1D. 23.如图,在四边形ABCD中,E、F 分别是AB、AD的中点。

若EF=2,BC=5,CD=3,则tanC 等于()A.4B.3 C.3D.435454.如图,PA、PB是⊙O切线,A、B为切点,AC是直径,∠ P=40°,则∠ BAC=()0 0 0 0A.400B.800C.200D.100入表格中。

5.在两个袋内, 卡片,则所取 分别装着写有 1、2、3、4 上数字之积为偶数的 6.如图,矩形纸片 AB 处,折痕为 AE ,且 EF=3, 动点,运动路线是 A →D →C →B →A, 设 P 点经过的路程为 x , D 为顶点的三角形的面积是 y. 则下列图象能大致反映 y 与 x 的是 () 8.若直角坐标系内两点 P 、Q 满足条件① P 、Q 都在函数 y 的 Q 关于原点对称,则称点对( P ,Q )是函数 y 的一个“友好 对( P , Q )与( Q ,P )看作同一个“友好点对”)。

已知函 2x 2 ,已知 AD=8,折 则 AB 的长为 () 如图,正方形 AB (C4D 的题边图长) 为 4, P 为正 4x 1,x 0, 则函数 y 的“友好点对”有()个D中各任取一张 ,点 B 落在点 F CAD P B C 方形边上一 以点 A 、P 、 的函数关系 图象上② P 、 点对”(点 数A ..1题号12345678得分评卷人答案C 注意:请 将选择题 的答案填A176 5 C . 16 P 使 AB 边与对) O E (6 题字的 4A 张卡片,今从每个袋x0y 1,2x二、 填空题(每题 5分,共 50 分)9.已知 a 、b 是一元二次方程 x 22x 1 0的两个 a b a b 2 ab 得分 评卷人实数根,则代数式的值等于10.有一个六个面分别标上数字 1、2、3、4、5、6 的正方体,甲、乙、丙三位同学从不同 的角度观察的结果如图所示. 如果记 2 的对面的数字为 的解 x 满足 k x k 1,k 为整数,则 k m ,3的对面的数字为 n ,则方程m x 1nE11. 1 2 ADy x f (x) y x 2f (x)C)A 3 x 3 25 1 f(1) 1 f (x) 甲 A 1 f (a) f (b) f( O 的直径,四边形 则正方形 CDM 16. 如图, CD 为 C 1 丙 题图 C 1 AB 1,BC 2 AA 1x a |x| F A cb BC 3M BB 1 A 1M 1题M 图C 1 BM 图,AB 是半圆 DEFG 都是正方形, 其中 C ,D ,E 在 AB 上,F ,N 在半圆上。

高一新生入学分班考试--数学3

高一新生入学分班考试--数学3

高一新生入学分班考试数 学 模 拟 试 题一、选择题(本大题共10个小题,每小题3分,共30分)1、下列计算正确的是( ).A 、325()a a =B 、1025a a a ÷=C 、523()a a a -÷-=-D 、333()a b a b +=+2、⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、无法确定3、下列命题:①若22a b =,则a b =;②若两个相似三角形面积之比是1∶4,则相似比是1∶2;③两条直线被第三条直线所截,同旁内角互补;④一组数据的众数只有一个 其中真命题的个数是( ) A 、1个 B 、2个C 、3个D 、4个4、从矩形的一个顶点向对角线引垂线,此垂线分对角线所成的两部分之比为1:3,已知两对角线的交点到矩形较长边的距离为3.6cm ,则矩形对角线长为( ).A 、7.2 B、、 D 、14.45、现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在抛物线24y x x =-+上的概率为( ) A 、118 B 、112 C 、19 D 、166、小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <; (2)1c >;(3)0b >;(4)0a b c ++>;(5)0a b c -+>.你认为其中正确信息的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个(第6题图) (第7题图)7、如图,△ABC 的两条中线AE 和BF 相交于点G ,△EFG 的面积为1,则△ABC 的面积为( ) A 、4 B 、8 C 、10 D 、128、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有( )人.A 、6B 、12C 、8D 、10AB C E FG9、如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( ).A 、(32,23) B 、(215+,215-) C 、(54,45) D 、2) (第9题图) 10、若分式212x x m-+不论x 取何值总有意义,则m 的取值范围是( )A 、m ≥1B 、m>1C 、m<1D 、m ≤1二、填空题(本大题共6个小题,每小题3分,共18分)11、分解因式:221218x x -+= .12、如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= .13、已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围是___________.(第12题图) (第15题图) 14、若52326x a x x +-=--的解是正数,则a 的取值范围是 .15、如图,D 、F 分别在△ABC 的边AB 、AC 上,且AD ∶DB=CF ∶FA=2∶3,连接DF 并延长,交BC 的延长线于点E,则EF ∶FD=_____________.16、某商品的标价比成本高%a ,当该商品降价出售时,为了不亏本,降价幅度不得超过%b .请用含有a 的代数式表示b : .三、解答题(本大题共6个小题,共52分)17、(本题满分4分)计算:203(14sin 4512-+︒+-18、(本题满分6分)化简求值:211121222+---÷+++x x x x x x , 其中x =2.19、(本题满分8分)课外实践活动中,王老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30°,求旗杆EG 的高度.A B F E D C 15° 30° 23米(第19题图)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 42ABO OB OE ∠===,,(1)求该反比例函数的解析式;(2)求直线AB 的解析式.(第20题图)21、(本题满分12分)如图,ABC △中,4390AC BC C ==∠=,,°.半径为1的圆的圆心P 以1个单位/秒的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:秒). (1)当t 为何值时,P ⊙与AB 相切;(2)作PD AC ⊥交AB 于点D ,如果P ⊙和线段BC 交于点E .证明:当165t =秒时,四边形PDBE 为平行四边形.x (第21题图)图1图2已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(第22题图)x。

