华东师大版七年级数学下册第九章 多边形练习包含答案

合集下载

华东师大版七年级数学下册第九章 多边形练习包含答案

华东师大版七年级数学下册第九章 多边形练习包含答案

第九章多边形一、单选题42 1 )和,则第三边的长可能是(.一个三角形的两边长分别是1A42 D BC .7...2, 则图中他所作的线段.王老汉要将一块如图所示的三角形土地平均分配给两个儿子?ABC AD 的应该是DB CA .任意一条线.中线.角平分线.高BCABC? 3 )边上的高是(中,.如图,在CD BH B A EC CD..AF..∥B∥BCE53°∥E25°AB∥DE4)=的度数为(,=,则.如图,,33°C30°D28°25°A B....??ACBABCV ABC o?D5110?BDC角平分线的交点,若是和.如图,在中,点,?(?A)那么.oooo A40BD C.706050...6).下列图形中具有稳定性是(DC A B .直角三角形.平行四边形.正方形.梯形7540°)边形.,则该多边形为(.若一个多边形的内角和为 D A BC.七.四.六.五) 840°( ,则该正多边形的边数是.若正多边形的一个外角是6 C7DA9 B8 ....9).一个四边形截去一个角后,形成新的多边形的内角和是(540°180°360°C540°D A180°B360°540°或.或.或..10).能够铺满地面的正多边形组合是(B A.正方形和正六边形.正三角形和正五边形D C.正五边形和正十边形.正方形和正五边形二、填空题25___________∥ABC11.,则第三边长为的两边长分别为和.等腰24cmSCE ADBCFED∥ABC12=的中点,且、、、分别为、中,已知点.如图,在,∥ABC=_________S则∥BEF.”13__________________. “2??1、?A、排列.如图所示,请将用>∥280°EF∥A60°∥1∥ABC14的度数翻折,叠合后的图形如图.若==.如图,把沿,则,_______.为三、解答题15.如图:______(1)∥ABCBC;中,边上的高是在(2)∥AECAE______;在中,边上的高是CE∥AEC3cmAE2cmCDAB(3)的长.,求,=若==的面积及16∥ABCDBC∥1∥2∥3∥4∥BAC69°∥DAC,求.如图所示,在=中,是,边上一点==,的度数.1171.已知,一个多边形的每一个外角都是它相邻的内角的)这个多边形的(.试求出:2 2)求这个多边形的内角和.(每一个外角的度数;H.∥ABCBDCE18BDCE相交于点,是的两条高,直线.如图,已知,∥DHE(1)∥BAC100°的度数;=若,求____,直接写出∥BAC=50°∥DHE的度数是中若(2)∥ABC答案1C .2B .3D .4B .5A .6D .7B .8A .9D .10D .115 .121 .?2>?1>?A13 .40? 14.15(1)AB(2)CD(3)3cm .32°16.17160°2720°).(()130°或50°)2(80°=∥DHE)1(.18.。

