(完整版)中考数学之平面几何最全总结+经典习题,推荐文档
中学数学平面几何练习题及讲解
中学数学平面几何练习题及讲解平面几何是数学中的一个重要分支,涉及到图形的性质、关系、证明以及计算等内容。
为了帮助同学们更好地掌握平面几何的知识,下面将为大家提供一些练习题及讲解。
一、直线和角度1. 已知直线AB与直线CD相交于点O,若∠BOC=50°,求∠AOD 的度数。
解:由直线AB与直线CD相交,可知∠BOC与∠AOD互为对角,即∠BOC=∠AOD。
所以∠AOD的度数也是50°。
2. 在平面直角坐标系中,设直线L的斜率为k,且直线L与x轴、y 轴的交点分别为A、B。
若OA=3OB,则求k的值。
解:设B的坐标为(0, b),由题意得A的坐标为(a, 0)。
根据斜率的定义,k=(b-0)/(0-a)=-b/a。
又知OA=3OB,所以(a-0)^2+(0-b)^2=9(b-0)^2,化简得a^2+9b^2=0。
由此可得a=0,b=0,故k=0。
二、三角形1. 在三角形ABC中,AC=BC,∠ACB=80°,则∠ABC的度数是多少?解:由题意可知AC=BC,所以三角形ABC是一个等腰三角形,即∠BAC=∠BCA。
又∠ACB=80°,所以∠ABC的度数为(180°-80°)/2=50°。
2. 在直角三角形ABC中,∠B=90°,AB=6 cm,BC=8 cm。
求∠C的度数。
解:根据勾股定理可得AC=sqrt(AB^2+BC^2)=sqrt(6^2+8^2)=10 cm。
所以sin∠C=BC/AC=8/10=0.8,∠C=arcsin(0.8)≈53.13°。
三、圆和圆周1. 已知圆O的半径为3 cm,P是圆O上的一点,且OP=4 cm。
求圆O的面积和周长。
解:圆的面积公式为S=πr^2,其中r为半径。
所以圆O的面积为S=π*3^2=9π cm^2。
圆的周长公式为C=2πr,所以圆O的周长为C=2π*3=6π cm。
完整版)初中数学几何模型大全+经典题型(含答案)
完整版)初中数学几何模型大全+经典题型(含答案)通过将倍长中点相关线段进行旋转变换,可以构造出旋转全等模型。
这种模型的特点是,将相邻等线段所成角的一半旋转后拼接在一起,形成对称全等。
同时,也可以通过将两个等腰三角形或正多边形的夹角进行变化,来构造出模型变形。
如果遇到复杂图形找不到旋转全等,可以先找到两个正多边形或等腰三角形的公共极点,然后围绕公共极点找到两组相邻等线段,分组组成三角形证全等。
幂定理可以用等线段、等比值、等乘积进行代换,从而将两个数之间的比值转换成乘积。
在相似证明中,常用的辅助线是平行线,根据题目条件来确定比值并做出相应的平行线。
题目一:在半圆中,圆心为O,圆上有点C、E,CD垂直于AB,EF垂直于AB,EG垂直于CO。
证明CD等于GF。
题目二:在正方形ABCD内部,点P满足∠PAD=∠PDA=15度。
证明△PBC是正三角形。
题目三:在图中,ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点。
证明A2B2C2D2是正方形。
题目四:在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F。
证明∠DEN=∠F。
题目五:在△ABC中,H为垂心,O为外心,且OM垂直于BC于M。
1)证明AH等于2OM;2)如果∠BAC等于60度,证明AH等于AO。
1.设P为正三角形ABC内任意一点,连接PA,PB,PC,由三角形不等式可得PA+PB>AB。
PB+PC>BC。
PC+PA>CA。
将三式相加得到2PA+2PB+2PC>AB+BC+CA=3,即PA+PB+PC>3/2.又由于P到三角形三边的距离不超过1,所以PA+PB+PC<3,综上可得1.5≤PA+PB+PC<3,即所求不等式成立。
2.设P为正方形ABCD内任意一点,连接PA,PB,PC,PD。
由于正方形四边相等,所以PA+PC=2,PB+PD=2.又由于P到四边的距离不超过1,所以PA+PB+PC+PD<4.将前两式相加得到PA+PB+PC+PD=2(PA+PB)/2+2(PC+PD)/2≥2√(PA·PB)+2√(PC·P D)。
中考数学平面几何经典题
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABCP 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 200,求∠BED 的度数.1.如下图做GH ⊥AB,连接EO 。
中考数学之平面几何总结+经典习题
中考数学之平面几何总结+经典习题This manuscript was revised by the office on December 10, 2020.平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。
2.两点之间线段最短。
3.过一点有且只有一条直线和已知直线垂直。
4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。
垂直平分线,简称“中垂线”。
定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
