分式的乘除法典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式的乘除法》典型例题
例1 下列分式中是最简分式的是()
A .264a
b B .b a a b --2)(2 C .y x y x ++22 D .y
x y x --2
2 例2 约分
(1)36)(12)(3a b a b a ab -- (2)44422
-+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除)
(1)22563ab cd c b a -⋅- (2)422
643mn n
m ÷- (3)2
33344222++-⋅+--a a a a a a (4)222
22222b
ab a b ab b ab b ab a +-+÷-++ 例4 计算
(1))()()(432
2xy x
y y x -÷-⋅- (2)x
x x x x x x --+⨯+÷+--36)3(446222 例5 化简求值
22232232b ab b a b b a ab a b a b +-÷-+⋅-,其中3
2=a ,3-=b . 例6 约分
(1)32
86b
ab ; (2)222322xy y x y x x --
例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式.
(1)4
4422-+-x x x ; (2)36)(4)(3a b b a a --; (3)22
2y y x -;
(4)882122++++x x x x 例8 通分:
(1)223c a b
, ab c 2-,cb a 5 (2)a 392
-, a a a 2312---,652+-a a a
参考答案
例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D.
故选择C.
解 C
例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分.
解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-⋅--⋅-=b a a b b a b a a 3)(4
1b a b --= (2)4
4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22
1(6)3432(b b b b -+=⋅-⋅+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1
64
mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算.
解:(1)22563ab cd c b a -⋅-2253)6(ab c cd b a ⋅--=b
ad 52= (2)422643mn n m ÷-743286143n
m mn n m -=⋅-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1
22--=a a
(4)原式)()()()(2b a b a b b a b b a -+÷-+=2
2
22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除法化成乘法,而根据分式乘法法则,是先把分子、分母相乘,化成一个分式后再进行约分.在实际运算时,可以先约分,再相乘,这样简便易行,可减少出错.
例4 分析:(1)对于含有分式乘方,乘除的混合运算,运算顺序是先乘方后乘除,一般首先确定结果的符号,再做其他运算,(2)进行分式的乘除混合运算时,要注意,当分子、分母是多项式时,一般应分解因式,并在运算运程中约分,使运算简化,因式,除式(或被除式)是整式时,可以看作分母是“1”的式子,然后按照分式的乘除法法则计算,这样可以减少错误.
解:(1)原式2
436221)1()(x xy x y y x =-⋅-⋅= (2)原式x x x x x x --+⨯+⨯--=
3)2)(3(31)2()3(22 x
-=22 例5 分析 本题要求先化简再求值,实际上就是先将分子、分母分别分解因式,然后约分,把分式化为最简分式以后再代入求值.
解 原式=)
())((23223b a b b a b a b b a ab a b a b +-+÷-+⋅- )
)(()()(32b a b a b a b b b a a b a b -++⨯-⨯-= b
a -= 当3,3
2-==b a 时, 原式9
2332
-=-=
例6 解 (1).4328268623232b
a b b b ab b ab =÷÷= (2)222322xy y x y x x --)
2()2(2y x xy y x x --=(分子、分母分解因式) y
x =(约去公因式) 说明 1.当分子、分母是单项式时,其公因式是系数的最大公约数与相同字母的最低次幂的积.
2.当分子、分母是多项式时,先分解因式,再约去公因式.
例7 分析 (1)∵4
4422-+-x x x )2)(2()2(2-+-=x x x ,分子、分母有公因式)2(-x ,所以它不是最简分式;(2)显然也不是最简分式;(3)中))((22y x y x y x -+=-与2y 没有公因式;(4)中22)1(12+=++x x x ,222)2(2)44(2882+=++=++x x x x x ,分子、分母中没有公因式.
解 22
2y
y x -和8821222++++x x x x 是最简分式; 4
4422-+-x x x 和63
)(4)(3a b b a a --不是最简分式; 化简
(1)4
4422-+-x x x .22)2)(2()2(2+-=-+-=x x x x x (2)63)(4)(3a b b a a --336)(4
3)(4)(3a b a a b a b a -=--= 例8 分析 (1)中各分母的系数的绝对值的最小公倍数为30,各字母a 、b 、c 因式的最高次幂分别是2a 、2b 、2c ,所以最简公分母是22230c b a .
(2)中分母为多项式,因而先把各分母分解因式,)3(339a a -=-;