小学数学《行程问题》练习题二(含答案)

合集下载

四年级数学上册第二单元:行程问题专项练习(解析版)苏教版

四年级数学上册第二单元:行程问题专项练习(解析版)苏教版

2022-2023学年四年级数学上册典型例题系列之第二单元:行程问题专项练习(解析版)1.一辆客车和一辆货车分别以75千米/时和60千米/时的速度同时从江都开往天津。

经过6小时,两车相距多少千米?【答案】90千米【分析】根据路程=速度×时间,分别求出客车和货车行驶的路程,因为两辆车同时从一个地点出发,则将两个路程相减,求出两车的距离。

【详解】75×6-60×6=450-360=90(千米)答:两车相距90千米。

【点睛】本题考查行程问题,根据路程、速度和时间三个量之间的关系解答,关键是明确两车的距离是两车行程的差,而不是两车行程的和。

2.杨大爷进行徒步锻炼,他步行的速度为90米/分,如果他每走40分钟休息5分钟,那么从上午7时到9时,杨大爷一共走多少千米?【答案】9.9千米【分析】首先判断出从上午7时到9时,一共有多少个45分钟,还剩下多少分钟;然后根据速度×时间=路程,用杨大爷步行的速度乘走的时间,求出一共步行多少米即可。

【详解】9-7=2(时)=120(分)120÷(40+5)=120÷45=2(个)……30(分钟)90×40×2+90×30=7200+2700=9900(米)=9.9(千米)答:从上午7时到9时,一共步行9.9千米。

【点睛】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握;解答此题的关键是求出从上午7时到9时,一共有多少个45分钟,还剩下多少分钟。

3.两辆车同时从A城出发到B城,面包车绕山路走远些,大客车钻山洞走近路,大客车在途中休息了65分钟。

哪辆车先到达目的地?【答案】面包车【分析】用312除以4求出面包车的速度,用1092除以面包车的速度求出面包车到达B城需要的时间;用210÷3求出大客车的速度,用910除以大客车的速度求出大客车行驶的时间,再加上65分钟即到达B城需要的时间;再比较即可。

小学六年级数学行程问题讲解提高练习(附答案及解析)

小学六年级数学行程问题讲解提高练习(附答案及解析)

行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

小学六年级奥数第34讲 行程问题(二)(含答案分析)

小学六年级奥数第34讲 行程问题(二)(含答案分析)

第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。

甲按顺时针方向行走,乙与丙按逆时针方向行走。

甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。

已知乙的速度是甲的23,湖的周长为600米,求丙的速度。

甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。

甲、乙的速度和为600÷(114+334 )=120米/分。

甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。

甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。

列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。

练习1:1、甲、乙、丙三人环湖跑步。

同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。

在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。

已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。

图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。

从同一地点同时背向绕水池而行。

兄每秒走1.3米。

妹每秒走1.2米。

他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。

小学数学四年级 行程问题(二)相遇问题 PPT+答案

小学数学四年级 行程问题(二)相遇问题   PPT+答案
也要从学校回家,他们恰巧同时出发,旭旭的妈妈每分钟比旭旭多走 24 米,15 分钟后两人相遇,那么旭旭的速度是多少?
【分析】已知两人的路程和以及相遇时间,可求出两人的速度和。又已知两人 的速度差,利用和差问题方法求解。
速度和:2100÷15=140(米/分钟) 旭旭速度:(140-24)÷2=58(米/分钟) 答:旭旭的速度是58米/分钟.
货车各行驶了多少千米?
【分析】货车耽误2小时,则客车单独走了2小时,剩下的路程为两车同时走的路程和。
然后利用路程和与速度和求相遇时间。两车各自的路程利用速度×时间求解。
第1关 基本相遇问题 A-2 两个县城相距20 千米,甲、乙二人同时从两城出发,相向而行,甲
每小时行驶6千米,乙每小时行驶4 千米,几小时后两人相遇?
【分析】 已知两人路程和及速度,求相遇时间。
相遇时间:20÷(6+4)=2(小时) 答:2小时后两人相遇.
第1关 基本相遇问题 B-1 甲、乙两车从相距800 千米的两地同时出发,相向而行,甲车每小时
乙车在途中停了3 小时,然后继续行进,再过2 小时两车相遇,两地
间的铁路长多少千米?
【分析】采用整体思考方式,在相遇之前,甲车单独行驶3小时,甲乙又共同
行驶了3小时,全长则包含甲单独走的以及两人共同走的路程。
甲3小时路程:51×3=153(千米) 同行时间:1+2=3(小时) 甲乙路程和:(51+45)×3=288(千米) 全长:153+288=441(千米) 答:两地间的铁路长441千米.
相遇时间:(43-15)÷(3+4)=4(小时) 答:甲出发4小时后与B-2 甲、乙两座城市相距610 千米,货车和客车从两城同时出发,相向而