开学分班考试(三)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

开学分班考试(三)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

2020年秋季高一开学分班考试(三)一、单选题(共8小题,满分40分,每小题5分)1、已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞【答案】C【解析】因为集合{|0}A x x a =-,所以{}|A x x a =, 又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .2、函数()12f x x =-的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞【答案】C【解析】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭.故选:C . 3、下列命题正确的是( ) A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==- 不成立 B.若>a b ,则22a b >,取0,1a b ==- 不成立 C. 若>a b ,c d <,则>a c b d --,正确D. 若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==- 不成立,故答案选C4、已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为( )A .1B .2C .3-D .12【答案】A【解析】由题意得,3()=22f ,1(2)=2f ,1()=2=1122f ⨯, 所以3[()]=[(2)]=()=1212f f f f f f ⎧⎫⎨⎬⎩⎭,故选:A. 5、已知2x >,函数42y x x =+-的最小值是( ) A .5 B .4C .8D .6【答案】D【解析】因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.6、下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2x y = B .23y x -=C .1y x x=- D .()2ln 1y x =+【答案】A【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. 对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意.故选:A 7、若正数,x y 满足220x xy +-=,则3x y +的最小值是( )A .4B.C .2D.【答案】A【解析】因为正数,x y 满足220x xy +-=,所以2=-y x x,所以2324+=+≥=x y x x ,当且仅当22x x =,即1x =时,等号成立. 故选:A8、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 取值范围是( ) A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 为奇函数,()()f x f x ∴-=-.(1)1f =-,(1)(1)1f f ∴-=-=.故由1(2)1f x -≤-≤,得(1)(2)(1)f f x f ≤-≤-.又()f x 在(,)-∞+∞单调递减,121x ∴-≤-≤,13x ∴≤≤.故选:D二、多选题(共4小题,满分200分,每小题5分) 9、下列各式既符合分数指数幂的定义,值又相等的是( ) A .13(1)-和26(1)-B .20-和12C .122和414D .324-和312-⎛⎫ ⎪⎝⎭ E.343和4313- 【答案】CE【解析】A 不符合题意,13(1)-和26(1)-均符合分数指数幂的定义,但13(1)1-==-,26(1)1-==;B 不符合题意,0的负分数指数幂没有意义; C符合题意,114242==;D 不符合题意,324-和312-⎛⎫ ⎪⎝⎭均符合分数指数幂的定义,但233211484-==,331282-⎛⎫== ⎪⎝⎭; E 符合题意,4343133-=.故选:CE.10、对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件 B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件【答案】CD【解析】对于A ,因为“a b =”时ac bc =成立,ac bc =,0c时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B ,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C ,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD11、下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选:ABD12、已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-∞-+∞B .()f x 一定有最小值;C .当0a =时,()f x 的值域为R ;D .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4|a a ≥- 【答案】AC【解析】对A ,当0a =时,解210x ->有()(),11,x ∈-∞-+∞,故A 正确 对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x ∈-∞-+∞,()210,x -∈+∞,此时()()2lg 1f x x =-值域为R ,故B 错误.对C ,同B ,故C 正确.对D , 若()f x 在区间[)2,+∞上单调递增,此时21y x ax a =+--对称轴22ax =-≤. 解得4a ≥-.但当4a =-时()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选AC三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、正实数,x y 满足:21x y +=,则21x y+的最小值为_____.【答案】9【解析】()21212225559y x x y x y x y x y +=++=++⎛⎫≥+≥+ ⎝⎭=⎪, 当且仅当13x y ==时取等号.故答案为:9. 14、若幂函数图像过点(8,4),则此函数的解析式是y =________. 【答案】23x【解析】设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x =,故答案为:23x .15、函数()2436x x f x x ++=-的值域为__________.【答案】(),161667,⎡-∞-++∞⎣【解析】设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣.故答案为: (),161667,⎡-∞-++∞⎣. 16、已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____. 【答案】10,2⎡⎫⎪⎢⎣⎭【解析】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1,即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤<,故答案为:10,2⎡⎫⎪⎢⎣⎭四、解答题(共6小题,满分70分,第17题10分,其它12分)17、已知集合A ={x|2a≤x≤a +3},B ={x|x 2+x -6≤0}.若A ∪B =B ,求实数a 的取值范围. 【解析】 B ={x|x 2+x -6≤0} ={x|(x +3)(x -2)≤0} ={x|-3≤x≤2} =[-3,2].因为A ∪B =B ,所以A ⊆B. ①当A =∅时,2a>a +3, 解得a>3;②当A≠∅,即a≤3时, 因为A =[2a ,a +3],所以⎩⎪⎨⎪⎧2a≥-3,a +3≤2,解得-32≤a≤-1,综上,实数a 的取值范围为⎣⎡⎦⎤-32,-1∪(3,+∞). 18、已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<19、化简下列各式:【解析】 (1) 原式=lg 1100×10=-2×10=-20.(2) 原式=lg25lg2×lg4lg3×lg9lg5=2lg5lg2×2lg2lg3×2lg3lg5=8.(3) 原式=lg 427-lg4+lg75=lg(427×14×75)=12.20、判断下列函数的奇偶性: (1) f(x)=xlg(x +x 2+1); (2) f(x)=(1-x) 1+x1-x; (3) f(x)=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1, x <0;(4) f(x)=4-x 2|x +3|-3.【解析】 (1) 因为x +x 2+1>0恒成立, 所以函数f(x)的定义域为R ,关于原点对称,所以f(x)-f(-x)=x[lg(x +x 2+1)+lg(-x +x 2+1)]=0, 所以f(x)=f(-x),所以f(x)为偶函数. (2) 由题意得,⎩⎪⎨⎪⎧1+x 1-x ≥0,1-x≠0,解得-1≤x<1, 所以定义域不关于原点对称, 所以f(x)为非奇非偶函数.(3) f(x)定义域为(-∞,0)∪(0,+∞)关于原点对称. 不妨设x>0,所以f(x)+f(-x)=-x 2+2x +1+x 2-2x -1=0, 所以f(x)=-f(-x),所以f(x)为奇函数.(4) 由题意得,⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得x ∈[-2,0)∪(0,2]关于原点对称,所以f(x)+f(-x)=4-x 2x -4-x 2x =0,所以f(x)=-f(-x), 所以f(x)为奇函数. 21、已知函数()log ax bf x x b-=+ ()0,0,0a a b >≠≠. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由; 【解析】(1)由x bx b->+0,化为:()()0x b x b -+>. 当0b >时,解得x b >或x b <-;0b <时,解得x b >-或x b <. ∴函数()f x 的定义域为:0b >时,()),(,x b b ∈-∞-+∞,0b <时,()),(,x b b ∈-∞-+∞.(2)∵定义域关于原点对称,()()log aa xb x bf x log f x x b x b----==-=--++,∴函数()f x 为奇函数.22、已知奇函数()2121x xa f x ⋅-=+的定义域为[]2,3ab --. (1)求实数a ,b 的值;(2)若[]2,3x a b ∈--,方程()()20f x f x m +-=⎡⎤⎣⎦有解,求m 的取值范围.【解析】(1)因为奇函数定义域关于原点对称,所以230a b --+=.又根据定义在0x =有定义,所以()00210021a f ⋅-==+,解得1a =,1b =. (2)[]3,3x ∈-,令()2121x x f x t -==+,7799t ⎛⎫-≤≤ ⎪⎝⎭则方程()()20f x f x m +-=⎡⎤⎣⎦有解等价于20t t m +-= 7799t ⎛⎫-≤≤ ⎪⎝⎭有解 也等价于2y t t =+ 7799t ⎛⎫-≤≤ ⎪⎝⎭与y m =有交点.画出图形根据图形判断:由图可知:1112481m -≤≤时有交点,即方程()()20f x f x m +-=⎡⎤⎣⎦有解.。

开学分班考试(四)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

开学分班考试(四)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

2020年秋季高一开学分班考试(四)一、单选题(共8小题,满分40分,每小题5分)1、设集合A ={3,5,6,8},集合4 ={45,7,8},则等于()A. {5,8}B. {3…6}C. {4,7}D. {3,568}【答案】A【解析】集合A ={3,5,6,8},集合8 ={4,5,7,8},又集合A与集合4中的公共元素为5,8 ,二. Ac3 = {5,8},故选A.2、已知命题〃:V X£R,X2—X+I>O,则一y,()A. ±wR, x2 -x + l<0B. VxwR,x2 -x + l<0C. HrwR, x2-x + l>0D. YxeR,x2 -x + l>0【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题〃:V XE RV—X +I,。

,则「P:3xwR, x2 -x+l<0 » 故选A.3、如果/(戈)=以2-(2—〃)1+1在区间(7,1上为减函数,则。

的取值()A. (0,1]B. [0,1)C. [0,1]D. (0,1)【答案】C【解析】由题意,当4=0时,可得,(x) = -2x + l,在尺上是单调递减,满足题意,当“<0时,显然不成立:当。

