解高考数学选择题的常用方法和解答技巧

合集下载

高考数学大题小题答题套路

高考数学大题小题答题套路

高考数学大题小题答题套路1500字高考数学大题小题答题套路:在高考数学考试中,大题小题占据了很大的比重。

为了在有限的时间内高效地完成这些题目,我们需要一些答题套路。

下面给出一些常用的答题套路,希望对你备考有所帮助。

一、解决问题的基本步骤无论是解决大题还是小题,解决问题的基本步骤是一样的:分析问题、解决问题。

1. 分析问题:仔细阅读题目,抓住关键信息,理清问题的逻辑关系,确定解题思路。

2. 解决问题:有了解题思路后,可以进行具体的计算或推理,得出结果并给出明确的解答。

二、选择题的解题技巧1. 理清题意:仔细阅读题目,理解题意是解题的第一步。

特别是一些复杂的题目,一定要抓住问题的关键信息。

2. 排除干扰项:在选择题中,往往有一些干扰项,可以通过排除法找到正确的答案。

把每个选项都带入题目中计算,排除那些肯定不符合条件的选项,就可以找到正确答案。

3. 注意选项的表达方式:有时候,选项可能用其他的方式来表达,需要注意一些等价变形或近义词的替代。

三、填空题的解题技巧1. 尝试不同的方法:填空题有时候可以用多种方法解答,尝试不同的方法可以提高解题的灵活性。

2. 合理估算:填空题往往要进行一些复杂的计算,合理估算可以减少计算量,提高解题速度。

可以先进行一些粗略的估算,然后再进行具体的计算。

3. 利用已知条件:在填空题中,利用已知条件进行推导是非常重要的。

根据已知条件和题目要求,进行推理和计算。

四、解答题的解题技巧1. 分析问题:仔细阅读题目,并理清题目的逻辑关系,确定解题思路和步骤。

2. 给出合理的假设:解答题有时候需要做一些合理的假设,可以简化问题,提高解题的效率。

3. 使用合适的公式或定理:解答题一般需要使用一些公式或定理,熟练掌握并合理运用可以快速解决问题。

4. 画图辅助解答:对于一些几何题,可以通过画图来辅助解答。

画出具体的图形,可以更直观地理解问题,找到解决方法。

总结:以上是解决高考数学大题小题的一些常用答题套路。

2024年高考数学的答题技巧与方法.doc

2024年高考数学的答题技巧与方法.doc

2024年高考数学的答题技巧与方法高考数学答题技巧方法1、高考数学提前进入数学情境高考数学考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿高考数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考,保证数学满分答题状态。

2、高考数学集中注意,消除焦虑怯场集中注意力是高考数学满分的基础,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松好的情绪可以帮助考试在高考数学时取得满分。

3、高考数学要沉着应战良好的开端是成功的一半,从高考考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手答题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高,冲击数学满分。

高考数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。

在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。

2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。

3、顺推破解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。

4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。

高考数学(理)二轮复习:巧解客观题的10大妙招(一)选择题的解法

高考数学(理)二轮复习:巧解客观题的10大妙招(一)选择题的解法

值 49=7,故选 B.
题型概述
解题方法
归纳总结
方法二 特例法
从题干(或选项)出发,通过选取特殊情况代入,将问题 特殊化或构造满足题设条件的特殊函数或图形位置进行判 断.特殊化法是“小题小做”的重要策略,要注意在怎样的 情况下才可使用,特殊情况可能是:特殊值、特殊点、特 殊位置、特殊数列等.适用于题目中含有字母或具有一般性 结论的选择题.
题型概述
解题方法
归纳总结
探究提高 图形化策略是依靠图形的直观性进行研究的, 用这种策略解题比直接计算求解更能简捷地得到结果.运用 图解法解题一定要对有关函数图象、方程曲线、几何图形 较熟悉,否则,错误的图象反而会导致错误的选择.
题型概述
解题方法
归纳总结
【训练 4】 过点( 2,0)引直线 l 与曲线 y= 1-x2相交于 A、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 l 的 斜率等于( )
则 tan θ2 等于(
)
m-3 A.9-m
m-3 B.|9-m|
C.-15
D.5
解析 由于受条件 sin2θ+cos2θ=1 的制约,m 一定为确定
的值进而推知 tan θ2 也是一确定的值,又π2 <θ<π,所以π4
θπ
< 2 < 2 ,故 tan
2θ>1.所以 D 正确.
答案 D
题型概述
解题方法
x=-1,排除 B.
(2)f(x)=14x2+sinπ2 +x=14x2+cos
x,故
f′(x)=14x2+cos
x′
=12x-sin x,记 g(x)=f′(x),其定义域为 R,且 g(-x)=12(-x)-
sin(-x)=-12x-sin

