(完整版)七年级数学《平方根》典型例题及练习

合集下载

人教版七年级下册数学 平方根 知识点练习题(含答案)

人教版七年级下册数学  平方根 知识点练习题(含答案)

6.1 平方根知识点 1 算术平方根的定义1.下列说法正确的是 ( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对2.“9的算术平方根”这句话用数学符号表示为 ( )A .√9B .±√9C .√3D .±√3知识点 2 求算术平方根3.4的算术平方根是 ( )A .2B .-2C .±2D .√24.若√a =2,则a 的值为 ( )A .-4B .4C .-2D .√15. 求下列各数的算术平方根:(1)0.64; (2)916; (3)(-3)2; (4)214.6. 求下列各式的值:(1)√25; (2)√169; (3)√42.知识点 3 算术平方根的非负性7.任何一个数的平方都不会是负数,所以负数没有算术平方根,即当a 0时,√a 有意义;当a 0时,√a 无意义.由此可知在√a 中,被开方数a 是非负数,√a 也是非负数,即√a 0.8.下列各数中,没有算术平方根的是 ( )A .2B .0C .-4D .0.0019.下列式子有意义的是 ( )A .√-3B .√-32C .-√(-3)2D .√-(-3)2 知识点 4 算术平方根的估算10. 估计√22的值在 ( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.已知a,b是两个连续整数,若a<√7<b,则a,b的值分别是()A.2,3B.3,2C.3,4D.6,812.与√14-2最接近的自然数是.13.比较下列各组数的大小:(1)√3与1.7;(2)√8-1与1.214.算术平方根等于它的相反数的数是()A.0B.1C.0,1D.0,±115.估计√5-1的值在()2A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间16.如图,按下面的程序计算,若开始输入的x值为1,则最后输出的结果是()A.√7B.4C.7D.13xy=.17.若|x-2|+√x+y=0,则-1218.已知一个数的算术平方根是a,则比这个数大8的数是.19.算术平方根等于它本身的数是,√16的算术平方根是,√9的算术平方根是.20.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[√3]=1,按此规定,[√13-1]=.21.小亮房间的地板面积为9平方米,恰好由25块大小相同的正方形地板砖铺成,求每块正方形地板砖的边长.22.某工厂计划将原有的正方形场地改建成800平方米的长方形场地,且其长、宽的比为5∶2.(1)求改建后的长方形场地的长和宽分别为多少米;(2)如果把原来面积为900平方米的正方形场地的金属栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?23.已知2a+1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.24.乔迁新居,小明家买了一张边长是1.3米的正方形新桌子,原有边长是1米的两块正方形台布都不适用了,丢掉又太可惜了.小明的姥姥按图所示的方法,将两块台布拼成一块正方形大台布,请你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?参考答案1.A2.A3.A4.B5.解:(1)0.8. (2)34. (3)3. (4)32.6.解:(1)因为52=25,所以√25=5.(2)因为432=169,所以√169=43. (3)因为42=16,所以√42=√16=4.7.≥ < ≥8.C 9.C 10.B 11.A 12.213.解:(1)√3>1.7. (2)√8-12<1.14.A15.C 解析:√5≈2.236,则√5-12≈0.618.16.A 解析: 当输入1时,3×1+1=4,取算术平方根可得2,则3×2+1=7,取算术平方根可得√7,√7>2.故选A . 17.2 解析: 由“几个非负数之和等于0,则这几个数都为0”可得,x -2=0,x+y=0,解得x=2,y=-2,所以-12xy=-12×2×(-2)=2.18.a 2+8 解析: 因为一个数的算术平方根是a ,所以这个数为a 2,则比这个数大8的数是a 2+8.19.0,1 2 √320.2 解析: 因为3<√13<4,所以2<√13-1<3,所以[√13-1]=2.21.解:由题意可知,每块正方形地板砖的面积是925平方米,所以每块正方形地板砖的边长是√925=35(米).22.解:(1)设改建后的长方形场地的长为5x 米,则宽为2x 米.根据题意,得5x ·2x=800,解得x=√80,∶长为5√80米,宽为2√80米.答:改建后的长方形场地的长和宽分别为5√80米、2√80米.(2)栅栏围墙不够用.理由如下:设原正方形场地的边长为y 米,则y 2=900,解得y=30,∶原正方形场地的周长为120米.新长方形场地的周长为(5√80+2√80)×2=14√80(米).∶124.6=14×8.9<14√80<14×9=126,∶120<14√80,∶栅栏围墙不够用.23.解:因为2a+1的算术平方根是0,所以2a+1=0,所以a=-12.因为b -a 的算术平方根是12,所以b -a=14,所以b=-14,所以12ab=12×(-12)×(-14)=116,所以12ab 的算术平方根是14.24.解:由题意,得拼成的正方形大台布的面积为2平方米.设它的边长为x 米,则x 2=2.因为1.412=1.9881,1.422=2.0164,所以1.412<x 2<1.422,即1.41<x<1.42.因为新正方形桌子的边长为1.3米,x>1.3,所以这块大台布能盖住现在的新桌子.6.2 立方根一.选择题(共14小题)1.下列计算中错误的是( )A .=6B .﹣=﹣4C .﹣=﹣3D .﹣=﹣0.12.﹣的立方根是( )A .﹣B .C .﹣D .3.下列叙述中,错误的是( )①﹣27立方根是3;①49的平方根为±7;①0的立方根为0;①的算术平方根为.A .①①B .①①C .①①D .①①4.若=2,则x 的值为( )A .4B .8C .﹣4D .﹣55.如果=﹣,那么a ,b 的关系是( )A.a=b B.a=±b C.a=﹣b D.无法确定6.立方根是﹣3的数是()A.9B.﹣27C.﹣9D.277.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.8.若=a,则a的值不可能是()A.﹣1B.0C.1D.39.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.=﹣3D.0.2 的算术平方根是0.0210.正方体的体积为7,则正方体的棱长为()A.B.C.D.7311.若a满足,则a的值为()A.1B.0C.0或1D.0或1或﹣1 12.下列等式成立的是()A.B.C.D.13.若=1.02,=10.2,则y等于()A.1000000B.1000C.10D.10000 14.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题)15.若有意义,则x的取值范围是.16.小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是.(2)分析发现,当实数x取时,该程序无法输出y值.17.将一块体积为1000cm3的正方体木块锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为cm.18.若的整数部分为2,则满足条件的奇数a有个.19.已知2a﹣1的平方根是±3,则7+4a的立方根是.20.如果=2.872,=0.2872,则x=.三.解答题(共5小题)21.用计算器探索.已知按一定规律排列的一组数:1,,,…,,,如果从中选择出若干个数,使它们的和大于3,那么至少要选几个数?22.如图,这是由8个同样大小的立方体组成的魔方,体积为8cm3.