>0时,要使/(X)在(一8,;上为减函数,则三;之:,解得:综上:可得0<a<\,故选:C.4、关于x的不等式产十这一3<0,解集为(一3』),则不等式以2+工一3<0的解集为()1 3A.(1,2)B.(-12)C.(――1)D.(一二1)2 2【答案】D【解析】由题/ = -3/ = 1是方程/+统一3 = 0的两根,可得-3+1 = -〃,即。

=2,z 3所以不等式为2/+工_3<0,即(2x + 3)(x—l)〈0、所以—故选:D5、(2020・重庆巴蜀中学高一期末)若八J7+l) =X+ J7,则/(X)的解析式为()A. f(x) = x2-xB. f (x) = x2 - x(x > 0)C. f(x) = x2-x[x>\)D. f(x) = A2 + X【答案】c【解析】/( 4+1)=x+y/x,设4+l=f,色1,则x= (L 1) 2,:J (f) = (/- 1)4-1=F - r,役1,・••函数f(X)的解析式为=X2-A-(X>1).故选:C.6、若。

2024年秋季高一入学分班考试数学试题与答案

2024年秋季高一入学分班考试数学试题与答案

(考试时间:120分钟 试卷满分:1502024年秋季高一入学分班考试数学试题分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ( ) A .{}1,2,3,4 B .{}1,4C .{}2,3D .∅22x =−,则x 的值可以是( )A .2−B .1−C .1D .23.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知二次函数2y ax bx c ++的图象的顶点坐标为(2,1)−,与y 轴的交点为(0,11),则( )A .3,12,11a b c ==−=B .3,12,11a b c === C .3,6,11a b c ==−= D .1,4,11a b c ==−= 5.把2212x xy y −++分解因式的结果是( ) A .()()()112x x y x y +−++ B .()()11x y x y ++−− C .()()11x y x y −+−−D .()()11x y x y +++−6.已知命题p :1x ∃>,210x ,则p ¬是( ) A .1x ∀>,210x B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤7.函数y =) A .[]3,3−B .()3,1(1,3)−∪C .()3,3−D .()(),33,−∞−+∞8.若实数a b ,且a ,b 满足2850a a −+=,2850b b −+=,则代数式1111b a a b −−+−−的值为( ) A .-20B .2C .2或-20D .2或20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列坐标系中的曲线或直线,能作为函数()y f x =的图象的是( )A .B .C .D .10.下列命题中是全称量词命题并且是真命题的是( ) A .x ∀∈R ,2210x x ++≥ B .x ∃∈N ,2x 为偶数 C .所有菱形的四条边都相等 D .π是无理数11.下列结论中,错误的结论有( )A .()43y x x =−取得最大值时x 的值为1 B .若1x <−,则11x x ++的最大值为-2C .函数()f x =的最小值为2D .若0a >,0b >,且2a b +=,那么12a b+的最小值为3+三、填空题:本题共3小题,每小题5分,共15分.12.若多项式3x x m ++含有因式22x x −+,则m 的值是 .13.不等式20ax bx c ++>的解集是(1,2),则不等式20cx bx a ++>的解集是(用集合表示) . 14.对于每个x ,函数y 是16y x =−+,22246y x x =−++这两个函数的较小值,则函数y 的最大值是 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解下列不等式:(1)2320x x −+−≥; (2)134x x −+−≥; (3)11.21x x −≤+16.(15分)设全集R U =,集合{}|15Ax x =≤≤,集合{|122}B x a x a =−−≤≤−.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若命题“x B ∀∈,则x A ∈”是真命题,求实数a 的取值范围.17.(15分)已知集合{}{}210,20A x ax B x x x b =−==−+=.(1)若{}3A B ∩=,求实数,a b 的值及集合,A B ; (2)若A ≠∅且A B B ∪=,求实数a 和b 满足的关系式.18.(17分)已知22y x ax a =−+.(1)设0a >,若关于x 的不等式23y a a <+的解集为{},12|A Bx x =−≤≤,且x A ∈的充分不必要条件是x B ∈,求a 的取值范围;(2)方程0y =有两个实数根12,x x , ①若12,x x 均大于0,试求a 的取值范围;②若22121263x x x x +=−,求实数a 的值.19.(17分)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的14.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过20立方米,则水价为每立方米3元;第二档,若每户每月用水超过20立方米,但不超过30立方米,则超过部分水价为每立方米4元;第三档,若每户每月用水超过30立方米,则超过部分水价为每立方米7元,同时征收其全月水费20%的用水调节税.设某户某月用水x立方米,水费为y元.(1)试求y关于x的函数;(2)若该用户当月水费为80元,试求该年度的用水量;(3)设某月甲用户用水a立方米,乙用户用水b立方米,若,a b之间符合函数关系:247530=−+−.则当b a a两户用水合计达到最大时,一共需要支付水费多少元?一、单项选择题:本题共8小题,每小题5分,共402024年秋季高一入学分班考试数学答案分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1 2 3 4 5 6 7 8 CDBADBCA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BDACABCD三、填空题:本题共3小题,每小题5分,共15分. 12.2 13.1|12x x <<6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)【解析】(1)2320x x −+−≥可化为2320,(1)(2)0x x x x −+≤∴−−≤, 所以解为1 2.x ≤≤(3分)(2)当1x <时,不等式可化为134x x −+−+≥,此时不等式解为0x ≤; 当13x ≤≤时,不等式可化为134x x −−+≥,此时不等式无解; 当3x >时,不等式可化为134x x −+−≥,此时不等式解为4x ≥; 综上:原不等式的解为0x ≤或4x ≥.(9分) (3)原不等式可化为211021x x x +−+≥+,(11分)与()()2120210x x x ++≥+≠同解, 所以不等式的解为:2x ≤−或12x >−.(13分)16.(15分)【解析】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,(2分)又{}|15Ax x =≤≤,{|122}B x a x a =−−≤≤−,因此12125a a −−< −≥ 或12125a a −−≤ −> ,解得7a ≥,所以实数a 的取值范围为7a ≥.(7分)(2)命题“x B ∀∈,则x A ∈”是真命题,则有B A ⊆,(9分) 当B =∅时,122a a −−>−,解得13a <,符合题意,因此13a <;(11分)当B ≠∅时,而{}|15{|122}A x x B x a x a =≤≤=−−≤≤−,, 则11225a a ≤−−≤−≤,无解,(14分) 所以实数a 的取值范围13a <.(15分)17.(15分)【解析】(1)若{}3∩=A B , 则{}{}2310,320x ax x x x b ∈−=∈−+=,(2分) 所以310,960a b −=−+=,解得1,33a b ==−,(4分) 所以{}{}{}{}2110103,2301,33A x ax x x B x xx =−==−===−−==−,综上:1,33a b ==−,{}{}3,1,3A B ==−;(7分)(2)若A ≠∅,则0a ≠,此时{}110A x ax a=−==,(9分) 又A B B ∪=,所以A B ⊆, 即{}2120x x x b a ∈−+=,(12分)所以2120440b a ab −+= ∆=−≥ , 所以实数a 和b 满足的关系式为212b a a=−+.(15分)18.(17分)【解析】(1)由23y a a <+,得2223x ax a a a −+<+, 即22230x ax a −−<,即()()30x a x a −+<, 又0a >,∴3a x a −<<,即{}|3A x a x a =−<<,(3分)∵x A ∈的充分不必要条件是x B ∈,∴B 是A 的真子集,则0132a a a >−<− > ,解得0123a a a> > >,则1a >, 即实数a 的取值范围是1a >.(6分) (2)方程为220y x ax a =−+=, ①若12,x x 均大于0则满足21212440200a a x x a x x a ∆=−≥ +=> => ,解得10a a a a ≥≤> > 或, 故1a ≥,即a 的取值范围为1a ≥.(10分)②若22121263x x x x +=−,则()2121212263x x x x x x +−=−, 则()21212830x x x x +−+=,即24830a a −+=,(13分) 即()()21230a a −−=,解得12a =或32a =, 由0∆≥,得1a ≥或0a ≤. 所以32a =,即实数a 的值是32.(17分)19.(17分)【解析】(1)因为某户该月用水x 立方米, 按收费标准可知, 当020x <≤时,3y x =;当2030x <≤时,()203420420y x x ×+−−;当30x >时,[2034(3020)7(30)] 1.28.4132y x x =×+×−+−×=−.(5分)所以3,020420,20308.4132,30x x y x x x x <≤=−<≤ −>(6分)(2)由题可得,当该用户水费为80元时,处于第二档,所以42080x −=, 解得25x =. 所以该月的用水量为25立方米.(10分) (3)因为247530b a a =−+−,所以()2248530244646a b a a a +=−+−=−−+≤.(13分)当24a =时,()46max a b +=,此时22b =.(15分)所以此时两户一共需要支付的水费是4242042220144y =×−+×−=元.(17分)。