高考数学选择题答题技巧排除法的运用

高考数学选择题答题技巧排除法的运用

高考数学选择题答题技巧排除法的运用高考数学选择题答题技巧——排除法的运用选择题作为高考数学考试中的一道重要题型,占据了相当大的比重。

在解题过程中,正确运用答题技巧可以帮助考生快速准确地选择出正确答案。

本文将重点介绍一种常用的答题技巧——排除法,并探讨如何运用排除法来解答高考数学选择题。

一、什么是排除法排除法是一种答题技巧,通过排除选项中明显不正确的答案,从而缩小正确答案的范围,提高选对的概率。

在解答高考数学选择题时,利用排除法可以减少计算量,节省时间,并且降低出错的可能性。

二、运用排除法的步骤1. 仔细阅读题目在解答选择题之前,首先要认真阅读题目。

理解题目的意思对于正确运用排除法至关重要。

仔细阅读题目,了解题目要求,明确所求答案的特点与属性。

2. 逐个选项排除在阅读完题目后,我们可以逐个选项地进行排除。

针对每一个选项,将其与题目要求进行比较,筛选出与题意不符或显然错误的选项。

此时,我们可以利用一些常见的排除规律,如:- 含有绝对化词语的选项,往往不是正确的答案。

如“始终”、“永远”等。

- 与已知条件相冲突的选项,应被排除。

如果题目中已经给出了一些条件,那么与这些条件相矛盾的选项一定是错误的。

- 选项中的逻辑错误或语法错误,应当予以排除。

- 做出合理假设,根据假设来排除选项。

有时候题目的条件不充分,我们可以尝试做一些符合条件但不切实际的假设,并对选项进行排除。

3. 留下合理的答案经过逐个排除选项的步骤后,我们会留下最有可能是正确答案的选项。

此时,仍然需要仔细审题,并进行进一步的思考。

对比剩下的选项,综合考虑题目的条件和要求,选择最合乎题目要求的答案。

三、注意事项1. 注意审题在使用排除法时,考生要特别注意审题。

只有对题目要求的准确理解,才能准确地排除选项。

一旦理解错误,很容易排除掉正确答案,导致答案错误。

2. 灵活运用排除法在实际解题过程中,不同的题目可能会需要不同的排除法技巧,考生要根据题目特点灵活运用排除法。

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。

它需要灵活运用各种技巧和解题思路来处理各类题目。

本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。

一、选择题解题思路选择题在高考数学试卷中占有重要的比重。

解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。

阅读题干和选项时要注意细节,避免因为粗心而丢分。

2. 其次,列出已知条件,找到相关的数学概念和定理。

有时候,选择题通过对已知条件的解析可以得到答案。

3. 利用排除法。

根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。

4. 适时使用近似计算法。

高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。

二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。

以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。

2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。

处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。

3. 分数计算:分数计算也是高考数学试卷中的重要考点。

在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。

4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。

例如,通过图形的面积计算来解决几何题。

三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。

以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。

在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。

2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。

高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧【命题规律】高考的单选题和多选题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:单选题和多选题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:单选题和多选题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:直接法核心考点二:特珠法核心考点三:检验法核心考点四:排除法核心考点五:构造法核心考点六:估算法核心考点七:坐标法核心考点八:图解法【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .273.(2022·全国·统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C D 8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p>>D .m p n>>例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a<B .log 1a b >C .ln ln a b b a<D .ln ln a a b b>例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0x e mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <例15.已知log a π=12log sin 35b =︒,ee c ππ=,则()A .c b a >>B .c a b >>C .b c a >>D .a b c>>核心考点六:估算法【典型例题】例16.(2020春·江苏淮安·高三江苏省涟水中学校考阶段练习)古希腊时期,人们认为最美0.618≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是()(结果保留一位小数)A .7.8cmB .7.9cmC .8.0cmD .8.1cm例17.设函数()f x 是定义在R 上的奇函数,在区间[1,0]-上是增函数,且(2)()f x f x +=-,则有()A .B .C .D .核心考点七:坐标法【典型例题】例18.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-例19.如图,在直角梯形ABCD 中,//,,2,AB CD AD DC AD DC AB E ⊥==为AD的中点,若(,)CA CE DB R λμλμ=+∈,则λμ+的值为()A .65B .85C .2D .83例20.(多选题)如图,在边长为2的正方形ABCD 中,P 为以A 为圆心、AB 为半径的圆弧(BD包含B ,)D 上的任意一点,且AP x AB y AD =+,则下列结论正确的是()A .x y +的最大值为B .x y +的最小值为2C .AP AD ⋅的最大值为4D .PB PD ⋅的最小值为4-核心考点八:图解法【典型例题】例21.已知函数31,(0),()2ln ,(0),x x f x x x --⎧=⎨>⎩若方程()f x ax =有三个不同的解1x ,2x ,3x ,则a 的取值范围为()A .2(0,eB .2(0,eC .2(,1]eD .(0,1)例22.已知A ,B 是圆O :221x y +=上的两个动点,||AB =,32OC OA OB =- ,M 为线段AB 的中点,则OC OM ⋅的值为()A .14B .12C .34D .32例23.过原点O 的直线交双曲线E :22221(0,0)x y a b a b-=>>于A ,C 两点,A 在第一象限,1F 、2F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若2||||OA OF =,222||3||CF BF =,则双曲线E 的离心率为.()A .2145B .2134C.5D .535【新题速递】一、单选题1.已知函数()f x ,()g x 都是定义域为R 的函数,函数(1)g x -为奇函数,(1)()0f x g x +-=,(3)(2)0f x g x ----=,则(2)f =()A .1-B .0C .1D .22.已知a b <,0a ≠,0b ≠,c R ∈,则下列不等关系正确的是()A .22a b<B .11a b>C .a c b c -<-D .ac bc<3.某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A .中位数是3,众数是2B .平均数是3,中位数是2C .方差是2.4,平均数是2D .平均数是3,众数是24.在平面内,,A B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线5.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅ 的最大值是()A .2B .3C .4D .5二、多选题7.已知0a >,0b >,且41a b +=,则()A .162a b+B .1122log log 4a b +C .4ln 1ab e --- D .24sin 1a b -+8.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且恒成立,则A.B .C.D.9.已知1a >,1b >,且333a b e e a b ++=+,则下列结论正确的是()A .322ab +>B .2218a b+<C .ln()1a b ->D .ln()ln 4a b +<10.已知定义在R 上的单调递增函数()f x 满足:任意x ∈R 有(1)(1)2f x f x -++=,(2)(2)4f x f x ++-=,则()A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数c ,使得任意x ∈R ,|()|1f x cx - 11.已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,y ∈R ,恒有()()2()()f x y f x y f x f y ++-=⋅,则下列说法正确的有()A .(0)1f =B .()f x '必为奇函数C .()(0)0f x f +D .若1(1)2f =,则202311()2n f n ==∑12.函数2||()x f x x a=+的大致图象可能是()A.B.C.D .13.已知函数()tan(cos )cos(sin )f x x x =+,则()A .()f x 是定义域为R 的偶函数B .()f x 的最大值为2C .()f x 的最小正周期为πD .()f x 在[0,2π上单调递减14.若10a b c >>>>,则有()A .log log c c a b >B .cca b >C .()()a b c b a c +>+D .a b b c<15.十六世纪中叶,英国数学家雷科德在《砺志石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c R ∈,则下列命题正确的是()A .若0a b >>,则22ac bc>B .若0a b <<,则11a b b a+<+C .若0a b c <<<,则b b ca a c+<+D .若0,0a b >>,则22b a a ba b++ 16.下面有四个说法正确的有()A .1a <且12b a b <⇒+<且1ab <B .1a <且110b ab a b <⇒--+<C .D .111x x>⇒参考答案【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I 则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.3.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【解析】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ⊥,212EFM S EM FM =⋅=,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e 2=选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e ==故选:AC.8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天【答案】C【解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,所以()0.38e tI t =.设在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间为1t ,则有()()14I t t I t +=,即()10.380.38t e 4e t t +=,整理有10.38t e 4=,则10.38ln 4t =,解得1ln 42ln 220.693.60.380.380.38t ⨯==≈≈.故选:C .例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦【答案】A【解析】由题知,()ππsin sin sin326f x x x x x x ωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,因为[]0,πx ∈,所以πππ,π666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在[]0,π上有且仅有3个极值点,所以5ππ7ππ262ω<+≤,解得71033ω<≤,所以ω的取值范围是710,33⎛⎤ ⎥⎝⎦,故选:A例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112【答案】ABC【解析】因为函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,所以当(2,4]x ∈时,()2(2)[2(2)]2(2)(4)f x x x x x =---=--,当6(4],x ∈时,()4[(2)2][4(2)]4(4)(6)f x x x x x =----=--,函数部分图象如图所示,由4(4)(6)3x x --=,得2440990x x -+=,解得92x =或112x =,因为对任意(,]x m ∈-∞,都有()3f x ≤,所以由图可知92m ≤,故选:ABC核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p >>D .m p n>>【答案】C【解析】因为e b a >>>所以取52,2a b ==,则()5225,6bm a ====,2525 6.2524an b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a <B .log 1a b >C .ln ln a b b a <D .ln ln a a b b>【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +<则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数,又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确;选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044【答案】ACD【解析】对于A.()()11121211f x a a x a a ax x x+-=+++-=++-由解析式可知1y ax x=+是奇函数,故A 正确;对于B.特殊值法33152322212f a a a ⎛⎫=++=+ ⎪⎝⎭-,()1223121f a a a =++=+-即3(2)122a f f ⎛⎫-=- ⎪⎝⎭,若02a <<,则()f x 在()1,+∞上不是单调递增,故B 错误.对于C.令()101f x ax a x =++=-,分离参数后211a x=-,()(]21,0)(0,1x ∞-∈-⋃故()[)21,01,1x ∞∞∈-⋃+-,C 正确;对于D.由A 可知,当12a =时,()f x 关于()1,1中心对称,且()g x 关于()1,1中心对称,所以这2022个交点关于()1,1对称,故()()122022122022202220224044x x x y y y +++++++=+= ,D 正确.故选:ACD核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+【答案】BC【解析】A :因为10()32323x f x -=+≥+=,所以()f x 没有零点,即()f x 没有“折点”;B :当0x ≥时1()lg(3)2f x x =+-单调递增,又1(0)lg 302f =-<,1(7)lg1002f =->,所以()f x 在()0,+∞上有零点.又()()1lg 32f x x =+-是偶函数,所以()f x 在(),0-∞上有零点,所以()f x 存在“折点”.C :令3()03x f x x =-=,得0x =或()f x 在()0,+∞上有零点,在(),0-∞上有零点,即()f x 存在“折点”.D :令21()04x f x x +==+,解得=1x -,所以()f x 只有一个零点,即()f x 没有“折点”.故选:BC例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减【答案】ABD【解析】因为()02cos 10,02f πϕϕ=-=<<,得3πϕ=,A 正确.设3u x πω=+,则2cos 1y u =-如图所示,由[]0,1x ∈,得,333x πππωω⎡⎤+∈+⎢⎥⎣⎦,所以233ππωπ≤+<,得5833ππω≤<,B 正确.如图所示,当5323ππωπ≤+<时,存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称.C 错误.因为10,4x ⎡⎤∈⎢⎥⎣⎦,所以1,3343x πππωω⎡⎤+∈+⎢⎥⎣⎦,又5833ππω≤<,所以31443ππωπ≤+<,所以()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减,D 正确.故选:ABD例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 【答案】BCD【解析】对于A ,令()sin g x x x =-,x ∈R ,()cos 10g x x '=-≤,当且仅当cos 1x =时取“=”,则()g x 在R 上单调递减,而(0)0g =,即()g x 在R 上只有一个零点,函数()f x 只有一个不动点,A 不正确;对于B ,因二次函数2(1)y ax b x c =+-+至多有两个零点,则函数()f x 至多有两个不动点,B 正确;对于C ,依题意,方程2()0(1)0f x x ax b x c -=⇔+-+=无实数根,即2(1)40b ac ∆=--<,当0a >时,二次函数()y f x x =-的图象开口向上,则()0f x x ->恒成立,即R x ∀∈,恒有()f x x >,而()R f x ∈,因此有[()]()f f x f x x >>恒成立,即方程(())f f x x =无实根,当a<0时,二次函数()y f x x =-的图象开口向下,则()0f x x -<恒成立,即R x ∀∈,恒有()f x x <,而()R f x ∈,因此有[()]()f f x f x x <<恒成立,即方程(())f f x x =无实根,所以函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根,C 正确;对于D ,点00(,)x y 在曲线sin y x =上,则0[1,1]y ∈-,又00(())f f y y =,即有001y ≤≤,当001y ≤≤时,00()f y y =满足00(())f f y y =,显然函数()f x =函数,若00()f y y >,则000(())()f f y f y y >>与00(())f f y y =矛盾,若00()f y y <,则000(())()f f y f y y <<与00(())f f y y =矛盾,因此,当001y ≤≤时,00()f y y =,即当01x ≤≤时,()f x x =,对[0,1]x ∈,2e e x x x a x a x x +-=⇔=-+,令2()e x h x x x =-+,[0,1]x ∈,()e 21220x h x x x '=-+≥-≥,而两个“=”不同时取得,即当[0,1]x ∈时,()0h x '>,于是得()h x 在[0,1]上单调递增,有(0)()(1)h h x h ≤≤,即1()e h x ≤≤,则1e a ≤≤,D 正确.故选:BCD核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .【答案】A【解析】由题意,函数()f x 图象可得函数()f x 为奇函数,对于A ,111()2(1)2(1)f x x x x -=++-+---,符合题意,对于B ,111()2(1)2(1)f x x x x -=-+-+---,符合题意,对于C ,111()2(1)2(1)f x x x x -=+--+---,不符合题意,对于D ,111()2(1)2(1)f x x x x -=--+-+---,不符合题意,故排除C ,D 选项,又当0.1x =时,代入B 中函数解析式,即111(0.1)2(0.11)0.12(0.11)f =-++-55100119=--<,不符合题意;故排除B 选项,故选.A 例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .【答案】B【解析】依题意可知函数()f x 的对称轴方程为2x =,在(2,)+∞上单调递增,且(4)0f =,设()(2)h x f x =+,则函数()h x 的对称轴方程为0x =,在(0,)+∞上单调递增,且(2)0h =,()h x ∴是偶函数,且当02x <<时,()0.h x <因此函数4(2)()()y f x g x h x x =+=⋅也是偶函数,其图象关于y 轴对称,故可以排除选项A 和D ;当02x <<时,4()0y h x x =⋅<,由此排除选项.C 例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=【答案】A【解析】解:因为AD PC ⊥,所以AD DC ⊥,AD PD ⊥,又DC ,PD ⊂平面PDC ,DC PD D ⋂=,即AD ⊥平面PDC ,折叠前有//AB PC ,AB BC ⊥,AD PC ⊥,所以//AD BC ,所以BC ⊥平面PDC ,故B 正确.由于平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,且AD PD ⊥,所以PD ABCD ⊥平面,又AC ABCD ⊂平面,所以PD AC ⊥,故C 正确.DC PD ⊥ ,DC AD ⊥,PD AD D ⋂=,PD 、AD 在平面PAD 内,DC ∴⊥平面PAD ,//AB DC ,AB ∴⊥平面PAD ,又PA ⊂平面PAD ,故AB PA ⊥,PAB ∴∆为直角三角形,N 为斜边的中点,所以2PB AN =,故D 正确.由排除法可得A 错误.故选.A 核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0xe mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 【答案】A【解析】解:由ln ln(1)0xe mx x m ---+得ln(1)x e mx m x -+ ,即,令()xf x e x =+,(0,)x ∈+∞,则,故()f x 在(0,)x ∈+∞单调递增,若()(ln(1))f x f m x + ,则在(0,)x ∈+∞恒成立,记()ln(1)g x x m x =-+,则()0g x 在(0,)x ∈+∞上恒成立,即min ()0g x ,因为1()1g x x'=-,则当1x <时,()0,g x '<当1x >时,()0,g x '>故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故min ()(1)1ln(1)0g x g m ==-+所以,即01m e <+,解得11m e -<- ,所以m 的取值范围是(1,e --故选:.A 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <【答案】C【解析】解:令()()x f x g x e =,则()()().xf x f xg x e''-=()f x 满足:(1)[()()]0x f x f x -'->,∴当1x <时,()()0.()0.f x f x g x '-<∴'<此时函数()g x 单调递减.(1)(0).g g ∴->即10(1)(0)(0).f f f e e-->=。

