2012年山东省高考文科数学真题及答案
2012全国高考山东卷数学及答案
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2- (7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1-(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离(10)函数cos622x xx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分) 已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b =.所以21()()()F x x x x =-,比较系数得1x -,故1x =120x x +=,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 二、填空题 (13)16 以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=. (14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意. (16)(2sin 2,1cos2)--三、解答题(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a cb B ac +-==,sin C =,∴△ABC的面积11sin 1222S ac B ==⨯⨯=(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948m m m S -==--. (21)(I)22234c a b e a a -==⇒=……① 矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST (22)(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<. 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。
2012年普通高等学校招生全国统一考试(山东文)
2012年普通高等学校招生全国统一考试(山东文)数 学第Ⅰ卷一、选择题1.若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i2.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A .{1,2,4} B .{2,3,4} C .{0,2,4} D .{0,2,3,4}3.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]4.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据.则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差5.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图像关于直线x =π2对称.则下列判断正确的是( ) A .p 为真 B .q 为真 C .p ∧q 为假 D .p ∨q 为真6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]7.执行下面的程序框图,如果输入a =4,那么输出的n 的值为( )A .2B .3C .4D .58.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 39.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离10.函数y =cos 6x2x -2-x的图像大致为( )11.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y12.设函数f (x )=1x ,g (x )=-x 2+bx ,若y =f (x )的图像与y =g (x )的图像有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .x 1+x 2>0,y 1+y 2>0B .x 1+x 2>0,y 1+y 2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0第Ⅱ卷二、填空题13.如图,正方体ABCD-A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A-DED1的体积为________.14.下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.15.若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.16.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,的坐标为________.三、解答题17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tanA tan C.(1)求证:a,b,c成等比数列;(2)若a=1,c=2,求△ABC的面积S.18.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC .20.已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m ,求数列{b m }的前m 项和S m .21.如图,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线x =±a 和y =±b 所围成的矩形ABCD的面积为8.(1)求椭圆M 的标准方程;(2)设直线l :y =x +m (m ∈R )与椭圆M 有两个不同的交点P ,Q ,l 与矩形ABCD 有两个不同的交点S ,T .求|PQ ||ST |的最大值及取得最大值时m 的值.22.已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数.证明:对任意x >0,g (x )<1+e -2.答案 第Ⅰ卷一、选择题1.解析:z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.答案:A2.解析:∁U A ={0,4},所以(∁U A )∪B ={0,4}∪{2,4}={0,2,4}. 答案:C3.解析:x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.答案:B4.解析:只有标准差不变,其中众数、平均数和中位数都加2. 答案:D5.解析:命题p ,q 均为假命题,故p ∧q 为假命题. 答案:C 6.解析:不等式组表示的平面区域如图所示,目标函数的几何意义是直线在y 轴上截距的相反数,其最大值在点A (2,0)处取得,最小值在点B (12,3)处取得,即最大值为6,最小值为-32.答案:A7.解析:逐次计算结果是P =1,Q =3,n =1;P =5,Q =7,n =2;P =21,Q =15,n =3,退出循环,故输出结果是n =3.答案:B8.解析:当0≤x ≤9时,-π3≤πx 6-π3≤7π6,-32≤sin (πx 6-π3)≤1,所以函数的最大值为2,最小值为-3,其和为2- 3.答案:A9.解析:两圆的圆心距离为17,两圆的半径之差为1、之和为5,而1<17<5,所以两圆相交.答案:B10.解析:函数y =cos 6x2x -2-x是奇函数,图像关于坐标原点对称,排除选项A 中的图像;当x >0时,2x-2-x=22x -12x >0,故函数值的符号取决于cos6x 的符号,x ∈(0,π12]时cos 6x >0,排除选项B 中的图像;在后续区间上函数值取正负的区间长度都是π6,排除选项C 中的图像,只能是选项D 中的图像.答案:D11.解析:双曲线的渐近线方程为y =±b a x ,由于ca=a 2+b 2a 2= 1+(b a )2=2,所以b a=3,所以双曲线的渐近线方程为y =±3x .抛物线的焦点坐标为(0,p2),所以p 22=2,所以p =8,所以抛物线方程为x 2=16y .答案:D12.解析:由于函数y =f (x )的图像在一三象限且关于坐标原点对称,函数y =g (x )的图像过坐标原点,结合函数图像可知点A ,B 一定只能一个在第一象限、另一个在第三象限,即x 1x 2<0,由于y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2,故x 1+x 2,y 1+y 2一定异号.问题即为方程-x 2+bx =1x 仅有两个不同的实根,即方程x 3-bx 2+1=0有一个二重根、一个单根.此时结合图像可知位于第一象限的点A 的横坐标为方程根,根据方程根的理论,如果x 1是方程x 3-bx 2+1=0的二重根,x 2为一个单根,则x 3-bx 2+1=(x -x 1)2(x -x 2)=x 3-(2x 1+x 2)x 2+(x 21+2x 1x 2)x -x 21x 2,这个等式对任意x 恒成立,比较等式两端x 的系数可得x 21+2x 1x 2=0,即x 1+2x 2=0,即x 1+x 2=-x 2>0,所以x 1+x 2>0,y 1+y 2<0.答案:B第Ⅱ卷二、填空题13.解析:三棱锥A -DED 1的体积等于三棱锥E -DD 1A 的体积,即VA -DED 1=VE -DD 1A =13×12×1×1×1=16. 答案:1614.解析:设样本容量为n ,则n ×(0.1+0.12)×1=11,所以n =50,故所求的城市数为50×0.18=9.答案:915.解析:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:1416.解析:如图,作CQ ∥x 轴,PQ ⊥CQ ,Q 为垂足.根据题意得劣弧=2,故∠DCP =2弧度,则在△PCQ 中,∠PCQ =(2-π2)弧度,|CQ |=cos(2-π2)=sin 2,|PQ |=sin(2-π2)=-cos 2,所以P 点的横坐标为2-|CQ |=2-sin 2,P 点的纵坐标为1+|PQ |=1-cos 2,所以P 点的坐标为(2-sin 2,1-cos 2),此即为向量的坐标.答案:(2-sin 2,1-cos 2) 三、解答题17.解:(1)在△ABC 中,由于sin B (tan A +tan C )= tan A tan C ,所以sin B (sin A cos A +sin C cos C )=sin A cos A ·sin Ccos C ,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.18.解:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为: (A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.19.解:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF.因为CB =CD ,∠BCD =120°, 所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由于点M 是线段AE 的中点, 因此DM ∥EF .又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .20.解:(1)设数列{a n }的公差为d ,前n 项和为T n . 由T 5=105,a 10=2a 5, 得到⎩⎪⎨⎪⎧5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *,若a n =7n ≤72m ,则n ≤72m -1.因此b m =72m -1,所以数列{b m }是首项为7公比为49的等比数列. 故S m =b 1(1-q m )1-q =7×(1-49m )1-49=7×(72m -1)48=72m +1-748.21.解:(1)设椭圆M 的半焦距为c ,由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =32,4ab =8,所以a =2,b =1.因此椭圆M 的标准方程为x 24+y2=1.(2)由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +m ,整理得5x 2+8mx +4m 2-4=0,由Δ=64m 2-80(m 2-1)=80-16m 2>0, 得-5<m < 5.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-8m5,x 1x 2=4(m 2-1)5,所以|PQ |=(x 1-x 2)2+(y 1-y 2)2 =2[(x 1+x 2)2-4x 1x 2] =452(5-m 2) (-5<m <5).线段CD 的方程为y =1(-2≤x ≤2),线段AD 的方程为x =-2(-1≤y ≤1). ①不妨设点S 在AD 边上,T 在CD 边上,可知1≤m <5,S (-2,m -2),D (-2,1). 所以|ST |=2|SD |= 2 [1-(m -2)]=2(3-m ), 因此|PQ ||ST |=455-m 2(3-m )2,令t =3-m (1≤m <5), 则m =3-t ,t ∈(3-5,2], 所以|PQ ||ST |=455-(3-t )2t 2=45-4t 2+6t -1=45-4(1t -34)2+54,由于t ∈(3-5,2], 所以1t ∈[12,3+54),因此当1t =34即t =43时,|PQ ||ST |取得最大值255,此时m =53.②不妨设点S 在AB 边上,T 在CD 边上,此时-1≤m ≤1,因此|ST |=2|AD |=22,此时|PQ ||ST |=25-m25,所以当m =0时,|PQ ||ST |取得最大值255.③不妨设点S 在AB 边上,T 在BC 边上,-5<m ≤-1, 由椭圆和矩形的对称性知|PQ ||ST |的最大值为255,此时m =-53.综上所述,m =±53或m =0时,|PQ ||ST |取得最大值255.22.解:(1)由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)因为g(x)=xf′(x).所以g(x)=1e x(1-x-x ln x),x∈(0,+∞),由(2)h(x)=1-x-x ln x,求导得h′(x)=-ln x-2=-(ln x-ln e-2).所以当x∈(0,e-2)时,h′(x)>0,函数h(x)单调递增;当x∈(e-2,+∞)时,h′(x)<0,函数h(x)单调递减.所以当x∈(0,+∞)时,h(x)≤h(e-2)=1+e-2.又当x∈(0,+∞)时,0<1e x<1,所以当x∈(0,+∞)时,1e x h(x)<1+e-2,即g(x)<1+e-2.综上所述结论成立.。
2012年山东高考文科数学带答案解析(精品版!吐血免费)
2012年普通高等学校招生全国统一考试(山东卷)文科数学锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。
第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i (2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 (5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 (6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1--(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 (10)函数cos622x xxy -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____. (16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一于(2,1)时,OP 的点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位坐标为____.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.已知函数ln ()(exx kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【解析】i ii i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A. 【答案】A(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B A C U )(为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 【答案】C (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-【解析】要使函数有意义则有⎪⎩⎪⎨⎧≥-≠+>+040)1ln(012x x x ,即⎪⎩⎪⎨⎧≤≤-≠->2201x x x ,即01<<-x 或20≤<x ,选B.【答案】B(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差【解析】设A 样本的数据为变量为X ,B 样本的数据为变量为Y ,则满足2+=X Y ,根据方差公式可得DX X D DY =+=)2(,所以方差相同,标准差也相同,选D.【答案】D(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 π2【答案】C(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 【答案】A(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.【答案】B(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1--【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin2=π,所以最大值与最小值之和为32-,选A. 