【完整版】华师大版七年级下册数学第9章 多边形含答案

【完整版】华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.32、如图,在△ABC 中,∠BAC = 90°,将△ABP 绕点 A 逆时针旋转后,能与△ACP'重合.如果 AP=3,那么PP’的长等于( )A.3B.C.D.不能确定3、在△ABC中,∠BCA=90∘,AC=6,BC=8,D是AB的中点,将△ACD沿直线CD折叠得到△ECD,连接BE,则线段BE的长等于()A.5B.C.D.4、一个三角形三个内角的度数之比为4:5:6,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5、如果一个正多边形的中心角等于,那么这个多边形的内角和为()A. B. C. D.6、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7、如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB 为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A8、如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P 1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为()A. B. C. D.9、如图,内接于,,过点A作平行于,交的延长线于点D,则的度数()A. B. C. D.10、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.311、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.312、三角形两边的长分别是 8 和 6,第三边的长是方程 x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )A.4B.5C.6D.813、如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别为,的中点,则长度的最大值为A.8B.6C.4D.514、如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB 为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A15、如图所示,在△ABC中,AB=AC,DE垂直平分腰AB,若AC=CD,AB∥CD,则∠A的度数为()A.36°B.72°C.120°D.44°二、填空题(共10题,共计30分)16、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.17、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是________.18、如图,在平行四边形ABCD中,BE⊥AC,AC=24,BE=5,AD=8,则两平行线AD与BC间的距离是________.19、如果三角形的两边长为2和6,第三边为偶数,那么三角形的周长为________.20、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.21、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.22、若一个多边形的内角和等于外角和,那么这个多边形的边数是________.23、一个n边形的内角和是900 ,那么n=________.24、在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为________.25、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是________.三、解答题(共5题,共计25分)26、如图所示,已知∠A=48°,∠D=25°,FD⊥BC于E,求∠B的度数.27、如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的值.28、正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在下面的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.29、一个等腰三角形的一个外角为150°,求这个等腰三角形的其中一个底角的度数.30、如图,在等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、B6、B7、B8、D9、C10、B11、B12、B13、D14、B15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

华师版七年级数学下册第九章多边形复习试题及答案全套.doc

华师版七年级数学下册第九章多边形复习试题及答案全套.doc

最新华师版七年级数学下册第九章多边形复习试题及答案全套名师点金:本章主要内容是三角形及相关概念,三角形的分类,三角形的内角和与外角,多边形的内角和与外角和,常考的题型有选择题、填空题、解答题,更多的是渗透到其他内容之中,是各类考试命题的重要内容;本章的考点可概括为:四个概念,两个关系,四种思想.概念1:与三角形有关概念1.如图,(1)图中共有儿个三角形?请分别表示出来.(2)以ZAEC为内角的三角形有哪些?(3)以ZADC为内角的三角形有哪些?(4)以BD为边的三角形有哪些?概念2:三角形中主要线段2・如图,在厶ABC 中,ZBAC = 80°, AD丄BC 于点D, AE 平分ZDAC, ZB = 60°, 求ZDAE 的度数.(第2题)概念3:三角形的内角和与外角3. 如图,在AABC 中,ZA = 60°, ZB = 80°,则外角ZACD 的度数是( )4. 如图,已知 BD 是ZABC 的平分线,DE 〃BC 交 AB 于 E, ZA=45°, ZBDC = 60。

, 求ZDBC 和ZC 的度数.概念4:多边形的内角和与外角和5. 若一个多边形的内角和小于其外角和,则这个多边形的边数是()A. 3 B ・ 4 C. 5 D. 66. 已知:如图,五边形ABCDE 中,AE 〃CD, ZA=121°, ZB=1O7°,求ZC 的度数.澳口考玄2两个关系关系1:三角形的三边关系7. 已知ZiABC 的三边长分别为a, b, c,且|b+c-2a| + (b+c-5)2 = 0,求b 的取值范关系2:多边形的内角和与边数之间的关系8. 有一个多边形,除去一个内角外,其余内角之和是2 570°,求这个内角的度数.[熱口考点3四种思想A. 110°B. 120°C. 130°(第6题)思想1:方程思想9.如图,在AABC中,ZA=|ZC=|ZABC, BD是角平分线,求ZA及ZBDC的度数.(第9题)思想2:分类讨论思想10.用一条长为36 c加的细绳围成一个等腰三角形,能围成一个有一边长为8亡加的等腰三角形吗?为什么?11.在AABC中,AB = AC, AC边上的中线BD把AABC的周长分为24和18两部分, 求AABC的三边长.思想3:转化思想12.如图,试说明:ZA+ZB+ZC+ZD+ZE=180°.思想4:从特殊到一般的思想13. 已知在AABC 屮,ZA=100°.⑴若ZABC, ZACB 的平分线相交于点0,如图①所示,试求ZB0C 的度数;(2) 若ZABC, ZACB 的三等分线(即将一个角平均分成三份的射线)分别相交于点0,0】, 如图②所示,试求ZB0C 的度数;(3) 以此类推,若ZABC, ZACB 的n 等分线自下而上依次相交于点0, Oi ,02,…,如 图③所示,试探究ZBOC 的大小与n 的关系,并判断当ZBOC=170°吋,是几等分线相交所成的角. 答案专训1. 解:(1)图中有 8 个三角形,分别是厶ABC, AABD, AAEO, AAEC, AADC, AAOC, AODC, AEBC.(2) 以ZAEC 为内角的三角形有△ AEO, AAEC.(3) 以ZADC 为内角的三角形有AADC, AODC.(4) 以BD 为边的三角形只有AABD.点拨:用字母表示一个三角形时,不要漏写符号“△” •2・解:因为AD 丄BC,所以ZBDA = 90°.因为ZB = 60°,所以ZBAD =180°-90°一60。