(1)这个魔方的棱长为.(2)图中阴影部分是一个正方形,求出阴影部分的周长.23.请认真阅读下列材料,再解决后面的问题.依照平方根(即二次方根)和立方根(即三次方根)的定义,可给出四次方根、五次方根的定义.比如:若x2=a(a≥0),则x叫a的二次方根;若x3=a,则x叫a的三次方根:若x4=a(a≥0),则x叫a的四次方根;(1)依照上面的材料,请你给出五次方根的定义,并求出﹣32的五次方根;(2)解方程:(2x﹣4)4﹣8=024.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.25.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.参考答案一.选择题(共14小题)1.C.2.A.3.D.4.B.5.C.6.B.7.C.8.D.9.D.10.B.11.C.12.C.13.B.14.C.二.填空题(共6小题)15.任意实数.16.(1);(2)0或1或负数.17.5.18.9.19.320.0.0237.三.解答题(共5小题)21.解:左边第一个数是1,第二个是=≈0.7,第三个数是=≈0.57,第四个数是==0.5,第五个数是=≈0.44,第六个数是=≈0.41,1++++=1+0.7+0.56+0.5+0.44=3.2,所以可以把这些数加起来,得出至少要5个数和才大于3.22.解:(1)=2(cm).故这个魔方的棱长是2cm.故答案为:2cm.(2)①魔方的棱长为2cm,①小立方体的棱长为1cm,①阴影部分是正方形,其边长为:=(cm),①出阴影部分的周长4cm.23.解:(1)如果x5=a,那么x叫做a的五次方根,﹣32的五次方根为﹣2;(2)(2x﹣4)4﹣8=0,(2x﹣4)4﹣16=0,(2x﹣4)4=16,2x﹣4=±,2x﹣4=±2,x=3或x=1.24.解:((1),所以立方体棱长为cm;(2)最多可放4个.设长方形宽为x,可得:4x2=36,x2=9,①x>0,①x=3,,横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.25.解:(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,则6y2=600,故y2=100,解得:y=±10因为y是正数,所以y=1010×10×2+10×6×4=440(平方厘米)答:该长方体纸盒的表面积为440平方厘米.6.3实数一.选择题1.在实数,,,,0.3中,无理数有()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.B.C.D.3.已知k<<k+1,k为整数,则k和k+1分别为()A.1,2B.2,3C.3,4D.4,5 4.下列说法正确的是()A.2的平方根是B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D.无理数的整数部分是55.下列关于的说法中,错误的是()A.是无理数B.2<<3C.5的平方根是D.是5的算术平方根6.下列实数中,无理数有(),,,|﹣1|,,,0.1010010001…(相邻两个1之间的0的个数逐次增加1)A.1个B.2个C.3个D.4个7.实数2介于()A.7和8之间B.6和7之间C.5和6之间D.4和5之间8.若的整数部分为a,小数部分为b,则数轴上表示实数﹣a,b的两点之间距离为()A.B.C.D.9.定义新运算:a*b=(a≠b且a+b>0),例如:3*2==,则6*(6*3)的值为()A.1B.C.D.10.下列各组数中互为相反数的一组是()A.2与B.|﹣2|与C.﹣2与D.2与二.填空题11.已知x为整数,且x<﹣1<x+1,则x的值为.12.选用适当的不等号填空:﹣﹣π.13.计算﹣12020+﹣|﹣|=.14.已知a,b为实数,下列说法:①若ab<0,且a,b互为相反数,则=﹣1;①若a+b<0,ab>0,则|2a+3b|=﹣2a﹣3b;①若|a﹣b|+a﹣b=0,则b>a;①若|a|>|b|,则(a+b)×(a﹣b)是正数;①若a<b,ab<0且|a﹣3|<|b﹣3|,则a+b>6,其中正确的是.15.实数a、b、c、d在数轴上对应的点的位置如图所示,在这四个数中,绝对值最小的数是.三.解答题16.2﹣;(2)求x的值:(x﹣3)3=﹣1.17.计算(1);(2).18.将下列各数在数轴上表示出来,并比较它们的大小(用“<”连接).﹣(﹣4),﹣|﹣3.5|,+(﹣1),0,+(+2.5)19.(1)画出数轴并表示下列有理数,﹣2,﹣2.5,0,,,并用“<”号连接.(2)已知有理数a、b在数轴上的对应点如图,化简|a|﹣|a+b|+|c﹣b|.参考答案与试题解析一.选择题1.【解答】解:=9,无理数有:,,共有2个.故选:B.2.【解答】解:A、=3,故此选项错误;B、=3,故此选项错误;C、=2﹣,故此选项错误;D、﹣=﹣3,正确.故选:D.3.【解答】解:①3<<4,k<<k+1,①k=3,k+1=4,故选:C.4.【解答】解:A.2的平方根是±,故错误;B.(﹣4)2的算术平方根是4,故正确;C.近似数35万精确到万位,故错误;D.①4<<5,①无理数的整数部分是4,故错误.故选:B.5.【解答】解:A、是无理数,本选项不符合题意;B、2<<3,本选项不符合题意;C、5的平方根是±,本选项符合题意;D、是5的算术平方根,本选项不符合题意;故选:C.6.【解答】解:,是分数,属于有理数;,|﹣1|=1,是整数,属于有理数;无理数有,,0.1010010001…(相邻两个1之间的0的个数逐次增加1)共3个.故选:C.7.【解答】解:①2=,且6<<7,①6<2<7.故选:B.8.【解答】解:①4<7<9,①2<<3,①a=2,b=﹣2,则|﹣a﹣b|=|﹣2﹣(﹣2)|=.故选:B.9.【解答】解:根据题中的新定义得:6*3==1,则原式=6*1==.故选:B.10.【解答】解:A、2与不是互为相反数,不合题意;B、|﹣2|与,两数相等,不是互为相反数,不合题意;C、﹣2与是互为相反数,符合题意;D、2与两数相等,不是互为相反数,不合题意;故选:C.二.填空题(共5小题)11.【解答】解:①x<﹣1<x+1,①﹣2<x<﹣1,①4<<5,①3<﹣1<4,2<﹣2<3,①x=3.故答案为:3.12.【解答】解:①5<<6,①>π,①﹣<﹣π,故答案为:<.13.【解答】解:原式=﹣1﹣2﹣2=﹣5.故答案为:﹣5.14.【解答】解:①若ab<0,且a,b互为相反数,则=﹣1,本选项正确;①若ab>0,则a与b同号,由a+b<0,则a<0,b<0,则|2a+3b|=﹣2a﹣3b,本选项正确;①①|a﹣b|+a﹣b=0,即|a﹣b|=﹣(a﹣b),①a﹣b≤0,即a≤b,本选项错误;①若|a|>|b|,当a>0,b>0时,可得a>b,即a﹣b>0,a+b>0,所以(a+b)(a﹣b)为正数;当a>0,b<0时,a﹣b>0,a+b>0,所以(a+b)(a﹣b)为正数;当a<0,b>0时,a﹣b<0,a+b<0,所以(a+b)(a﹣b)为正数;当a<0,b<0时,a﹣b<0,a+b<0,所以(a+b)(a﹣b)为正数,本选项正确;①①a<b,①a﹣3<b﹣3,①ab<0,①a<0,b>0,当0<b<3时,|a﹣3|<|b﹣3|,①3﹣a<3﹣b,不符合题意;所以b≥3,|a﹣3|<|b﹣3|,①3﹣a<b﹣3,则a+b>6,本选项正确;则其中正确的有4个.故答案为:①①①①.15.【解答】解:绝对值最小的数是b,故答案为:b.三.解答题(共4小题)16.【解答】解:(1)原式=4﹣4=0;(2)(x﹣3)3=﹣1,则x﹣3=﹣1,解得:x=2.17.【解答】解:(1)原式=﹣(3+2﹣2)﹣=5﹣5+2﹣=;(2)原式=5+﹣﹣2+=8﹣.18.【解答】解:如图所示:则﹣|﹣3.5|<+(﹣1)<0<+(+2.5)<﹣(﹣4).19.【解答】解:(1),则﹣2.5<﹣2<﹣<0<;(2)由数轴可得:a+b<0,c﹣b>0,a<0,原式=﹣a﹣[﹣(a+b)]+(c﹣b)=﹣a+a+b+c﹣b=c.。