【答案】A【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B. 【答案】B (10)函数cos622x xxy -=-的图象大致为【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612kx +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-x x y ,06cos >x ,所以函数0226cos >-=-xx xy ,排除B ,选D.【答案】D(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = 【解析】抛物线的焦点 )2,0(p ,双曲线的渐近线为x a b y ±=,不妨取x aby =,即0=-ay bx ,焦点到渐近线的距离为2222=+⨯b a pa ,即cb a ap 4422=+=,所以4p a c =双曲线的离心率为2=a c ,所以24==pa c ,所以8=p ,所以抛物线方程为y x 162=,选D.【答案】D (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+<点A 关于原点的对称点C,则C 点坐标为),(11y x --,由图象知,,2121y y x x >-<-即0,02121<+>+y y x x ,故答案选B.方法二:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b .不妨设12x x <,则223x b ==.所以21()()()F x x x x =-,比较系数得1x -=,故1x =.120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 【答案】B第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.【解析】以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.【答案】61(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.【解析】最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. 【答案】9函数,则a =____.【解析】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =为减函数,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【答案】14(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.【解析】因为圆心移动的距离为2,所以劣弧2=PA ,即圆心角2=∠PCA,,则22π-=∠PCA ,所以2c o s )22s i n(-=-=πPB ,2sin )22cos(=-=πCB ,所以2s i n 22-=-=CB x p ,2cos 11-=+=PB y p ,所以)2cos 1,2sin 2(--=OP .另解:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2cos 1,2sin 2(--=OP .【答案】)2cos 1,2sin 2(--三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S . 【答案】(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=, 2所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==,sin C =,∴△ABC 的面积11sin 1222S ac B ==⨯⨯=.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【答案】(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .【答案】(19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知 ,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE . 所以BD OE ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.∵M 是AE 的中点,∴MN ∥BE , ∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S . 【答案】 (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948m m m S -==--.(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>直线x a =±和y b =±所围成的矩形ABCD 的面积为8. (Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值. 【答案】(21)(I)22234c a b e a a -==……①∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m .||PQ =. 当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <<53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST .(22) (本小题满分13分) 已知函数ln ()(ex x k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【答案】(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞. (III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立. 当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。
2012年山东省高考数学试卷(文科)教师版
2012年山东省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•山东)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i【分析】等式两边同乘2+i,然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选:A.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}【分析】由题意,集合∁U A={0,4},从而求得(∁U A)∪B={0,2,4}.【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选:D.3.(5分)(2012•山东)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:>,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选:B.4.(5分)(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.方差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案.【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,D正确故选:D.5.(5分)(2012•山东)设命题p:函数y=sin2x的最小正周期为,命题q:函数y=cosx的图象关于直线x=对称,则下列判断正确的是()A.p为真B.q为真C.p∧q为假D.p∨q为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:p∧q为假命题,p∨q为是假命题.故选:C.6.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.,B.,C.[﹣1,6]D.,【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z 越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选:A.7.(5分)(2012•山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5B.4C.3D.2【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C.8.(5分)(2012•山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0C.﹣1D.﹣1﹣【分析】通过x的范围,求出的范围,然后求出函数的最值.【解答】解:因为函数,所以∈,,所以,,所以函数的最大值与最小值之和为.故选:A.9.(5分)(2012•山东)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选:B.10.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.【解答】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选:D.11.(5分)(2012•山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()A.B.x2=y C.x2=8y D.x2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程.【解答】解:双曲线C1:>,>的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线:>的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选:D.12.(5分)(2012•山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0D.x1+x2<0,y1+y2<0【分析】构造函数设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g(x)同解,可知其有且仅有两个不同零点x1,x2.利用函数与导数知识求解.【解答】解:设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g(x)同解,故其有且仅有两个不同零点x1,x2.由F'(x)=0得x=0或.这样,必须且只须F(0)=0或,因为F(0)=1,故必有由此得.不妨设x1<x2,则.所以,比较系数得,故.>,由此知<,故选:B.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.【分析】将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,进行等体积转化V A =V E﹣ADD1后体积易求﹣DED1=V E﹣【解答】解:将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,则V A﹣DED1,ADD1=S A1D1DA=,E到底面ADD1的距离等于棱长1,其中S△ADD1故.故答案为:14.(4分)(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为9.【分析】由频率分布直方图,先求出平均气温低于22.5℃的频率,不低于25.5℃的频率,利用频数=频率×样本容量求解.【解答】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9.15.(4分)(2012•山东)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.【分析】根据指数函数的性质,需对a分a>1与0<a<1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a与m的值.【解答】解:当a>1时,有a2=4,a﹣1=m,此时a=2,m=,此时g(x)=﹣为减函数,不合题意;若0<a<1,则a﹣1=4,a2=m,故a=,m=,g(x)=在[0,+∞)上是增函数,符合题意.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).【分析】设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.【解答】解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.18.(12分)(2012•山东)袋中有五张卡片,其中红色卡片三张,标分别为1,2,3;蓝色卡片两张,标分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标之和小于4的概率;(Ⅱ)现袋中再放入一张标为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标之和小于4的概率.【分析】(Ⅰ)由列举法可得从五张卡片中任取两张的所有情况,分析可得两张卡片的颜色不同且标之和小于4的情况数目,由古典概型公式,计算可得答案;(Ⅱ)加入一张标为0的绿色卡片后,共有六张卡片,由列举法可得从中任取两张的所有情况,分析可得两张卡片的颜色不同且标之和小于4的情况数目,由古典概型公式,计算可得答案.【解答】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝,蓝1蓝2.2其中两张卡片的颜色不同且标之和小于4的有红1蓝1、红1蓝2、红2蓝1,共3种情况,故所求的概率为.(II)加入一张标为0的绿色卡片后,共有六张卡片,从六张卡片中任取两张,有红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,红1绿0,红2绿0,红3绿0,2蓝1绿0,蓝2绿0,共有15种情况,其中颜色不同且标之和小于4的有红1蓝1,红1蓝2,红2蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共8种情况,所以概率为.19.(12分)(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.【分析】(1)设BD中点为O,连接OC,OE,则CO⊥BD,CE⊥BD,于是BD⊥平面OCE,从而BD⊥OE,即OE是BD的垂直平分线,问题解决;(2)证法一:取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC;证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DM∥EF,由线面平行的判定定理即可证得结论.【解答】证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,EC∩CO=C,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)证法一:取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC,∵△ABD是等边三角形,∴∠BDN=30°,又CB=CD,∠BCD=120°,∴∠CBD=30°,∴ND∥BC,又DN⊄平面BEC,BC⊂平面BEC,∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,∴DM∥平面BEC证法二:延长AD,BC交于点F,连接EF,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∵△ABD是等边三角形,∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,∴AB=AF,又AB=AD,∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,∴DM∥平面BEC20.(12分)(2012•山东)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.【分析】(I)由已知利用等差数列的通项公式及求和公式代入可求a1,d,从而可求通项(II)由(I)及已知可得,则可得,可证{b m}是等比数列,代入等比数列的求和公式可求【解答】解:(I)由已知得:解得a1=7,d=7,所以通项公式为a n=7+(n﹣1)•7=7n.(II)由,得n≤72m﹣1,即.∵=49∴{b m}是公比为49的等比数列,∴.21.(13分)(2012•山东)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD 有两个不同的交点S,T.求的最大值及取得最大值时m的值.【分析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当<<时,求出取得最大值.利用由对称性,推出<<,取得最大值.③当﹣1≤m≤1时,取得最大值.求的最大值及取得最大值时m 的值.【解答】解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得<<.设P(x1,y1),Q(x2,y2),则,,当l过A点时,m=1,当l过C点时,m=﹣1.①当<<时,有,,,,,,其中t=m+3,由此知当,即,,时,取得最大值.②由对称性,可知若<<,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【分析】(Ⅰ)由题意,求出函数的导数,再由曲线y=f(x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值;(II)由(I)知,=,x∈(0,+∞),利用导数解出函数的单调区间即可;(III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g(x)=xf'(x)≤0<1+e﹣2一定成立,由此将问题转化为证明g(x)<1+e﹣2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e﹣2比较即可得出要证的结论.【解答】解:(I)函数为常数,e=2.71828…是自然对数的底数),∴=,x∈(0,+∞),由已知,,∴k=1.(II)由(I)知,=,x∈(0,+∞),设h(x)=1﹣xlnx﹣x,x∈(0,+∞),h'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,h'(x)>0,当x∈(e﹣2,1)时,h'(x)<0,可得h(x)在x∈(0,e﹣2)时是增函数,在x∈(e﹣2,1)时是减函数,在(1,+∞)上是减函数,又h(1)=0,h(e﹣2)>0,又x趋向于0时,h(x)的函数值趋向于1∴当0<x<1时,h(x)>0,从而f'(x)>0,当x>1时h(x)<0,从而f'(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e﹣2,故只需证明g(x)<1+e﹣2在0<x<1时成立.当0<x<1时,e x<1,且g(x)>0,∴<.设F(x)=1﹣xlnx﹣x,x∈(0,1),则F'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,F'(x)>0,当x∈(e﹣2,1)时,F'(x)<0,所以当x=e﹣2时,F(x)取得最大值F(e﹣2)=1+e﹣2.所以g(x)<F(x)≤1+e﹣2.综上,对任意x>0,g(x)<1+e﹣2.。