2023高考_高考数学选择题蒙题技巧

2023高考_高考数学选择题蒙题技巧

2023高考数学选择题蒙题技巧2023高考数学选择题蒙题技巧死亡拯救法:“三短一长就选长,三长一短就选短,两长两短就选B,参差不齐C无敌。

一样长选C,一样短选B。

"这是网上的,如果是图像题。

那就蒙B、C吧,几率大一点!1、答案有根号的,不选2、答案有1的,选3、三个答案是正的时候,在正的中选4、有一个是正X,一个是负X的时候,在这两个中选5、题目看起来数字简单,那么答案选复杂的,反之亦然6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条7、答题答得好,全靠眼睛瞟8、以上都不实用的时候选B9、在计算题中,要首先写一答字:然后在答题,即使只有一个答字10、最后一招杀手锏:如果你在选择题上不想地O分的话,建议所有选择题全选A,我就这样的。

培养“蒙感”:这个所谓“蒙感”,就是这蒙题的感觉。

因为不可能一面卷子上你一道题也不会做(当然也有例外),你也有很大可能有不会做的题。

这时,就要看蒙题的感觉了。

所有考试的人都知道,选择题中选择B、C选项的占绝大多数。

所以遇到不会的题,就往B、C上靠,几率会大一点。

还有,如果你有很多题不会——比如说五道题里你有三道不会,那就要看你平时做题的感觉了。

高考数学快速蒙题技巧1.高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。

2.在数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。

单看选项,一般BD稍多,A较少。

还有一点,选了之后就不要改了,除非你有90以上的把握。

这个经验堪称是史上最牛的'高考数学蒙题技巧。

3.经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4.数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。

高考数学中选择题常用解题方法和技巧

高考数学中选择题常用解题方法和技巧
, ,

(x + 2 )
判 断 如 下 三 个 命 题 的 真假


到 准确 无 误 达 到事半 功 倍之 效


命 题 甲 ,( z


+ 2 ) 是偶 函数 )在(


1

直接 法

就 是 从 条 件 出 发 通 过 正 确 的运 算
, ,
命 题 乙 ,( z

o o

2)上
是减 函数 在 ( 2


:+ 2 n 1
1 2



m
r 、
分 }羊 析 法

通 过对题干与 四个选项 之 间

【 例
3】
( 2 0 0 7 年 高 考全 国 卷 I ) 下 面 给 出 的
x
-
F亍 析 利 用 所 学 的知 识 作 出 符 合 逻 辑 分

而 确 定 正 确结 论

四 个点 中 到直线

y
+ 1

0
的距 离 为华 且 位


【 例
2】
(200 7 年
高考 北 京 理 科 卷 ) 对 于 函 数
1 )

互 交 错 在 解 题 过 程 中要 采 用 适 当 的 方 法 或 把 几


① ,( z ) ③ ,( z )

lg (
c o s
Iz

2

I+
② ,( z )

(z

2 )