小学六年级奥数第34讲 行程问题(二)(含答案分析)

小学六年级奥数第34讲 行程问题(二)(含答案分析)

第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。

甲按顺时针方向行走,乙与丙按逆时针方向行走。

甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。

已知乙的速度是甲的23,湖的周长为600米,求丙的速度。

甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。

甲、乙的速度和为600÷(114+334 )=120米/分。

甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。

甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。

列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。

练习1:1、甲、乙、丙三人环湖跑步。

同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。

在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。

已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。

图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。

从同一地点同时背向绕水池而行。

兄每秒走1.3米。

妹每秒走1.2米。

他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。

小学数学行程问题及答案

小学数学行程问题及答案

1。

小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?2. 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C 离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.3.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?4.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3。

5千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下。

5。

小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。

小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:6.一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

求A至B两地距离.行程问题(一)(基础篇)行程问题的基础知识以及重要知识点★提到行程问题就不得不说3个行程问题中一定会用到的数——s,t,vs ——路程t ——时间v -—速度这3个数之间的关系就是:路程=速度X时间-- s= vt同时可以得出另外两个关系:速度=路程÷时间—— v= s/t时间=路程÷速度—- t= s/v我们来看几个例子:例1,一个人以5米/秒的速度跑了20秒,那么他跑了多远?5米/秒是这个人的速度 v, 20秒是他一共跑的时间 t, 求他跑的距离也就是路程 s,我们就可以直接利用这3个数量的关系 s=vt来计算出路程:s=vt=5x20=100(米)。

小学六年级奥数-第34讲 行程问题(二)后附答案

小学六年级奥数-第34讲 行程问题(二)后附答案

第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。

甲按顺时针方向行走,乙与丙按逆时针方向行走。

甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。

已知乙的速度是甲的23,湖的周长为600米,求丙的速度。

甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。

甲、乙的速度和为600÷(114 +334 )=120米/分。

甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。

甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。

列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。

练习1:1、甲、乙、丙三人环湖跑步。

同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。

在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。

已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。

2、兄、妹2人在周长为30米的圆形小池边玩。

从同一地点同时背向绕水池而行。

图34——1BA图34-1图34——2图34-2兄每秒走1.3米。

妹每秒走1.2米。

他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。

小学五年级奥数第29讲 行程问题(二)(含答案分析)

小学五年级奥数第29讲 行程问题(二)(含答案分析)

第29讲行程问题(二)一、专题简析:1、追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。

追及问题的基本数量关系是:速度差×追及时间=追及路程2、解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。

抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。

二、精讲精练例1 中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?练习一(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上?(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟?例2一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?练习二(1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。

小王是在离工厂多远处遇到熟人的?(2)一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。

这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。

为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。

加油站离乙地多少千米?例3甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。

走15分钟后甲返回原地取东西,而乙继续前进。

甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。

甲骑车多少分钟才能追上乙?练习三(1)兄弟二人同时从家出发去学校,哥哥每分钟走80米,弟弟每分钟走60米。

六年级下册奥数试题行程问题(二)全国通用(含答案)

六年级下册奥数试题行程问题(二)全国通用(含答案)

第12讲行程问题(二)在四年级的教材中,我们已经对于相遇问题、追及问题、水流问题和车长及桥长等问题,进行了较为细致的研究。

在这一讲中,我们将进一步就环行路上的行程问题以及多次相遇等问题进行研究。

行程问题在小学的应用题中是变化最多的类型之一。

对于行程问题的研究是小学综合运用知识解决问题的一个重要的内容。

因为行程问题的变化可谓是丰富多彩,不仅在小学,而且在中学的数学和物理的学习中,也是极其重要的内容。

一、环行路上的行程问题环行路上的行程问题,有着它独特的方面,由于环行的道路是封闭的,因此,环行路上的运动,计算行程时,通常与环行道路的周长有关。

例1在400米的环行跑道上,A、B两点相距100米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。

甲每秒跑5米,乙每秒跑4米,他们每人跑100米,都要停10秒钟。

求甲追上乙需要多少秒?分析:这道题初看时,由于他们每人跑100米,都要停10秒钟。

似乎不太好解决。

但如果将二人看成不停的跑,就很容易算出甲追上乙的时间,这时再考虑在这期间所停留的时间,问题的解决就比较简单了。

解答:如果甲、乙不停的跑步,甲追上乙共需:100÷(5-4)=100(秒),甲在100秒中共跑:5×100=500(米),而甲在跑100米、200米、300米、400米时共停留了4次,到了500米处恰好追上乙。