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。

(完整版)初一下册数学平方根练习题(含答案).doc

(完整版)初一下册数学平方根练习题(含答案).doc

平方根练习题姓名: _______________ 班级: _______________ 考号: _______________一、填空题1、已知 m的平方根是2a-9 和 5a-12 ,则 m的值是 ________.2、对于任意不相等的两个数a, b,定义一种运算※如下:a※ b=,如 3※ 2=.那么12※ 4=.3、实数 a 在数轴上的位置如图所示,化简:。

4、已知:,则x+y的算术平方根为_____________ .二、选择题5、已知:是整数,则满足条件的最小正整数为()A. 2 B .3C . 4D . 56、若,,且,则的值为()A. -1 或 11 B . -1 或 -11 C .1 D .117、点 P, 则点 P 所在象限为 ().A. 第一象限B.第二象限C.第三象限 D 第四象限 .8、的平方根是A.9 B . C . D . 39、一个正方形的面积是15,估计它的边长大小在()A. 2 与 3 之间 B . 3 与 4 之间 C . 4 与 5 之间D. 5 与 6 之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m的两个平方根分别是2a- 3 和a- 9,求 2m- 2 的值.四、计算题13、已知与的小数部分分别是a、 b,求 ab 的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、 92、 1/23、 14、 5二、选择题5、 D6、 D7、 D8、 C9、 B三、简答题10、⋯2分⋯..4分⋯⋯6分果.8分11、解 : 由可知 :,, ∴. 2 分∴原式 = 5 分= 6 分=.7 分12、∵一个正数的两个平方根分是2a- 3 和a-9,∴(2 a- 3)+( a- 9)=0 ,解得a= 4 ,∴ 个正数(2 a-3) 2 =52 =25,∴ 2 m- 2=2× 25- 2= 48 ;四、计算题13、解 : 因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式 =+2+4﹣ 4=;。

(完整版)《平方根》典型例题及练习

(完整版)《平方根》典型例题及练习

平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根.3、重要公式: (1)=2)(a (2){==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.7.若一个数的立方根等于数的算术平方根,则这个数是_____________.8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、6 D 、 6±例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.下列说法中正确的是( ) A .9的平方根是3 B422. 4的平方的倒数的算术平方根是( ) A .4 B .18C .-14D .143.下列结论正确的是( ) A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个6.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是( )A 、6B 、6±C 、 6D 、 6±9.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-11.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 12.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a- C .2a - D .3a14.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )A .1± B. 4 C. 3或5 D. 515.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A.2- B. 5± C. 5 D. 5- 二、填空题: 1.2)8(-= , 2)8(= 。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

七年级数学下册实数(平方根)练习题

七年级数学下册实数(平方根)练习题

七年级数学下册实数(平方根)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若立方根等于本身的数的个数为a ,平方根等于本身的数的个数为b ,算术平方根等于本身的数的个数为c ,倒数等于本身的数的个数为d ,则a b c d +++=________.2.实数a ,b 在数轴上对应点的位置如图所示,化简||a b -的结果为________.3.25的算术平方根是____________________;﹣27的立方根是__________.4.若 和 都是 5 的 立方根,则 a = ________,b = __________.5.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.6.已知|2|0x ++==_____.二、单选题7.下列说法不正确的是( )A .4是16的算术平方根B .53是259的一个平方根C .()26-的平方根6-D .()23-的平方根是3±8.下列说法中,正确的是( )A .16的平方根是4B .0.4的算术平方根是0.2C .64的立方根是4±D .-64的立方根是-49.“49的平方根是7±”的表达式正确的是( )A .7=±B 7=C 7=±D .7=10.下面四个数中,最小的数是( )A .2(3)--B .|3|--C .13-D .2(3)--11.下列式子没有意义的是( )A .BCD 12.一个自然数的一个平方根是a ,则与它相邻的上一个自然数的平方根是( )A .B .1a -C .21a -D .三、解答题1301(2022)2--+.14.因为12,即12,1,1.类比以上推理解答下列问题:(1)(2)若m 是11-n 是11x +1)2=m +n ,求x 的值.15.计算:(2)|1参考答案:1.8【分析】根据“立方根等于本身的数的个数为a ,平方根等于本身的数的个数为b ,算术平方根等于本身的数的个数为c ,倒数等于本身的数的个数为d ”可求a ,b ,c ,d ,从而可求答案.【详解】立方根等于本身的数的个数为3,故3a =;平方根等于本身的数的个数为1,故1b =;算术平方根等于本身的数的个数为2,故2c =;倒数等于本身的数的个数为2,故2d =.把这些数值代入得8a b c d +++=故答案为8.【点睛】本题是一道综合题,考查了立方根,平方根,算术平方根等知识,熟知这些知识的性质是解题的关键.2.0【分析】先根据数轴得出a <0<b ,然后化简绝对值、立方根及算术平方根,最后进行化简即可.【详解】解:根据数轴可得:a <0<b ,∴a -b <0a =b =,∴原式=-(a -b )+a -b=-a +b +a -b=0,故答案为:0.【点睛】题目主要考查根据数轴判断式子的正负,包括绝对值,立方根及算术平方根,熟练掌握各个运算法则是解题关键.3. 5 ±3 -3【分析】直接根据平方根,算术平方根,立方根的概念求解即可.【详解】解:∴2525=,∴25的算术平方根是5,9,而9的平方根是±3,±3,∴()3327-=-,∴﹣27的立方根是﹣3,故答案为:5;±3;﹣3.【点睛】本题考查了平方根,算术平方根,立方根的概念,理解掌握概念是解题的关键.4. 6 1 【分析】由于若2b +5的立方根,由此可以得到关于a 、b 的方程组,解之即可求出结果. 【详解】∴2b +5的立方根, 则2b + 即2b+1=3,解得b=1.即a−1=5,解得a=6.故答案为6,1.【点睛】本题考查的知识点是立方根,解题的关键是熟练的掌握立方根.5.0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴∴AMN 边MN 上的高为:1m - ∴1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =,结合AMN 的面积不小于12,∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题.6.2【分析】根据非负数的性质得出x ,y 的值,再根据立方根的定义解答即可.【详解】解:∴|2|0x ++=,∴x +2=0,y −10=0,解得:x =−2,y =10,2,故答案为:2.【点睛】此题考查绝对值和算术平方根的非负性,求立方根,关键是根据非负数的性质得出x ,y 的值. 7.C【分析】根据算术平方根,平方根和立方根的意义进行分析即可.【详解】解:A .4是16的算术平方根,是正确的,因此选项A 不符合题意;B .由于259的平方根是53±,因此53是259的一个平方根是正确的,所以选项B 不符合题意; C .()2636-=,而36的平方根是6±,因此选项C 是错误的,所以选项C 符合题意;D .()239-=,而9的平方根是3±,因此选项D 是正确的,所以选项D 不符合题意;故选:C .【点睛】本题主要考查数的算术平方根、平方根的定义,熟记算术平方根,平方根的定义是解题的关键. 8.D【分析】根据立方根的定义及平方根的定义依次判断即可得到答案.【详解】解:A 、16的平方根是±4,故本选项错误,不符合题意;B 、0.04的算术平方根是0.2,故本选项错误,不符合题意;C 、64的立方根是4,故本选项错误,不符合题意;D 、-64的立方根是-4,本选项正确,符合题意;故选:D .【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键.9.A【分析】根据平方根的表示方法,即可得到答案.【详解】解:“49的平方根是7±”表示为:7±.故选A .【点睛】本题主要考查平方根的表示法,掌握正数a 的平方根表示为10.A【分析】先化简各数,再进行比较.【详解】解:∴2(3)9--=-,|3|3--=-,()239--=,且19393>->->-, ∴最小的数是-9,即2(3)--,故选:A .【点睛】本题考查比较有理数大小,掌握乘方的运算法则,绝对值和相反数的意义是解题的关键. 11.D【分析】根据立方根和平方根的性质可得答案.【详解】解:A 、被开方数是正数,该式子有意义,故本选项正确,不合题意;B 、(-3)2=9,被开方数是正数,该式子有意义,故本选项正确,不合题意;C 、三次根式的被开方数可以是任何数,该式子有意义,故本选项正确,不合题意.D 、被开方数是负数,该式子无意义,故本选项错误,符合题意;故选:D.【点睛】本题主要考查了立方根和平方根的性质,二次根式的被开方数是非负数是解题关键.12.D【分析】先用a表示该自然数,然后再求出这个自然数相邻的上一个自然数的平方根.【详解】解:由题意可知:该自然数为2a,∴该自然数相邻的下一个自然数为21a-,∴21a-的平方根为故选:D.【点睛】本题考查算术平方根,解题的关键是求出该自然数的表达式,本题属于基础题型.13.5 2【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.01(2022)2--+1312=-+52=.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.14.(1)33(2)x=0或x=﹣2【分析】(1)用夹逼法根据无理数的估算即可得出答案;(2)根据无理数的估算求出m,n的值,根据平方根的定义即可得出答案.(1)解:34,33;(2)解:∴m是11-n是1143,∴m=4n3,∴()21431x m n+=+==,∴11x+=±,解得:x=0或x=﹣2.【点睛】本题考查了无理数的估算、平方根,明确无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.15.(1) 2.3【分析】根据算术平方根,立方根的定义进行计算即可求解.(1)解:原式=1--0.222=-;2.3(2)-+123=【点睛】本题考查了实数的混合运算,正确的计算是解题的关键.。