高考数学选择题的解题方法与技巧

高考数学选择题的解题方法与技巧

专题:选择题的解题方法与技巧一、教学目标1、了解并掌握选择题的解题方法与技巧,使学生能够达到准确、迅速解答选择题的目的;2、培养学生灵活多样的辩证唯物主义观点;3、培养学生的自信心,提高学生的创新意识.二、重点聚集高考数学选择题占总分值的52.其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的. 选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:①立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;②技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;③知识面广、跨度较大、切入点多、综合性强.正因为这些特点,使得选择题还具有区别与其它题型的考查功能:①能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查;②能比较确切地考查考生对概念、原理、性质、法则、定理和公式的掌握和理解情况;③在一定程度上,能有效地考查逻辑思维能力,运算能力、空间想象能力及灵活和综合地运用数学知识解决问题的能力.三、基础训练(1)若定义在区间(-1,0)内的函数)1(log )(2+=x x f a ,满足0)(>x f ,则a 的取值范围是:A .)210(,B .]210(,C .)21[∞+, D .)0(∞+,(2)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是:A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= (3)如果函数x a x y 2cos 2sin +=的图像关于直线8π=x 对称,那么a 等于:A .2B .2-C .1D .-1(4)设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若1)(0>x f ,则0x 的取值范围为:A .(-1,1)B .),1(+∞-C .),0()2,(+∞--∞D .),1()1,(+∞--∞(5)已知向量e a ≠,1||=e ,且对任意R t ∈,恒有||||e a e t a -≥-,则A .e a ⊥B .)(e a a -⊥C .)(e a e -⊥D .)()(e a a e -⊥+ 答案:(1)A (2)C (3)C (4)D (5)C四、典型例题 (一)直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择、涉及概念、性质的辨析或运算较简单的题目常用直接法.例1、关于函数21)32(sin )(||2+-=x x x f ,看下面四个结论:①)(x f 是奇函数;②当2007>x 时,21)(>x f 恒成立;③)(x f 的最大值是23;④)(x f 的最小值是21-.其中正确结论的个数为:A .1个B .2个C .3个D .4个【解析】||||||2)32(2cos 21121)32(22cos 121)32(sin )(x x x x x x x f --=+--=+-=,∴)(x f 为偶函数,结论①错;对于结论②,当π1000=x 时,01000sin ,20072=>πx ,∴21)32(21)1000(1000<-=ππf ,结论②错. 又∵12cos 1≤≤-x ,∴232cos 21121≤-≤x ,从而23)32(2cos 211||<--x x ,结论③错.21)32(sin )(||2+-=x x x f 中,1)32(,0sin ||2-≥-≥x x ,∴21)(≥x f ,等号当且仅当x=0时成立,可知结论④正确.【题后反思】直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解,直接法运用的范围很广,只要运算正确必能得到正确的答案,提高直接法解选择题的能力,准确地把握中档题的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.(二)排除法排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.例2、直线0=+-b y ax 与圆02222=+-+by ax y x 的图象可能是:【解析】由圆的方程知圆必过原点,∴排除A 、C 选项,圆心(a ,-b ), 由B 、D 两图知0,0>->b a .直线方程可化为b ax y +=,可知应选B . 【题后反思】用排除法解选择题的一般规律是:(1)对于干扰支易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个; (2)允许使用题干中的部分条件淘汰选择支;(3)如果选择支中存在等效命题,那么根据规定---答案唯一,等效命题应该同时排除; (4)如果选择支存在两个相反的,或互不相容的判断,那么其中至少有一个是假的; (5)如果选择支之间存在包含关系,必须根据题意才能判定. (三)特例法特例法也称特值法、特形法.就是运用满足题设条件的某些特殊值、特殊关系或特殊图形对选项进行检验或推理,从而得到正确选项的方法,常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例3、设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x,若1)(0>x f ,则0x 的取值范围为:A .(-1,1)B .(+∞-,1)C .),0()2,(+∞--∞D .),1()1,(+∞--∞【解析】∵122)21(<=f ,∴21不符合题意,∴排除选项A 、B 、C ,故应选D . 例4、已知函数d cx bx ax x f +++=23)(的图像如图所示,则b 的取值范围是:A .)0,(-∞B .)1,0(C .(1,2)D .),2(+∞【解析】设函数x x x x x x x f 23)2)(1()(23+-=--=, 此时0,2,3,1==-==d c b a . 【题后反思】这类题目若是脚踏实地地求解,不仅运算量大,而且极易出错,而通过选择特殊点进行运算,既快又准,但要特别注意,所选的特殊值必须满足已知条件. (四)验证法又叫代入法,就是将各个选择项逐一代入题设进行检验,从而获得正确的判断,即将各个选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例5、在下列四个函数中,满足性质:“对于区间(1,2)上的任意)(,2121x x x x ≠,|||)()(|2121x x x f x f -<-恒成立”的只有:A .xx f 1)(=B .||)(x x f =C .x x f 2)(=D .2)(x x f = 【解析】当xx f 1)(=时,1||1|||)()(|212112<=--x x x x x f x f ,所以|||)()(|2121x x x f x f -<-恒成立,故选A .例6、若圆)0(222>=+r r y x 上恰有相异两点到直线02534=+-y x 的距离等于1,则r 的取值范围是:A .[4,6]B .)6,4[C .]6,4(D .)6,4(【解析】圆心到直线02534=+-y x 的距离为5,则当4=r 时,圆上只有一个点到直线的距离为1,当6=r 时,圆上有三个点到直线的距离等于1,故应选D .【题后反思】代入验证法适用于题设复杂、结论简单的选择题,这里选择把选项代入验证,若第一个恰好满足题意就没有必要继续验证了,大大提高了解题速度. (五)数形结合法“数缺形时少直观,形少数时难入微”,对于一些具体几何背景的数学题,如能构造出与之相应的图形进行分析,则能在数形结合,以形助数中获得形象直观的解法.例7、若函数))((R x x f y ∈=满足)()2(x f x f =+,且]1,1[-∈x 时,||)(x x f =,则函数))((R x x f y ∈=的图像与函数||log 3x y =A .2B .3C .4D .无数个 【解析】由已知条件可做出函数)(x f 及||log 3x y = 的图像,如下图,由图像可得其交点的个数为4个,||x故应选C .例8、设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x x f x ,若1)(0>x f 若1)(0>x f ,则0x 的取值范围为:A .(-1,1)B .),0()2,(+∞--∞C .(+∞-,1)D .),1()1,(+∞--∞ 【解析】在同一直角坐标系中,做出函数)(x f 和直线x=1的图像,它们相交于(-1,1)和(1,1)两点,则1)(0>x f ,得1100>-<x x 或,故选D . 【题后反思】严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效,不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图像反会导致错误的选择. (六)逻辑分析法分析法就是根据结论的要求,通过对题干和选择支的关系进行观察分析、寻求充分条件,发现规律,从而做出正确判断的一种方法,分析法可分为定性分析法和定量分析法. 例9、若定义在区间(-1,0)内的函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是:A .)21,0(B .]21,0(C .),21(+∞ D .),0(+∞【解析】要使0)(>x f 成立,只要2a 和x+1同时大于1或同时小于1成立,当)0,1(-∈x 时,)1,0(1∈+x ,则)1,0(2∈a ,故选A .例10、用n 个不同的实数n a a a a ,,,321 可得!n 个不同的排列,每个排列为一行写成一个!n 行的矩阵,对第i 行in i i i a a a a ,,,321 ,记in n i i i i a a a a b )1(32321-++-+-=, (n i ,,3,2,1 =)例如用1、2、3排数阵如图所示,由于此数阵中每一列各 数之和都是12,所以2412312212621-=⨯-⨯+-=+++b b b ,那么用1, 2,3,4,5形成的数阵中,=+++12021b b bA .-3600B .1800C .-1080D .-720【解析】3=n 时,6!3=,每一列之和为12!2!3=⋅,24)321(12621-=-+-⨯=+++b b b ,5=n 时,6!5=,每一列之和为360!4!5=⋅,1080)54321(36012021-=-+-+-⨯=+++b b b ,1 2 31 3 22 1 32 3 13 2 13 1 2故选C .【题后反思】分析法实际是一种综合法,它要求在解题的过程中必须保持和平的心态、仔细、认真的去分析、学习、掌握、验证学习的结果,再运用所学的知识解题,对考察学生的学习能力要求较高.(七)极端值法从有限到无限,从近似到精确,从量变到质变,应用极端值法解决某些问题,可以避开抽象、复杂的运算,隆低难度,优化解题过程. 例11、对任意)2,0(πθ∈都有:A .)cos(cos cos )sin(sin θθθ<<B .)cos(cos cos )sin(sin θθθ>>C .θθθcos )cos(sin )sin(cos <<D .)cos(sin cos )sin(cos θθθ<< 【解析】当0→θ时,0)sin(sin →θ,1cos )cos(cos ,1cos →→θθ,故排除A 、B , 当2πθ→时,1cos )cos(sin →θ,0cos →θ,故排除C ,因此选D .例12、设ββααcos sin ,cos sin +=+=b a ,且40πβα<<<,则A .222222b a b b a a +<<+<B .222222b a b a b a +<+<< C .b b a b a a <+<+<222222 D .222222b a b a b a +<<<+ 【解析】∵40πβα<<<,∵令4,0πβα→→,则232,2,122→+→→b a b a , 易知:5.125.11<<<,故应选A . 【题后反思】有一类比较大小的问题,使用常规方法难以奏效(或过于繁杂),又无特殊值可取,在这种情况下,取极限往往会收到意想不到的效果. (八)估值法由于选择题提供了唯一正确的选择支,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.例13、如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF//AB ,23=EF ,EF 与面AC 的距离为2,则该多面体的体积为:A .29B .5C .6D .215ABCDE F【解析】由已知条件可知,EF//面ABCD ,则F 到平面ABCD的距离为2,∴623312=⨯⨯=-ABCD F V ,而该多面体的体积必大于6,故选D .