华师大版数学七年级下册 第9章 多边形 单元测试卷(含解析)

华师大版数学七年级下册 第9章 多边形 单元测试卷(含解析)

初中数学华师大版七年级下学期第9章测试卷一、单选题1.若一个三角形的两边长分别为4和8,则第三边长可以是( )A. 4B. 12C. 13D. 102.如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠CDE的度数为()A. 50°B. 51°C. 51.5°D. 52.5°3.如图,是等边三角形,是等腰直角三角形,,连接BD,则的度数为()A. B. C. D.4.如果在中,,则等于()A. B. C. D.5.下列长度的三根小木棒能构成三角形的是()A. 1cm,2 cm,3 cmB. 2 cm,4 cm,6 cmC. 3 cm,4 cm,8 cmD. 6 cm,8 cm,10 cm6.已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A. B. C. 或 D.7.用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()A. 正八边形和正三角形B. 正五边形和正八边形C. 正六边形和正三角形D. 正六边形和正五边形8.如图所示的图形中,能够用一个图形镶嵌整个平面的有()个A. 1B. 2C. 3D. 4二、填空题9.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是________.10.如果小明沿着坡度为的山坡向上走了130米,那么他的高度上升了________米.11.一个多边形的每个外角都等于72°,则这个多边形的边数为________.12.在数学活动课中我们学习过平面镶嵌.若给出下面一些边长均为1的正三角形、正大边形卡片。

要求必须同时使用这两种卡片,不重叠、无继隙,围绕某一个顶点拼在一起,成一个平面图案,则共拼出________种不同的图案:其中所拼的图案中最大的周长为________.三、综合题13.如图,在中,,,是边上的高,是边延长线上一点.求:(1)的度数;(2)的度数.14.在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°.(1)求这个多边形的边数.(2)求这个多边形的内角和及对角线的条数.答案解析部分一、单选题1.【答案】D解:由题意可得:4=8-4<第三边长<4+8=12,观察选项可得:10可以为第三边长.故答案为:D.2.【答案】D解:∵AC=CD,∠A=50°,∴∠CDA=∠A=50°.∵CD=BD,∴∠B=∠DCB=∠CDA=×50°=25°.∵BD=BE,∴∠BDE=∠BED==77.5°.∵∠CDB=180°-∠CDA=180°-50°=130°,∴∠CDE=∠CDB-∠BDE=130°-77.5°=52.5°.故答案为:D.3.【答案】B解:是等边三角形,是等腰直角三角形,,,,,,,.故答案为:B.4.【答案】C解:,,三角形的内角和为. 故答案为:C.5.【答案】D解:A、∵1+2=3,∴这三根小木棒不能构成三角形,故A不符合题意;B、∵2+4=6,∴这三根小木棒不能构成三角形,故B不符合题意;C、∵3+4=7<8,∴这三根小木棒不能构成三角形,故C不符合题意;D、∵6+8=14>10,∴这三根小木棒能构成三角形,故D符合题意;故答案为:D.6.【答案】C解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故答案为:C.7.【答案】C解:A、正八边形的每个内角为:180°-360°÷8=135°,正三角形的每个内角60°,135m+60n=360°,n=6- m,显然m取任何正整数时,n不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形的每个内角为:180°-360°÷8=135°,108m+135n=360°,m取任何正整数时,n不能得正整数,故不能铺满;C、正六边形的每个内角是120°,正三角形的每个内角是60°,∵ 2×120°+2×60°=360°,或120°+4×60°=360°,能铺满;D、正六边形的每个内角是120°,正五边形每个内角是180°-360°÷5=108°,120m+108n=360°,m取任何正整数时,n不能得正整数,故不能铺满.故答案为:C.8.【答案】C解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面;圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故答案为:C.二、填空题9.【答案】3<c<7解:由题意,得5﹣2<c<5+2,即3<c<7.故答案为:3<c<7.10.【答案】解:设高度上升了h,则水平前进了2.4h,由勾股定理得:,解得h=50.故答案为50.11.【答案】五解:由一个多边形的每个外角都等于72°,可得:多边形的边数为:,故答案为:五.12.【答案】3;10解:正六边形每个内角为120°,正三角形每个内角为60°。