七年级下数学实数平方根习题含答案解析

七年级下数学实数平方根习题含答案解析

七年级下实数平方根练习题含答案解析一、单选题(共10题;共20分)1.下列等式正确是A. B. C. D.2.下列说法中正确的是()A. 9的平方根为3B. 化简后的结果是C. 最简二次根式D. ﹣27没有立方根3.在下列式子中,正确的是()A. =﹣B. ﹣=﹣0.6C. =﹣13D. =±64.下列说法正确的是( )A. 3的平方根是B. 对角线相等的四边形是矩形C. 近似数0.2050有4个有效数字D. 两个底角相等的梯形一定是等腰梯形5.下列说法错误的是()A. 一个正数的算术平方根一定是正数B. 一个数的立方根一定比这个数小C. 一个非零的数的立方根,仍然是一个非零的数D. 负数没有平方根,但有立方根6.下列说法不正确的是()A. 的平方根是B. ﹣2是4的一个平方根C. 0.2的算术平方根是0.04D. ﹣27的立方根是﹣37.下列运算正确的是()A. =±3B. (﹣2)3=8C. ﹣22=﹣4D. ﹣|﹣3|=38.4的平方根是()A. ±16B. 16C. ±2D. 2B.9.求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:运用你发现的规律解决问题,已知≈1.435,则≈()A. 14.35B. 1.435C. 0.1435D. 143.510.若a2=36,b3=8,则a+b的值是()A. 8或﹣4B. +8或﹣8C. ﹣8或﹣4D. +4或﹣4二、填空题(共4题;共6分)11.0的平方根是________12.-64的立方根是________,的平方根是________.13.已知时,.请你根据这个结论直接填空:(1)________;(2)若,则________.14.=a,=b,则=________.三、解答题(共4题;共20分)15.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.16.已知2x﹣y的算术平方根为4,﹣2是y的立方根,求﹣2xy的平方根.17.2a-1和3a-4是一个数的平方根,b的立方根是-2,求a-b的算术平方根.18.已知的立方根是3,16的算术平方根是,求:的平方根.四、综合题(共2题;共38分)19.判断下列各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.20.观察发现:…(1)表格中x=________,y=________.(2)应用:利用a与数位的规律解决下面两个问题:①已知≈ 3.16,则≈________,≈________;②已知= k,=________,=________(用含k的式子表示).(3)拓展:= m,=________,=________(用含m的式子表示)答案解析部分一、单选题1.【答案】D【解析】【解答】、原式,不符合题意;、原式,不符合题意;、原式没有意义,不符合题意;、原式,符合题意.故答案为:.【分析】原式利用平方根定义及二次根式的性质判断即可得到结果.2.【答案】B【解析】【解答】解:A、9的平方根是±3,所以选项A不正确;B、= = ,所以选项B正确;C、=2 ,所以不是最简二次根式,选项C不正确;D、﹣27的立方根是﹣3,所以选项D不正确.故选B.【分析】根据平方根和立方根的定义作判断.3.【答案】A【解析】【解答】解:A,=﹣,故A选项正确;B、﹣≈﹣1.9,故B选项错误;C、=13,故C选项错误;D、=6,故D选项错误.故选:A.【分析】A、根据立方根的性质即可判定;B、根据算术平方根的定义即可判定;C根据算术平方根的性质化简即可判定;D、根据算术平方根定义即可判定.4.【答案】C【解析】【分析】A、根据平方根的定义,可判断;B、根据矩形的定义可判定;C、根据有效数字的定义,可判定;D、根据等腰梯形的定义,即可判定.【解答】A、根据一个正数有两个平方根,它们互为相反数;故本选项错误;B、根据对角线相等且平分的四边形是矩形;故本选项错误;C、根据有效数字的定义,近似数0.2050有4个有效数字;故本选项正确;D、根据同一底上两个角相等的梯形是等腰梯形;故本选项错误.故选C.【点评】本题考查了平方根、矩形、有效数字及等腰梯形的定义及性质,熟记这些概念才能熟练应用,是解答这类题目的关键.5.【答案】B【解析】【分析】根据立方根,算术平方根,平方根的定义对各选项分析判断后利用排除法求解.【解答】A、一个正数的算术平方根一定是正数正确,故本选项不符题意;B、一个数的立方根一定比这个数小错误,例如:-8的立方根是-2,-2>-8,故本选项符合题意;C、一个非零的数的立方根,仍然是一个非零的数正确,故本选项不符题意;D、负数没有平方根,但有立方根正确,故本选项不符题意.故选B.【点评】本题考查了立方根,平方根算术平方根的定义,是基础题,熟记概念是解题的关键6.【答案】C【解析】【解答】解:A、的平方根是,正确;B、﹣2是4的一个平方根,正确;C、0.04的算术平方根为0.2,不正确;D、﹣27的立方根是﹣3,正确;故选C.【分析】利用立方根,平方根以及算术平方根的定义判断即可.7.【答案】C【解析】【解答】解:A、,故原选项计算错误,故此选项不符合题意;B、,故原选项计算错误,故此选项不符合题意;C、,计算正确,故此选项符合题意;D、,故原选项计算错误,故此选项不符合题意.故答案为:C.【分析】根据算术平方根的定义,有理数的乘方,绝对值及相反数分别进行计算,然后判断即可.8.【答案】C【解析】【解答】解:∵4=(±2)2,∴4的平方根是±2.故选C.【分析】由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.9.【答案】A【解析】解答:根据表格的规律:,,可知≈1.435,则≈14.35.分析:根据被开方数的小数点移动两位,算术平方根的小数点每移动一位求出即可.10.【答案】A【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..二、填空题11.【答案】0【解析】【解答】解:0的平方根是0,故答案为:0.【分析】根据如果一个数的平方等于a,这个数就叫做a的平方根进行解答即可.12.【答案】-4;±2【解析】【解答】解:-64的立方根是-4=4,4的平方根是±2,即的平方根是±2,故答案为:-4,±2.【分析】根据立方根及算术平方根、平方根的定义填空即可.13.【答案】(1)3(2)4039【解析】【解答】(1);(2),,,.故答案为:3,4039.【分析】(1)根据时,,直接计算,即可;(2)根据平方差公式可得x的值,进而得2x+1的值,即可求出的值.14.【答案】0.1b【解析】【解答】解:∵=b,∴= = = =0.1b.故答案为:0.1b.【分析】算数平方根的小数点移动法则为”内2外1“,根号里边移动2位,外边移动1位,5.67与567小数点相差2位,以为标准移动小数点.三、解答题15.【答案】解:由题意得:,∴a=5,b=2.∵9<13<16,∴3<<4.∴c=3.∴a+2b-c=6.∴a+2b-c的平方根是± .【解析】【分析】根据算数平方根和平方根的定义,可列出方程组,计算得出结果。