山东省高考文科数学真题及答案之欧阳家百创编
2012年山东省高考数学试卷(文科)欧阳家百(2021.03.07)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z 为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i2.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,3,4} D.{0,2,4}3.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]4.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数 C.中位数 D.标准差5.(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.28.(5分)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0 C.﹣1 D.﹣1﹣9.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离10.(5分)函数y=的图象大致为()A.B.C.D.11.(5分)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y12.(5分)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B (x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.14.(4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.15.(4分)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.16.(4分)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为.三、解答题:本大题共6小题,共74分.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.18.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(12分)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.20.(12分)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.21.(13分)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.22.(13分)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.2012年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•山东)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i【分析】等式两边同乘2+i,然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,3,4} D.{0,2,4}【分析】由题意,集合∁U A={0,4},从而求得(∁U A)∪B={0,2,4}.【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选D.3.(5分)(2012•山东)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.4.(5分)(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数 C.中位数 D.标准差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案.【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.5.(5分)(2012•山东)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题.故选C.6.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.(5分)(2012•山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.2【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.(5分)(2012•山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0 C.﹣1 D.﹣1﹣【分析】通过x的范围,求出的范围,然后求出函数的最值.【解答】解:因为函数,所以∈,所以,所以函数的最大值与最小值之和为.故选A.9.(5分)(2012•山东)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.10.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.【解答】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.11.(5分)(2012•山东)已知双曲线C1:﹣=1(a>0,b >0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程.【解答】解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选D.12.(5分)(2012•山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A (x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0【分析】构造函数设F(x)=x3﹣bx2+1,则方程F(x)=0与f (x)=g(x)同解,可知其有且仅有两个不同零点x1,x2.利用函数与导数知识求解.【解答】解:设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g (x)同解,故其有且仅有两个不同零点x1,x2.由F'(x)=0得x=0或.这样,必须且只须F(0)=0或,因为F(0)=1,故必有由此得.不妨设x1<x2,则.所以,比较系数得,故.,由此知,故选B.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.【分析】将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,进行等体积转化V A﹣DED1=V E﹣ADD1后体积易求【解答】解:将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,则V A﹣DED1=V E﹣ADD1,其中S△ADD1=S A1D1DA=,E到底面ADD1的距离等于棱长1,故.故答案为:14.(4分)(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为9.【分析】由频率分布直方图,先求出平均气温低于22.5℃的频率,不低于25.5℃的频率,利用频数=频率×样本容量求解.【解答】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9.15.(4分)(2012•山东)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.【分析】根据指数函数的性质,需对a分a>1与0<a<1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a与m的值.【解答】解:当a>1时,有a2=4,a﹣1=m,此时a=2,m=,此时g(x)=﹣为减函数,不合题意;若0<a<1,则a﹣1=4,a2=m,故a=,m=,g(x)=在[0,+∞)上是增函数,符合题意.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).【分析】设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.【解答】解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB (sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.18.(12分)(2012•山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【分析】(Ⅰ)由列举法可得从五张卡片中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案;(Ⅱ)加入一张标号为0的绿色卡片后,共有六张卡片,由列举法可得从中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案.【解答】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有红1蓝1、红1蓝2、红2蓝1,共3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,共有六张卡片,从六张卡片中任取两张,有红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共有15种情况,其中颜色不同且标号之和小于4的有红1蓝1,红1蓝2,红2蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共8种情况,所以概率为.19.(12分)(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.【分析】(1)设BD中点为O,连接OC,OE,则CO⊥BD,CE ⊥BD,于是BD⊥平面OCE,从而BD⊥OE,即OE是BD的垂直平分线,问题解决;(2)证法一:取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC;证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DM∥EF,由线面平行的判定定理即可证得结论.【解答】证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,EC∩CO=C,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)证法一:取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC,∵△ABD是等边三角形,∴∠BDN=30°,又CB=CD,∠BCD=120°,∴∠CBD=30°,∴ND∥BC,又DN⊄平面BEC,BC⊂平面BEC,∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,∴DM∥平面BEC证法二:延长AD,BC交于点F,连接EF,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∵△ABD是等边三角形,∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,∴AB=AF,又AB=AD,∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,∴DM∥平面BEC20.(12分)(2012•山东)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.【分析】(I)由已知利用等差数列的通项公式及求和公式代入可求a1,d,从而可求通项(II)由(I)及已知可得,则可得,可证{b m}是等比数列,代入等比数列的求和公式可求【解答】解:(I)由已知得:解得a1=7,d=7,所以通项公式为a n=7+(n﹣1)•7=7n.(II)由,得n≤72m﹣1,即.∵=49∴{b m}是公比为49的等比数列,∴.21.(13分)(2012•山东)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.【分析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当时,求出取得最大值.利用由对称性,推出,取得最大值.③当﹣1≤m≤1时,取得最大值.求的最大值及取得最大值时m的值.【解答】解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f (1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【分析】(Ⅰ)由题意,求出函数的导数,再由曲线y=f(x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值;(II)由(I)知,=,x∈(0,+∞),利用导数解出函数的单调区间即可;(III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g (x)=xf'(x)≤0<1+e﹣2一定成立,由此将问题转化为证明g (x)<1+e﹣2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e﹣2比较即可得出要证的结论.【解答】解:(I)函数为常数,e=2.71828…是自然对数的底数),∴=,x∈(0,+∞),由已知,,∴k=1.(II)由(I)知,=,x∈(0,+∞),设h(x)=1﹣xlnx﹣x,x∈(0,+∞),h'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,h'(x)>0,当x∈(e﹣2,1)时,h'(x)<0,可得h(x)在x∈(0,e﹣2)时是增函数,在x∈(e﹣2,1)时是减函数,在(1,+∞)上是减函数,又h(1)=0,h(e﹣2)>0,又x趋向于0时,h(x)的函数值趋向于1∴当0<x<1时,h(x)>0,从而f'(x)>0,当x>1时h(x)<0,从而f'(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e﹣2,故只需证明g(x)<1+e﹣2在0<x<1时成立.当0<x<1时,e x>1,且g(x)>0,∴.设F(x)=1﹣xlnx﹣x,x∈(0,1),则F'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,F'(x)>0,当x∈(e﹣2,1)时,F'(x)<0,所以当x=e﹣2时,F(x)取得最大值F(e﹣2)=1+e﹣2.所以g(x)<F(x)≤1+e﹣2.综上,对任意x>0,g(x)<1+e﹣2.。
山东高考文科数学试题及答案
(D) 0,2,3,4
(3)设 a>0 且 a≠1, 则“函数 f (x)=ax 在 R 上是减函数”是“函数 g (x)=(2-a)x3 在 R 上是增函
数”的
(A)充分不必要条件
(B)必要不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
(4) 采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编号为 1,2,…960,分 组后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的 32 人中,编号落入区间
(1)若复数 z 满足 z(2-i)=11+7i(i 为虚数单位),则 z 为
(A)3+5i
(B)3-5i
(C)-3+5i
(D)-3-5i
(2) 已知全集 =0,1,2,3,4,集合 A=1,2,3, B=2,4,则 CUA B 为
(A)1,2,4 (B)2,3,4 (C)0,2,4
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页.满分 150 分.考试用时 120 分钟.考试结束后将本 试卷和答题卡一并交回. 注意事项:
1.答题前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填 写在答题卡和试卷规定的位置上.
2.第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动, 用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.