中垂线性质:垂直平分线垂直且平分其所在线段。
垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
角1.同角或等角的余角相等。
2.同角或等角的补角相等。
3.对顶角相等。
角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。
定理2:到一个角的两边距离相等的点,在这个角的平分线上。
三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。
【平行线】平行线性质1:两直线平行,同位角相等。
平行线性质2:两直线平行,内错角相等。
平行线性质3:两直线平行,同旁内角互补。
平行线判定1:同位角相等,两直线平行。
平行线判定2:内错角相等,两直线平行。
平行线判定3:同旁内角互补,两直线平行。
平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
平面几何知识要点(二)【三角形】面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24a (a 为边长正三角形)3.已知三角形三边a,b,c ,则S =(海伦公式) 其中:()2a b c p ++= (周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =。
平面解析几何经典题(含答案)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围000180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。
特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为平行。
(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式不包括垂直于x轴的直线为直线上一定点,k为斜率斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式不包括垂直于x轴和y轴的是直线上两定点直线截距式a是直线在x轴上的非零截距,b是直不包括垂直于x轴和y轴或线在y轴上的非零截距过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式3.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
4.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知A(x,y),B(x,y),C(x,y),若x1x2x3或k AB k AC,则有A、B、C三点共112233线。
中考数学之平面几何最全总结+经典习题
中考数学之平面几何最全总结+经典习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。
2.两点之间线段最短。
3.过一点有且只有一条直线和已知直线垂直。
4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。
垂直平分线,简称“中垂线”。
定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
中垂线性质:垂直平分线垂直且平分其所在线段。
垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
角1.同角或等角的余角相等。
2.同角或等角的补角相等。
3.对顶角相等。
角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。
定理2:到一个角的两边距离相等的点,在这个角的平分线上。
三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。
【平行线】平行线性质1:两直线平行,同位角相等。
平行线性质2:两直线平行,内错角相等。
平行线性质3:两直线平行,同旁内角互补。
平行线判定1:同位角相等,两直线平行。
平行线判定2:内错角相等,两直线平行。
平行线判定3:同旁内角互补,两直线平行。
平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
平面几何知识要点(二)【三角形】 面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24a (a 为边长正三角形)3.已知三角形三边a,b,c ,则S =(海伦公式)其中:()2a b c p ++=(周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =。
平面解析几何经典题(含答案)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率、直线的倾斜角与斜率(1)倾斜角a 的范围000180a £<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k Û=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ^Û=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