七年级数学-平方根练习含解析

七年级数学-平方根练习含解析

七年级数学-平方根练习含解析一、选择题(本大题共10小题,共30.0分)1.若2x−5没有平方根,则x的取值范围为()A. x>52B. x≥52C. x≠52D. x<522.当√4x+1的值为最小值时,a的取值为()A. −1B. 0C. −14D. 13.√9的平方根是()A. 3B. ±3C. √3D. ±√34.已知等腰三角形的两边a、b满足|2x−3x+5|+√2x+3x−13=0,则此等腰三角形的周长为()A. 7或8B. 6或10C. 6或7D. 7或105.下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③x2的算术平方根是a;④算术平方根不可能是负数.A. 0个B. 1个C. 2个D. 3个6.若m,n满足(x−1)2+√x−15=0,则√x+x的平方根是()A. ±4B. ±2C. 4D. 27.若一个数的平方根等于它本身,则这个数是()A. 0B. 1C. 0 或 1D. 0 或±18.下列说法正确的是()A. 一个有理数的平方根有两个,它们互为相反数B. 负数没有立方根C. 无理数都是开不尽的方根数D. 无理数都是无限不循环小数9.对实数a、b,定义运算x∗x={x2x(x≥x)xx2(x<x),已知3∗x=36,则m的值为()1A. 4B. ±√12C. √12D. 4或±√1210.已知√−x=x,那么x=()A. 0B. 0或1C. 0或−1D. 0,−1或1二、填空题(本大题共10小题,共30.0分)11.若|x+2|+√x−3=0,则x x的值为______.12.3的算术平方根是______ .13.√x的算术平方根是3,则x的值是______.14.若直角三角形的两边长为a、b,且满足√x2−6x+9+|x−4|=0,则该直角三角形的第三边长为______.15.如图,在4×4的方格图中,每个小正方形的边长都为1.图中阴影是个正方形,顶点均在格点上,则这个正方形的边长是______ .16.正方形的边长为a,它的面积与长为4cm、宽为12cm的长方形的面积相等,则x=______cm.17.若√2≈1.414,√20≈4.472,则√2000≈______.18.若√4x2−4x+1=1−2x,则x的范围是__________.19.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为3,正方形B的面积为24,则图中阴影部分的面积是_________.20.若√1−x+x2+2x−1=0,则x−x=_________三、解答题(本大题共4小题,共40.0分)21.已知25x2−144=0,且x是正数,求代数式2√5x+13的值.22.已知a,b是有直角三角形的两边,且满足√x−5=8x−x2−16,求此三角形第三边长。

(完整版)平方根习题集

(完整版)平方根习题集

平方根练习题一、填空题1.如果x的平方等于a,那么x就是a的 .2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4的平方根是5.非负的平方根叫平方根二、选择题6. 9的算术平方根是()A.-3 B.3 C.±3 D.81 7.下列计算正确的是()A.=±2 B=636=± D.992-=-8.下列说法中正确的是()A.9的平方根是3 B. 2C.4 D. 29. 64的平方根是()A.±8 B.±4 C.±2 D10. 4的平方的倒数的算术平方根是()A.4 B.18 C.-14 D.14三计算题11.计算:(1)-= (2)(3= (4)±=12.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.0913_______;9的平方根是_______.四、能力训练14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C+1 D15.若2m-4与3m-1是同一个数的平方根,则m的值是() A.-3 B.1 C.-3或1 D.-116.已知x,y(y-3)2=0,则xy的值是()A .4B .-4C .94 D .-9417.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;(3)274x 3-2=0; (4)12(x+3)3=4.四、课后练习1、25的平方根是( )A 、5B 、5-C 、5±D 、5± 2.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 3.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数4.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-5.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 6.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 7.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 8. 若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或89. )。

(2021年整理)初一下册数学平方根练习题(含答案)

(2021年整理)初一下册数学平方根练习题(含答案)

(完整版)初一下册数学平方根练习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初一下册数学平方根练习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初一下册数学平方根练习题(含答案)的全部内容。

(完整版)初一下册数学平方根练习题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)初一下册数学平方根练习题(含答案) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)初一下册数学平方根练习题(含答案)> 这篇文档的全部内容。

平方根练习题姓名:_______________班级:_______________考号:_______________一、填空题1、已知m 的平方根是2a-9和5a —12,则m 的值是________。

2、对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =,如3※2=.那么12※4= .3、实数a 在数轴上的位置如图所示,化简:。

4、已知:,则x+y 的算术平方根为_____________.二、选择题5、已知:是整数,则满足条件的最小正整数为( )A .2B .3C . 4D .56、若,,且,则的值为( ) A .—1或11 B .—1或-11 C . 1 D .117、点P ,则点P 所在象限为( )。

(完整版)初一下册数学平方根练习题(含答案)

(完整版)初一下册数学平方根练习题(含答案)

一、填空题平方根练习题姓名:班级:考号:1、已知m 的平方根是2a-9 和5a-12,则m 的值是.2、对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2=.那么12※4=.3、实数a 在数轴上的位置如图所示,化简:。

