离散型随机变量的分布列教案
离散型随机变量及其分布列教案
2/4
7. 某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外的概率为 0.1,落在靶内的各个点是 随机的。 已知圆形靶中三个圆为同心圆, 半径分别为 30cm, 20cm, 10cm, 飞镖落在不同区域的环数如图。 设这位同学投掷一次得到的 环数为随机变量 X,求 X 的分布列。 【参考答案】由题意可知,飞镖落在靶内各个区域的概率与它们的 面积成正比,而与它们的位置和形状无关,由圆的半径值可得到三 个同心圆的半径比为 3:2:1,面积比为 9:4:1,所以 8 环区域,9 环区域,10 环区域的面积 比为 5:3:1,则掷得 8 环,9 环,10 环的概率课分别设为 5k ,3k, k,根据离散型随机变 量分布列的性质(2)有 0.1 + 5k + 3k + k = 1 解得k = 0.1 .得到离散型随机变量 X 的分布列为 X P 0 0.1 8 9 0.3 10 0.1
1 6 1
5 1 6
6 1 6
1 6
(2)P X > 4 = P X = 5 + P x = 6 =
+6 =3 ;
1 5
1
(3) P X ≤ 5 = P X = 1 + P X = 2 + P X = 3 + P X = 4 + P X = 5 = 5 ∙ 6 = 6. 或P X ≤ 5 = 1 − P X > 5 = 1 − P X = 6 = 1 − 6 = 6.
2 第一步:从 1,3,5 中选取两个数字有������3 = 3种办法;第二步将选取的两个数
字与 0 一起组成三位数的奇数有������2 (0 只能放在十位上) , 由分 2 = 2种方法 步乘法计数原理,第一类中的奇数共有������1 = 3 × 2 = 6种。
离散型随机变量的分布列优秀教学设计
离散型随机变量的分布列一.教学目标:1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列. 2.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3.了解二项分布的概念,能举出一些服从二项分布的随机变量的例子. 二.教学重点:离散型变量的分布列及其求法. 教学难点:理解随机变量分布列的性质. 三.教学用具:投影仪 四.教学过程: 1.复习提问(1)可问:随机变量、离散型随机变量、连续型随机变量的概念. (2)点评上节课学生做的课外作业. 2.提出教科书中关于抛掷一枚骰子的例子 可问:你能举出类似这样的例子吗?精选1~2个学生举的例子,加以分析和研究.3.提出随机变量ξ的分布列的概念,总结任一离散型随机变量的分布列具有的两个简单性质在分析和研究上述例子的基础上,概括出:一般地,设离散型随机变量ξ可能取的值为,,,,,21 i x x xξ取每一个值),2,1( =i x i 的概率为i i P x P ==)(ξ,则称表ξ 1x 2x (i)x…P1P2P…iP…为随机变量ξ的概率分布,简称ξ的分布列.引导学生回顾概率的基本性质,归纳总结出任一离散型随机变量的分布列的两个简单性质:(1) ,2,1,0=≥i P i ; (2).121=++ P P4.讲解例1、例2例1 一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球.若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.解:设黄球的个数为n ,依题意知道绿球个数为2n ,红球个数为4n ,盒中球的总数为7n .∴.717)0(,7272)1(,7474)1(=====-====n n P n n P n n P ξξξ ∴从该盒中随机取出一球所得分数ξ的分布列为ξ 1 -1 0P7472 71例2 一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是),3,2,1(21=n n .记ξ为原物体在分裂终止后所生成的子块数目.求)10(≤ξP .解:依题意,原物体在分裂终止后所生成的子块数目ξ的分布列为ξ 2 4 8 16 …n 2 …P214181 161 … n 21…∴)8()4()2()10(=+====≤ξξξξP P P P .87814121=++=通过例2及教科书中的例子,归纳总结出: 一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.5.