互相垂直。
二、直线的方程1、直线方程的几种形式名称名称方程的形式方程的形式 已知条件已知条件 局限性局限性 点斜式点斜式为直线上一定点,k 为斜率为斜率 不包括垂直于x 轴的直线轴的直线 斜截式斜截式k 为斜率,b 是直线在y 轴上的截距轴上的截距 不包括垂直于x 轴的直线轴的直线 两点式两点式是直线上两定点是直线上两定点 不包括垂直于x 轴和y 轴的直线直线截距式截距式a 是直线在x 轴上的非零截距,b 是直不包括垂直于x 轴和y 轴或线在y 轴上的非零截距轴上的非零截距过原点的直线过原点的直线 一般式一般式A ,B ,C 为系数为系数 无限制,可表示任何位置的直线直线 三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
初中平面几何之几何作图习题(含答案)
几何作图(导学案)知识过关1. 说出日常生活现象中应用的数学原理:(1)如图1,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是__________________________________________.图1 图2(2)如图2,PC ∥AB ,QC ∥AB ,则点P ,C ,Q 在一条直线上,理由是_______________________________________.2. 估计下列角的度数,然后用量角器度量并填在横线上:(结果精确到1°)∠BOC =____,∠DOE =____,∠MON =_____,∠POQ =____.1. 常见几何语言书写:①连接AB ;②延长线段AB 到点C ,使BC =AB ; ③延长线段AB 交线段CD 的延长线于点E ; ④过点A 作AB ∥CD ; ⑤过点A 作AB ⊥CD 于点E . 2. 几何作图:①理解题意,找准_____________; ②___________________;③位置不确定时,需考虑_______________.➢ 精讲精练1. 如图,已知四点A ,B ,C ,D ,按要求作图: (1)连接AB ,CD ;(2)延长CD 交AB 的延长线于点G ; (3)过点B 作直线BM ⊥CD ,垂足为点M .Q CP AB QOOOPNMEDCB2. 如图,点M ,P 分别在直线AB 上和直线AB 外,以下是在此图基础上作图的过程及作法,请根据作图的过程叙述作法.ACB D3. 作一条线段等于已知线段.已知:如图,线段a . 求作:线段AB ,使AB =a . 作法:(1)作射线AP ;(2)以_________为圆心,_______为半径作弧,交射 线AP 于点B .___________即为所求.4. 已知线段a ,b (),作一条线段,使它等于a +b .作法:(1)作射线AP ;(2)在射线AP 上依次截取__________,_________. ___________即为所求.5. 如图,已知线段AB ,请用尺规按下列要求作图: (1)延长线段AB 到点C ,使BC =AB ; (2)延长线段BA 到点D ,使AD =AC .a b ba BA6.在直线l上任取一点A,截取AB=8 cm,再截取AC=12 cm,则线段BC的长为______________.7.在直线l上任取一点A,截取AB=16 cm,再截取AC=40 cm,则点B与AC的中点D之间的距离为__________.8.已知A,B,C三点在同一条直线上,AB=60,BC=40,M,N分别为线段AB,BC的中点,则MN的长为__________.9.已知线段AB=16 cm,点C在直线AB上,AC=3BC,则BC的长为______________.10.从O点出发的三条射线OA,OB,OC,若∠AOB是直角,∠AOC为30°,则∠BOC的度数为_____________.11.已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数为_____________.12.已知∠AOB=40°,∠AOD=3∠AOB,OC平分∠AOB,OM平分∠AOD,则∠MOC的度数为_____________.13.已知∠AOB=48°,∠BOC=3∠AOC,OM平分∠AOC,ON平分∠AOB,则∠MON的度数为__________.【参考答案】➢知识过关1.(1)垂线段最短;(2)过直线外一点,有且只有一条直线与已知直线平行.2.30°,60°,110°,140°2.①关键词;②设计作图方案,作出草图;③分类讨论.➢精讲精练1.略2.(1)连接(2)PH⊥AB于点H(3)PQ∥AB3.作图略(2)点A,线段a长(3)线段AB4.作图略(2)AB=a,BC=b,线段AC5.略6.4cm或20cm7.4cm或36cm8.50或109.4cm或8cm10.60°或120°11.30°或60°12.40°或80°13.18°或36°几何作图(当堂过关)1.如图,已知点P在∠AOB的内部,过点P作PC∥OB,交OA于点C,过点P作PD⊥OA于点D.2.已知线段a,b,画一条线段,使它等于2a-b.