2020年江西省临川一中新高一入学分班考试数学模拟试卷及答案解析

2020年江西省临川一中新高一入学分班考试数学模拟试卷及答案解析

第 1 页 共 22 页
2020年江西省临川一中新高一入学分班考试数学模拟试卷
一.选择题(共6小题,满分18分,每小题3分)
1.(3分)﹣2020的相反数是( )
A .12020
B .−12020
C .2020
D .﹣2020
2.(3分)如图是某兴趣社制作的模型,则它的俯视图是( )
A .
B .
C .
D .
3.(3分)下列各式计算正确的是( )
A .2a 2﹣a 2=a 2
B .(3a )2=3a 2
C .﹣2(a ﹣1)=﹣2a +1
D .(a +b )2=a 2+b 2
4.(3分)对于一列数据,如果去掉一个最大值和一个最小值,那么这列数据分析一定不受
影响的是( )
A .平均数
B .中位数
C .众数
D .方差
5.(3分)如图,在3×4的正方形网格中,能画出与“格点△ABC ”面积相等的“格点正
方形”有( )个.
A .2
B .4
C .6
D .8
6.(3分)对于二次函数y =ax 2+(1﹣2a )x (a >0),下列说法错误的是( )
A .该二次函数图象的对称轴可以是y 轴
B .该二次函数图象的对称轴不可能是x =1
C .当x >2时,y 的值随x 的增大而增大
D .该二次函数图象的对称轴只能在y 轴的右侧。

2020年秋季高一新生入学分班考试数学试卷(浙江专用)

2020年秋季高一新生入学分班考试数学试卷(浙江专用)