提出离散型随机变量服从二项分布的概念引导学生回顾n 次独立重复试验中事件A 恰好发生k 次的概率公式.然后提出离散型随机变量ξ服从二项分布的概念.可问:你能举出离散型随机变量服从二项分布的例子吗? 根据学生举的例子,教师引导他们对此加以简单分析. 6.讲解例3、例4例3 某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量%)5,2(~B ξ.所以,.0025.0%)5()2(,095.0%)95%)(5()1(,9025.0%)95()0(22212202=========C P C P C P ξξξ因此,次品数ξ的概率分布是ξ 0 1 2P0.9025 0.095 0.0025例4 重复抛掷一枚骰子5次,得到点数为6的次数记为ξ,求)3(>ξP . 解:依题意,随机变量)61,5(~B ξ.∴.77761)61()5(,77762565)61()4(555445====⋅==C P C P ξξ ∴.388813)5()4()3(==+==>ξξξP P P7.课堂练习教科书中的“练习”. 8.归纳总结(1)对离散型随机变量ξ的分布列及其性质和二项分布的概念作一次小结. (2)对本课的4道例题的解题思路进行总结. 五.布置作业:教科书习题第3、5、6题。
离散型随机变量的分布列教学设计(何娟)
《离散型随机变量的分布列》教学设计山东省实验中学何娟一、教学内容分析概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。
离散型随机变量的分布列是普通高中课程标准实验教科书数学(选修2-3)人民教育出版社B版第二章《概率》的第二节,它是一个必然事件分解成有限个互斥事件的概率的另一种表现形式,整体地反映了离散型随机变量所有可能的取值及其相应值的概率, 全面描述了随机变量的统计规律,并为定义随机变量两种最重要的特征数即数学期望和方差奠定了基础。
因此,“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是必修3概率知识的延伸,也是统计学的理论基础,能起到承上启下的作用。
同时,它是培养学生学会用数学思维来解决问题的好的素材,能够提升学生数学抽象、数学建模和数据分析的核心素养。
二、教学目标分析本节课依据教材分析和课标要求, 可确定如下的三维教学目标:【知识与技能】理解离散型随机变量的分布列及二点分布模型, 掌握分布列的性质, 会求简单的离散型随机变量的分布列。
【过程与方法】在对具体问题的分析中, 经历数学建模过程, 理解离散型随机变量的分布列及其性质的导出,启发引导学生思考、讨论、表述,展现思维过程;让学生体会由具体到抽象的思想方法,感知从特殊到一般的认知过程。
【情感态度与价值观】在具体情境中, 认识分布列对于刻画随机现象的重要性, 体会数学来源于生活, 又应用于生活的事实; 设计抽奖活动,外化数学学习的兴趣,体会学习的成功与喜悦,培养严谨的科学态度。
根据以上目标的确定,教学上力求体现:两个意识(创新意识、应用意识)和四种能力(探究能力、建模能力、交流能力、实践能力)。
三、学生学情分析根据本人以往的教学经验和学生思维的最近发展区理论,从以下两方面对学生学习本节课内容的情况加以分析,便于找到学生的认知规律,帮助学生跨越学习障碍。
1、认知基础:学生在必修3概率初步中已学习过随机事件和简单的概率模型,会用古典概型、几何概型求解随机事件的概率;在选修2-3第一章计数原理中学习了利用排列组合知识求某些随机事件的概率,具备一定的知识基础。
离散型随机变量及其分布列教案
离散型随机变量及其分布列教案一、教学目标1.了解离散型随机变量的基本概念和特点;2.掌握离散型随机变量的概率分布列的计算方法;3.熟练掌握二项分布、泊松分布等离散型随机变量的概率分布列及其应用。
二、教学重点1.离散型随机变量的基本概念和特点;2.离散型随机变量的概率分布列的计算方法;3.二项分布、泊松分布等离散型随机变量的概率分布列及其应用。
三、教学内容及步骤1. 离散型随机变量的定义和特点(10分钟)1)定义:若取值只能是有限个或可数个,且每个取值发生的概率都已知,则称该随机变量为离散型随机变量。