(A)[ 3 ,6] 2
(C)[ 1,6 ]
(6)执行右面的程序框图,如果输入 a=4.那么输出的 n 的值为
(A) 2
(C) 4
(7)若 θ∈[ , ],sin 2θ= ,则 sin θ=
2012年普通高等学校招生全国统一考试数学文试题(山东卷)(Word版 含解析)
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【解析】i i i i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A. 【答案】A(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B A C U )(为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.【答案】C(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-【解析】要使函数有意义则有⎪⎩⎪⎨⎧≥-≠+>+040)1ln(012x x x ,即⎪⎩⎪⎨⎧≤≤-≠->2201x x x ,即01<<-x 或20≤<x ,选B.【答案】B(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差【解析】设A 样本的数据为变量为X ,B 样本的数据为变量为Y ,则满足2+=X Y ,根据方差公式可得DX X D DY =+=)2(,所以方差相同,标准差也相同,选D.【答案】D(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真【解析】函数x y 2sin =的周期为ππ=22,所以命题p 为假;函数x y cos =的对称轴为Z k k x ∈=,π,所以命题q 为假,所以q p ∧为假,选C.【答案】C(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 【答案】A(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.【答案】B(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1 (D)1-【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin 2=π,所以最大值与最小值之和为32-,选A.【答案】A(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.【答案】B(10)函数cos622x xx y -=-的图象大致为【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612k x +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-x x y ,06cos >x ,所以函数0226cos >-=-x x x y ,排除B ,选D. 【答案】D(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y =。
2012年普通高等学校招生全国统一考试 文科数学(山东卷)【word精析版】
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)【试卷总评】本试题在承袭了山东自行命题风格的同时,积极进行创新与突破,呈现出诸多亮点。
试卷全面考查了基本知识与方法,注重对数学能力及数学素养的考查。
并进一步对分值结构进行调整,淡化压轴题的概念,后面几道题难度较大,都有一定的思维量,梯度设置科学合理,体现了高考的选拔作用.1.若复数满足(为虚数单位),则为(A)(B)(C)(D)2.已知全集,集合,,则为(A) (B) (C) (D)3.函数的定义域为(A) (B) (C) (D)3.【答案】:B【解析】:4.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(A)众数(B)平均数(C)中位数(D)标准差5.设命题p:函数的最小正周期为;命题q:函数的图象关于直线对称.则下列判断正确的是(A)p为真(B)为假(C)为假(D)为真6.已知变量满足约束条件,则目标函数的取值范围是(A)(B)(C)(D)7.执行下面的程序图,如果输入,那么输出的的值为(A)(B)(C)(D)8.函数的最大值与最小值之和为(A)(B) (C)(D)8.【答案】:A【解析】:由可知,可知,则,则最大值与最小值之和为,答案应选A。
【考点定位】9.圆与圆的位置关系为(A)内切(B)相交(C)外切(D)相离10.函数的图像大致为11.已知双曲线:的离心率为.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为(A) (B)(C)(D)12.设函数,.若的图象与的图象有且仅有两个不同的公共点,则下列判断正确的是(A)(B)(C)(D)【考点定位】本题从最常见了两类函数出发进行了巧妙组合,考查数形结合思想、分类讨论思想,函数与方程思想等,难度很大,不易入手,具有很强的区分度.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.如图,正方体的棱长为1,E为线段上的一点,则14.右图是根据部分城市某年6月份的平均气温(单位:℃) 数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为,,,,,.已知样本中平均气温低于的城市个数为11,则样本中平均气温不低于的城市个数为_.15.若函数在[-1,2]上的最大值为,最小值为,且函数在上是增函数,则_.16.如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动。
2012年高考文科数学山东卷(含详细答案)
数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2012年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡上和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A ,B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(2i)117i z -=+(i 为虚数单位),则z 为( )A . 35i +B . 35i -C . 35i -+D . 35i --2. 已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 ( )A . {1,2,4}B . {2,3,4}C . {0,2,4}D . {0,2,3,4}3.函数1()ln(1)f x x =+( ) A . [2,0)(0,2]-B . (1,0)(0,2]-C . [2,2]-D . (1,2]-4. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A . 众数B . 平均数C . 中位数D . 标准差5. 设命题p :函数sin 2y x =的最小正周期为π2;命题q :函数cos y x =的图象关于直线π2x =对称.则下列判断正确的是( )A . p 为真B . q ⌝为假C . p q ∧为假D . p q ∨为真6. 设变量x ,y 满足约束条件22,24,41,x y x y x y +⎧⎪+⎨⎪--⎩≥≤≥则目标函数3z x y =-的取值范围是( )A . 3[,6]2- B . 3[,1]2--C . [1,6]-D . 3[6,]2-7. 执行下面的程序图,如果输入4a =,那么输出的n 的值为( )A . 2B . 3C . 4D . 58. 函数ππ2sin()(09)63x y x =-≤≤的最大值与最小值之和为 ( )A .2B . 0C . 1-D .1-9. 圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 ( )A . 内切B . 相交C . 外切D . 相离 10. 函数cos622x xxy -=-的图象大致为( )A .B .C .D .11. 已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( )A .2x y =B .2x y =C . 28x y =D . 216x y =12. 设函数1()f x x=,2()g x x bx =-+,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是 ( )A . 120x x +>,120y y +>B . 120x x +>,120y y +<C . 120x x +<,120y y +>D . 120x x +<,120y y +<姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共30页)数学试卷 第5页(共30页) 数学试卷 第6页(共30页)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_________.14. 下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图.其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.,[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃ 的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为_________.15. 若函数()(0,1)xf x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(1g x =-[0,)+∞上是增函数,则a =_________. 16. 如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为_________.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角A ,B ,C所对的边分别为a ,b ,c ,已知s i n (t a n t a n B A C A C+=. (Ⅰ)求证:a ,b ,c 成等比数列; (Ⅱ)若1a =,2c =,求ABC △的面积S .18.(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(本小题满分12分)如图,几何体E ABCD -是四棱锥,ABD △为正三角形,CB CD =,EC BD ⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若120BCD ∠=,M 为线段AE 的中点,求证:DM ∥平面BEC .20.(本小题满分12分)已知等差数列{}n a 的前5项和为105,且1052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b ,求数列{}m b 的前m 项和m S .21.(本小题满分13分)如图,椭圆2222:1(0)x y M a b a b +=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8. (Ⅰ)求椭圆M 的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点P ,Q .l 与矩形ABCD 有两个不同的交点S ,T .求||||PQ ST 的最大值及取得最大值时m 的值.22.(本小题满分13分)已知函数ln ()ex x kf x +=(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.- 3 - / 10【提示】复数的除法运算,化简,直接求得答案。
2012年山东省高考数学试卷(文科)学生版
2012 年山东省高考数学试卷(文科)一、选择题:本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.(5 分)(2012?山东)若复数 z 知足 z (2﹣i )=11+7i ( i 为虚数单位),则 z 为()A .3+5iB .3﹣5iC .﹣ 3+5iD .﹣ 3﹣ 5i2.( 5 分)( 2012?山东)已知全集 U={ 0,1,2,3,4} ,会合 A={ 1,2,3} ,B={ 2,4} ,则( ?U A )∪ B 为()A .{ 1,2,4}B .{ 2,3,4}C .{ 0,2,3,4}D .{ 0,2,4}.( 分)( 2012? 山东)函数 f ( ) = +的定义域为( ) 3 5xA .[ ﹣2,0)∪( 0,2]B .(﹣ 1,0)∪( 0,2]C .[ ﹣2,2]D .(﹣1,2]4.( 5 分)( 2012?山东)在某次丈量中获得的 A 样本数据以下: 82,84,84,86,86, 86,88,88, 88,88.若 B 样本数据恰巧是 A 样本数据都加 2 后所得数据,则 A ,B 两样本的以下数字特点对应同样的是( )A .众数B .均匀数C .中位数D .方差5.(5 分)(2012?山东)设命题 :函数y=sin2x 的最小正周期为 ,命题 q :函 p数 y=cosx 的图象对于直线 x= 对称,则以下判断正确的选项是() A .p 为真 B .q 为真C .p ∧q 为假D .p ∨q 为真6.(5 分)(2012?山东)设变量 x ,y 知足拘束条件,则目标函数z=3x ﹣ y 的取值范围是()A .,B .,C .[ ﹣1,6]D .,7.(5 分)(2012?山东)履行如图的程序框图,假如输入a=4,那么输出的 n 的值为()A.5B.4C.3D.28.(5分)(山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之2012?和为()A.2﹣B.0C.﹣ 1D.﹣ 1﹣9.(5 分)(2012?山东)圆( x+2)2+y2=4 与圆( x﹣2)2+(y﹣1)2=9 的地点关系为()A.内切B.订交C.外切D.相离10.( 5 分)(2012?山东)函数y=的图象大概为()A.B.C.D.11.( 5 分)(2012?山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线 C2:x2=2py( p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()A.B.x2 =y C.x2=8y D.x2=16y 12.( 5 分)(2012?山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与 y=g( x)的图象有且仅有两个不一样的公共点 A( x1,y1),B(x2,y2),则下列判断正确的选项是()A.x1+x2>0,y1+y2>0 C.x1+x2<0,y1+y2>0B.x1+x2>0,y1+y2<0 D.x1+x2<0,y1+y2<0二、填空题:本大题共 4 小题,每题 4 分,共16 分.13.( 4分)(2012?山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1, E 为线段B1C 上的一点,则三棱锥A﹣DED1的体积为.14.(4 分)(2012?山东)如图是依据部分城市某年6 月份的均匀气温(单位:℃)数据获得的样本频次散布直方图,此中均匀气温的范围是[ 20.5,26.5] ,样本数据的分组为[ 20.5,21.5),[ 21.5,22.5),[ 22.5,23.5),[ 23.5,24.5),[ 24.5,25.5),[ 25.5, 26.5] .已知样本中均匀气温低于22.5℃的城市个数为11,则样本中均匀气温不低于25.5℃的城市个数为.15.( 4 分)(2012?山东)若函数 f(x)=a x(a>0,a≠1)在 [ ﹣1,2] 上的最大值为 4,最小值为m,且函数则 a=.在[ 0, +∞)上是增函数,16.( 4 分)(2012?山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始地点在( 0,1),此时圆上一点P 的地点在( 0,0),圆在 x 轴上沿正向转动.当圆转动到圆心位于(2,1)时,的坐标为.三、解答题:本大题共 6 小题,共 74 分.17.(12 分)(2012?山东)在△ ABC中,内角 A,B,C 所对的边分别为a,b,c,已知 sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证: a,b,c 成等比数列;(Ⅱ)若 a=1,c=2,求△ ABC的面积 S.18.(12 分)(2012?山东)袋中有五张卡片,此中红色卡片三张,标分别为 1,2,3;蓝色卡片两张,标分别为1, 2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不一样且标之和小于 4 的概率;(Ⅱ)现袋中再放入一张标为0 的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不一样且标之和小于4 的概率.19.(12 分)( 2012?山东)如图,几何体 E﹣ABCD是四棱锥,△ABD 为正三角形,CB=CD,EC⊥ BD.(Ⅰ)求证: BE=DE;(Ⅱ)若∠ BCD=120°,M 为线段 AE 的中点,求证: DM∥平面 BEC.20.( 12 分)( 2012?山东)已知等差数列 { a n} 的前 5 项和为 105,且 a10=2a5.(Ⅰ)求数列 { a n} 的通公式;(Ⅱ)随意 m∈ N*,将数列 { a n} 中不大于 72m的的个数b m.求数列 { b m}的前 m 和 S m.21.(13 分)(2012?山)如, M : +(>>)的离心率,=1 a b 0直 x=±a 和 y=± b 所成的矩形 ABCD的面 8.(Ⅰ)求 M 的准方程;(Ⅱ)直 l:y=x+m( m∈R)与 M 有两个不一样的交点P,Q,l 与矩形 ABCD有两个不一样的交点S, T.求的最大及获得最大m 的.22.( 13 分)(2012?山)已知函数常数,e=2.71828是⋯自然数的底数),曲 y=f(x)在点( 1,f (1))的切与 x 平行.(Ⅰ)求 k 的;(Ⅱ)求 f( x)的区;(Ⅲ) g(x) =xf ′(x),此中 f ′(x) f( x)的函数.明:随意x>0,g(x)< 1+e﹣2.。
2012年普通高等学校招生全国统一考试数学文试题(山东卷,含答案)
2
,则
2
b
ac
2,
2
2
2
∴ cos B a c b
2ac
3 ,
4
sin C
2
1 cos C
7 ,
4
∴△ ABC 的面积 S
1 ac sin B
1 12
7
7 .