(保留作图痕迹)ab3.已知∠AOB=80°,∠BOC=60°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数为_____________,并作图说明.①作草图:②设计方案:【参考答案】1. 略2. 略3. 70°或10°,作图说明略几何作图(习题)➢ 例题示范例1:在直线l 上任取一点A ,截取AB =20cm ,再截取BC=50cm ,则AB 的中点D 与AC 的中点E 之间的距离为__________,并作图说明. 思路分析首先,理解题意,找关键词,其中l 为直线,AB ,BC 为l 上的两条线段. 其次,设计作图方案,作图.作直线l ,任取一点作为A ,取适当长作为AB ;此时点B 位置固定,但点C 可在点B 左侧或右侧,位置不定,故分两种情况. ①点C 在点B 左侧,如图,接着取AB 的中点D ,AC 的中点E .设计算法: ②点C 在点B 右侧,如图,接着取AB 的中点D ,AC 的中点E .设计算法:2050l2050l 11221225AB AC DE AD AE BC =+==+=2050l2050l综上,DE 的长度为25cm .➢ 巩固练习1. 如图1,点C ,D 是直线AB 外两点,按下列要求作图: (1)____________________________________________; (2)____________________________________________. 得到的图形如图2,请在横线填上作法.2. 如图,已知线段AB ,按要求作图:①分别以点A 和点B 为圆心、以AB 的长为半径作弧,两弧相交于点C 和点D ;②作直线CD ,交线段AB 于点E ;③请通过测量猜想线段AB 和直线CD 的位置关系,线段AE 与线段BE 的数量关系.3. 作图:已知线段a ,b (),作一条线段,使它等于.(保留作图痕迹,不必写作法)4. 已知线段AB =15cm ,点C 在直线AB 上,且BC =2AB ,则线段AC 的长为________________,并作图说明.11221225AC AB DE AE AD BC =-==-=ABCD 图1图2A Ba b >a b -ba5. 已知点C 在直线AB 上,若AC =4cm ,BC =6cm ,E ,F 分别为线段AC ,BC 的中点,则EF 的长为_____________,并作图说明.6. 已知线段AB=24,点C 在直线AB 上,BC=3AC ,M ,N 分别为线段AB ,AC 的中点,则MN 的长为_____________,并作图说明.7. 已知从点O 出发的三条射线OA ,OB ,OC ,若∠AOB =60°,,则∠BOC 的度数为________________,并作图说明.8. 已知∠AOB 为直角,∠BOC =40°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON 的度数为_______________,并作图说明.9. 已知∠AOB =120°,∠AOC =4∠BOC ,OD 平分∠AOB ,OE 平分∠AOC ,则∠EOD 的度数为____________,并作图说明.【参考答案】 ➢ 巩固练习1. (1)作射线DC 交AB 于点E(2)过点C 作CF ⊥DE 于点C ,交AB 于点F 2. 作图略,AB ⊥CD ,AE =BE 3. 作图略13AOC AOB ∠∠O BA4.15cm或45cm,作图说明略5.1cm或5cm,作图说明略6.9或18,作图说明略7.40°或80°,作图说明略8.25°或65°,作图说明略9.12°或20°,作图说明略。
九年级平面几何经典题型(平面几何的选择题有难度)
九年级平面几何经典题型(平面几何的选择题有难度)本文档旨在提供给九年级学生平面几何经典题型的选择题,这些题目都具有一定的难度。
以下是一些经典的平面几何选择题供您练和复。
1. 题目1:题目1:图中O为⊙O的圆心,∠AOC = 60°,半径OC=3cm,则弧AC 的弧长是多少?A. 9π cmB. 6π cmC. 3π cmD. 2π cm2. 题目2:题目2:已知△ABC,AB=AC,AD ⊥ BC,AD=6 cm,AD与BC的交点为D,则△ABC的面积是多少?A. 18 cm²B. 12 cm²C. 24 cm²D. 36 cm²3. 题目3:题目3:在长方形ABCD中,AB=4 cm,BC=5 cm,点E是BC边上的一个动点,使得△ABE与△ACD的面积相等,则BE的长度等于多少?A. 1 cmB. 2 cmC. 3 cmD. 4 cm4. 题目4:题目4:如图,在△ABC中,角ABC=60°,角ACB=90°,点D在边BC上,且角BAC=角BDC,则△BDC的面积为AB的何倍?A. 1/2B. 1/3C. 1/4D. 1/65. 题目5:题目5:如图,在正方形ABCD中,点E为AD边上的一个动点,且∠EBC = 60°,连接DE,并延长交BC于点F,则CF的长度等于多少?A. 2 cmB. 3 cmC. BC的一半D. BD的一半以上是一些九年级平面几何经典的选择题,希望能对您的学习和复习有所帮助。
请尽量独立解答这些题目,并注意细节。
祝您平面几何学得愉快!。
平面解析几何 经典题(含答案)