2020年秋季高一新生入学分班考试数学试卷(浙江专用)06 学校:___________姓名:___________班级:___________考号:___________1.与根式﹣)A B.﹣x C D2.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y++-=⎧⎨+--=⎩的解是()A.8.31.2xy=⎧⎨=⎩B.6.32.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩3.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c =0有实数解的概率为()A.815B.1730C.49D.17364.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是27°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若斜坡AF的坡度i=1,则大树的高度为()(结果保留整数,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.5,sin48°≈0.74,cos48°≈0.67,tan48°≈1.1≈1.7)A.8米B.9米C.10米D.11米5.若关于x 的不等式组11(1)213132422x a x x x ⎧+<++⎪⎪⎨⎛⎫⎪-- ⎪⎪⎝⎭⎩至少有4个整数解,且关于y 的分式方程3﹣1ay y -=51y-有整数解,则符合条件的所有整数a 的和为( )A .4B .9C .11D ..126.如果a ,b ,c 是正数,且满足a +b +c =9,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为( ) A .6B .7C .9D .107.如图,在半径为2的⊙O 中,半径OC 垂直弦AB ,D 为⊙O 上的点,∠ADC=30°,则AB 的长是( )A B .3C .D .48.如图,点E 是AB 的中点,5AC =,2BD =,若A CED B ∠=∠=∠,则AB 的长是( )A .7B C .D .109.已知二次函数y =x 2﹣2ax +a 2﹣2a ﹣4(a 为常数)的图象与x 轴有交点,且当x >3时,y 随x 的增大而增大,则a 的取值范围是( ) A .a ≥﹣2B .a <3C .﹣2≤a <3D .﹣2≤a ≤310.已知,等边三角形ABC 和正方形DEFG 的边长相等,按如图所示的位置摆放(C 点与E 点重合),点B、C 、F 共线,△ABC 沿BF 方向匀速运动,直到B 点与F 点重合.设运动时间为t ,运动过程中两图形重叠部分的面积为S ,则下面能大致反映s 与t 之间关系的函数图象是( )A.B.C.D.11.如图,圆锥母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,该圆锥的侧面积是______12.比较a=249,b=328,c=521这三个数的大小,按照从大到小的顺序排列为______.13.已知实数a,b,c在数轴上的对应点如图所示,|a﹣b|+|c﹣a=_____.14.若三角形三条边长分别为a,b,c,且a2b﹣a2c+b2c﹣b3=0,则这个三角形一定是____.15.如图,在△ABC中,CA=CB=10,AB=12,以BC为直径的圆⊙O交AC于点G,交AB于点D,过点D作⊙O的切线,交CB的延长线于点E,交AC于点F.则下列结论正确的是____.①DF⊥AC;②DO=DB;③S△ABC=48;④cos∠E=24 25.16.已知函数y =a (x +2)(x ﹣2a),有下列说法:①若平移函数图象,使得平移后的图象经过原点,则只有唯一平移方法:向右平移2个单位;②当0<a <1时,抛物线的顶点在第四象限;③方程a (x +2)(x ﹣2a)=﹣4必有实数根;④若a <0,则当x <﹣2时,y 随x 的增大而增大.其中说法正确的是____.(填写序号)17.计算:(1﹣(﹣1)2020﹣20; (2)(21639a a ++-)÷13a +. 18.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全如表:(2)哪个班的学生纠错的得分更稳定?若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)现从两个班抽取了数学成绩最好的甲、乙、丙、丁四位同学,并随机分成两组进行数学竞赛,求恰好选中甲、乙一组的概率.19.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20x x a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.20.在正方形ABCD 中,P 为AB 的中点,BE PD ⊥的延长线于点E ,连接AE 、BE 、FA AE ⊥交DP 于点F ,连接BF ,FC .求证下列结论:(1)FB AB =;(2)CF EF ⊥,FC EF =.21.已知函数y =261x +,请根据已学知识探究该函数的图象和性质. (1)列表,写出表中a 、b 、c 的值:a = ,b = ,c = .(2)描点、连线,在下面的平面直角坐标系中画出该函数的图象,并写出该函数的一条性质: .(3)已知函数y =x +2的图象如图所示,结合你所画的函数图象,直接写出不等式261x +≥x +2的解集: .22.如图,AB 是半O 的直径,点C 是半圆弧的中点,点D 是弧AC 的中点,连结BD交AC 、OC 于点E 、F .(1)在图中与BOF 相似的三角形有 个; (2)求证:2BE AD ; (3)求DEBE的值. 23.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x ﹣3与x 轴相交于A ,B (点A 在点B 的左边),与y 轴相交于C . (1)求直线BC 的表达式.(2)垂直于y 轴的直线l 与直线BC 交于点N (x 1,y 1),与抛物线相交于点P (x 2,y 2),Q (x 3,y 3).若x 1<x 2<x 3,结合函数图象,求x 1+x 2+x 3的取值范围.参考答案1.D【解析】【分析】将原式进行化简后即可确定正确的选项.【详解】∴x<0,∴﹣0,∴﹣x•x-,故选:D.【点睛】考查了二次根式的性质与化简和二次根式有意义的条件,解题的关键是了解原式有意义是x 的取值范围,难度不大.2.B【解析】【分析】设x+2=a,1﹣y=﹣b,把要求解的方程组转化为23133530.9a ba b-=⎧⎨+=⎩,再求x、y的值.【详解】解:设x+2=a,1﹣y=﹣b.则方程组2(2)3(1)13 3(2)5(1)30.9x yx y++-=⎧⎨+--=⎩可变形为2313 3530.9 a ba b-=⎧⎨+=⎩.∵方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩.∴x+2=8.3,1﹣y=﹣1.2.∴6.32.2 xy=⎧⎨=⎩.故选:B.【点睛】本题考查了二元一次方程组的解法和二元一次方程的解.把要求解的方程组转化为已知方程组,是解决本题的关键.3.D【解析】【分析】列表展示所有36种等可能的结果数,再根据判别式的意义得到△≥0,从而得到使得一元二次方程ax2﹣6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=17 36,故选:D.【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.4.C【解析】 【分析】过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,由AF 的坡比i =1,DA =6,可求得AN 与DN 的长,设大树的高度为x 米,由三角函数定义可得AC = 1.1x,在BDM 中,tan ∠BDM=BMDM=tan27°≈0.5,则BM =0.5DM ,得出方程x ﹣3=0.5×()1.1x ,解方程即可求得答案. 【详解】过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N , 则四边形DMCN 是矩形,∵DA =6,斜坡AF 的坡比i =1tan ∠DAN ,∴∠DAN =30°,DN =12AD =3,AN =, 设大树的高度为x 米,∵在斜坡上A 处测得大树顶端B 的仰角是48°, ∴tan48°=BCAC≈1.1, ∴AC =1.1x ,∴DM =CN =AN +AC = 1.1x , 在BDM 中,tan ∠BDM =BMDM=tan27°≈0.5,∴BM =0.5DM ,∴x ﹣3=0.5×( 1.1x), 解得x ≈10. 即树高BC 约10米. 故选:C .【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题;能借助仰角构造直角三角形,利用三角函数解直角三角形是解题的关键.5.A【解析】【分析】【分析】根据题意分别表示出不等式组与分式方程的解,确定出满足题意整数a的值,求出之和即可.【详解】不等式组整理得:12x ax<-⎧⎨-⎩,解得:﹣2≤x<a﹣1,由不等式组至少有4个整数解,得到a﹣1>1,即a>2,分式方程去分母得:3(y﹣1)﹣ay=﹣5,去括号得:3y﹣3﹣ay=﹣5,即(3﹣a)y=﹣2,解得:y=23a-,由分式方程有整数解,得到a﹣3=±1,a﹣3=﹣2,解得:a=2(不符合题意,舍去),a=4,a=1(不符合题意,舍去),故符合条件的所有整数a的和为4.故选:A.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.B【解析】【分析】先根据题意得出a =9﹣b ﹣c ,b =9﹣a ﹣c ,c =9﹣a ﹣b ,再代入原式进行计算即可. 【详解】∵a ,b ,c 是正数,且满足a +b +c =9, ∴a =9﹣b ﹣c ,b =9﹣a ﹣c ,c =9﹣a ﹣b ,∴原式=99b c a c b c c a ----++++9a ba b --+ =99b c c a ++++9a b+﹣3=9×109﹣3=7, 故选:B . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 7.C 【解析】 【分析】设半径OC ⊥AB 于点E ,连接OA ,利用圆周角定理求出∠BO C ,解直角三角形求出BE 即可解决问题. 【详解】设半径OC ⊥AB 于点E ,连接OA ,∴AC BC =, ∴∠D =12∠BOC =30°, ∴∠BO C =60°,∵AOB 是等腰三角形,OE AB ⊥,OB =2,∴AE =EB =OB •sin60°∴AB =2AE = 故选:C . 【点睛】本题主要考查了勾股定理、垂径定理和圆周角定理等知识,解题的关键是熟练掌握基本知识. 8.C 【解析】 【分析】 证明ACE BED ,可得AE AEBE BD=,由此即可解决问题. 【详解】解:∵BEC BED CED A ACE ∠=∠+∠=∠+∠,A CED ∠=∠, ∴ACE BED ∠=∠, ∵A B ∠=∠, ∴ACE BED ,∴AC AEBE BD=, ∵点E 是AB 的中点, ∴AE EB =,∴210AE AC BD =⋅=, ∵0AE >,∴AE =∴2AB AE == 故选:C . 【点睛】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型. 9.D 【解析】【分析】根据图象与x轴有交点,得出判别式∆≥0,解得a≥﹣2;再求出抛物线的对称轴,结合抛物线开口向上,且当x>3时,y随x的增大而增大,可得a≤3,从而得出答案.【详解】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,∴∆=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0解得:a≥﹣2;∵抛物线的对称轴为直线x=﹣22a-=a,抛物线开口向上,且当x>3时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是﹣2≤a≤3.故选:D.【点睛】本题考查了抛物线与x轴的交点和二次函数的图象与性质,明确抛物线与x轴的交点个数与判别式的关系及二次函数的性质是解题的关键.10.A【解析】【分析】分点A在D点的左侧、点A在DG上、点A在G点的右侧三种情况,分别求出函数的表达式即可求解.【详解】解:设等边三角形ABC和正方形DEFG的边长都为a,当点A在D点的左侧时,设AC交DE于点H,则CE=t,HE=ET tan ACB=t,则S =S △CEH =12×CE ×HE =12×t 2,图象为开口向上的二次函数; 当点A 在DG 上时,同理可得:S =22﹣2(a ﹣t )2=2(﹣t 2+2at ),图象为开口向下的二次函数; 点C 在EF 的中点右侧时,同理可得:S =S △BFH =12×BF ×HF =12×(2a ﹣t )2a ﹣t (2a ﹣t )2, 图象为开口向上的二次函数. 故选:A . 