2
2
44
-5-
(18) (I) 从五张卡片中任取两张的所有可能情况有如下
10 种:红 1 红 2,红 1 红 3,红 1 蓝 1,红
1 蓝 2,红 2 红 3,红 2 蓝 1,红 2 蓝 2,红 3 蓝 1,红 3 蓝 2,蓝 1 蓝 2. 其中两张卡片的颜色不同且
1 3 2 . x1 x2 1 3 2 0 ,由此知
2
2
y1 y2 1 1 x1 x2 0 ,故答案为 B.
x1 x2
x1 x2
二、填空题
(13) 1 以△ ADD1 为底面,则易知三棱锥的高为 6
1,故 V
11 1 11
1 .
32
6
(14) 9 最左边两个矩形面积之和为 0.10 × 1+0.12 × 1= 0.22 ,总城市数为 11÷ 0.22 = 50,最
x 2 y 2, 2x y 4, 则目标函数 z 3x y 的取值范围是 4x y 1,
(A)
3 [ ,6]
2
3 (B) [ , 1]
2
(7) 执行右面的程序框图,如果输入
(A)2
(B)3
(C)4
(C) [ 1,6]
3 (D) [ 6, ]
2
a = 4,那么输出的 n 的值为
(D)5
(8) 函数 y 2sin x
2012年普通高等学校招生全国统一考试数学文试题(山东卷)解析版(1)2
2012年普通高等学校招生全国统一考试(山东卷)文科数学一、 (1) (A)3+5i (2) (C){0,2,4} (3) (B)(1,0)(0,2]- (4) (D)标准差 (5) (C)p q ∧为假 (6) (A)3[,6]2- (7) (B)3(8) (A)2-相交(10)选D.(11) (D)216x y =(12) (B)12120,0x x y y +>+< 二、(13)61 (14)9 (15)14(16) )2cos 1,2sin 2(--三、(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a c bB ac +-==,sin 4C ==ABC 的面积11sin 122244S ac B ==⨯⨯⨯=.(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由B CC D=知 ,C O B D⊥,又已知C E BD⊥,所以BD ⊥平面OCE .所以BDO E⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D NAB⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20) (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277mn a n =≤,得217m n -≤,即217m m b -=.∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948mmm S -==--.(21)(I)222324c a b e a a-==⇒=……①矩形ABCD 面积为8,即228a b⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <<||PQ ==.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST ==其中3tm =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST.②由对称性,可知若1m <<53m =时,||||P Q ST.③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST 取得最大.综上可知,当53m =±和0时,||||P Q ST.(22) (I)1ln ()exx k xf x --'=,由已知,1(1)0ek f -'==,∴1k =.(II)由(I)知,1ln 1()exx xf x --'=.设1()ln 1k x x x=--,则211()0k x xx'=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x>时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立. 当01x <<时,ex>1,且()0g x >,∴1ln ()1ln exx x xg x x x x--=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+. 综上,对任意0x >,2()1e g x -<+.。
2012年普通高等学校招生全国统一考试文科数学(山东卷)
12山东(文)1.(2012山东,文1)若复数z 满足z (2-i )=11+7i (i 为虚数单位),则z 为( ). A .3+5iB .3-5iC .-3+5iD .-3-5iA 设z =a +b i ,a ,b ∈R ,则z (2-i )=(a +b i )(2-i )=(2a +b )+(2b -a )i ,所以211,27,a b b a +=⎧⎨-=⎩解得3,5,a b =⎧⎨=⎩ 所以z =3+5i ,故选A .2.(2012山东,文2)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ).A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}C 易知∁U A ={0,4},所以(∁U A )∪B ={0,2,4},故选C .3.(2012山东,文3)函数f (x )=1ln(1)x +( ). A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]B 由2ln(1)0,10,40x x x +≠⎧⎪+>⎨⎪-≥⎩得0,1,22,x x x ≠⎧⎪>-⎨⎪-≤≤⎩所以定义域为(-1,0)∪(0,2].4.(2012山东,文4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ). A .众数 B .平均数 C .中位数D .标准差D 由s可知B 样本数据每个变量增加2,平均数也增加2,但(x n -x )2不变,故选D .5.(2012山东,文5)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( ). A .p 为真 B .q 为假 C .p ∧q 为假D .p ∨q 为真C 因周期T =2π2=π,故p 为假命题.因cos x 的对称轴为x =k π(k ∈Z ),故q 也为假命题.所以p ∧q 为假.6.(2012山东,文6)设变量x ,y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数z =3x -y 的取值范围是( ).A .3,62⎡⎤-⎢⎥⎣⎦B .3,-12⎡⎤-⎢⎥⎣⎦C .[-1,6]D .36,2⎡⎤-⎢⎥⎣⎦A 作出可行域如图所示.目标函数z =3x -y 可转化为y =3x -z ,作l 0:3x -y =0,在可行域内平移l 0,可知在A 点处z 取最小值为-32,在B 点处z 取最大值为6,故选A .7.(2012山东,文7)执行下面的程序框图,如果输入a =4,那么输出的n 的值为( ).A .2B .3C .4D .5B 由程序框图知,当n =0时,P =1,Q =3;当n =1时,P =5,Q =7;当n =2时,P =21,Q =15,此时n 增加1变为3,满足P >Q ,循环结束,输出n =3,故选B .8.(2012山东,文8)函数y =2sin ππ63x ⎛⎫- ⎪⎝⎭(0≤x ≤9)的最大值与最小值之和为( ).A .2-3B .0C .-1D .-1-3A 由0≤x ≤9可得,-ππ36≤x -π7π36≤,所以-3≤2sin ππx 63⎛⎫- ⎪⎝⎭≤2,所以最大值为2,最小值为-3,最大值与最小值之差为2-3.9.(2012山东,文9)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ). A .内切 B .相交 C .外切 D .相离 B 圆O 1的圆心为(-2,0),r 1=2,圆O 2的圆心为(2,1),r 2=3,|O 1O 2|=2241+=17, 因为r 2-r 1<|O 1O 2|<r 1+r 2, 所以两圆相交.10.(2012山东,文10)函数y =cos622x xx --的图象大致为( ).D 令f (x )=cos622x x x --,则f (x )的定义域为(-∞,0)∪(0,+∞),而f (-x )=cos(-6)22x x x --=-f (x ),所以f (x )为奇函数.又因为当x ∈10,6⎛⎫ ⎪⎝⎭时,cos 6x >0,2x -2-x >0,即f (x )>0,而f (x )=0有无数个根,所以D 正确.11.(2012山东,文11)已知双曲线C 1:22x a -22y b =1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ). A .x 2B .x 2C .x 2=8yD .x 2=16yD 由于e =c a=2,∴c =2a ,即c 2=4a 2.又有c 2=a 2+b 2,∴b 2=3a 2,即b.∴双曲线的渐近线方程y =±b a x 即为y,+y =0.又抛物线的焦点坐标为F 0,2p ⎛⎫ ⎪⎝⎭,F 到渐近线的距离为2,即022p+=2,解得p =8.∴抛物线C 2的方程为x 2=16y .12.(2012山东,文12)设函数f (x )=1x,g (x )=-x 2+bx ,若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( ). A .x 1+x 2>0,y 1+y 2>0 B .x 1+x 2>0,y 1+y 2<0C .x 1+x 2<0,y 1+y 2>0D .x 1+x 2<0,y 1+y 2<0B 由题意知,函数f (x )=1x ,g (x )=-x 2+bx 的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x =-x 2+bx 有两个不同的根x 1,x 2,即方程x 3-bx 2+1=0有两个不同的实根x 1,x 2,因而可设x 3-bx 2+1=(x -x 1)2(x -x 2),即x 3-bx 2+1=x 3-(2x 1+x 2)x 2+(21x +2x 1x 2)x -21x x 2,∴b =2x 1+x 2,21x +2x 1x 2=0,21x x 2=-1.从而x 1≠0,x 2<0.由x 1(x 1+2x 2)=0得x 1+2x 2=0, ∴x 1+x 2=-x 2>0,x 1=-2x 2>0, ∴y 1+y 2=11x +21x =1212x x x x +<0,即x 1+x 2>0,y 1+y 2<0.13.(2012山东,文13)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为 .16由正方体的性质知B 1C ∥平面AA 1D 1D ,∴E 到平面AA 1D 1D 的距离等于C 到平面AA 1D 1D 的距离,于是三棱锥A -DED 1的体积即为三棱锥E -AD 1D 的体积,也是三棱锥C -AD 1D 的体积.∵1D AD S =12,∴1D C AD V -=1D 13AD S ·CD =13×12×1=16.14.(2012山东,文14)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为 .9 由于组距为1,则样本中平均气温低于22.5 ℃的城市频率为0.10+0.12=0.22.平均气温低于22.5 ℃的城市个数为11, 所以样本容量为110.22=50.而平均气温高于25.5 ℃的城市频率为0.18,所以,样本中平均气温不低于25.5 ℃的城市个数为50×0.18=9.15.(2012山东,文15)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m x [0,+∞)上是增函数,则a = .14 当0<a <1时,f (x )=a x 在[-1,2]上的最大值为a -1=4,即a =14,最小值为a 2=m ,从而m =116,这时g (x )=11416x ⎛-⨯ ⎝即g (x 34x [0,+∞)上是增函数.当a >1时,f (x )=a x 在[-1,2]上的最大值a 2=4得a =2,最小值a -1=m 即m =12,这时g (x )=(1-4m x x [0,+∞)上为减函数,不合题意,舍去.所以a =14.16.(2012山东,文16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为 .(2-sin 2,1-cos 2)因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin π22⎛⎫- ⎪⎝⎭=-cos 2,|CD |=cos π22⎛⎫- ⎪⎝⎭=sin 2,所以P 点坐标为(2-sin 2,1-cos 2),即OP的坐标为(2-sin 2,1-cos2).17.(2012山东,文17)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin B (tan A +tan C )=tan A tan C . (1)求证:a ,b ,c 成等比数列;(2)若a =1,c =2,求△ABC 的面积S .(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B sin sin cos cos A C A C ⎛⎫+ ⎪⎝⎭=sin cos A A ·sin cos C C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin (A +C )=sin A sin C , 又A +B +C =π, 所以sin (A +C )=sin B , 因此sin 2B =sin A sin C .由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)解:因为a =1,c =2,所以b 由余弦定理得cos B =2222a c b ac +-34,因为0<B <π,所以sin B故△ABC 的面积S =12ac sin B =12×1×218.(2012山东,文18)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一张卡片被取到的机会均等, 因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种. 所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等, 因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.19.(2012山东,文19)如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)取BD 的中点O ,连接CO ,EO .由于CB =CD ,所以CO ⊥BD .又EC ⊥BD ,EC ∩CO =C ,CO ,EC ⊂平面EOC , 所以BD ⊥平面EOC , 因此BD ⊥EO . 又O 为BD 的中点,所以BE =DE .(2)证法一:取AB 的中点N ,连接DM ,DN ,MN .因为M 是AE 的中点, 所以MN ∥BE .又MN ⊄平面BEC ,BE ⊂平面BEC , 所以MN ∥平面BEC . 又因为△ABD 为正三角形, 所以∠BDN =30°. 又CB =CD ,∠BCD =120°, 因此∠CBD =30°, 所以DN ∥BC .又DN ⊄平面BEC ,BC ⊂平面BEC , 所以DN ∥平面BEC . 又MN ∩DN =N ,故平面DMN ∥平面BEC , 又DM ⊂平面DMN ,所以DM ∥平面BEC .证法二:延长AD ,BC 交于点F ,连接EF.因为CB =CD ,∠BCD =120°, 所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点, 因此DM ∥EF .又DM ⊄平面BEC ,EF ⊂平面BEC ,所以DM ∥平面BEC .20.(2012山东,文20)已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m . 解:(1)设数列{a n }的公差为d ,前n 项和为T n .由T 5=105,a 10=2a 5,得到1115(51)5d 105,29d 2(4d),a a a ⨯-⎧+=⎪⎨⎪+=+⎩ 解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *,若a m =7n ≤72m ,则n ≤72m -1. 