平面解析几何一、直线的倾斜角与斜率 1、直线的倾斜角与斜率(1)倾斜角α的范围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程 1、直线方程的几种形式 名称 方程的形式已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线 斜截式k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式是直线上两定点 不包括垂直于x轴和y 轴的直线截距式a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式A ,B ,C 为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离 两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
初三数学平面专题经典 (含答案)
初三数学平面专题经典 (含答案)
标题:初三数学平面专题经典(含答案)
本文档包含初三数学平面几何专题题目,涵盖了三角形、圆、相似等多个方面。
每个专题都配有详细的解题思路和答案解析,旨在帮助初三学生夯实数学基础,做好中考准备。
一、三角形专题
1. 已知三角形三边长度,求三角形周长和面积
2. 已知三角形的三个内角,判断其形状,并证明结论
3. 在三角形中,若两边之和大于第三边,则这两边所对的角的大小关系是什么?
4. 已知等腰三角形的底边和高,求面积
5. 已知等边三角形的高,求面积
二、圆专题
1. 已知圆的直径长度,求圆的周长和面积
2. 如何画出一个圆的内切正方形?
3. 如何用圆锥曲线画出一个正五边形?
4. 如何用圆锥曲线画出一个正三角形?
5. 已知圆的半径和圆心角的大小,求扇形面积
三、相似专题
1. 什么是相似三角形?
2. 如何判断两个三角形是否相似?
3. 如何求出两个相似三角形之间的边长比和面积比?
4. 如何利用相似三角形求解实际问题?。
初中数学平面几何最全归纳、经典习题
初中数学平面几何最全归纳、经典习题
初中数学:平面几何最全归纳+经典习题,平时多练练,考试不丢分
数学是我们的一门基础性学科,对于我们的广大中学生来讲,学好数学,数学水平的高低会直接影响到物理、化学等学科的学习成绩,由此可见,数学的重要地位是多么的重要。
想要学好数学,概念是数学的基石,学习到概念、深刻理解数学的基础概念,还需要我们多多做一些联系,在数学的学习过程中,必须熟悉各种基本题型并掌握其中的方法和解题思维,这是非常重要的在初中数学中,几何是其中的一个重点,也是一个难点,很多同学们在这方面都特别的困难,其实还是因为平时在这上面掌握不牢,学习不多,没有找到正确的学习方法,所以在这上面总是难有成效。
所以,下面给大家整理一份初中数学的平面几何的归纳+经典习题,建议家长们可以为孩子打印一份看看,对成绩的提升很有帮助。
中考数学平面几何经典题
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABCP 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 200,求∠BED 的度数.1.如下图做GH ⊥AB,连接EO 。
中考数学平面几何经典题共8页word资料
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .1、已知:△ABC 中,H M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .2、设MN 是圆O 外一直线,过O 作OA ⊥MN 圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A A交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE求证:点P到边AB1、如图,四边形ABCD求证:CE=CF.2、如图,四边形ABCD线于F.求证:AE=AF.(初二)3、设P是正方形ABCD求证:PA=PF.(初二)4、如图,PC切圆O于C,PO相交于B、D.求证:1、已知:△ABC求:∠APB的度数.2、设P是平行四边形求证:∠PAB=∠PCB.3、设ABCD4、平行四边形ABCDP ,且AE =CF .求证:∠DPA =∠DPC .(初二)1、设P 是边长为1的正△ABC≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC边长. 4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是DCA =300,∠EBA =200,求∠BED 的度数.1.如下图做GH ⊥AB,连接EO 。
平面解析几何 经典习题(含答案
欢迎阅读平面解析几何一、直线的倾斜角与斜率 1、直线的倾斜角与斜率(1)倾斜角α的范围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式是直线上两定点不包括垂直于x 轴和y 轴的直线截距式a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线 一般式A ,B ,C 为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