4、已知:,则x+y 的算术平方根为.二、选择题5、已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.5 6、若,,且,则的值为( )A.-1 或11 B.-1 或-11 C. 1 D.117、点P ,则点P 所在象限为( ).A.第一象限B. 第二象限C. 第三象限 D 第四象限.8、的平方根是A.9 B.C.D.39、一个正方形的面积是15,估计它的边长大小在()A.2 与3 之间B.3 与4 之间C.4 与5 之间D.5 与6 之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m 的两个平方根分别是 2a-3 和a-9,求2m-2 的值.四、计算题13、已知与的小数部分分别是a、b,求ab 的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、92、1/23、14、5二、选择题5、D6、 D7、D8、C9、B三、简答题10、…2分…..4分……6分结果.8 分11、解:由图可知: , ,∴. 2 分∴ 原式= 5 分= 6 分= .7 分12、∵一个正数的两个平方根分别是 2a-3 和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四、计算题13、解:因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式=+2+4﹣4= ;。

《平方根》典型例题及练习精编版

《平方根》典型例题及练习精编版

平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根.3、重要公式: (1)=2)(a (2){==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.7.若一个数的立方根等于数的算术平方根,则这个数是_____________.8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;12= 62= 112= 162= 22= 72= 122= 252= 32= 82= 132= ... 42= 92= 142= ... 52=102=152=...⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、6 D 、 6±例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.下列说法中正确的是( ) A .9的平方根是3 B .16的算术平方根是±2 C. 16的算术平方根是4D.16的平方根是±22. 4的平方的倒数的算术平方根是( ) A .4 B .18C .-14D .143.下列结论正确的是( ) A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个6.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是( )A 、6B 、6±C 、 6D 、 6±9.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-11.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 12.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a- C .2a - D .3a14.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )A .1± B. 4 C. 3或5 D. 515.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A.2- B. 5± C. 5 D. 5- 二、填空题: 1.2)8(-= , 2)8(= 。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

平方根及练习题(含概念和典型例题)

平方根及练习题(含概念和典型例题)

平方根及练习题(含概念和典型例题)起航教育中小学培训中心平方根算术平方根的定义是:如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a的算术平方根。

a的算术平方根记为√a,读作“根号a”,a叫做被开方数。

规定:0的算术平方根是0.也就是,在等式x²=a (x≥0)中,规定x=√a,x就是a的算术平方根。

平方根的定义是:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

即:如果x²=a,那么x叫做a的平方根。

求一个数的平方根的运算,叫做开平方,即x=±√a。

平方根的性质是:一个正数有两个平方根,它们互为相反数;负数没有平方根,正数a的平方根表示±√a。

巩固练一:1、36的算术平方根是6;25的算术平方根是5.2、若x=3,则x=3.3、若1-a=1-a,则a=0.4、36的平方根是6;(-3)²的平方根是3i;2(-2)的平方根是±2i;9的平方根是3.5、一个数的平方根是2和-2,则这个数为4或-4.6、一个数的平方根是a+1和a-3,则这个数为(a+1)(a-3)=a²-a-3.7、若3x+4的平方根是±5,则5x+1的算术平方根是±2.8、若数a的平方根只有一个,那么a必须是0或正实数。

巩固练二:1、12比4大。

2、2比2/3小。

3、20的算术平方根的大小在4和5之间。

4、27-2的值在3到4之间。

巩固练三:1、有意义的是B。

2、x的取值范围是2≤x≤3.3、(1)有意义的时候x≠-1,(2)有意义的时候x≠3,(3)有意义的时候x≠1.巩固练四:1、x+y的值为7.2、xy的值为-1.3、解得x=1,代入原式可得a=-14.文章中没有明显的格式错误和问题段落,但是需要对数学公式进行修正和改写。

1.x-1+1-x=y+4,求x与y的值化简可得:-2 = y+4,即 y = -6.将 y 的值代入原式得 x = -3.因此,x 的值为 -3,y 的值为 -6.2.2(a+1)+|b-3a-1|=,求b^2-5a的平方根公式不完整,无法求解。

平方根典型例题及练习

平方根典型例题及练习

-.平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根〔也叫做二次方根式〕,算术平方根2、平方根的性质:〔1〕一个正数有个平方根,它们〔2〕0的平方根是;〔3〕没有平方根.3、重要公式: 〔1〕=2)(a 〔2〕{==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,那么它的体积扩大_____________.7.假设一个数的立方根等于数的算术平方根,那么这个数是_____________. 8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断以下说确的个数为〔 〕 ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;-.④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是〔〕A 、6B 、6±C 、6D 、6±例3、以下各式中,哪些有意义? 〔1〕5〔2〕2- 〔3〕4- 〔4〕2)3(- 〔5〕310-例4、一个自然数的算术平方根是a ,那么下一个自然数的算术平方根是〔 〕 A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.以下说法中正确的选项是〔 〕 A .9的平方根是3 B2422. 4的平方的倒数的算术平方根是〔 〕 A .4 B .18C .-14D .143.以下结论正确的选项是〔 〕 A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛--4.以下语句及写成式子正确的选项是〔 〕 A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.以下说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有〔 〕 A .3个 B .2个 C .1个 D .4个6.以下说确的是〔 〕-.A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.以下表达中正确的选项是〔 〕A .〔-11〕2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是〔〕A 、6B 、6±C 、6D 、6±9.当≥m 0时,m 表示〔〕A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±〞应是〔 〕A .43169±= B .43169±=±C .43169=D .43169-=-11.算术平方根等于它本身的数是〔 〕 A 、1和0B 、0C 、1D 、1±和0 12.2)5(-的平方根是〔 〕A 、5±B 、 5C 、5-D 、5±13.假设数a 在数轴上对应的点的位置在原点的左侧,那么以下各式中有意义的是〔 〕 A .a B .a-C .2a - D .3a14.假设a 、b 为实数,且471122++-+-=a a ab ,那么b a +的值为〔 〕A .1± B. 4 C. 3或5 D. 515.假设9,422==b a ,且0<ab ,那么b a -的值为 〔 〕 A.2- B. 5± C. 5 D. 5- 二、填空题:-.1.2)8(-=,2)8(=。

初中数学平方根习题精选含答案

初中数学平方根习题精选含答案

初中数学平方根习题精选含答案13.1平方根习题精选班级:姓名:学号1.正数a的平方根是( )A. B.± C.?D.±a2.下列五个命题:①只有正数才有平方根;②?2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(?2)2的平方根是?2;其中正确的命题是( )A.①②③ B.③④⑤ C.③④ D.②④3.若= 2.291,= 7.246,那么= ( )A.22.91 B. 72.46 C.229.1 D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1 B.a2+1 C.+1 D.5.下列命题中,正确的个数有( )①1的平方根是1 ;②1是1的算术平方根;③(?1)2的平方根是?1;④0的算术平方根是它本身A.1个 B.2个 C.3个 D.4个6.若= 2.449,= 7.746,= 244.9,= 0.7746,则x、y的值分别为( )A.x = 60000,y = 0.6 B.x = 600,y = 0.6C.x = 6000,y = 0.06 D.x = 60000,y = 0.06二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______3.在下列各数中,?2,(?3)2,?32,,?(?1),有平方根的数的个数为:______4.在?和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x的值①x2 = 361;②81x2?49 = 0;③49(x2+1) = 50;④(3x?1)2 = (?5)22.小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?第十二章:数的开方 (一)1、如果一个数的等于a ,那么这个数叫做a 的平方根,正数的平方根有个,它们的关系是,0的平方根是,负数。