【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解. 11.12π 【解析】 【分析】根据正弦的定义求出圆锥的底面半径,根据扇形面积公式计算,求出圆锥的侧面积. 【详解】解:∵圆锥母线长为6,sinθ=13, ∴圆锥的底面半径=6×13=2, ∴圆锥的底面积=4π,∴圆锥的侧面展开图扇形的弧长为4π, ∴该圆锥的侧面积=12×4π×6=12π, 故答案为:12π. 【点睛】本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键. 12.a >c >b . 【解析】 【分析】直接利用幂的乘方运算法则分别化简得出答案. 【详解】∵a =249=(27)7,b =328=(34)7,c =521=(53)7, ∴27=128,34=81,53=125, ∴a >c >b . 故答案为:a >c >b . 【点睛】此题主要考查了幂的乘方运算,正确化简各数是解题关键. 13.c ﹣2a 【解析】 【分析】直接利用二次根式的性质以及绝对值的性质分别化简得出答案. 【详解】解:由数轴可得:a <0,b <0,c >0,|a |>|b |, 故a ﹣b <0,c ﹣a >0,b ﹣a >0, 原式=﹣a +a ﹣b +c ﹣a +b ﹣a =c ﹣2a . 故答案为:2c a 【点睛】此题主要考查了二次根式的性质以及绝对值的性质,正确化简各数是解题关键. 14.等腰三角形 【解析】 【分析】首先需要将a 2b ﹣a 2c +b 2c ﹣b 3因式分解,则可得到(b ﹣c )(a ﹣b )(a +b )=0,即可得到:b =c 或a =b ,即这个三角形一定是等腰三角形.【详解】∵a2b﹣a2c+b2c﹣b3=a2(b﹣c)﹣b2(b﹣c)=(b﹣c)(a2﹣b2)=(b﹣c)(a﹣b)(a+b)=0,∴b﹣c=0或a﹣b=0或a+b=0(舍去),∴b=c或a=b.∴这个三角形一定是等腰三角形.故答案为:等腰三角形.【点睛】此题考查了因式分解的应用.注意掌握因式分解的步骤,分解要彻底.15.①③④【解析】【分析】连接OD、BG、CD,如图,利用切线的性质得到OD⊥DF,再利用圆周角定理和等腰三角形的性质证明OD∥AC,则可对①进行判断;利用OB=12BC=5,BD=6可对②进行判断;利用勾股定理计算出CD=8,则可计算出△ABC的面积,从而可对③进行判断;利用面积法计算出BG=485,则cos∠CBG=2425,然后证明∠E=∠CBG,从而可对④进行判断.【详解】解:连接OD、BG、CD,如图,∵DF为切线,∴OD⊥DF,∵BC为直径,∴∠BDC=90°,∵CA=CB,∴CD平分AB,即AD=BD=6,而OB=OC,∴OD为△ABC的中位线,∴OD∥AC,∴DF⊥AC,所以①正确;∵OB=12BC=5,BD=6,∴OD≠BD,所以②错误;在Rt△BCD中,CD=8,∴S△ABC=12CD•AB=12×8×12=48,所以③正确;∵BC为直径,∴∠BGC=90°,∴S△ABC=12BG•AC=48,∴BG=485,∴cos∠CBG=BGBC=48510=2425,∵BG⊥AC,EF⊥AC,∴BG∥EF,∴∠E=∠CBG,∴cos E=2425,所以④正确.故答案为:①③④.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰三角形的性质、圆周角定理和解直角三角形.16.②③【解析】【分析】把函数解析式化为一般式,再结合方程、函数图象等进行判断即可.【详解】解:当函数图象向上平移4个单位时,解析式为y =ax 2+2(a ﹣1)x , 则其图象过原点,故①不正确;在y =ax 2+2(a ﹣1)x ﹣4中,令x =0可得y =﹣4, 当0<a <1时,其对称轴为x =﹣1a a->0, 此时其顶点坐标在第四象限,故②正确;∵y =a (x +2)(x ﹣2a )=ax 2+2(a ﹣1)x ﹣4, ∴方程a (x +2)(x ﹣2a)=﹣4可化为ax 2+2(a ﹣1)x ﹣4=﹣4,即ax 2+2(a ﹣1)x =0,该方程有实数根,故③正确; 当a <0时,抛物线开口向下,且对称轴在y 轴的左侧, 但无法确定其在x =﹣2的左侧还是右侧,故④不正确; 综上可知正确的是②③, 故答案为:②③. 【点睛】本题主要考查二次函数的性质,掌握二次函数与方程、图象的平移等知识是解题的关键.17.(1;(2)33a a +-. 【解析】 【分析】(1)直接利用零指数幂的性质以及绝对值的性质和二次根式的性质分别化简得出答案; (2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=﹣1﹣1+1; (2)原式=36(3)(3)a a a -++-•(a +3)=(3)(3)3a a a ++-•(a +3)=33a a +-.【点睛】此题主要考查了分式的混合运算以及实数运算,正确掌握相关运算法则是解题关键.18.(1)答案见解析;(2)初三(1)班的学生纠错的得分更稳定.28名,24名;(3)16.【解析】【分析】(1)中位数、众数的定义、方差的定义进行解答即可;(2)方差越小越稳定.找到样本中24分和24分人数所占的比例,即可得出答案;(3)画出树状图,由树状图求得所有可能的结果与甲、乙分在同一组的情况,再利用概率公式即可求得答案.【详解】(1)初三(1)班有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分,初三(1)班的方差为:S22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198=19.8;补全如表:故答案为:24,24,19.8;(2)∵S12<S22,∴初三(1)班的学生纠错的得分更稳定.初三(1)班优秀学生为40×4310=28人;初三(2)班优秀学生为40×610=24人.(3)画树状图如图:共有12种等可能的结果,恰好选中甲、乙一组的有2种情况, ∴恰好选中甲、乙一组的概率为212=16. 【点睛】此题考查了列表法或树状图法、方差、众数和中位数.注意概率=所求情况数与总情况数之比19.a +b +c =-3. 【解析】 【分析】设21110x ax ++=,2110x bx c ++=,得11c x a b-=-,同理,由2220x x a ++=,2220x cx b ++=,得2(1)1a bx c c -=≠-,再根据韦达定理即可求解. 【详解】解:设21110x ax ++=,2110x bx c ++=,两式相减,得1()10a b x c -+-=,解得11c x a b-=-, 同理,由2220x x a ++=,2220x cx b ++=,得2(1)1a bx c c -=≠-, 211x x =, ∴11x 是第一个方程的根, 1x 与11x 是方程21110x ax ++=的两根, 2x ∴是方程210x ax ++=和20x x a ++=的公共根,因此两式相减有2(1)(1)0a x --=, 当1a =时,这两个方程无实根, 故21x =,从而11x =, 于是2a =-,1b c +=-,所以3a b c ++=-.【点睛】本题考查了根与系数的关系及二元一次方程的解,关键是根据韦达定理解题,属于中档题.20.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据已知和正方形的性质推出EAB DAF ∠=∠,EBA ADP ∠=∠,AB AD =,证ABE ADF ≅即可;取EF 的中点M ,连接AM ,推出AM MF EM DF ===,证AMB FMB ∠=∠,BM BM =,AM MF =,推出ABM FBM ≅,利用全等三角形的性质得出结论;(2)利用(1)中ABM FBM ≅可得BAM BFM ∠=∠,求出FDC EBF ∠=∠,推出BEF DFC ≅,利用全等三角形的性质即可得出结论.【详解】证明:(1)正方形ABCD ,BE PD ⊥,EA FA ⊥,AB AD CD BC ∴===,90BAD EAF BEF ∠=∠=︒=∠,APD EPB ∠=∠,∴∠=∠EAB DAF ,EBA ADP ∠=∠,AB AD =,在ABE △与ADF 中,EAB DAF AB ADEBA ADP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE ADF ASA ∴≅,AE AF ∴=,BE DF =,45AEF AFE ∴∠=∠=︒,取EF 的中点M ,连接AM ,AM EF ∴⊥,AM EM FM ==,//BE AM ∴,AP BP =,AM BE DF ∴==,45EMB EBM ∴∠=∠=︒,9045135AMB FMB ∴∠=︒+︒=︒=∠,在ABM 与FBM 中,AM FM AMB FMB BM BM =⎧⎪∠=∠⎨⎪=⎩,()ABM FBM SAS ∴≅,AB BF ∴=;(2)ABM FBM ≅,BAM BFM ∴∠=∠,90BEF ∠=︒,AM EF ⊥,90BAM APM ∴∠+∠=︒,90EBF EFB ∠+∠=︒,APF EBF ∴∠=∠,//AB CD ,APD FDC ∴∠=∠,EBF FDC ∴∠=∠,在BEF 与DFC △中,BE DF EBF FDC BF CF =⎧⎪∠=∠⎨⎪=⎩,()BEF DFC SAS ∴≅,CF EF ∴=,90DFC FEB ∠=∠=︒,CF EF ∴=且CF EF ⊥.【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.21.(1)1.2,6,0.6;(2)图象见解析,函数关于y 轴对称;(3)图象见解析,x ≤1.【解析】【分析】(1)分别将x 的值代入函数y =261x +中,可得结论; (2)根据表中的数据,描点连线、画出函数的图象,并直接说性质;(3)由图象:函数y =261x +的图象在y =x +2的图象的上方对应的x 值取值范围可得. 【详解】解:(1)当x =﹣2时,a =641+=1.2, 当x =0时,b =6,当x =3时,c =2631+=0.6, 故答案为:1.2,6,0.6;(2)如图所示:性质:函数关于y 轴对称;(答案不唯一:或函数有最大值是6);故答案为:函数关于y 轴对称;(3)由图象得:不等式261x +≥x +2的解集是:x ≤1; 故答案为:x ≤1.【点睛】本题考查了一次函数的图象与性质,一次函数与一元一次不等式,利用数形结合思想,正确画出函数的图象是解题的关键.22.(1)3;(2)证明见解析;(3. 【解析】【分析】(1)利用相似三角形的判定方法,结合圆周角定理得出即可;(2)利用全等三角形的判定与性质得出ACG BCE ≅,进而求出即可;(3)利用已知首先判断DHE BCE ,进而得出答案. 【详解】(1)因为圆周角ADB ∠、ACB ∠所对的弦是直径,所以90ADB ACB ∠=∠=, 由点D 是弧AC 的中点,可得:ABD CBD ∠=∠;又点C 是半圆弧的中点,所以90FOB COB ∠=∠=,因此由ADB FOB ∠=∠,DBA FBO ∠=∠得BAD BFO ;由ECB ACB FOB ∠=∠=∠,FBO ABD CBD CBE ∠=∠=∠=∠,所以BCE BOF ;又AED CEB ∠=∠,90ADB ACB ∠=∠=,所以DAE CBE FBO ∠=∠=∠, 又90ADE FOB ∠=∠=,所以ADE BOF ,即与BOF 相似的三角形有BAD ;EAD ;BEC △共3个.(2)证明:如图,延长AD 与BC 相交于G ,∵点C 是半圆弧的中点,点D 是弧AC 的中点,∴CBE GAC ∠=∠,在ACG 和BCE 中∵GAC CBE AC BC ACG BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ACG BCE ≅∴BE AG =,而2AG AD =,∴2BE AD =.(3)解:如图,连接OD 交AC 于点H ,则OD AC ⊥,可得://DH BC ,故DHE BCE , 故DE DH BE BC=,设2BC x =,则OD OB ==,故OH x =,)1DH x =-,则12DE BE =.【点睛】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质,正确利用圆周角定理得出对应角相等是解题关键.23.(1)y =x ﹣3;(2)1<x 1+x 2+x 3<2.【解析】【分析】(1)利用抛物线解析式求得点B 、C 的坐标,利用待定系数法求得直线BC 的表达式即可; (2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【详解】(1)由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x +1),C (0,﹣3).所以A (﹣1,0),B (3,0),设直线BC 的表达式为:y =kx +b (k ≠0),则330b k b =-⎧⎨+=⎩, 解得13k b =⎧⎨=-⎩,所以直线BC的表达式为y=x﹣3;(2)由y=x2﹣2x﹣3得到:y=(x﹣1)2﹣4,所以抛物线y=x2﹣2x﹣3的对称轴是直线x=1,顶点坐标是(1,﹣4).∵y2=y3,∴x2+x3=2.令y=﹣4,y=x﹣3,x=﹣1.∵x1<x2<x3,∴﹣1<x1<0,即1<x1+x2+x3<2.【点睛】本题考查了抛物线与x轴的交点,待定系数法求一次函数的解析式,“数形结合”的数学思想是解题的关键.。