2)特点:① 取值只能是有限个或可数个;② 每个取值发生的概率都已知。
2. 离散型随机变量的分布列(15分钟)1)定义:对于一个离散型随机变量X,它所有可能取到的值x1,x2,……,xn,每个值发生的概率分别为p1,p2,……,pn,则称这些概率值所组成的表格为X的概率分布列或简称分布列。
2)计算方法:对于离散型随机变量X,其概率分布列可以通过观察问题得到,也可以通过统计样本得到。
对于某一取值xi,其概率pi可以通过以下公式计算:pi=P(X=xi)3. 二项分布(20分钟)1)定义:当试验只有两种可能结果时(成功或失败),在n次独立重复试验中,成功的次数X服从二项分布。
2)公式:X~B(n,p),其中n表示试验次数,p表示每次试验成功的概率。
3)概率分布列:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中C(n,k)表示从n个元素中取k个元素的组合数。
4)应用:二项分布常用于伯努利实验、抽样调查、质量控制等方面的问题。
4. 泊松分布(20分钟)1)定义:当一个事件在一段时间内发生的次数服从泊松分布时,称该事件服从泊松过程。
2)公式:X~P(λ),其中λ表示单位时间内该事件平均发生的次数。
3)概率分布列:P(X=k)=e^(-λ)*λ^k/k!4)应用:泊松分布常用于描述单位时间内某一事件发生的次数,如电话交换机接到呼叫的次数、邮局收到信件的数量等。
离散型随机变量的分布列教学设计
2.1离散型随机变量的分布列一、【教材的地位和作用】概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者虽有明显的不同,但它们都是相互渗透、相互联系的。
“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是概率的延伸,也是学习统计学的理论基础,能起到承上启下的作用,是本章的关键知识之一。
随机变量是将随机现象的结果数量化,把对随机事件及概率的研究转化为对随机变量及概率的研究;离散型随机变量的分布列反映了随机变量的概率分布,将实验的各个孤立事件联系起来,从整体上研究随机现象。
并为定义离散型随机变量的数学期望和方差奠定基础,揭示了离散型随机变量的统计规律。
二、【教学目标】知识技能目标:了解离散型随机变量的分布列,会求某些简单的离散型随机变量的分布列;过程方法目标:发展学生的抽象、概括能力;情感态度目标:通过引导学生对解决问题的过程的参与,使学生进一步感受数学表示的简洁,从而激发学生学习数学的热情.三、【重点、难点】教学重点:会求离散型随机变量的分布列, 会应用离散型随机变量的分布列的性质.教学难点:求离散型随机变量的分布列.四、【学情分析】知识结构方面,学生已学习了排列、组合、二项式定理、概率和随机变量,已具备了本节课所需的预备知识。
能力方面,经过两年学习,学生具有了一定的发现、分析、解决问题的能力,抽象、概括能力,逻辑思维能力.五、【教学策略及方法】主动建构式的教学方式——在教师的正确引导下,由学生已学过的有关知识,如离散型随机变量ξ的取值及所取的值对应的概率,让学生积极主动地建构出离散型随机变量的分布列.六、【教具准备】多媒体课件.七、【教学过程】1、新课导入(1)随机变量:我们将随机试验中的每一个可能的结果都对应于一个数,这种对应称为一个随机变量.随机变量常用字母X 、Y 、ξ、η等表示.(2)两类随机变量若随机变量的取值能够一一列举出来,这样的随机变量叫做离散型随机变量. 若随机变量的取值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 今天先来学习离散型随机变量的分布列.2、探究问题抛掷一枚骰子,所得的点数X 有哪些值?X 取每个值的概率是多少?3、新课讲授(1)离散型随机变量的分布列的定义设离散型随机变量X 可能取的值为12,,a a ,随机变量X 取i a 的概率为(1,2,,)i P i n = ,记作:()()1,2,3,i iP X a p i === (1)或把上式列成表2-2:表2-2或(1)式称为离散型随机变量X 的分布列.