七年级数学下册《第九章多边形》测试卷及答案(华东师大版)

七年级数学下册《第九章多边形》测试卷及答案(华东师大版)

七年级数学下册《第九章多边形》测试卷及答案(华东师大版) 一、选择题(共30分)1.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,3cm,6cmC.2cm,5cm,6cm D.5cm,6cm,7cm2.如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A.B.C.D.3.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线4.已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.锐角三角形或钝角三角形5.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°6.当多边形边数增加一条时,多边形的内、外角和的变化情况是()A.内角和、外角和都不变B.内角和、外角和各增加180°C.内角和不变,外角和增加180°D.内角和增加180°,外角和不变7.如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1B.2C.3D.48.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,若∠BFC=116°,则∠A=()A.51°B.52°C.53°D.58°10.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F为多少度()A.360°B.720°C.540°D.240°二、填空题(共24分)11.在△ABC中,∠C=100°,∠B=10°,则∠A=.12.八边形内角和度数为.13.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为.14.如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了米.15.如图,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠DCB,AE=3,BC=4,则DE =.16.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.17.如图,在△ABC中,AI和CI分别平分∠BAC和∠BCA,如果∠B=58°,那么∠AIC=.18.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题(共46分)19.用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.20.如图,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度数.21.在四边形ABCD中,∠A=140°,∠D=80°(1)如图1,若∠B=∠C,求∠C的度数;(2)如图2,若∠ABC的平分线BE交DC于点E,且BE∥AD,求∠C的度数.22.如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.23.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.24.(1)已知△ABC中,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于点O,试探索∠BOC 与∠A之间的数量关系,并说明理由.(2)已知BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,BO、CO相交于O,试探索∠BOC 与∠A之间的数量关系,并说明理由.(3)已知:BD为△ABC的角平分线,CO为△ABC的外角平分线,它与BO的延长线交于点O,试探索∠BOC与∠A的数量关系,并说明理由.参考答案一、选择题(共30分)1.解:A、2+3>4,能构成三角形,故此选项不符合题意;B、3+3=6,不能构成三角形,故此选项合题意;C、2+5>6,能构成三角形,故此选项不合题意;D、5+6>7,能构成三角形,故此选项不合题意;故选:B.2.解:因为三角形具有稳定性,只有B构成了三角形的结构.故选:B.3.解:A、锐角三角形的三条高、三条角平分线、三条中线一定在△ABC内部,故本选项正确;B、钝角三角形的三条高有两条在三角形的外部,故本选项错误;C、任意三角形的一条中线、二条角平分线都在三角形内部,但三条高不一定在三角形内部,故本选项错误;D、直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选:A.4.解:一个外角为50°,所以与它相邻的内角的度数为130°,所以三角形为钝角三角形.故选:B.5.解:∵∠DEC=100°,∠C=40°∴∠D=40°又∵AB∥CD∴∠B=∠D=40°故选:B.6.解:∵多边形内角和为(n﹣2)•180°,外角和为360°∴多边形边数增加一条,内角和增加180°,外角和不变.故选:D.7.解:AD不一定平分∠BAF,①错误;AF不一定平分∠DAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE∴AE平分∠BAC,④正确;故选:B.8.解:∵∠A=60°,∠B=40°∴∠ACD=∠A+∠B=100°∵CE平分∠ACD∴∠ECD=∠ACD=50°故选:C.9.解:由题意可知:∠FBC+∠FCB=180°﹣∠BFC=64°∵在△ABC中,∠B、∠C的平分线是BE,CD∴∠ABC+∠ACB=2(∠FBC+∠FCB)=128°∴∠A=180°﹣(∠ABC+∠ACB)=52°故选:B.10.