因此b m =72m -1,所以数列{b m }是首项为7公比为49的等比数列,故S m =1(1)1mb q q--=7(149)149m ⨯--=27(71)48m ⨯-=217748m +-.21.(2012山东,文21)如图,椭圆M :22x a +22y b =1(a >b >0)的离心率为3,直线x =±a 和y =±b 所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线l :y =x +m (m ∈R )与椭圆M 有两个不同的交点P ,Q ,l 与矩形ABCD 有两个不同的交点S ,T .求||||PQ ST 的最大值及取得最大值时m 的值. 解:(1)设椭圆M 的半焦距为c ,由题意知222,3,48,a b c c a ab ⎧=+⎪⎪=⎨⎪=⎪⎩所以a =2,b =1.因此椭圆M 的方程为24x +y 2=1.(2)由221,4x y y x m ⎧+=⎪⎨⎪=+⎩整理得5x 2+8mx +4m 2-4=0,由Δ=64m 2-80(m 2-1)=80-16m 2>0, 得-5<m <5.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-85m ,x 1x 2=24(1)5m -.所以|PQ |=221212()()x x y y -+- =212122[()4]x x x x +-=242(5)5m -(-5<m <5).线段CD 的方程为y =1(-2≤x ≤2),线段AD 的方程为x =-2(-1≤y ≤1). ①不妨设点S 在AD 边上,T 在CD 边上,可知1≤m <5,S (-2,m -2),D (-2,1), 所以|ST |=2|SD |=2[1-(m -2)]=2(3-m ), 因此||||PQ ST =22455(3)m m --, 令t =3-m (1≤m <5), 则m =3-t ,t ∈(3-5,2],所以||||PQ ST =2245-(3)5t t -=244615t t -+-=241354544t ⎛⎫--+ ⎪⎝⎭,由于t ∈(352],所以112t ⎡∈⎢⎣⎭,因此当1t =34即t =43时,||||PQ ST 此时m =53. ②不妨设点S 在AB 边上,T 在CD 边上, 此时-1≤m ≤1,因此|ST AD |=此时||||PQ ST所以当m =0时,||||PQ ST(3)不妨设点S 在AB 边上,T 在BC 边上m ≤-1,由椭圆和矩形的对称性知||||PQ ST 此时m =-53.综上所述m =±53或m =0时,||||PQ ST 22.(2012山东,文22)已知函数f (x )=ln e x x k +(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=xf '(x ),其中f '(x )为f (x )的导函数.证明:对任意x >0,g (x )<1+e -2. (1)解:由f (x )=ln e xx k +,得f '(x )=1ln e xkx x x x --,x ∈(0,+∞).由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f '(1)=0,因此k =1.(2)解:由(1)得f '(x )=1e xx (1-x -x ln x ),x ∈(0,+∞).令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f '(x )>0;x ∈(1,+∞)时,f '(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)证明:因为g (x )=xf '(x ),所以g (x )=1e x(1-x -x ln x ),x ∈(0,+∞).由(2)h (x )=1-x -x ln x ,求导得h '(x )=-ln x -2=-(ln x -ln e -2),所以当x ∈(0,e -2)时,h '(x )>0,函数h (x )单调递增;当x ∈(e -2,+∞)时,h '(x )<0,函数h (x )单调递减. 所以当x ∈(0,+∞)时,h (x )≤h (e -2)=1+e -2. 又当x ∈(0,+∞)时,0<1e x<1,所以当x ∈(0,+∞)时,1e xh (x )<1+e -2,即g (x )<1+e -2. 综上所述结论成立.。
山东省高考文科数学真题及答案之欧阳光明创编
2012年山东省高考数学试卷(文科)欧阳光明(2021.03.07)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z 为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i2.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,3,4} D.{0,2,4}3.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]4.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数 C.中位数 D.标准差5.(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.28.(5分)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0 C.﹣1 D.﹣1﹣9.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离10.(5分)函数y=的图象大致为()A.B.C.D.11.(5分)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y12.(5分)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B (x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.14.(4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.15.(4分)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.16.(4分)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为.三、解答题:本大题共6小题,共74分.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.18.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(12分)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.20.(12分)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.21.(13分)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.22.(13分)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.2012年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•山东)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i【分析】等式两边同乘2+i,然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,3,4} D.{0,2,4}【分析】由题意,集合∁U A={0,4},从而求得(∁U A)∪B={0,2,4}.【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选D.3.(5分)(2012•山东)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.4.(5分)(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数 C.中位数 D.标准差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案.【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.5.(5分)(2012•山东)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题.故选C.6.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.(5分)(2012•山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.2【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.(5分)(2012•山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0 C.﹣1 D.﹣1﹣【分析】通过x的范围,求出的范围,然后求出函数的最值.【解答】解:因为函数,所以∈,所以,所以函数的最大值与最小值之和为.故选A.9.(5分)(2012•山东)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.10.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.【解答】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.11.(5分)(2012•山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程.【解答】解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选D.12.(5分)(2012•山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A (x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0【分析】构造函数设F(x)=x3﹣bx2+1,则方程F(x)=0与f (x)=g(x)同解,可知其有且仅有两个不同零点x1,x2.利用函数与导数知识求解.【解答】解:设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g (x)同解,故其有且仅有两个不同零点x1,x2.由F'(x)=0得x=0或.这样,必须且只须F(0)=0或,因为F(0)=1,故必有由此得.不妨设x1<x2,则.所以,比较系数得,故.,由此知,故选B.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.【分析】将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,进行等体积转化V A﹣DED1=V E﹣ADD1后体积易求【解答】解:将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,则V A﹣DED1=V E﹣ADD1,其中S△ADD1=S A1D1DA=,E到底面ADD1的距离等于棱长1,故.故答案为:14.(4分)(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为9.【分析】由频率分布直方图,先求出平均气温低于22.5℃的频率,不低于25.5℃的频率,利用频数=频率×样本容量求解.【解答】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9.15.(4分)(2012•山东)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.【分析】根据指数函数的性质,需对a分a>1与0<a<1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a 与m的值.【解答】解:当a>1时,有a2=4,a﹣1=m,此时a=2,m=,此时g(x)=﹣为减函数,不合题意;若0<a<1,则a﹣1=4,a2=m,故a=,m=,g(x)=在[0,+∞)上是增函数,符合题意.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).【分析】设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.【解答】解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB (sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.18.(12分)(2012•山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【分析】(Ⅰ)由列举法可得从五张卡片中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案;(Ⅱ)加入一张标号为0的绿色卡片后,共有六张卡片,由列举法可得从中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案.【解答】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有红1蓝1、红1蓝2、红2蓝1,共3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,共有六张卡片,从六张卡片中任取两张,有红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共有15种情况,其中颜色不同且标号之和小于4的有红1蓝1,红1蓝2,红2蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共8种情况,所以概率为.19.(12分)(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.【分析】(1)设BD中点为O,连接OC,OE,则CO⊥BD,CE ⊥BD,于是BD⊥平面OCE,从而BD⊥OE,即OE是BD的垂直平分线,问题解决;(2)证法一:取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC;证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DM∥EF,由线面平行的判定定理即可证得结论.【解答】证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,EC∩CO=C,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)证法一:取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC,∵△ABD是等边三角形,∴∠BDN=30°,又CB=CD,∠BCD=120°,∴∠CBD=30°,∴ND∥BC,又DN⊄平面BEC,BC⊂平面BEC,∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,∴DM∥平面BEC证法二:延长AD,BC交于点F,连接EF,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∵△ABD是等边三角形,∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,∴AB=AF,又AB=AD,∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,∴DM∥平面BEC20.(12分)(2012•山东)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.【分析】(I)由已知利用等差数列的通项公式及求和公式代入可求a1,d,从而可求通项(II)由(I)及已知可得,则可得,可证{b m}是等比数列,代入等比数列的求和公式可求【解答】解:(I)由已知得:解得a1=7,d=7,所以通项公式为a n=7+(n﹣1)•7=7n.