(2)根据随机变量的意义与概率的性质,你能发现分布列有什么性质? ①0,12,,i p i >= ②121p p ++=4、典例探究例1 一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,用X 表示取出球的最大号码,求X 的分布列.思考:(1)取出球的最大号码小于5的概率是多少?(2)结合X 的分布列你能给同学提一个问题吗?例2 随机变量X 的分布列为(1)求常数a ;(2)求(14)P X <<5、随堂练习(1)下列A 、B 、C 四个表,其中能成为随机变量X 的分布列的是( )(2)设随机变量X 的分布列为(),2i P X i a ==1,2,3.i = 则(2)P X ==__________.(3) 一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,用X 表示取出球的最小号码,求X 的分布列.6、课堂总结(1)分布列的定义.(2)分布列的性质:①0,12,,i p i >= ②121p p ++= (3)求分布列的步骤:①确定随机变量X 的所有可能的值;②求出各取值对应的概率;③画出表格.八、【板书设计】。
高中数学离散型随机变量的分布列教案新人教A版选修
一、教案简介本教案为人教A版高中数学选修课程《离散型随机变量的分布列》的教学设计,主要针对高中学生,旨在帮助学生理解离散型随机变量的概念,掌握分布列的性质及其计算方法,培养学生的数学思维能力和实际应用能力。
二、教学目标1. 理解离散型随机变量的定义及其性质。
2. 掌握离散型随机变量的分布列的概念及其计算方法。
3. 能够运用分布列解决实际问题,提高数学建模能力。
三、教学内容1. 离散型随机变量的定义及其性质。
2. 分布列的概念及其计算方法。
3. 常用离散型随机变量的分布列(如伯努利分布、二项分布、几何分布等)。
4. 离散型随机变量分布列的应用。
四、教学过程1. 引入新课:通过实例介绍离散型随机变量的概念,引导学生思考其分布规律。
2. 讲解离散型随机变量的定义及其性质,让学生理解并掌握基本概念。
3. 讲解分布列的概念及其计算方法,让学生能够自行求解离散型随机变量的分布列。
4. 通过例题讲解常用离散型随机变量的分布列及其应用,让学生能够解决实际问题。
5. 课堂练习:让学生运用所学知识解决实际问题,巩固课堂所学。
五、教学评价1. 课堂问答:检查学生对离散型随机变量及其分布列的基本概念的理解。
2. 课堂练习:评估学生运用分布列解决实际问题的能力。
3. 课后作业:巩固学生对离散型随机变量分布列的知识,提高学生的数学应用能力。
六、教学策略1. 实例引入:通过生活中的实际例子,激发学生的学习兴趣,引导学生思考离散型随机变量的分布规律。
2. 互动教学:在讲解过程中,鼓励学生积极参与,提问解答,增强课堂的互动性。
3. 分层教学:针对学生的不同层次,给予适当的引导和辅导,使所有学生都能跟上教学进度。
4. 实践操作:通过大量的例题和练习,让学生在实践中掌握离散型随机变量的分布列的计算方法及其应用。
七、教学资源1. PPT课件:制作精美的PPT课件,直观展示离散型随机变量的分布列的性质和计算方法。
2. 教学案例:收集与离散型随机变量分布列相关的实际案例,用于引导学生思考和巩固所学知识。
高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征
所以ቊ
解得 = 1 = 0.6.
= 1 + = 0 = 1,
(2)
设随机变量的分布列为 = =
+1
= 1,2,3,4,5 ,则
3
3
7
10
< < =____.
2
2
[解析] ∵ 随机变量的分布列为 = =
)
2
,故选C.
3
2
,进而
3
(2)
若随机变量的分布列如下表所示,则当 < = 0.3时,实数的取
值范围是(
A.[−3,2]
B
)
−3
−2
0
1
2
0.2
0.1
0.2
0.1
0.4
B.(−2,0]
C.(0,1]
D.(1,2]
[思路点拨](2)根据分布列中的数据计算出 ≤ −2 , ≤ 0 的值,然
4
.故选ABD.
3
例3
某校为激发学生对天文、航天、数字科技三类相关知识的兴趣,举行了一
次知识竞赛(竞赛试题中天文、航天、数字科技三类相关知识题量占比分别为
40%,40%,20%).某同学回答天文、航天、数字科技这三类问题中每个题的正
2 1 1
确率分别为 , , .