高一入学数学测试卷03(解析版)

高一入学数学测试卷03(解析版)
2020 年秋季高一开学分班考试(三)
一、单选题(共 8 小题,满分 40 分,每小题 5 分)
1、已知集合 A {x | x a 0},若 2 A,则 a 的取值范围为(
A. (, 2]
B. (, 2]
C.[2, )

D.[2, )
【答案】C
【解析】因为集合 A {x | x a 0},所以 A x | x a ,
B.若 a>b ,则 a2 b2 ,取 a 0,b 1 不成立
C. 若 a>b , c d ,则 a c>b d ,正确 D. 若 a>b , c>d ,则 ac>bd ,取 a 1,b 1, c 1, d 2 不成立,故答案选 C
2x, 0 x 1,
4、已知函数
f
(x)
正确.故选:CD
11、下面命题正确的是( )
A.“ a 1 ”是“ 1 1 ”的充分不必要条件 a
B.命题“若 x 1,则 x2 1 ”的否定是“ 存在 x 1,则 x2 1 ”.
C.设 x, y R ,则“ x 2 且 y 2 ”是“ x2 y2 4 ”的必要而不充分条件
D.设 a, b R ,则“ a 0 ”是“ ab 0 ”的必要不充分条件
“ ac bc ”的充分不必要条件,故 A 错,对于 B,a 1,b 2 ,a b 时,a2 b2 ;a 2 ,b 1,a2 b2 时,a b ,所以“ a b ”是“ a2 b2 ”的既不充分也不必要条件,故 B 错,对于 C,因为“ a 3 ”时一定有“ a 5 ” 成立,所以“ a 5 ”是“ a 3 ”的必要条件,C 正确;对于 D“ a 5 是无理数”是“ a 是无理数”的充要条件,D
B 不符合题意,0 的负分数指数幂没有意义;

【推荐下载】秋季学期高一数学分班考试试题

【推荐下载】秋季学期高一数学分班考试试题

[键入文字]
秋季学期高一数学分班考试试题
同学们一定有着爱思考的头脑,聪明、敏捷的思维,小编正对高中学生整理的高一数学分班考试试题,希望同学们在认真的做题的同时也去了解其中的奥妙。