(II)由,得n≤72m﹣1,即.∵=49∴{b m}是公比为49的等比数列,∴.21.(13分)(2012•山东)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.【分析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当时,求出取得最大值.利用由对称性,推出,取得最大值.③当﹣1≤m≤1时,取得最大值.求的最大值及取得最大值时m的值.【解答】解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f (1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【分析】(Ⅰ)由题意,求出函数的导数,再由曲线y=f (x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值;(II)由(I)知,=,x∈(0,+∞),利用导数解出函数的单调区间即可;(III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g (x)=xf'(x)≤0<1+e﹣2一定成立,由此将问题转化为证明g (x)<1+e﹣2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e﹣2比较即可得出要证的结论.【解答】解:(I)函数为常数,e=2.71828…是自然对数的底数),∴=,x∈(0,+∞),由已知,,∴k=1.(II)由(I)知,=,x∈(0,+∞),设h(x)=1﹣xlnx﹣x,x∈(0,+∞),h'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,h'(x)>0,当x∈(e﹣2,1)时,h'(x)<0,可得h(x)在x∈(0,e﹣2)时是增函数,在x∈(e﹣2,1)时是减函数,在(1,+∞)上是减函数,又h(1)=0,h(e﹣2)>0,又x趋向于0时,h(x)的函数值趋向于1∴当0<x<1时,h(x)>0,从而f'(x)>0,当x>1时h(x)<0,从而f'(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e﹣2,故只需证明g(x)<1+e﹣2在0<x<1时成立.当0<x<1时,e x>1,且g(x)>0,∴.设F(x)=1﹣xlnx﹣x,x∈(0,1),则F'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,F'(x)>0,当x∈( e﹣2,1)时,F'(x)<0,所以当x=e﹣2时,F(x)取得最大值F(e﹣2)=1+e﹣2.所以g(x)<F(x)≤1+e﹣2.综上,对任意x>0,g(x)<1+e﹣2.。
山东省高考文科数学真题及答案之欧阳术创编
2012年山东省高考数学试卷(文科)时间:2021.02.02 创作:欧阳术一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i2.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,3,4} D.{0,2,4}3.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]4.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差5.(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.28.(5分)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣ B.0 C.﹣1 D.﹣1﹣9.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离10.(5分)函数y=的图象大致为()A.B.C.D.11.(5分)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y 12.(5分)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A (x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0二、填空题:本大题共4小题,每小题4分,共16分. 13.(4分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.14.(4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.15.(4分)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.16.(4分)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为.三、解答题:本大题共6小题,共74分.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.18.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(12分)如图,几何体E﹣ABCD是四棱锥,△ABD 为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM ∥平面BEC.20.(12分)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.21.(13分)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.22.(13分)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.2012年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2012•山东)若复数z满足z(2﹣i)=11+7i (i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i【分析】等式两边同乘2+i,然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,3,4} D.{0,2,4}【分析】由题意,集合∁U A={0,4},从而求得(∁U A)∪B={0,2,4}.【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选D.3.(5分)(2012•山东)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.4.(5分)(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案.【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.5.(5分)(2012•山东)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题.故选C.6.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.(5分)(2012•山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.2【分析】执行程序框图,依次写出每次循环得到的P,Q 值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.(5分)(2012•山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣ B.0 C.﹣1 D.﹣1﹣【分析】通过x的范围,求出的范围,然后求出函数的最值.【解答】解:因为函数,所以∈,所以,所以函数的最大值与最小值之和为.故选A.9.(5分)(2012•山东)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.10.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.【解答】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.11.(5分)(2012•山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程.【解答】解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C 1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选D.12.(5分)(2012•山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0【分析】构造函数设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g(x)同解,可知其有且仅有两个不同零点x1,x2.利用函数与导数知识求解.【解答】解:设F(x)=x3﹣bx2+1,则方程F(x)=0与f (x)=g(x)同解,故其有且仅有两个不同零点x1,x2.由F'(x)=0得x=0或.这样,必须且只须F(0)=0或,因为F(0)=1,故必有由此得.不妨设x1<x 2,则.所以,比较系数得,故.,由此知,故选B.二、填空题:本大题共4小题,每小题4分,共16分. 13.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A ﹣DED 1的体积为.【分析】将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,进行等体积转化V A=V E﹣ADD1后体积易求﹣DED1【解答】解:将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,则V A=V E﹣ADD1,﹣DED1其中S△ADD1=S A1D1DA=,E到底面ADD1的距离等于棱长1,故.故答案为:14.(4分)(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为9.【分析】由频率分布直方图,先求出平均气温低于22.5℃的频率,不低于25.5℃的频率,利用频数=频率×样本容量求解.【解答】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9.15.(4分)(2012•山东)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.【分析】根据指数函数的性质,需对a分a>1与0<a<1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a与m的值.【解答】解:当a>1时,有a2=4,a﹣1=m,此时a=2,m=,此时g(x)=﹣为减函数,不合题意;若0<a<1,则a﹣1=4,a2=m,故a=,m=,g(x)=在[0,+∞)上是增函数,符合题意.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).【分析】设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.【解答】解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)在△ABC中,内角A,B,C 所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.18.(12分)(2012•山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【分析】(Ⅰ)由列举法可得从五张卡片中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案;(Ⅱ)加入一张标号为0的绿色卡片后,共有六张卡片,由列举法可得从中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案.【解答】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有红1蓝1、红1蓝2、红2蓝1,共3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,共有六张卡片,从六张卡片中任取两张,有红1红2,红1红3,红1蓝1,红蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共1有15种情况,其中颜色不同且标号之和小于4的有红1蓝1,红1蓝2,红蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共28种情况,所以概率为.19.(12分)(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM ∥平面BEC.【分析】(1)设BD中点为O,连接OC,OE,则CO⊥BD,CE⊥BD,于是BD⊥平面OCE,从而BD⊥OE,即OE是BD的垂直平分线,问题解决;(2)证法一:取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC;证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DM∥EF,由线面平行的判定定理即可证得结论.【解答】证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,EC∩CO=C,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)证法一:取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC,∵△ABD是等边三角形,∴∠BDN=30°,又CB=CD,∠BCD=120°,∴∠CBD=30°,∴ND∥BC,又DN⊄平面BEC,BC⊂平面BEC,∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,∴DM∥平面BEC证法二:延长AD,BC交于点F,连接EF,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∵△ABD是等边三角形,∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,∴AB=AF,又AB=AD,∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,∴DM∥平面BEC20.(12分)(2012•山东)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.【分析】(I)由已知利用等差数列的通项公式及求和公式代入可求a1,d,从而可求通项(II)由(I)及已知可得,则可得,可证{b m}是等比数列,代入等比数列的求和公式可求【解答】解:(I)由已知得:解得a1=7,d=7,所以通项公式为a n=7+(n﹣1)•7=7n.(II)由,得n≤72m﹣1,即.∵=49∴{b m}是公比为49的等比数列,∴.21.(13分)(2012•山东)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.【分析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当时,求出取得最大值.利用由对称性,推出,取得最大值.③当﹣1≤m≤1时,取得最大值.求的最大值及取得最大值时m的值.【解答】解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【分析】(Ⅰ)由题意,求出函数的导数,再由曲线y=f(x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值;(II)由(I)知,=,x∈(0,+∞),利用导数解出函数的单调区间即可;(III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g(x)=xf'(x)≤0<1+e﹣2一定成立,由此将问题转化为证明g(x)<1+e﹣2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e﹣2比较即可得出要证的结论.