(完整word)中考数学之平面几何最全总结+经典习题,推荐文档
平面几何知识要点(一)【线段、角、直线】1. 过两点有且只有一条直线。
2. 两点之间线段最短。
3. 过一点有且只有一条直线和已知直线垂直。
4. 直线外一点与直线上各点连接的所有线段中,垂直线段最短。
垂直平分线,简称中垂线”。
定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
中垂线性质:垂直平分线垂直且平分其所在线段。
垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
•三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
角1. 同角或等角的余角相等。
2. 同角或等角的补角相等。
3. 对顶角相等。
角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1 :角的平分线上的点到这个角的两边的距离相等。
定理2:到一个角的两边距离相等的点,在这个角的平分线上。
三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。
【平行线】平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
平面几何知识要点(二)【三角形】 面1 •已知三角形底a ,高 h ,2 •正三角形面积S 」a 24(a 为边长正三角形)3.已知三角形三边a,b,c ,S p(p a)(p b)(p c)(海伦公式)其中:p 也2b c) (周长的一半)4 .已知三角形两边 a , b 及这两边夹角C ,则S1 absin C 。
25 .设三角形三边分别为 a 、b 、c ,内切圆半径为(a b c)r 6 .设三角形三边分别为c ,外接圆半径为R ,则2 abc 4R记住★:已知正三角形边长为其外接圆半径为R ,内切圆半径为则有:内角和定理:R 2r180°直角三角形的两个锐角互余 三角形的一个外角等于和它不相邻的两个内角的和 三角形的一个外角大于任何一个和它不相邻的内角三角形三个内角的和等于 推论 推论 推论全等三角形性质: 如果两三角形全等,那么其对应边,对应角相等。
平面几何习题大全
平面几何习题大全(总39页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面几何习题大全下面的平面几何习题均是我两年来收集的,属竞赛范围。
共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。
几何计算-1命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。
若AF=15,BE=10,则四边形DECF的面积是多少解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF<==> 10/y=x/15 <==> xy=150.所以,矩形DECF的面积150.几何证明-1命题在圆内接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。
证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。
易证ΔAPO≌ΔORD,所以 DR=OP,AP=OR,故 OP+OR=DR+AP=(CD+AB)/2。
同理可得:OQ+OS=(DA+BC)/2。
因此有 OP+OQ+OR+OS=(AB+BC+CD+DA)/2。
证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证RtΔAPO≌RtΔORD,故得 DR=OP,AP=OR,即 OP+OR=DR+AP=(CD+AB)/2。
同理可得:OQ+OS=(DA+BC)/2。
因此有 OP+OQ+OR+OS=(AB+BC+CD+DA)/2。
几何不等式-1命题设P是正△ABC内任意一点,△DEF是P点关于正△ABC的内接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推论 1:三个角都相等的三角形是等边三角形 推论 2:有一个角等于 60°的等腰三角形是等边三角形 直角三角形
1. 勾股定理:直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方
( a2 b2 c2 )
得的线段也相等
推论 1:经过梯形一腰的中点与底平行的直线,必平分另一腰 。 推论 2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条 直线平行于三角形的第三边
等腰三角形的性质定理:等腰三角形的两个底角相等。 推论 1:等腰三角形顶角的平分线平分底边并且垂直于底边 。 推论 2:等腰三角形的顶角平分线、底边上的中线和高互相重合。(三线合一) 推论 3:等边三角形的各角都相等,并且每一个角都等于 60°