解:如图,根据三角形的外角性质,∠1=∠A+∠C,∠2=∠B+∠D∵∠BOF=120°∴∠3=180°﹣120°=60°根据三角形内角和定理,∠E+∠1=180°﹣60°=120°∠F+∠2=180°﹣60°=120°所以,∠1+∠2+∠E+∠F=120°+120°=240°即∠A+∠B+∠C+∠D+∠E+∠F=240°.故选:D.二、填空题(共24分)11.解:∵在△ABC中,∠C=100°,∠B=10°∴∠A=180°﹣∠B﹣∠C=180°﹣10°﹣100°=70°故答案为:70°.12.解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.13.解:如图所示,将BE与CD交点记为点F∵AB∥CD,∠B=75°∴∠EFC=∠B=75°又∵∠EFC=∠D+∠E,且∠E=27°∴∠D=∠EFC﹣∠E=75°﹣27°=48°故答案为:48°.14.解:依题意可知,小陈所走路径为正多边形,设这个正多边形的边数为n 则20n=360,解得n=18∴他第一次回到出发点O时一共走了:5×18=90米故答案为:90.15.解:∵CD⊥AB∴∠ADC=90°∵∠ACB=90°∴∠A+∠ACD=∠A+∠B=90°∴∠ACD=∠B∵CE平分∠DCB∴∠DCE=∠BCE∴∠ACD+∠DCE=∠B+∠BCE即∠ACE=∠AEC∴AC=AE∵AE=3∴AC=3∵S△ABC=∴CD=∵AE=3∴DE=AE﹣AD=3﹣=故答案为:.16.解:∵四边形的内角和为(4﹣2)×180°=360°∴∠B+∠C+∠D=360°﹣60°=300°∵五边形的内角和为(5﹣2)×180°=540°∴∠1+∠2=540°﹣300°=240°故答案为:240.17.解:∵AI和CI分别平分∠BAC和∠BCA,∠B=58°∴∠IAC+∠ICA=(180°﹣58°)=×122°=61°∴∠AIC=180°﹣61°=119°.故答案为:119°.18.解:如图所示,∵∠1+∠5=∠8,∠4+∠6=∠7又∵∠2+∠3+∠7+∠8=360°∴∠1+∠2+∠3+∠4+∠5+∠6=360°三、解答题(共46分)19.解:(1)设底边长为xcm,则腰长为2xcm.依题意,得2x+2x+x=18解得x=.∴2x=.∴三角形三边的长为cm、cm、cm.(2)若腰长为4cm,则底边长为18﹣4﹣4=10cm.而4+4<10,所以不能围成腰长为4cm的等腰三角形.若底边长为4cm,则腰长为(18﹣4)=7cm.此时能围成等腰三角形,三边长分别为4cm、7cm、7cm.20.解:因为∠C=90°所以∠ABC+∠BAC=90°所以(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC所以∠BAP+∠ABP=∠BAC+∠ABC=(∠BAC+∠ABC)=45°.所以∠APB=180°﹣45°=135°.21.解:(1)因为∠A+∠B+∠C+∠D=360,∠B=∠C所以∠B=∠C===70°.(2)∵BE∥AD∴∠BEC=∠D=80°∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC∴∠EBC=∠ABE=40°∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.22.(1)证明:延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角∴∠BPC>∠1,∠1>∠A∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°∵PB平分∠ABC,PC平分∠ACB∴∠PBC=∠ABC,∠PCB=∠ACB在△ABC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣×140°=110°.23.(1)解:∵∠C=50°,∠B=30°∴∠BAC=180°﹣50°﹣30°=100°.∵AE平分∠BAC∴∠CAE=50°.在△ACE中∠AEC=80°在Rt△ADE中∠EFD=90°﹣80°=10°.(2)∠EFD=(∠C﹣∠B)证明:∵AE平分∠BAC∴∠BAE==90°﹣(∠C+∠B)∵∠AEC为△ABE的外角∴∠AEC=∠B+90°﹣(∠C+∠B)=90°+(∠B﹣∠C)∵FD⊥BC∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B)(3)∠EFD=(∠C﹣∠B).如图∵AE平分∠BAC∴∠BAE=.∵∠DEF为△ABE的外角∴∠DEF=∠B+=90°+(∠B﹣∠C)∵FD⊥BC∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B).24.解:(1)∠BOC=90°+∠A.理由如下:延长BO交AC于点D∵BO、CO分别是∠ABC、∠ACB的平分线∴∠A+2∠1+2∠2=180°∠BDC=∠A+∠1∠BOC=∠BDC+∠2∴∠BOC=∠A+∠1+∠2=90°+∠A.(2)∠BOC=90°﹣∠A.理由如下:∵BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线∴∠DBC=2∠1=∠ACB+∠A∠ECB=2∠2=∠ABC+∠A∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°又∵∠1+∠2+∠BOC=180°∴2∠BOC=180°﹣∠A,即∠BOC=90°﹣∠A.(3)∠BOC=∠A.理由如下:∵BD为△ABC的角平分线,CO为△ABC的外角平分线∴∠ACE=2∠2=∠A+2∠1∠2=∠1+∠BOC∴∠BOC=∠A.。