【解答】解:(I)函数为常数,e=2.71828…是自然对数的底数),∴=,x∈(0,+∞),由已知,,∴k=1.(II)由(I)知,=,x∈(0,+∞),设h(x)=1﹣xlnx﹣x,x∈(0,+∞),h'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,h'(x)>0,当x∈(e﹣2,1)时,h'(x)<0,可得h(x)在x∈(0,e﹣2)时是增函数,在x∈(e﹣2,1)时是减函数,在(1,+∞)上是减函数,又h(1)=0,h(e﹣2)>0,又x趋向于0时,h(x)的函数值趋向于1∴当0<x<1时,h(x)>0,从而f'(x)>0,当x>1时h(x)<0,从而f'(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e﹣2,故只需证明g(x)<1+e﹣2在0<x<1时成立.当0<x<1时,e x>1,且g(x)>0,∴.设F(x)=1﹣xlnx﹣x,x∈(0,1),则F'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,F'(x)>0,当x∈(e﹣2,1)时,F'(x)<0,所以当x=e﹣2时,F(x)取得最大值F(e﹣2)=1+e﹣2.所以g(x)<F(x)≤1+e﹣2.综上,对任意x>0,g(x)<1+e﹣2.时间:2021.02.02 创作:欧阳术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年山东省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i2.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}3.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]4.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差5.(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.28.(5分)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0 C.﹣1 D.﹣1﹣9.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离10.(5分)函数y=的图象大致为()A.B.C.D.11.(5分)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y12.(5分)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.14.(4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.15.(4分)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.16.(4分)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为.三、解答题:本大题共6小题,共74分.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.18.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(12分)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC ⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.20.(12分)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.21.(13分)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD 有两个不同的交点S,T.求的最大值及取得最大值时m的值.22.(13分)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.2012年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•山东)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i【分析】等式两边同乘2+i,然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}【分析】由题意,集合∁U A={0,4},从而求得(∁U A)∪B={0,2,4}.【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选D.3.(5分)(2012•山东)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.4.(5分)(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案.【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.5.(5分)(2012•山东)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx 的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题.故选C.6.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z 越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.(5分)(2012•山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.2【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.(5分)(2012•山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0 C.﹣1 D.﹣1﹣【分析】通过x的范围,求出的范围,然后求出函数的最值.【解答】解:因为函数,所以∈,所以,所以函数的最大值与最小值之和为.故选A.9.(5分)(2012•山东)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.10.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.【解答】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.11.(5分)(2012•山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=y C.x2=8y D.x2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程.【解答】解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选D.12.(5分)(2012•山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0 B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0 D.x1+x2<0,y1+y2<0【分析】构造函数设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g(x)同解,可知其有且仅有两个不同零点x1,x2.利用函数与导数知识求解.【解答】解:设F(x)=x3﹣bx2+1,则方程F(x)=0与f(x)=g(x)同解,故其有且仅有两个不同零点x1,x2.由F'(x)=0得x=0或.这样,必须且只须F(0)=0或,因为F(0)=1,故必有由此得.不妨设x1<x2,则.所以,比较系数得,故.,由此知,故选B.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.【分析】将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,进行等体积转化V A﹣DED1=V E﹣ADD1后体积易求【解答】解:将三棱锥A﹣DED1选择△ADD1为底面,E为顶点,则V A﹣DED1=V E﹣ADD1,其中S△ADD1=S A1D1DA=,E到底面ADD1的距离等于棱长1,故.故答案为:14.(4分)(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为9.【分析】由频率分布直方图,先求出平均气温低于22.5℃的频率,不低于25.5℃的频率,利用频数=频率×样本容量求解.【解答】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9.15.(4分)(2012•山东)若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.【分析】根据指数函数的性质,需对a分a>1与0<a<1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a与m的值.【解答】解:当a>1时,有a2=4,a﹣1=m,此时a=2,m=,此时g(x)=﹣为减函数,不合题意;若0<a<1,则a﹣1=4,a2=m,故a=,m=,g(x)=在[0,+∞)上是增函数,符合题意.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).【分析】设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.【解答】解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.18.(12分)(2012•山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【分析】(Ⅰ)由列举法可得从五张卡片中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案;(Ⅱ)加入一张标号为0的绿色卡片后,共有六张卡片,由列举法可得从中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案.【解答】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有红1蓝1、红1蓝2、红2蓝1,共3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,共有六张卡片,从六张卡片中任取两张,有红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共有15种情况,其中颜色不同且标号之和小于4的有红1蓝1,红1蓝2,红2蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共8种情况,所以概率为.19.(12分)(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.【分析】(1)设BD中点为O,连接OC,OE,则CO⊥BD,CE⊥BD,于是BD⊥平面OCE,从而BD⊥OE,即OE是BD的垂直平分线,问题解决;(2)证法一:取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC;证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DM∥EF,由线面平行的判定定理即可证得结论.【解答】证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,EC∩CO=C,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)证法一:取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC,∵△ABD是等边三角形,∴∠BDN=30°,又CB=CD,∠BCD=120°,∴∠CBD=30°,∴ND∥BC,又DN⊄平面BEC,BC⊂平面BEC,∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,∴DM∥平面BEC证法二:延长AD,BC交于点F,连接EF,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∵△ABD是等边三角形,∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,∴AB=AF,又AB=AD,∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,∴DM∥平面BEC20.(12分)(2012•山东)已知等差数列{a n}的前5项和为105,且a10=2a5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中不大于72m的项的个数记为b m.求数列{b m}的前m项和S m.【分析】(I)由已知利用等差数列的通项公式及求和公式代入可求a1,d,从而可求通项(II)由(I)及已知可得,则可得,可证{b m}是等比数列,代入等比数列的求和公式可求【解答】解:(I)由已知得:解得a1=7,d=7,所以通项公式为a n=7+(n﹣1)•7=7n.(II)由,得n≤72m﹣1,即.∵=49∴{b m}是公比为49的等比数列,∴.21.(13分)(2012•山东)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD 有两个不同的交点S,T.求的最大值及取得最大值时m的值.【分析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当时,求出取得最大值.利用由对称性,推出,取得最大值.③当﹣1≤m ≤1时,取得最大值.求的最大值及取得最大值时m的值.【解答】解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【分析】(Ⅰ)由题意,求出函数的导数,再由曲线y=f(x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值;(II)由(I)知,=,x∈(0,+∞),利用导数解出函数的单调区间即可;(III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g(x)=xf'(x)≤0<1+e﹣2一定成立,由此将问题转化为证明g(x)<1+e﹣2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e﹣2比较即可得出要证的结论.【解答】解:(I)函数为常数,e=2.71828…是自然对数的底数),∴=,x∈(0,+∞),由已知,,∴k=1.(II)由(I)知,=,x∈(0,+∞),设h(x)=1﹣xlnx﹣x,x∈(0,+∞),h'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,h'(x)>0,当x∈(e﹣2,1)时,h'(x)<0,可得h(x)在x∈(0,e﹣2)时是增函数,在x∈(e﹣2,1)时是减函数,在(1,+∞)上是减函数,又h(1)=0,h(e﹣2)>0,又x趋向于0时,h(x)的函数值趋向于1∴当0<x<1时,h(x)>0,从而f'(x)>0,当x>1时h(x)<0,从而f'(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e﹣2,故只需证明g(x)<1+e﹣2在0<x<1时成立.当0<x<1时,e x>1,且g(x)>0,∴.设F(x)=1﹣xlnx﹣x,x∈(0,1),则F'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,F'(x)>0,当x∈(e﹣2,1)时,F'(x)<0,所以当x=e﹣2时,F(x)取得最大值F(e﹣2)=1+e﹣2.所以g(x)<F(x)≤1+e﹣2.综上,对任意x>0,g(x)<1+e﹣2.。