定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的 三
角形与原三角形相似。 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 梯形中位线定理: 梯形的中位线平行于两底,并且等于两底和的一半 。 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截
角 1. 同角或等角的余角相等 。 2. 同角或等角的补角相等 。 3. 对顶角相等。
角的平分线性质 角的平分线是到角的两边距离相等的所有点的集合 定理 1:角的平分线上的点到这个角的两边的距离相等 。 定理 2: 到一个角的两边距离相等的点,在这个角的平分线上。
三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。 【平行线】
逆命题:如果三角形的三边长有关系 a2 b2 c2 ,形为锐角或钝角的一个简单的方法,其中
c 为最长边: 如果: a2 b2 c2 ,则 △ABC 是直角三角形; 如果 a2 b2 c2 ,则△ABC 是锐角三角形 ;
如果 a2 b2 c2 ,则△ABC 是钝角三角形。
平行线性质 1:两直线平行,同位角相等。平 行线性质 2:两直线平行,内错角相等。平行 线性质 3:两直线平行,同旁内角互补。平行 线判定 1:同位角相等,两直线平行。平行线 判定 2:内错角相等,两直线平行。平行线判 定 3:同旁内角互补,两直线平行。
平行线判定 4:如果两条直线都和第三条直线平行,这两条直线也互相平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
4
3. 已知三角形三边 a,b,c,则 S p( p a)( p b)( p c) (海伦公式)
(a b c)
其中: p
(周长的一半)
2
4. 已知三角形两边 a,b 及这两边夹角 C,则 S 1 ab sin C 。
2
5. 设三角形三边分别为 a、b、c,内切圆半径为 r,则 S (a b c)r 2
中考复习资料
平面几何知识要点
平面几何知识要点(一)
【线段、角、直线】 1. 过两点有且只有一条直线。 2. 两点之间线段最短。 3. 过一点有且只有一条直线和已知直线垂直。 4. 直线外一点与直线上各点连接的所有线段中,垂直线段最短。
垂直平分线,简称“中垂线”。 定义: 经过某一条线段的中点,并且垂直于这条线 段的直线,叫做这条线段的 垂直平分线(中垂线 )。 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 。 中垂线性质 :垂直平分线垂直且平分其所在线段。 垂直平分线定理: 垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分 线上。 .三角形三条边的垂直平分线相交于一点,该点叫 外心,并且这一点到三个顶点 的距离相等。
2.
直角三角形斜边中线定理:直角三角形斜边上的中线等于斜边长的一半。
3
中考复习资料
2
中考复习资料
平面几何知识要点
相似三角形判定定理 判定定理 1:两角对应相等,两三角形相似(ASA) 判定定理 2:两边对应成比例且夹角相等,两三角形相似(SAS) 判定定理 3 三边对应成比例,两三角形相似(SSS) 定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一
条 直角边对应成比例,那么这两个直角三角形相似。
全等三角形性质:如果两三角形全等,那么其对应边,对应角相等。其中对应边除了三角形 的边长外,还包括对应高,对应中线,对角平分线。
全等三角形判定定理: 边边边公理:有三边对应相等的两个三角形全等。(SSS) 边角边公理:有两边和它们的夹角对应相等的两个三角形全等。(SAS) 角边角公理:有两角和它们的夹边对应相等的两个三角形全等。(ASA)
推论:有两角和其中一角的对边对应相等的两个三角形全等。 斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。
相似三角形性质定理 性质定理 1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相 似比。 性质定理 2:相似三角形周长的比等于相似比。 性质定理 3:相似三角形面积的比等于相似比的平方。
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段 成比例。
1
中考复习资料
平面几何知识要点
平面几何知识要点(二)
【三角形】
面积公式: 1.
已知三角形底 a,高 h, S 1 ah 2
3 2. 正三角形面积 S= a2 (a 为边长正三角形)
6. 设三角形三边分别为 a、b、c,外接圆半径为 R,则 S abc
4R
记住★:已知正三角形边长为 a ,其外接圆半径为 R ,内切圆半径为 r ,则有:
R 3a ,r 3a ,
3
6
R 2r
内角和定理:三角形三个内角的和等于 180° 推论 1 :直角三角形的两个锐角互余 推论 2 :三角形的一个外角等于和它不相邻的两个内角的和 推论 3 :三角形的一个外角大于任何一个和它不相邻的内角