不必计算停留的时间。

所以,甲追上乙所需的时间是:100+4×10=140(秒)说明:甲跑到500米处时,正好是乙跑完400米,并且休息完10秒时。

当甲跑到时,乙恰好要出发,他们两个在这一瞬间正好相遇。

例2 如图,A、B是圆直径的两个端点,小华在点A,小明在点B,他们同时出发,反向而行。

他们在C点第一次相遇,C点离A点100米;在D点第二次相遇,D点离B点80米。

求这个圆的周长。

分析:第一次相遇,两人合起来走了半圈,第二次相遇,两人合起来走了一圈,因此,从开始出发到第二次相遇,两人合起来走了一圈半。

小学五年级数学 行程问题 带详细答案

小学五年级数学 行程问题 带详细答案

小学五年级数学行程问题(带答案)例题1、甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?解答:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。

两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)(56+48)×8=832(千米)练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?解答:两人的路程差:120+120=240(米)时间:240÷(100-80)=12(分钟)总路程:(100+80)x12=2160(米)2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?解答:两车的路程差:75(米)时间:750÷(65-40)=3(小时)总路程:(40+65)x3+75=390(米)3、甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。

东村到西村的路程是多少米?解答:如果甲继续行5分钟:5x120=600(米)乙的时间:600÷(120-100)=30(分钟)总路程:30x100=3000(米)例题二、快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?解答:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

小学奥数系列3-1-1行程问题(二)及参考答案

小学奥数系列3-1-1行程问题(二)及参考答案

小学奥数系列3-1-1行程问题(二)一、1. 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.2. 某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?3. 胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?4. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。

小明往返一趟共行了多少千米?5. 小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.6. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?7. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?8. 小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同9. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

10. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.11. 一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如图).它爬行一周平均每分钟爬行多少厘米?12. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?13. 张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?14. 老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?15. 小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?16. 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?17. 解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?18. 某人要到 60千米外的农场去,开始他以 6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?19. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)行程问题练习题及答案 1(一)超车问题(同向运动,追及问题)1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。

慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。

(125+140)÷(22-17)=53(秒)答:快车从后面追上到完全超过需要53秒。

2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?(20-18)×110-120=100(米)3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差(二)过人(人看作是车身长度是0的火车)1、小王以每秒3米的速度沿着铁路跑步,迎面__一列长147米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?147÷(3+18)=7(秒)答:火车经过小王身旁的时间是7秒。

2、小王以每秒3米的速度沿着铁路跑步,后面__一列长150米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?150÷(18-3)=10(秒)答:火车经过小王身旁的时间是10秒。

(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。

问火车穿越隧道(进入隧道直至完全离开)要多少时间?(150+300)÷18=25(秒)答:火车穿越隧道要25秒。

4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?20×50-800=200(米)行程问题练习题及答案 2甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。

【精品】四年级下册数学试题-竞赛专题:第九讲-行程问题(二)(含答案)人教版

【精品】四年级下册数学试题-竞赛专题:第九讲-行程问题(二)(含答案)人教版

火车行程问题及行船流水问题是行程问题中比较重要及特殊的一类题目。

在火车问题中特殊的地方在于路程,因为火车的长度不能忽略,此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

而行船问题要明确静水、逆水、顺水中船的三个速度间的关系。

流水问题关键是确定物体所运动的速度,过桥问题关键是确定物体所运动的路程,出现较复杂的此类问题时多利用线段图法帮助解题。

名师点题行程问题(二)知识概述一、火车过桥问题:火车通过大桥是指从车头上桥到车尾离桥。

即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和。

二、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题。

流水问题还有两个特殊的速度,即 顺水速度=船速+水速 逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度。