例14、已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是:A .916πB .38πC .π4D .964π【解析】设球的半径为R ,ABC ∆的外接圆半径332=r ,则ππππ53164422>=≥=r R S 球,故选D .【题后反思】有些问题,由于受条件限制,无法(有时也没有必要)进行精确的运算和判断,而又能依赖于估算,估算实质上是一种数字意义,它以正确的算理为基础,通过合理的观察、比较、判断、推理,从而做出正确的判断、估算、省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法. (九)割补法“级割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间. 例15、一个四面体的所有棱长都为2,四个顶点在同一 球面上,则此球的表面积为:A .π3B .π4C .π33D .π6【解析】如图,将正四面体ABCD 补成正方体,则正四面体、正方体的中心与其外接球的球心共一面,因为正四面体棱长为2,所以正方体棱长为1,从而外接球半径23=R ,故π3=球S ,选A .【题后反思】“割”即化整为零,各个击破,将不易求解的问题,转化为易于求解的问题;“补”即代分散不集中,着眼整体,补成一个“规则图形”来解决问题,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”. 五、限时课后练习(1)已知βα,是锐角,且32πβα=+,则βα22cos cos +的取值范围是: A .]2321[, B .)2321[, C .]4321[, D .)4321[,ABCD(2)(2007,安徽高考)若},822|{2Z x x A x ∈<≤=-,},1|log ||{2R x x x B ∈>=,则A 交B 补中元素的个数为:A .0B .1C .2D .3(3)(2007,山东高考)已知集合}1,1{-=M ,},4221|{1Z x x N x ∈<<=+,则=N MA .}1,1{-B .}1{-C .}0{D .}0,1{-(4)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是:A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= (5)如果n 是正偶数,则=+++nn n nC C C 20 A .n 2 B .12-n C .12+nD .12)1(-⨯-n n(6)函数)0)(sin()(>+=ωϕωx M x f ,则区间[a ,b]上是增函数,且M b f M a f =-=)(,)(,则函数)cos()(ϕω+=x M x g 在[a ,b]上是:A .增函数B .减函数C .有最大值MD .有最小值—M (7)函数x x x f 2sin )23sin()(+-=π的最小正周期是:A .2πB .πC .2πD .4π (8)过点A (1,-1),B (-1,1)且圆心在直线02=-+y x 上的圆的方程是: A .4)1()3(22=++-y x B .4)1()3(22=-++y xC .4)1()1(22=-+-y xD .4)1()1(22=+++y x(9)定义在),0()0,(+∞-∞ 上的奇函数)(x f ,在),0(+∞上为增函数,当0>x 时,)(x f 的图像如下图所示,则不等式0)]()([<--x f x f x 的解集是:A .)3,0()0,3( -B .),3()3,(+∞--∞C .),3(]3,(+∞--∞D .),3()0,3(+∞-(10)函数1|1|2+-=x y 的图像与函数x y 2=的图像交点的个数为: A .1 B .2 C .3 D .4(11)如下图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆,均为正三角形,EF//AB ,EF=2,则该多面体的体积为:ABCD EFA .32B .33C .34D .23(12)如下图,直三棱柱ABC —A1B1C1的体积为V ,P 、 Q 分别为侧棱AA1、和CC1上的点,且AP=C1Q ,则四棱 锥B —A1PQC 的体积为: A .32V B .3VC .73VD .72V (13)如右图所示,在正方体AC1中,E 为AD 的中点,O 为侧面AA1B1B 的中心,F 为CC1上任意一点,则 异面直线OF 与BE 所成的角是:A .6πB .4πC .3πD .2π(14)要得到函数x y 2sin 2=的图像,只需把函数)6cos()6sin(4ππ++=x x y 的图像:A .向右平移3π个单位 B .向左平移3π个单位 C .向右平移6π个单位 D .向左平移6π个单位(15)函数|log |21x y =的定义域为[a ,b],值域为[0,2],则区间[a ,b]的长度b-a 的最小值是: A .2 B .23 C .3 D .43 (16)已知函数x x f x 2log )31()(-=,正实数a ,b ,c 满足)()(0)(b f a f c f <<<,若实数d是函数)(x f 的一个零点,那么下列四个判断:①d<a ;②d>b ;③d<c ;④d>c ,其中可能成立的个数为:A .1B .2C .3D .4(17)设函数⎩⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)1()1(=-+-m f f 成立的m 的取值为:A .10B .0,-1C .0,-2,10D .1,-1,11(18)已知点P 是椭圆14822=+y x 上的动点,F 1,F 2分别为椭圆的左右焦点,O 为坐标原点,则||||||||21OP PF PF -的取值范围是:ABC C 1 B 1A 1P QABC DA 1C 1 B 1D 1 GH FO EA .]22,0[ B .]2,0[ C .]22,21( D .]2,0[ 答案:(1)D (2)C (3)B (4)C (5)B (6)C (7)B (8)C (9)A (10)C (11)A (12)B (13)D (14)C (15)D (16)B (17)D (18)D第二节 填空题的解题方法与技巧一、教学目标1.了解填空题的题型特点和考查角度,掌握填空题的解题方法和技巧,规范其解答; 2.培养学生分析问题和解决问题的能力; 3.使学生会一分为二的辩证的看待问题.二、重点聚集填空题的主要作用是考查学生的基础知识、基本技能及思维能力和分析问题、解决问题的能力,填空题的结果必须是数值准确、形式规范、表达式(数)最简,结果稍有毛病,便得零分.填空题的基本特点: 1.方法灵活,答案唯一; 2.答案简短,具体明确.学生在解答填空题时注意以下几点;1.对于计算型填空题要运算到底,结果要规范; 2.填空题所填结果要完整,不可缺少一些限制条件; 3.填空题所填结论要符合高中数学教材要求;4.解答填空题平均每小题3分钟,解题时间应控制在12分钟左右. 总之,解填空题的基本原则是“小题小做”,要“准”、“活”、“灵”、“快”.三、基础训练(1)设直线α平面⊂l ,过平面α外一点A 作直线,则与α,l 都成 45角的直线有 条.(2)如下图所示,过点Q (2,1)的动直线l 分别交x 轴、y 轴于A 、B 两点,则线段AB 的中点P 有轨迹方程为: . (3)若数列}{n a 中,)1(3,111≥==+n S a a n n ,则n S 为: .(4)对于满足40≤≤p 的一切实数x ,不等式342-+>+p x px x 恒成立,则x的取值范围是:(5)设实数x 、y 满足⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,则|42|-+y x 的最大值是:答案:(1)2 (2))1(022≠=--x y x xy(3))(4*1N n S n n ∈=- (4)),3()1,(+∞--∞ (5)21四、典型例题(一)直接法直接法求解就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确的结论.例1、不等式0|)|1)(1(>-+x x 的解集是: 【解析】当0≥x 时,原不等式等价于0)1)(1(>-+x x ,∴11<<-x ,此时应有:10<≤x ; 当0<x 时,原不等式等价于0)1(2>+x , ∴1-≠x ,此时应有:011<<--<x x 或;∴不等式0|)|1)(1(>-+x x 的解集是:}11|{-≠<x x x 且.例2、在等差数列}{n a 中,135,3851-=-=a na a ,则数列}{n a 的前n 项和S n 的最小值为: 【解析】设公差为d ,则13)73(5)43(11-+-=+-d d ,∴95=d ,∴数列}{n a 为递增数列, 令0≥n a ,∴095)1(3≤⨯-+-n ,∴526≤n ,∵*N n ∈,∴7≤n ,∴前6项和均为负值, ∴S n 的最小值为3296-=S . 【题后反思】由于填空题不需要解题材过程,因此可以透过现象看本质,自觉地、有意识地采用灵活、简洁的解法,省去某些步骤,大跨度前进,也可配合心算、速算、力求快速,辟免“小题大做”.(二)特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替之,即可得到结论.例3、函数)(x f y =在(0,2)上是一增函数,函数)2(+=x f y 是偶函数,则)27(),25(),1(f f f 的大小关系为: (用“<”号连接)【解析】取2)2()(--=x x f ,则)25()1()27(f f f <<,例4、椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是:【解析】设P(x,y),则当 9021=∠PF F 时,点P 的轨迹方程为522=+y x ,由此可得点P 的横坐标53±=x ,又当点P 在x 轴上时, 021=∠PF F ;点P 在y 轴上时,21PF F ∠为钝角,由此可得点P 横坐标的取值范围是:553553<<-x . 【题后反思】特殊值法一般可取特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊性点、特殊方程、特殊模型等. (三)数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想. 例5、已知直线m x y +=与函数21x y -=不同的交点,则实数m 的取值范围是: . 【解析】∵函数21x y -=的图像如图所示, ∴由图可知:21<≤m .例6、设函数c bx ax x x f +++=22131)(23,若当)1,0(∈x 时,)(x f 可取得极大值;当)2,1(∈x 时,)(x f 可取得极小值,则12--a b 的取值范围是:【解析】b ax x x f 2)(2/++=,由条件知,0)(/=x f 的一个 根在(0,1)上,另一个根在(1,2)上,∴⎪⎩⎪⎨⎧>><0)2(0)0(0)1(///f f f ,即⎪⎩⎪⎨⎧>++><++020012b a b b a如图所示,在平面直角坐标系xOy 中作出上述区域,得点P (a ,b )在图中的阴影区域内,1 1-x而12--a b 的几何意义是过两点P (a ,b )与A (1,2)的直线的斜率,易知)1,41(12∈=--PA k a b . 【题后反思】数形结合法,常用的有Venn 图,三角函数线,函数图像及方程的曲线等,另一面,有些图形问题转化为数量关系,如直线垂直可转化为斜率关系或向量积等. (四)等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而等到正确的结果.例7、若不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是:【解析】题设条件等价于直线上的定点(0,1)在圆内或圆上,或等价于点(0,1)到圆心(a ,0)的距离小于或等到于圆的半径42+a ,所以31≤≤-a 例8、计算=-++33257257【解析】分别求这两个二重根式的值显然不是那么容易,不妨从整体考虑,通过解方程求之. 设x =-++33257257,两边同时立方得:01433=-+x x ,即:0)72)(2(2=++-x x x , ∵0722≠++x x ,∴2=x ,即=-++332572572,因此应填2. 【题后反思】在研究解决数学问题时,常采用转化的手段将问题向有利于解答的方面转化,从而使问题转化为熟悉的、规范的、甚至模式的问题,把复杂的问题转化为简单的问题. (五)构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助于它来认识和解决问题. 例9、如果))2,0((,cos )cos 1(sin )sin 1(44πθθθθθ∈+>+,那么角θ的取值范围是: . 