2022学年华东师大版七年级数学下册第九章《多边形》测试卷附答案解析

2022学年华东师大版七年级数学下册第九章《多边形》测试卷附答案解析

2022-2023学年七年级数学下册第九章《多边形》测试卷【全卷满分120分考试时间120分钟】一、选择题(本大题共12个小题,每小题4分,共48分.)1、只用同一种正多边形铺满地面,不可以选择()A 、正六边形B 、正五边形C 、正四边形D 、正三角形2、如图,AD ,AE ,AF 分别是ABC ∆的中线,角平分线,高,下列各式中错误的是()A 、CDBC 2=B 、BAC BAE ∠=∠21C 、︒=∠90AFB D 、CEAE =DF第2题图BE ACD F第3题图BEA CE D 第4题图BD AC3、如图,D 、E 、F 分别为BC 、AD 、BE 的中点,若BFD ∆的面积为6,则ABC ∆的面积等于()A 、36B 、18C 、48D 、244、如图,在ABC ∆中,AD 是高,AE 是中线,若3=AD ,12=∆ABC S ,则BE 的长为()A 、1B 、23C 、2D 、45、把一块直尺与一块三角板如图放置,若︒=∠1342,则1∠的度数为()A 、34°B 、44°C 、54°D 、64°21第5题图DB EAC第7题图ADBEC 第8题图6、有三根小棒,它们长度分别如下,以下列各组小棒的长度为边,能构成三角形的是()A 、10cm ,10cm ,8cmB 、5cm ,6cm ,14cmC 、4cm ,8cm ,12cmD 、3cm ,9cm ,5cm7、如图,DE AB //,︒=∠80ABC ,︒=∠140CDE ,则BCD ∠的度数为()A 、30°B 、40°C 、60°D 、80°8、如图,在ABC ∆中,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,︒=∠15D ,则A ∠的度数为()A 、30°B 、45°C 、20°D 、22.5°9、如图,在ABC ∆中,α=∠+∠C B ,按图进行翻折,使BC G C D B ////'',FG E B //',则FE C '∠的度数是()A 、2αB 、290α-︒C 、︒-90αD 、︒-1802αC ′B ′GF A D BEC第9题图ABOC第10题图FADBEC第12题图10、如图,︒=∠70A ,︒=∠40B ,︒=∠20C ,则=∠BOC ()A 、130°B 、120°C 、110°D 、100°11、从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A 、36°B 、40°C 、45°D 、60°12、如图,ACB ABC ∠=∠,BD 、CD 、AD 分别平分ABC ∆的内角ABC ∠,外角ACF ∠,外角EAC ∠,以下结论:①BC AD //;②ADB ACB ∠=∠;③BAC BDC ∠=∠21;④︒=∠+∠90ABD ADC .其中正确的结论有()A 、1个B 、2个C 、3个D 、4个二、填空题(本大题共4个小题,每小题4分,共16分)13、已知三角形的三边长分别为1,1-a ,3,则化简|5||3|-+-a a 的结果为;14、如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是BD A 1∠的角平分线,2CA 是CD A 1∠的角平分线,3BA 是BD A 2∠的角平分线,3CA 是CD A 2∠的角平分线,若α=∠1A ,则2021A ∠为;A 3D第14题图BAC A 1A 2EF 第16题图ACB DA ′21第15题图B A CED 15、如图,将ABC ∆纸片沿DE 折叠,使点A 落在点A '处,且A B '平分ABC ∠,A C '平分ACB ∠,若︒='∠115C A B ,则21∠+∠的度数为;16、如图,F E D C B A ∠+∠+∠+∠+∠+∠的度数是.三、解答题(本大题6个小题,共56分。