人教版七年级数学下册平方根(提高)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册平方根(提高)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】平方根(提高)责编:杜少波【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【:389316 平方根,知识要点】 要点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥,a 是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质2(0)||0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩()20aaa =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案. 【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8; 故a=5,b=2; 又∵2<<3, ∴c=2,∴a+b+c=5+2+2=9, ∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用. 举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x -. 【答案与解析】解:(1)因为20x ≥,所以当x 2x(2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠时,13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三:【变式】已知4322232b a a =-+-+,求11a b+的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=,∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+g ;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+g 49257535==⨯=g ;(2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解. 类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=;(3)()2932640x +-= 【答案与解析】 解:(1)∵23610x -=∴2361x = ∴36119x =±=±(2)∵()21289x += ∴1289x +=± ∴x +1=±17 x =16或x =-18. (3)∵()2932640x +-=∴()264329x +=∴8323x +=±∴21499x x ==-或【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度. 举一反三:【变式】求下列等式中的x :(1)若21.21x =,则x =______; (2)2169x =,则x =______;(3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2.类型四、平方根的综合应用 【:389316 平方根:例5】5、已知a 、b 是实数,26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +=260a +≥,|20b -≥,∴260a +=,20b =. ∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可. 举一反三:【:389316 平方根:例5练习】 【变式】若2110x y -++=,求20112012x y +的值.【答案】 解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2xy +=+-=. ②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.【:389316 平方根:例6】6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得 32300x x ⋅=. 26300x =. 250x =.∵ x >0, ∴ 50x =∴ 长方形纸片的长为350cm . ∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片. 【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片. 举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场,已知篮球场的面积为420m2,其中长是宽的倍,篮球场的四周必须留出1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm,那么长为2815x m,由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

《平方根》典型例题及练习最全面(精华版)

《平方根》典型例题及练习最全面(精华版)