【解析】设函数x x x f 4)1()(+=,则051)(4/>+=x x f ,所以)(x f 是增函数,由题设,得出)(cos )(sin θθf f >,得θθcos sin >,所以)45,4(ππθ∈.例10、P 是正方体ABCD —A 1B 1C 1D 1的上底面A 1B 1C 1D 1内任意一点,AP 与三条棱AA 1,AB 1,AD 的夹角分别为γβα,,,则=++γβα222cos cos cos 【解析】如上图,过P 作平面PQQ /P /,使它们分别与平面B 1C 1CB 和平面C 1D 1DC 平行,则构造一个长方体AQ /P /R /—A 1QPR ,故1cos cos cos 222=++γβα.【题后反思】A B CDC 1 A 1 B 1D 1PRQ Q /R /P /凡解题时需要根据题目的具体情况来设计新模式的的问题,通常要用构造法解决. (六)分析法根据题设条件的特征进行观察、分析、从而得出正确的结论.例11、以双曲线1322=-y x 的左焦点F 和左准线l 为相应的焦点和准线的椭圆截直线3+=kx y ,所得的弦恰好被x 轴平分,则k 的取值范围是: .【解析】双曲线的左焦点为F (-2,0),左准线l 为23-=x ,因为椭圆截直线所得的弦恰好被x 轴平分,故根据椭圆的对称性,知椭圆的中心即为直线3+=kx y 与x 轴的交点(0,3k-),故23-<-k ,得230<<k .例12、(2007福建)某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是1.09.03⨯;③他至少击中目标1次的概率是41.01-.【解析】①第3次击中目标意味着1、2、4次可击中,也可不击中,从而第3次击中目标的概率为9.0)1.09.0(9.0)1.09.0()1.09.0(=+⨯⨯+⨯+;②恰好击中目标3次的概率是独立重复试验,故概率为1.09.0334⨯⨯C ;③运用对立事件4次射击,一次也没有击中的概率为41.0,从而至少击中目标一次的概率为41.01-.故正确结论的序号为①、③. 【题后反思】分析法是解答问题的常用方法,该方法需要我们从题设出发,对条件进行观察、分析,找到相应的解决方法.五、限时课后练习(1)已知函数52)(3+-=x x x f 在)1,32(-上单调递减,在),1(+∞上单调递增,且)(x f 的导数记为)(/x f ,则下列结论中,正确的是: ①32-是方程0)(/=x f 的根; ②1是方程0)(/=x f 的根; ③有极小值)1(f ; ④有极大值)32(-f ; ⑤5.0-=a(2)设m 、n 是异面直线,则:①一定存在平面α,使α⊂m 且α//n ;②一定存在平面β,使β⊂m 且β⊥n ;③一定存在平面γ,使m 、n 到γ的距离相等;④一定存在无数对平面α和β,使βαβα⊥⊂⊂且n m ,.上述四个命题中,正确命题的序号是: . (3)i 是虚单位,=++-ii43105 (用R b a bi a ∈+,,的形式表示)(4)设1>>b a ,则b b a ab a b log ,log ,log 的大小关系是: . (5)“x 、y 中至少有一个小于0”是“0<+y x ”的 条件.(6)若记符号“*”表示求两个实数a 与b 的算术平均数的运算,即2*ba b a +=,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是: .(7)设椭圆)0(12222>>=+b a by a x 的右焦点为F 1,右准线为1l ,若过F 1且垂直于x 轴的弦长等于点F 1到直线1l 的距离,则椭圆的离心率是: .(8)设j i m a 3)1(-+=,j m i b )1(-+=,其中j i ,为互相垂直的单位向量,又)()(b a b a -⊥+,则实数m= .(9)如果函数c bx x x f ++=2)(对任意实数t ,都有)2()2(t f t f -=+,那么)4(),2(),1(f f f 的大小关系是:(10)过抛物线)0(2>=a ax y 的焦点F 作一直线与抛物线交于P 、Q 两点,若线段PF 、FQ 的长分别为p 、q ,则=+qp 11 . (11)椭圆13422=+y x 的长轴的两端点为M 、N ,点P 在椭圆上,则PM 与PN 的斜率之积为: .(12)方程x x 41)4sin(=-π的实数解的个数是: .(13)不等式23+>ax x 的解集为(4,b ),则a= ,b= ;(14)已知函数812)(3+-=x x x f 在(-3,3)上的最大值与最小值分别为M 、m , 则M+m= .(15)已知集合}2|),{(2y mx x y x A =++=,}20,01|),{(≤≤=+-=x y x y x B ,如果φ≠B A ,则实数m 的取值范围是: .(16)定义在R 上的函数)(x f 是奇函数,且满足)(1)1(x f x f -=+,则=+++++)7()6()5()4(_)3()2()1(f f f f f f f .(17)设F 1,F 2是双曲线1422=-y x 的两个焦点,点P 在双曲线上且 9021=∠PF F ,则21PF F ∆的面积是: .(18)在数列}{n a 中,若)1(32,111≥+==+n a a a n n ,则该数列的通项=n a . 答案:(1)①②③④⑤;(2)①③④;(3)i 21+;(4)a b b b a ab log log log <<;(5)必要不充分; (6)))*()*()*()*()*()((*)()*(c a b c b a c b c a c b a c a b a c b a +=++=+++=+或或(答案不唯一); (7)21; (8)-2; (9))4()1()2(f f f <<; (10)4a ; (11)43-;(12)3; (13)3681==b a ,; (14)16; (15)1-≤m ;(16)0; (17)1; (18) 321-+n .第三节 解答题的解题策略一、教学目标1.使学生掌握解答题的解题策略和技巧,使学生在解答客观性问题时能较为迅速的明确解题的方向和解题的策略;2.培养学生客观的分析问题、解决问题的能力,同时提高学生处理问题的整体意识.二、重点聚集解答题可分为低档题、中档题和高档题三个档次,低档题主要考查基础知识和基本方法与技能,中档题还要考查数学思想方法和运算能力、思维能力、整合与转化能力、空间想象能力,高档题还要考查灵活运用数学知识的能力及分析问题和解决问题的能力.三、基础训练(1)试求常数m 的范围,使曲线2x y =的所有弦都不能被直线)3(-=x m y 垂直平分.思路点拨:“不能”的反面是“能”,被直线垂直平分的弦的两端点关于此直线对称,于是问题转化为“抛物线2x y =上存在两点关于直线)3(-=x m y 对称,求m 的取值范围”,再求出m 的取值集合的补集即为原问题的解.(2)已知R a ∈,求函数)cos )(sin (x a x a y --=的最小值. 思路点拨:x x x x a a x a x a y cos sin )cos (sin )cos )(sin (2++-=--=,而x x cos sin +与x x cos sin 有联系,可设x x t cos sin +=,则原来的问题可转化为二次函数的闭区间上的最值问题.(3)已知x 、y 满足条件1251622=+y x ,求y -3x 的最大值与最小值. 思路点拨:此题令b=y -3x ,即y=3x+b ,视b 为直线y=3x+b 的截距,而直线与椭圆必须有公共点,故相切,b 有最值.(4)设不等式)1(122->-x m x 对满足]2,2[-∈m 的一切实数m 都成立,求x 的取值范围. 思路点拨:此问题由于是常见的思维定势,易把它看成关于x 的不等式讨论,若变换一个角度,以m 为变量,使)12()1()(2---=x m x m f ,则问题转化为求一次函数(或常函数))(m f 的值在[-2,2]内恒负时,参数x 应满足的条件.四、典型例题 (一)以退为进策略 1、由整体向局部退某些问题,可以退到构成这一整体内容的部分上,用带有整体特征的部分来处理问题,解题思路便会豁然开朗.例1、在锐角ABC ∆中,求证:C B A C B A cos cos cos sin sin sin ++>++.【解析】∵)2,0(,,π∈C B A ,∴2π>+B A ,即02>->B A π,由于x y sin =在)2,0(π上是单调递减的.∴B B A cos )2sin(sin =->π,同理可证:A C C B cos sin ,cos sin >>.上述三式相加,得:C B A C B A cos cos cos sin sin sin ++>++.【题后反思】本题由整体退向局部,由一个角的三角函数或两个角的三角函数关系式入手,进行研究,解出部分证明了整体. 2、由巧法向通法退巧法的思维起点高,技巧性也强,有匠心独具、出人意料等特点,而巧法本身的思路难寻,方法不易把握,而通法则体现了解决问题的常规思路,而顺达流畅,通俗易懂的特点.例2、已知21cos sin =βα,求βαsin cos 的取值范围. 【解析】由21cos sin =βα,得αβ22sin 41cos =,∴αααββ22222sin 41sin 4sin 411cos 1sin -=-=-=, ∴)sin 1(sin 41sin 4)sin 1(sin cos sin 2222222ααααβαβ-⋅-=-= 41145)sin 41(sin 45sin 41sin 5sin 422224=-≤+-=-+-=ααααα, 从而得]2121[sin cos ,-∈βα.【题后反思】本题是一典型、常见而又方法繁多、技巧性较强的题目,求解时常常出错,尤其是题目的隐含条件的把握难度较大,将解法退到常用的数学方法之一——消元法上来,则解法通俗、思路清晰.(二)合理转化策略转化思想方法用于研究、解释数学问题时思维受阻或寻求简单方法或从一种状况转化成另一种情况,也就是转化到另一种情境,使问题得到解释的一种方法,这种转化是解决问题的有效策略,同时也是成功的思维模式,转化的目的是使问题变的简单、容易、熟知,达到解决问题的有利境地,通向问题解决之策.1、常量转化为变量有的问题需要常、变量相互转化,使求解更容易.例3、设0tan cos 4sin 0tan sin 3cos 92=⋅-=++C A B C B A ,,求证:61|cos |≤A . 【解析】令3=x ,则有0tan sin cos 2=++C B x A x ,若0cos =A ,则610|cos |≤=A 成立;若0cos ≠A ,则0tan cos 4sin 2=⋅-=∆C A B ,∴方程有两个相等的实数根,即321==x x ,由韦达定理,ACx x cos tan 921==,即A C cos 9tan =,又0tan cos 4sin 2=-C A B , ∴0cos 9cos 4sin 2=-A A B ,∴1sin cos 3622≤=B A ,∴61|cos |≤A .【题后反思】把变量变为常量,也就是从一般到特殊,是我们寻找规律时常用的解题方法,而本题反其道而行之,将常量变为变量,从特殊到一般使问题得到解决. 2、主元转化为辅元有的问题按常规确定主元进行处理往往受阻,陷于困境,这时可以将主元化为辅元,即可迎刃而解.例4、对于满足2||≤p 的所有实数p ,求使不等式p x px x +>++212恒成立的x 的取值范围. 【解析】把p x px x +>++212转化为012)1(22>+-+-x x p x ,则成为关于p 的一次不等式,则2||≤p ,得22≤≤-p ,由一次不等式的性质有:0)1)(1()1()1(2>+--=-+-p x x x p x , 当2-=p 时,0)3)(1(>--x x ,∴31>-<x x 或;当2=p 时,0)1)(1(>+-x x ,∴11>-<x x 或,综上可得:31>-<x x 或. 【题后反思】视x 为主元,不等式是关于x 的一元二次不等到式,讨论其取值情况过于繁琐,将p 转化为主元,不等式是关于p 的一次的不等式,则问题不难解决. 3、正向转化为反向有些数学问题,如果是直接正向入手求解难度较大,可以反向考虑,这种方法也叫“正难则反”例5、若椭圆)0(2222>=+a a y x 与连接A (1,2)、B (3,4)两点的线段没有公共点,求实数a 的取值范围.【解析】设线段AB 和椭圆有公共点,由A 、B 两点的坐标可得线段AB 的方程为1+=x y ,]3,1[∈x ,则方程组⎪⎩⎪⎨⎧+==+12222x y a y x ,消去y 得:222)1(2a x x =++,即31)32(231223222++=++=x x x a , ∵]3,1[∈x ,∴]241,29[2∈a ,∵0>a ,∴282223≤≤a , ∴当椭圆与线段AB 无公共点时,实数a 的取值范围为),282()223,0(+∞ . 【题后反思】在探讨某一问题的解决办法时,如果我们按照习惯的思维方式从正面思考遇到困难,则应从反面的方向去探索. 4、数与形的转化数形结合,实质上是将抽象的语言与直观图形结合起来,以便化抽象为直观,达到化难为。