一、填空题(本大题共14 小题,每小题5 分,共70 分)
1.流程图中的功能是________.(填序号)
①算法的起始与结束;②算法输入和输出信息;③计算、赋值;④判断条件是否成立.
2.用二分法求方程x2-10=0 的近似根的算法中要用下列哪种算法结构________.(填序号)
①顺序结构;②选择结构;③循环结构.
3.已知变量a,b 已被赋值,要交换a、b 的值,采用的算法是________.
4.阅读下图所示的流程图,运行相应的程序,输出的结果是________.
5.给出伪代码如下图所示,若该程序执行的结果是3,则输入的x 值是________. Read xIf x&ge;0Theny&larr;xElsey&larr;-xEnd IfPrint y
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年秋季高一开学分班考试(三)一、单选题(共8小题,满分40分,每小题5分)1、已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞C解析:因为集合{|0}A x x a =-,所以{}|A x x a =, 又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .2、函数()12f x x =-的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞C解析:由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭.故选:C .3、下列命题正确的是( ) A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bdC解析:A.若>a b ,则11a b<,取1,1a b ==- 不成立 B.若>a b ,则22a b >,取0,1a b ==- 不成立 C. 若>a b ,c d <,则>a c b d --,正确D. 若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==- 不成立,故答案选C4、已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为( )A .1B .2C .3-D .12A解析:由题意得,3()=22f ,1(2)=2f ,1()=2=1122f ⨯, 所以3[()]=[(2)]=()=1212f f f f f f ⎧⎫⎨⎬⎩⎭,故选:A.5、已知2x >,函数42y x x =+-的最小值是( ) A .5 B .4C .8D .6D解析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.6、下列函数既是偶函数,又在(),0-∞上单调递减的是( )A .2x y =B .23y x-=C .1y x x=- D .()2ln 1y x =+A解析:对于A 选项,2x y =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x-=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意.对于C 选项,1y x x=-为奇函数,不符合题意. 对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意.故选:A 7、若正数,x y 满足220x xy +-=,则3x y +的最小值是( )A .4 B.C .2 D.A解析:因为正数,x y 满足220xxy +-=,所以2=-y x x,所以2324+=+≥=x y x x ,当且仅当22x x =,即1x =时,等号成立. 故选:A8、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 取值范围是( )A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]D 解析:()f x 为奇函数,()()f x f x ∴-=-.(1)1f =-,(1)(1)1f f ∴-=-=.故由1(2)1f x -≤-≤,得(1)(2)(1)f f x f ≤-≤-.又()f x 在(,)-∞+∞单调递减,121x ∴-≤-≤,13x ∴≤≤.故选:D二、多选题(共4小题,满分200分,每小题5分) 9、下列各式既符合分数指数幂的定义,值又相等的是( ) A .13(1)-和26(1)-B .20-和12C .122和414D .324-和312-⎛⎫ ⎪⎝⎭ E.343和4313- CE解析:A 不符合题意,13(1)-和26(1)-均符合分数指数幂的定义,但13(1)1-==-,26(1)1-==;B 不符合题意,0的负分数指数幂没有意义; C符合题意,114242==;D 不符合题意,324-和312-⎛⎫ ⎪⎝⎭均符合分数指数幂的定义,但233211484-==,331282-⎛⎫== ⎪⎝⎭; E 符合题意,4343133-=.故选:CE.10、对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件CD解析:对于A ,因为“a b =”时ac bc =成立,ac bc =,0c 时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B ,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C ,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD 11、下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 ABD解析:选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选:ABD12、已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-∞-+∞B .()f x 一定有最小值;C .当0a =时,()f x 的值域为R ;D .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4|a a ≥-AC解析:对A ,当0a =时,解210x ->有()(),11,x ∈-∞-+∞,故A 正确对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x ∈-∞-+∞,()210,x -∈+∞,此时()()2lg 1f x x =-值域为R ,故B 错误.对C ,同B ,故C 正确. 对D , 若()f x 在区间[)2,+∞上单调递增,此时21y x ax a =+--对称轴22ax =-≤.解得4a ≥-.但当4a =-时()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选AC三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、正实数,x y 满足:21x y +=,则21x y+的最小值为_____.9解析:()21212225559y x x y x y x y x y +=++=++⎛⎫≥+≥+ ⎝⎭=⎪, 当且仅当13x y ==时取等号.故答案为:9. 14、若幂函数图像过点(8,4),则此函数的解析式是y =________.23x解析:设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x=,故答案为:23x .15、函数()2436x x f x x ++=-的值域为__________.(),161667,⎡-∞-++∞⎣解析:设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣.故答案为:(),161667,⎡-∞-++∞⎣. 16、已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____. 10,2⎡⎫⎪⎢⎣⎭解析:当1x ≥时,()12x f x -=,此时值域为[)1,+∞若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1,即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤<,故答案为:10,2⎡⎫⎪⎢⎣⎭四、解答题(共6小题,满分70分,第17题10分,其它12分)17、已知集合A ={x|2a≤x≤a +3},B ={x|x 2+x -6≤0}.若A ∪B =B ,求实数a 的取值范围. 解析: B ={x|x 2+x -6≤0} ={x|(x +3)(x -2)≤0} ={x|-3≤x≤2} =[-3,2].因为A ∪B =B ,所以A ⊆B. ①当A =∅时,2a>a +3, 解得a>3;②当A≠∅,即a≤3时, 因为A =[2a ,a +3],所以⎩⎪⎨⎪⎧2a≥-3,a +3≤2,解得-32≤a≤-1,综上,实数a 的取值范围为⎣⎡⎦⎤-32,-1∪(3,+∞). 18、已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.解析:解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或,因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<19、化简下列各式:解析: (1) 原式=lg 1100×10=-2×10=-20.(2) 原式=lg25lg2×lg4lg3×lg9lg5=2lg5lg2×2lg2lg3×2lg3lg5=8. (3) 原式=lg 427-lg4+lg75=lg(427×14×75)=12.20、判断下列函数的奇偶性: (1) f(x)=xlg(x +x 2+1); (2) f(x)=(1-x)1+x1-x; (3) f(x)=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1, x <0;(4) f(x)=4-x 2|x +3|-3.解析: (1) 因为x +x2+1>0恒成立, 所以函数f(x)的定义域为R ,关于原点对称,所以f(x)-f(-x)=x[lg(x +x 2+1)+lg(-x +x 2+1)]=0, 所以f(x)=f(-x),所以f(x)为偶函数. (2) 由题意得,⎩⎪⎨⎪⎧1+x 1-x ≥0,1-x≠0,解得-1≤x<1,所以定义域不关于原点对称, 所以f(x)为非奇非偶函数.(3) f(x)定义域为(-∞,0)∪(0,+∞)关于原点对称. 不妨设x>0,所以f(x)+f(-x)=-x 2+2x +1+x 2-2x -1=0, 所以f(x)=-f(-x),所以f(x)为奇函数.(4) 由题意得,⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得x ∈[-2,0)∪(0,2]关于原点对称,所以f(x)+f(-x)=4-x 2x -4-x 2x =0,所以f(x)=-f(-x), 所以f(x)为奇函数. 21、已知函数()log a x bf x x b-=+ ()0,0,0a a b >≠≠. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由;解析:(1)由x bx b->+0,化为:()()0x b x b -+>. 当0b >时,解得x b >或x b <-;0b <时,解得x b >-或x b <. ∴函数()f x 的定义域为:0b >时,()),(,x b b ∈-∞-+∞,0b <时,()),(,x b b ∈-∞-+∞.(2)∵定义域关于原点对称,()()log aa xb x bf x log f x x b x b----==-=--++,∴函数()f x 为奇函数.22、已知奇函数()2121x xa f x ⋅-=+的定义域为[]2,3ab --. (1)求实数a ,b 的值;(2)若[]2,3x a b ∈--,方程()()20f x f x m +-=⎡⎤⎣⎦有解,求m 的取值范围.解析:(1)因为奇函数定义域关于原点对称,所以230a b --+=.又根据定义在0x =有定义,所以()00210021a f ⋅-==+,解得1a =,1b =. (2)[]3,3x ∈-,令()2121x x f x t -==+,7799t ⎛⎫-≤≤ ⎪⎝⎭则方程()()20fx f x m +-=⎡⎤⎣⎦有解等价于20t t m +-= 7799t ⎛⎫-≤≤ ⎪⎝⎭有解也等价于2y t t =+7799t ⎛⎫-≤≤ ⎪⎝⎭与y m =有交点.画出图形根据图形判断:由图可知:1112481m -≤≤时有交点,即方程()()20f x f x m +-=⎡⎤⎣⎦有解.。

相关文档
最新文档