21、平方根:一般地,如果一个数 根式), x 的平方等于 a, 即 x =a 那么这个数 x 就叫做 a 的平方根(也叫做二次方2、算术平方根:3、平方根的性质: ( 1)一个正数有4、重要公式: 个平方根,它们 ;( 2)0 平方根,它是 ;( 3) 没有平方根.( 1) 2a)(2) a 2a( 5、平方表:22221 = 6 = 11 = 16 =2 2222 = 7 = 12 = 25 = 2 2 23 = 8 = 13 = ... 2 2 24 = 9 = 14 = ... 2 2 25 =10 =15 =...6. 正数有 个立方根 , 0 有个立方根 , 负数有 个立方根 , 立方根也叫做.7. 一个正方体的棱长扩大 3 倍 , 则它的体积扩大.8. 若一个数的立方根等于数的算术平方根 , 则这个数是 . 26 272005的立方根是 .189. 0 的立方根是.(-1)的立方根是 .例 1、 判断下列说法正确的个数为( ① -5 是 -25 的算术平方根; )② 6 是2的算术平方根;6 ③ 0 的算术平方根是 0; ④ 0.01 是 0.1 的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个B. 1 个. 2 个 . 3 个C D 例 2、 A 、 636 的平方根是( ) 6B、、、CD 66例 3、 下列各式中,哪些有意义? ( 1) ( 2)( 3)4( 4)( 5) 5 2310( 3)2例 4、 一个自然数的算术平方根是 a ,则下一个自然数的算术平方根是( )A . a 1B .. D .C 2a2 a a 11 1算数平方根及平方根练习题一、选择题1.下列说法中正确的是()A .9 的平方根是 . 16 的算术平方根是± 16 的算术平方根是的平方根是±3 B 2 C.4 D. 2 16 2. 4 的平方的倒数的算术平方根是()1 83.下列结论正确的是( 1 41 4A . 4B ..-. C D)2A2( 6)B23)CD216)6( 9( 1616 2516 254.以下语句及写成式子正确的是( )A 、7 是 49 的算术平方根,即、7 是 ( 27) 的平方根,即 B 2( 7) 4977 C 、 7是 49 的平方根,即、 7 是 49 的平方根,即D497(4)9 的平方根是 4973是 9 的平方根; )3 ; (3)3 是 9 的平方根; 5.下列说法: (1) 中正确的有(的平方根是3,其(2)9 A . 3 个 B . 2 个 C . 1 个 )D . 4 个 6.下列说法正确的是(A .任何数的平方根都有两个C .一个正数的平方根的平方仍是这个数 .只有正数才有平方根 B2. a D的平方根是a7.下列叙述中正确的是( A .( -11 ) 的算术平方根是±) 112 .大于零而小于 1 的数的算术平方根比原数大 BC .大于零而小于 1 的数的平方根比原数大 .任何一个非负数的平方根都是非负数D8. 36 的平方根是( )6A 、 69.当 m 、、 )、B0 时, CD66m 表示( A . m 的平方根 10.用数学式子表示“C . m 的算术平方B .一个有理数的平方根是 D .一个正数9 3 4”应是()169 163 49163 49163 4A . .9 163 4. .B C D 11.算术平方根等于它本身的数是( ) A 、 10 B 、 0C 、 1、1D12.的平方根是() 5)2( A 、B 、 5 、、5C5D 513.若数 a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )a A .B .C .. D 3aa 2a22a 1 a 1 a14. 若 a 、 b 为实数,且 4 ,则 b a b 的值为()71 4 C.3 或 55A . B.D.2a24, b 29 ,且 ab 15. 若 0 ,则 a b 的值为 ()5 5 5A.B.C.D.二、填空题: 1.,( 8) 2=16 的算术平方根是=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学《平方根》典型例题及练习【知识要点】1、 平方根:一般地,如果一个数 x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、 ________________________________________________________________ 算术平方根:3、 平方根的性质:(1)一个正数有 _个平方根,它们 __________ ;( 2)0 _____ 平方根,它是 _________ ;( 3) ____ 没有平方根. 4、 重要公式:1.正数有 _______________ 个立方根,0 有 _________________ 个立方根,负数有 ________________ 个立方根,立方根也叫做 2•—个正方体的棱长扩大 3倍,则它的体积扩大 ______________ . 3•若一个数的立方根等于数的算术平方根 ,则这个数是 _____________ .4. 0的立方根是.(-1) 2005的立方根是 ____________ .18 26的立方根是 _________ ,27【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根; ② 6是6 2的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A . 0个 B . 1个 C . 2个 D . 3个例2、 36的平方根是( )A 、 6B 、 6C 」6 D-6例3、 卜列各式屮,哪些有意义?(1) 5 (2)2(3) 4 (4)(3)2(5) 10例4、一个自然数的算术平方根是 a ,则下一个自然数的算术平方根是( A . a 1 B . a 1 C • -?--a 2 1 D - J a 2 1【巩固练习】(1) ( a)2 5、平方表:12= 62 = 112= 162= 212= 22= 72 = 122= 172= 222= 32= 82 = 132= 182= 232= 42=92 = 142= 192= 242= 52=102=152=202=252=例5、求下列各式中的x :(1) x 2 25 0(2) 4(x+1) 2-169=0(2) a 2 a5.16 •164一、选择题 1 • 9的算术平方根是()A • -3B • 3C .土 3D • 81 2•下列计算正确的是( ) A • 4 = ± 2 B • (9)2 81=9 C. ,36 D.-92 93. F 列说法中正确的是 • 9的平方根是3 • 16的算术平方根是土 C. .16的算术平方根是 4 D. ...16的平方根是土 264的平方根是( • ±、24的平方的倒数的算术平方根是( 1 • 4 B •丄 C 8 6 •下列结论正确的是( A ■ ( 6)2 6 B ( C ( 16)216D 162516 257 •以下语句及写成式子正确的是( A 、7是49的算术平方根,B、是(7)2的平方根,即 (7)27是49的平方根,即 49 7 7是49的平方根,即 49 &下列语句中正确的是( A 9的平方根是 3 F 列说法:(1) ( ) • 3个B • 2个 C . 1个D • 4个 10 •) B 、 9的平方根是 3是9的平方根;(2)9的平方根是 C 、 9的算术平方根是 3 ; (3)3是9的平方根; D 9的算术平方根是3⑷9的平方根是3,其中正确的有F 列语句中正确的是( A 、任意算术平方根是正数B 、只有正数才有算术平方根 11 •C 、T 3的平方是9,二9的平方根是 3 下列说法正确的是() •任何数的平方根都有两个 D 、1是1的平方根12 • A• 一个正数的平方根的平方仍是这个数 下列叙述中正确的是( ) • (-11) 2的算术平方根是土 11 •大于零而小于1的数的平方根比原数大 •只有正数才有平方根2• a 的平方根是•大于零而小于1的数的算术平方根比原数大 •任何一个非负数的平方根都是非负数13 •25的平方根是( A 、514 • 36的平方根是( ) 6当m 0时,.m 表示( • m 的平方根 用数学式子表示“ A 、6 15 • D 、)B • 一个有理数2的平方根是 2 ” C . m 的算术平方根应是(D. 一个正数A . aB . . vC.a 2 D . a 326 .下列各式中,正确的是()A. ( 2)22 B.(3)29 C...9 3D.39 327.下列各式中正确的是()A. ( 12)212 B . 18 、、26 C.( 12)212 D .(12)2 12a 21 .1 a 228.若a 、b 为实数,且b4 , 则a b 的值为(: )a 7(A)1 (B) 4(C) 3或5(D) 52 229.若 a 4,b9,且 ab 0,则a b 的值为( )(A) 2 (B) 5 (C) 5(D) 530.已知一个止方形的边长为 a ,面积为 S ,则( )A. S . aB. S 的平方根是aC. a 是S 的算术平方根D. a , S31.若 心和•.a 都有意义,则a 的值是()A. a 0B. a 0C. a 0D. a 032. (x 24)2 的算术平方根是()A (x 2八4/2八24)B 、(X 4)2C 、x 4D 、x 2 4A9 3B .9 3 C.93D■ 16 4-164■ 16 417 . 算术平方根等于它本身的数是( ) A 、1 和 0 B 0 C 1 D 、 1和0 .如果一个数的平方根与立方根 艮是同一 个数 ,那么这个偶数是( A. 8 B. 4 C. 0 D. 16 18 . 0.0196的算术平方根是 ( ) A 、0.14 B 、0.014C 、 0. 14D 、 0.014 19 . (6)2的平方根是( )A 、一 6B 、36C 、± 6D 、土 6 20 .下列各数有平方根的个数是()(1) 5; (2) (-4 ) 2; (3) -22; (4) 0; ( 5A .3个B . 4个C . 5个D . 6个21 . (5)2的平方根是( )A、 5 B 、 5 C 5 D 、 </5 22 . 卜列说法错误的是( ))A. 1的平方根是1 T 的立方根是一 1B. -a 2;(6) n;9 3 16 42(7) -a -123. 24. C. .2是2的平方根D. H3是(3)2的平方根下列命题正确的是( .0.49的平方根是 若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是(0.7 .0.7是.-70.49的平方根C . 0.7是.0.49的算术平方根D . 0.7是0.49的运算结果)33. J ( 5)的平方根是()5 D、<5A 、5 B 、5 C 、 34.下列各式中,正确的是( )A. J ( 2)2 2B.(9 C.■J93 D.^~9335.下列各式中正确的是()A •卫 12)212 B .血 6 C• J ( 12)212 D.2v'( 12)1236.下列各组数中互为相反数的是()A 、2与壮 2)2B 、2与 3/ 8C 、2与 (<2)2 D 、 42 与J 2二、填空题:1如果x 的平方等于a ,那么x 就是a 的 ___________________ ,所以的平方根是 ____________ 2 •非负数a 的平方根表示为 ____________________3•因为没有什么数的平方会等于 __________ ,所以负数没有平方根,因此被开方数一定是 _______________ 4. _____________________ 匹的平方根是 _______ ; 9的平方根是 •'■ 815. ___________________ 、16的平方根是 _____ , 25的平方根记作 ,结果是 6 •非负的平方根叫 __________ 平方根 7. .( 8)2 = _________ ,( 8)2= _________ 。

& 9的算术平方根是 __________ , 16的算术平方根是 _______ ; 10 2的算术平方根是 _______ ,( 5)0的平方根是 _______ 9 •一个正数有 ____ 个平方根,0有 _______ 个平方根,负数 ____ 平方根• 10. 一个数的平方等于 49,则这个数是 _________ 11 •化简:(3 )2 ____________ 。

12. 一个负数的平方等于 81,则这个负数是 ______ 13•如果一个数的算术平方根是,5,则这个数是 _______ ,它的平方根是 _______14. 25的平方根是 _______ ; (-4 ) 2的平方根是 ____ 。

•- 9的算术平方根是 ________ ; 3-2的算术平方根是 _________ 15•若a 的平方根是土 5,则ja= _______________•如果ja 的平方根等于 2,那么a _______ ;16.当x ________ 时,常厂有意义;当x _______ 时,亍2X 3有意义;17•当 x —时,Jx 有意义;当x ——时,式子于¥有意义;18.若4a 1有意义,则a 能取的最小整数为19•若.7.162.676 , 2 26.76,则 a 的值等于20• 5若2a 2与|b + 2|是互为相反数,则(a - b ) 2 = _____________21 •若一个正数的平方根是2a 1和 a 2,则a _________ ,这个正数是 _____22.满足-- .2 <x<、-5的整数x 是V71.6 ____------------------------- ?(5)已知x 、y 是实数,且(x y 1)2与乙5x 3y 3互为相反数,求\ x 2 y 2的值三.利用平方根解下列方程. (1) (2x-1 ) 2-169=0 ;(2) 4 ( 3x+1) 2-1=0 ;四•求下列各式中的值:(1) &(2)( 6)2(3)( 6)2 (4)— 62(5 )± ( 6)2 (6) —(7) .4 9 (8) 17^82五.实数非负性的应用(9) 0.25 0.36(1)已知 2a b 2 + |b 2— 10| = 0,求 a + b 的值. (2)已知:=0,求实数a, b 的值。

相关文档
最新文档