数学选择题解题技巧

数学选择题解题技巧

数学选择题解题技巧数学选择题解题技巧1直接法(推演法):定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.排除法定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。

途径有二种:1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.等价转化法定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。

在解决有关排列组合的的应用问题尤为突出.定义法定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.直觉判断法定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.要点:需要平时多积累、多观察、多总结.数学选择题解题技巧2先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

先熟后生高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

高考数学选择题的解题技巧

高考数学选择题的解题技巧

高考数学选择题的解题技巧高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。

答案排列:3、3、3、3、3 实际状态:每个选项在2——4的范围内。

选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。

即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。

在同一道题中优先考虑数值的“中间量”后考虑选项BCD。

(如E选项对应数值为中间量时,优先从数值入手考虑) 出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值)正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。

复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1若a>b,且c为实数,则下列各式中正确的是().A.ac>bcB.acbc2D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c>0,c1.而A、B、C三个选项中的值均小于1,于是排除A、B、C,故选D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为().A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=±-3,显然这是一个无理数,故应选择D.例4若a、b、c都不为零,但a+b+c=0,则++的值().A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得++=+-=0,故选B.高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5若最简根式和是同类根式,则a、b的值为().A.a=1b=1B.a=1b=-1C.a=-1b=-1D.a=-1b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A.例6若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为().A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于()亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。

高考数学的解题思路技巧

高考数学的解题思路技巧

高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。

做选择题有四种基本方法:1 回忆法。

直接从记忆中取要选择的内容。

2 直接解答法。

多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

3 淘汰法。

把选项中错误中答案排除,余下的便是正确答案。

4 猜测法。

(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。

函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。

(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。

近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。

分析和解决最值问题和定值问题的思路和方法也是多种多样的。

命制最值问题和定值问题能较好体现数学高考试题的命题原则。

应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

(四) 计算证明题解答这种题目时,审题显得极其重要。

只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。

在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。

2 在平时练习中要养成规范答题的习惯。

3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。

4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。

5 保证计算的准确性,注意物理单位的变换。

高考数学命题点及答题技巧

高考数学命题点及答题技巧

高考数学命题点及答题技巧1、选择题高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查三基为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。

选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。

解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。

一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择支应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。

解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

从考试的角度来看,解选择题只要选对就行,至于用什么策略手段都是无关紧要的,所以人称可以不择手段。

但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因。

另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。

总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的个性,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。

这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。

2、填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。

不过填空题和选择题也有质的区别。

首先,表现为填空题没有备选项。

因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。

2024高考数学答题技巧及方法

2024高考数学答题技巧及方法

2024高考数学答题技巧及方法2024高考数学:答题技巧及方法一、熟悉试卷在开始答题前,应该花几分钟时间浏览一下试卷的内容,这可以让你对每个题型、题目难度以及分布有一个基本的了解。

这样,你就能更好地规划答题策略,合理分配时间,避免在某个难题上过度纠结。

二、仔细审题在开始解答每道题目之前,请务必认真阅读题目,理解清楚问题的要求和条件。

数学题目中常常包含一些隐藏的信息,需要你仔细挖掘。

在理解题意的基础上,再寻找合适的解题方法。

三、答题策略1、由易到难:按照题目的难易程度,优先解答那些你能快速解答的题目。

这样,你可以为解答较难的题目留出更多的时间和精力。

2、稳定心态:面对难题,不要感到恐慌和焦虑。

要保持冷静,相信自己的能力,尝试从不同角度去思考问题。

有时候,难题只是需要你理解其中的一个关键点,一旦突破,整个问题就迎刃而解了。

3、草稿纸的使用:在答题过程中,充分利用草稿纸。

将题目中的关键信息、数据和思考过程记录下来,这有助于你保持思路清晰,避免出错。

同时,草稿纸还可以帮助你在解答复杂问题时,回头检查和核对解题步骤。

4、不留空白:即使遇到不会的题目,也不要空着不做。

你可以将自己能想到的任何信息或思路都写下来,这有可能为你的解答提供一些启示。

四、检查和复查在完成答题后,预留一些时间用于检查和复查。

检查可以从以下几个方面入手:计算是否准确、解题步骤是否严谨、公式使用是否正确等。

通过仔细的检查和复查,可以避免因粗心大意或计算错误而失分。

总之,高考数学答题技巧及方法需要平时的积累和练习。

通过熟悉试卷、仔细审题、合理的答题策略以及检查和复查,大家将能够在高考中更加从容和自信地应对数学考试。

希望以上建议能对大家的备考有所帮助,祝大家考试顺利,取得优异的成绩!。

选择题牛的答题技巧

选择题牛的答题技巧

选择题答题技巧数学选择题在当今高考试卷中,不但题目多,而且占分比例比较高,数学选择题具有概括性强,知识覆盖面广,小巧灵活,具有一定的综合性和深度等特点考生能否迅速,准确,全面,简捷地解好选择题,成为高考成功的关键.解答选择题的基本策略是准确,迅速.准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应该仔细审题,深入分析,正确推演,谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1至3分钟内解完,要避免”超时失分”现象的发生。

高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。

解选择题的基本思想是既要看各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个"选“字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活,巧妙,快速地选择解法,以便快速智取,这是解选择题的基本策略。

(一)数学选择题的解题方法1、直接法2、图解法3、 特例检验法4、 筛选法5、代入法6、 估值法7、推理分析8、验证法. 一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论。

例题1、函数 对任意实数 满足条件,若 ,则 的值为()A.5B.C.D.-51、已知F 1、F 2是椭圆162x +92y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于( ) A .11B .10C .9D .162、曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是( )A.-9B.-3C.9D.153、已知双曲线C:以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是()A .aB .bC .D .4、设双曲线的一条渐近线与抛物线 只有一个公共点,则双曲线的离心率为()A .B .5C .D .二、图解法据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法.图解法体现了数形结合的思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解高考数学选择题的常用方法和解答技巧云南省文山州砚山一中,(663100) 马兴奎趣题引入正三棱锥BCD A -中,E 在棱AB 上,F 在棱CD 上,并使λ==FDCF EB AE )0(>λ,设α为异面直线EF 与AC 所成的角,β为异面直线EF 与BD 所成的角,则βα+的值是 ( )A .6π B .4π C .3π D .2π 分析:解本题通常方法是画一个图,但不容易求解,只有紧紧抓住λ的两个极端值才能快速获解。