华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、下列四个命题:①有两边及其中一边的对角对应相等的两个三角形全等;②三角形的一条中线把三角形分成面积相等的两部分:③若,则>0:④点P(1,2)关于原点的对称点坐标为P(-1,-2);其中真命题的是( )A.①、②B.②、④C.③、④D.①、③2、下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n-3)条对角线,把n 边形分成(n-2)个三角形,因此,n边形的内角和是(n-2)·180;④六边形的对角线有7条,正确的个数有()A.4个B.3个C.2个D.1个3、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π4、如图,对折矩形纸片,使与重合得到折痕,将纸片展平,再一次折叠,使点落到上的点处,并使折痕经过点,已知,则线段的长度为()A.1B.C.D.25、如图,中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA =3,则外接圆的面积为()A. B. C. D.6、将一副直角三角扳如图放置,使含30°角的三角板的直角边和含45°角的三角扳的一条直角边重合,则∠1的度数为()A.55°B.50°C.65°D.75°7、如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为()A.12B.20C.24D.328、若a、b、c为△ABC的三条边,且满足条件:点(a+c,a)与点(2b,﹣b)关于x轴对称,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9、已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A.20ºB.120ºC.20º或120ºD.36º10、如图,⊙O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A、B重合),下列不符合条件的OP的值是()A.4B.3C.3.5D.2.511、在中,若都是锐角,则是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能12、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.313、如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°14、如图,在矩形ABCD中,AB=4,AD=8,点E、点F分别在边AD,BC上,且EF⊥AD,点B关于EF的对称点为G点,连接EG,若EG与以CD为直径的⊙O 恰好相切于点M,则AE的长度为()A.3B.C.6+D.6﹣15、如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3)点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. ≤OP≤B.2≤OP≤4C. ≤OP≤D.3≤OP≤4二、填空题(共10题,共计30分)16、如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是________.17、小颖已有两根长度分别为、的木棒,再给一根多长的木棒,能方便她把三根木棒首尾相接摆成一个三角形?请你提供一个合适的木棒长度,你提供的长度是________ .18、如图,边长为2的正三角形ABO的边OB在x轴上,将绕原点O逆时针旋转得到,则点的坐标为________.19、已知□ABCD中,AB=4,与的角平分线交AD边于点E,F,且EF=3,则边AD的长为________.20、在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F分别是边AB、CD的中点,则EF=________.21、如右图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为________。