水速是指水流的速度。

顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度。

已知船的顺水速度和逆水速度,可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2火车长108米,每秒行12米,经过长48米的桥,要多少时间? 【解析】如图,从开始上桥到火车下桥一共走过的路程是一个车长+一个桥长,所以需要行驶的时间为(10848)121561213+÷=÷=(秒)。

开始结束甲、乙两港口间的水路长208千米,一艘船从甲港开往乙港,顺水8小时到达, 从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流的速度。

【解析】要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度, 而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水和逆水所行的 时间求出。

最后再利用和差的逆运算关系求船速和水速。

顺水速度:208÷8=26(千米/小时) 逆水速度:208÷13=16(千米/小时) 静水船速:(26十16)÷2- 21(千米/小时) 水流速度:(26 -16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流的速度每小时5千米。

三年级下册数学试题-竞赛专题:第九讲-行程问题-追及问题(含答案)人教版

三年级下册数学试题-竞赛专题:第九讲-行程问题-追及问题(含答案)人教版

知识概述1、追及问题的意义:两个物体同方向运动,在后面的速度较快的物体赶上前面速度较慢的物体称为追及。

2、追及问题的特点:①追及者的速度比被追及者的速度要快;②两人同时出发时,从出发到追上,两人所经历的时间相同;③从开始追到追上,两人所行路程差等于他们追及发生时相距的路程。

3、追及问题的基本量:速度差:两个运动物体在单位时间(秒、分、时)所走的路程差(快速-慢速);追及时间:速度快的运动物体从开始追到追上速度慢的物体所用的时间;追及路程(路程差):速度快的运动物体开始追时和速度慢的物体相距的距离。

4、追及问题的基本数量关系:追及路程(路程差)=速度差×追及时间行程问题(二)行程问题是反映物体匀速运动的应用题。

由于变化较多,而且又纷繁复杂,所以对于学习者而掌握涉及基本数量关系的追及行程问题,理解较复杂数量关系的追及行程问题;通过追及问题的学习掌握简单追及问题的解题思路和方法,培养学生分析解决问题的能力,提高思维能力;通过行程中追及问题的学习,培养学生学以致用的应用意识。

名师点题例1小红在小明前面100米,两人同时出发朝相同的方向行走。

(试着画一画)(1)小明要想追上小红,必须具备什么条件?(2)当小明追上小红时,他们两人所走的路程有什么关系?时间呢?【解析】(1)小明要追上小红,必须比小红的速度快,并且同向行驶在同一路线上。

(2)画线段图:发现追上小红时,他们各自走的路程,小明比小红多了100米,而时间必须在同一时间同时开始行程才可。

这样追上小红后,他们所走的时间相等。

例2甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【解析】追及时间=路程差÷速度差=150÷(75-60)=150÷15=10(分钟)例3甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒钟可以追上乙。

已知甲的速度是6米/秒,求乙的速度?【解析】乙的速度=甲的速度-速度差速度差=路程差÷追及时间=10÷5=2米/秒乙的速度=5-2=3米/秒【巩固拓展】1、姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?【解析】先求出路程差。