解:当0→λ时,A E →,且C F →,从而AC EF →。

因为BD AC ⊥(正三棱锥中对棱互相垂直),排除选择支C B A ,,。

故选D (或+∞→λ时的情况,同样可排除C B A ,,)技巧精髓一、选择题中的题干、选项和四选一的要求都是题目给出的重要信息,答题时要充分利用。

二、解答选择题的基本原则是小题不能大做,小题需小做、繁题会简做、难题要巧做。

求解选择题的基本方法是以直接思路肯定为主,间接思路否定为辅,即求解时出了用直接计算方法之外还可以用逆向化策略、特殊化策略、图形化策略、整体化策略等方法求解。

三、解答选择题应注意以下几点:认真审题、先易后难、大胆猜想、小心验证。

1、逆向化策略在解选择题时,四个选项以及四个选项中只有一个答案符合题目要求都是做题的重要信息,逆向化策略是把四个选项作为首先考虑的信息。

解题时,要“盯住选项”,着重通过对选项的分析、考查、验证、推断而进行肯定或否定,或者根据选项之间的关系进行逻辑分析和筛选,从而迅速找到所要选择的、符合题目的选项。

【例1】(2005年,天津卷)设)(1x f -是函数)1( )(21)(>-=-a a a x f x x 的反函数,则使1)(1>-x f 成立的x 的取值范围为( ) A .),21(2+∞-a a B . )21,(2a a --∞ C . ),21(2a aa - D . ),[+∞a 【绿色通道】本题用直接法求解是先求出反函数,然后带入已知1)(1>-x f 得到一个不等式,转化为解一个无理不等式问题,但运算量大。

实际上由1)(1>-x f ,得)1()]([1f x f f >-, 即)1(f x >,此时并不需要往下计算,观察四个选项的特点,可以发现,只有选项A 是x 大于某个数的形式,而B 、C 、D 都不是x 大于某个数的形式,故选A 答案。

【警示启迪】逆向化策略与直接求解策略的解题方向相反,是充分利用题目中的选项信息进行解题的一种策略,但在解题时逆向化策略其他解题策略结合起来使用。

【例2】(2004年,重庆卷)一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:A .0a <B .0a >C .1a <-D .1a >【绿色通道】本题的直接解法并不难,而且有多种解法。

只需利用方程与函数的对应关系,把2210,(0)ax x a ++=≠有一个正根和一个负根转化为函数12)(2++=x ax x f 与x 轴的交点在原点的两侧。

但本题只需从选项入手,通过对选项的分析,找出答案,首先对四个选项进行逻辑分析。

若A 成立,则C 也成立,即选 A 必选C ;若B 成立,则D 也成立,即选 B 必选D ,所以A 、B 都不正确。

现在只需研究C 、D 。

对于D 可以取2=a ,此时方程无实根,故D 不成立,答案选C【警示启迪】逻辑分析法可分为以下三个方面:①若“A ”真⇒B 真;则A 必假,否则它将与“有且只有一个正确答案”的前提矛盾;②若A 、 B 是等价命题,即“B A ⇔”,则A 、 B 均为假,可同时排除;③若A 、 B 为互补命题(A 、 B 成矛盾对应关系),则必有一真,即非A 即B 。

2、特殊化策略在求解数学问题时,如果要证明一个数学问题是正确的,就要证明该问题在所有可能的情况下都正确,但是要否定一个问题,则只要举出一个反例就够了,基于这一原理,在解选择题时,可以通过取一些特殊数值、特殊点、特殊数列、特殊图形、特殊角、特殊位置等对各个选项进行验证,从而可以否定和排除不符合题目要求的选项,在根据四个选项中只有一个答案符合题目要求这一信息,就可以间接地得到符合题目要求的选项。

这时一种解选择题的特殊化策略。

【例3】(2007年,陕西卷)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14, 则S 4n 等于 ( )(A )80 (B )30 (C )26 (D )16【绿色通道】本题直接解也并不困难,只是运算量大,但是对于这道题,只需取特殊值1=n便可求解了。

取1=n 则211==S a 又143=S 即14321=++a a a∵∴142111=++q a q a a 即14)1(21=++q q a ∴712=++q q 解之得:3-=q (舍去),2=q 故所求为301)1(414=--=qq a S 故选B【警示启迪】在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。

【例4】(2007年,安徽卷)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T是它的一个正周期,若将方程f (x )=0在闭区间[-T ,T ]上的根的个数记为n ,则n可能为(A )0 (B )1 (C )3 (D )5 【绿色通道】本题没有给出具体的函数)(x f y =,所以不能直接求解,可以选取一个符合题目要求的函数,例如设满足条件的函数为:x x f sin )(= ,则π2=T 而从)(x f 在]2,2[ππ-上有5个根。

故选D【警示启迪】特殊化策略是将一般问题特殊化,用构造满足题设条件的特殊函数或图形的特殊位置直接求解的方法,它充分利用选择题的特点,将抽象问题具体化,它是“繁题会简做”重要策略的体现,要求平时善于积累常见函数,并能熟练掌握它们的图象和性质3、图形化策略图形化策略是以数形结合的数学思想为指导的一个解题策略,图形化策略是依靠图形的直观进行选择的,用这种策略解题比直接计算求解更能抓住问题的实质,从而简捷迅速地得到结果,[例5] (2002年,全国卷)在(0,2π),使sinx>cosx 成立的x 的取值范围为( )A 、)45,()2,4(ππππB 、),4(ππC 、)45,4(ππD 、)23,45(),4(ππππ 【绿色通道】本题可利用三角函数的图象和画单位圆,选C 。

【警示启迪】据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断。

有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,综合图象的特征,得出结论。

【例6】(2005年,上海卷)设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )(A) 0<b 且0>c ( B)0>b 且0<c(C)0<b 且0=c (D)0≥b 且0=c【绿色通道】画出函数()x f 的图像,该图像关于直线1=x 对称且()0≥x f ,令()t x f =,若0)()(2=++c x bf x f有7个不同实数解,则方程02=++c bt t 有2个不同实数解,且为一正根,一零根.因此, 0<b 且0=c ,故选(C).【警示启迪】在选择题中,常常遇到下面一些问题可以借助图形分析帮助解决。

(1)求方程解的个数:可以画出方程两边的函数图象,通过观察图象交点的个数来研究方程解的个数。

(2)求参数的范围:可以研究参数的几何意义以及这些几何意义的变化状态,通过几何意义的变化状态反映出参数的范围。

(3)求最值:通过研究与最值有关的几何图形或图形的极端位置得到最值。

(4)解不等式:可以研究不等式两边的函数图象的相关位置关系,寻找符合不等要求的x 的取值范围。

(5)求值:可以构造与所求值的几何意义有关的图形,通过计算图形的有关数据,得到所需要的值。

4、极限化策略有一些选择题中,有一些任意选取或者变化的元素,我们对这些元素的变化趋势进行研究,分析它们的极限情况或者极端位置,并进行估算,以次来判断选择的结果,这种通过动态的变化或对极端取值来解选择题的策略是一种极限化策略。

【例7】(2005年,北京卷)对任意的锐角βα,,下列不等关系中正确的是( )A .βαβαsin sin )sin(+>+B .βαβαcos cos )sin(+>+C .βαβαsin sin )cos(+<+D .βαβαcos cos )cos(+<+ 【绿色通道】当2πα→,2πβ→时 ,2sin sin →+βα而0)sin(→+βα,排除A当0→α,0→β时,,2cos cos →+βα而0)sin(→+βα,排除B当0→α,0→β时 0sin sin →+βα,而1)cos(→+βα排除C选D .【警示启迪】 用极限法是解选择题的一种有效方法,也是在选择题中避免“小题大做”的有效途径。

它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,计算简便,迅速找到答案。

4、整体化策略在解选择题时,有时并不需要把题目精解出来,而是从题目的整体去观察、分析和把握,通过对整体反映的性质或者对整体情况的合理估算、猜测,从而忽略具体的细节,缩短解题过程,迅速确定具体问题的结果。

这是一种从整体出发进行解题的策略。

【例8】(2002年,全国卷)曲线为参数)θθθ(sin cos ⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值之为( )(A )21 (B )22 (C )1 (D )2 【绿色通道】本题可以直接计算,但我们采用整体估算的方法∵曲线上的点到两坐标轴的距离之和不小于1,且不会等于1(因为直角三角形两直角边之和大于斜边)故选(D )【警示启迪】估算,省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法.【例9】(1999年,全国卷)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为( )(A )29 (B )5 (C )6 (D )215【绿色通道】由已知条件可知,EF ∥平面ABCD ,则F∴V F -ABCD =31·32·2=6,而该多面体的体积必大于6,故选(D ). 【警示启迪】由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.总之,解答选择题一定要“六忌”、“四注意”。

相关文档
最新文档