华师大版七年级下册数学第9章多边形 测试题及答案

华师大版七年级下册数学第9章多边形 测试题及答案
∵AD是△ABC的中线,BE是△ABD的中线,∴S△ABE=14S△ABC=14×20=5.
故选A.
考点:1.三角形的面积;2.三角形的角平分线、中线和高.
10.B
【解析】
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和把五个角转化为一个三角形的内角的和,再根据三角形内角和定理解答.
【详解】
16.若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为____.
17.若 ,则以a、b为边长的等腰三角形的周长为.
18.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为________.
【详解】
∵S△ABC=12,
EC=2BE,点D是AC的中点,
∴S△ABE= ×12=4,
S△ABD= ×12=6,
∴S△ABD-S△ABE,
=S△ADF-S△BEF,
=6-4,
=2.
故选B.
8.A
【解析】
试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.
∵AB=AC,∠A=36°
考点:勾股定理
15.15 cm
【解析】
【分析】
利用等腰三角形的性质求得BD= BC=8cm.然后在直角△ABD中,利用勾股定理来求AD的长度.
【详解】
如图所示:
∵△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于点D,
∴BD= BC=8cm,
∴在直角△ABD中,由勾股定理,得
AD= cm.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章多边形
一、单选题
42 1 )和,则第三边的长可能是(.一个三角形的两边长分别是1A42 D BC .7...2, 则图中他所作的线段.王老汉要将一块如图所示的三角形土地平均分配给两个儿子?ABC AD 的应该是
DB CA .任意一条线.中线.角平分线.高BCABC? 3 )边上的高是(中,.如图,在
CD BH B A EC CD..AF..∥B∥BCE53°∥E25°AB∥DE4)=的度数为(,=,则.如图,,
33°C30°D28°25°A B....??ACBABCV ABC o?D5110?BDC角平分线的交点,若是
和.如图,在中,点,?(?A)那
么.
oooo A40BD C.706050...6).下列图形中具有稳定性是(DC A B .直角三角形.平行四边形.正方形.梯形7540°)边形.,则该多边形为(.若一个多边形的内角和为 D A BC.七.四.六.五) 840°( ,则该正多边形的边数是.若正多边形的一个外角是6 C7DA9 B8 ....9).一个四边形截去一个角后,形成新的多边形的内角和是(540°180°360°C540°D A180°B360°540°或.或.或..10).能够铺满地面的正多边形组合是(B A.正方形和正六边形.正三角形和正五边形D C.正五边形和正十边形.正方形和正五边形
二、填空题25___________∥ABC11.,则第三边长为的两边长分别为和.等腰24cmSCE ADBCFED∥ABC12=的中点,且、、、分别为、中,已知点.如图,在,∥ABC
=_________S则∥
BEF.
”13__________________. “2??1、?A、排列.如图所示,请将用>
∥280°EF∥A60°∥1∥ABC14的度数翻折,叠合后的图形如图.若==.如图,把沿,则,_______.为
三、解答题15.如图:______(1)∥ABCBC;中,边上的高是在(2)∥AECAE______;在中,边上的高是CE∥AEC3cmAE2cmCDAB(3)的长.,求,=若==的面积及
16∥ABCDBC∥1∥2∥3∥4∥BAC69°∥DAC,求.如图所示,在=中,是,边上一点==,的度
数.
1171.已知,一个多边形的每一个外角都是它相邻的内角的)这个多边形的(.试求出:2 2)求这个多边形的内角和.(每一个外角的度数;H.∥ABCBDCE18BDCE相交于点,是的两条高,直线.如图,已知,
∥DHE(1)∥BAC100°的度数;=若,求____,直接写出∥BAC=50°∥DHE的度数是中若(2)∥ABC
答案
1C .2B .3D .4B .5A .6D .7B .8A .9D .10D .115 .121 .?2>?1>?A13 .40? 14.15(1)AB(2)CD(3)3cm .32°16.17160°2720°).(()130°或50°)2(80°=∥DHE)1(.18.。

相关文档
最新文档