小学数学行程问题之相遇与追及问题(二)完整版例题讲解训练+详细答案

小学数学行程问题之相遇与追及问题(二)完整版例题讲解训练+详细答案

相遇与追及问题题型训练【例题1】甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?【巩固1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).【例题2】甲、乙两地相距240 千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)【巩固2】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?【例题3】解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?【巩固3】甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?【例题4】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?【巩固4】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?【例题5】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.【巩固5】小聪和小明从学校到相距2400米的电影院去看电影.小聪每分钟行60米,他出发后10分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?【例题6】一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?【例题7】小强每分钟走70米,小季每分钟走60米,两人同时从同一地点背向走了3分钟,小强掉头去追小季,追上小季时小强共走了多少米?【巩固7】六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?【例题8】王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?【巩固8】小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王迟到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?【例题9】甲、乙两车同时从A地向B地开出,甲每小时行38千米,乙每小时行34千米,开出1小时后,甲车因有紧急任务返回A地;到达A地后又立即向B地开出追乙车,当甲车追上乙车时,两车正好都到达B地,求A、B两地的路程.【巩固9】小李骑自行车每小时行13千米,小王骑自行车每小时行15千米.小李出发后2小时,小王在小李的出发地点前面6千米处出发,小李几小时可以追上小王?【例题10】甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?【巩固10】甲车每小时行40千米,乙车每小时行60千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学《行程问题》练习题二(含答案)
1、甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走_______米,乙每分钟走_______米.
解答:
速度差=300×2÷30=20(米/分)
速度和=2400×2÷30=160(米/分)
甲:(160+20)÷2=90(米/分)
乙:(160-20)÷2=70(米/分)
2、甲、乙两车同时从A 、B 两地相向而行,它们相遇时距A 、B 两地中心处8千米,已知甲车速度是乙车的1.2倍,求A 、B 两地的距离是_______千米.
解答:
乙速:8×2÷(1.2-1)=80(千米/小时)
甲速:80×1.2=96(千米/小时)
相遇时间:1)8096(28=-÷⨯(小时)
AB 间距离:1761)8096(=⨯+(千米)
3、一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_______米.
解答:
152÷8-63360÷3600=1.4(米/秒)
4、甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午_______点出发.
解答:7602160050216008=⎪⎭
⎫ ⎝⎛÷⨯-÷⨯-(点)
5、甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需48分钟,出发后30分钟两人相遇.问:乙骑一圈需______分钟. 解答:804813011=⎪⎭
⎫ ⎝⎛-÷(分)
6、甲、乙二人从相距36千米的两地相向而行.若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.甲每小时走______千米.乙每小时走_______千米.
解答:36×2÷(2+3+2.5)=9.6(千米/小时)
甲速:(36-9.6×2.5)÷2=6(千米/小时)
乙速:(36-9.6×3)÷2=3.6(千米/小时)
7、李华从学校出发,以每小时4千米的速度步行到20.4千米外的冬令营报到.半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米.又过了1.5小时,张明从学校骑车去营地报到,结果三人在途中某地相遇.问骑车人每小时行________千米. 解答:()205.12.1442144.202124=⎥⎦
⎤⎢⎣⎡-++÷⎪⎭⎫ ⎝⎛⨯-÷⎪⎭⎫ ⎝⎛+⨯(千米/小时)
8、甲、乙、丙三辆车同时从A 地出发到B 地去,甲、乙两车的速度分别为每小时60千米和48千米.有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇.求丙车的速度是_______千米/小时.
解答:
卡车速度:(60-48)×6÷(7-6)-48=24(千米/小时)
丙车速度:48-(48+24)÷8=39(千米/小时)
9、甲、乙二人分别从A 、B 两地同时出发,在A 、B 之间往返跑步.甲每秒跑3米,乙每秒跑7米,如果他们第四次迎面相遇点与第五次迎面相遇点之间相距150米,求A 、B 间相距多少米?
解答: 设甲、乙两人第i 次迎面相遇点为Ci (i =1,2,3,4,5).由甲、乙速度之比为3:7,令AB =1,
则7:3:11=B C AC ,10
31=AC .如下图:
同理可得: 210321⨯=C C ,故10
12=BC ; 5332=+BC B C ,故2
13=BC ; 5343=+AC A C ,故5
3;101544==C C AC ; 所以2505
3150=÷=AB (米). 答:A 、B 相距250米.
10、一只小船从A 地到B 地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A 至B 两地距离.
解答: 顺水速度:逆水速度=5:3
由于两者速度差是8千米.立即可得出
逆水速度123
358=-÷=(千米/小时). A 至B 距离是12+3=15(千米)
答:A 至B 两地距离是15千米.
A B C 1 C 3 C 5 C 2 C 4
作业:
1、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒.问:该列车与另一列长320米、时速64.8千米的列车错车而过需要______秒?
解答:
该车速:(250-210)÷ (25-23)=20(米/秒)
车长:25×20-250=250(米)
(64.8千米/小时=18米/秒)
错车时间:(250+320)÷(20+18)=15(秒)
2、两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长_______米.
解答:甲速:48千米/小时=3
113米/秒 乙速:60千米/小时=3
216米/秒 乙车长:3901331133
216=⨯⎪⎭⎫ ⎝⎛+(米)
3、一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是______秒?
解答:
11×280÷385=8(秒)
4、如图,A 、B 是圆直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点60米.求这个圆的周长.
解答:
第二次相遇时两人合起来所走的行程是第一次相遇时合起来所
走行程的3倍.则(80×3-60)×2=360(米)
5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇,问他们两人第四次相遇的地点离乙村______千米.(相遇指迎面相遇)
解答:(3.5×3-2)-[3.5×7-(3.5×3-2)×2]=1(千米)
B。

相关文档
最新文档