3 2 3
(1)
若该同学在题库中任选一题作答,求他回答正确的概率;
则 = 0 −
+1 2
3
1
3
0++1
3
× + −
=
+1 2
3
离散型随机变量其分布列教案
离散型随机变量其分布列教案一、教学目标1.知识与技能:掌握离散型随机变量的概念;了解离散型随机变量的分布列的概念与相关性质;能够根据问题给出离散型随机变量的分布列。
2.过程与方法:通过讲解、示例分析和实际问题解答等方式培养学生的分析问题和解决问题的能力;通过课堂练习、小组合作等方式培养学生的合作精神和团队意识。
3.情感、态度和价值观:培养学生对离散型随机变量的兴趣;培养学生的逻辑思维和分析问题的能力;培养学生的合作意识和团队合作能力。
二、教学重点与难点1.教学重点2.教学难点三、教学过程1.导入新知识引入离散型随机变量的概念,与连续型随机变量进行对比,引出离散型随机变量的分布列的概念,并讲解分布列的性质。
2.学习新知识2.1引入概念解释离散型随机变量的概念,并给出几个常见的离散型随机变量的例子,如二项分布、泊松分布等。
2.2分布列的概念详细讲解分布列的概念,即离散型随机变量的取值及其对应的概率,并通过示例进行说明。
2.3分布列的性质讲解分布列的性质,包括非负性、和为1等。
3.巩固与拓展通过例题进行分布列的计算练习,同时讲解分布列的期望值和方差的计算方法。
4.拓展应用结合实际问题,如掷硬币、扔骰子等,引导学生找出问题中的离散型随机变量,并计算其分布列。
四、教学设置1.教具准备黑板、彩笔、教案、习题册等。
2.师生活动教师以讲解为主,学生以听讲、思考、举手发言为主。
3.学生活动主要是听讲、思考、讨论、合作等。
五、教学反思离散型随机变量的分布列是基础内容,是理解和应用概率论中的重要概念。
通过本节课的学习,学生对离散型随机变量的概念和分布列的性质有了初步的了解,并能够通过例题进行分布列的计算。
教学过程中需要注意让学生进行思考和灵活运用,培养学生的分析问题和解决问题的能力,同时注重实际问题的应用,提高学生的理论与实践结合的能力。
离散型随机变量及其分布列教案
离散型随机变量及其分布列教案离散型随机变量及其分布列教案一、引言1.1 概念介绍离散型随机变量是统计学中的一个重要概念,它描述了在一次实验中可能取到的离散数值,如扔一枚硬币可以取到正面和反面两个离散数值。
本文将介绍离散型随机变量的基本概念及其分布列。
1.2 学习目标通过本教案的学习,你将能够:- 理解离散型随机变量的基本概念;- 了解离散型随机变量的分布列及其性质;- 掌握计算离散型随机变量概率的方法。
二、离散型随机变量的定义2.1 随机变量的概念在概率论中,随机变量是指定义在某个概率空间上的实值函数,它的取值是由实验结果决定的。
随机变量可以分为离散型和连续型两种类型,本文主要关注离散型随机变量。
2.2 离散型随机变量的定义离散型随机变量是指其取值是有限个或可数个的随机变量。
扔一枚硬币的实验可以定义一个离散型随机变量X,它的取值为1(正面)和-1(反面)。
三、离散型随机变量的分布列3.1 定义离散型随机变量的分布列,也称为概率质量函数(Probability Mass Function,简称PMF),描述了随机变量取各个值的概率。
3.2 示意图我们可以通过绘制柱状图来直观地表示离散型随机变量的分布列。
横轴表示随机变量的取值,纵轴表示对应取值的概率。
3.3 性质离散型随机变量的分布列具有以下性质:- 非负性:概率质量函数的取值非负;- 总和为1:所有可能取值的概率之和等于1。
四、计算概率4.1 概念介绍在实际问题中,我们常常需要计算离散型随机变量的概率。
概率计算可以基于分布列进行。
4.2 计算方法计算离散型随机变量概率的基本方法是通过分布列查找对应取值的概率。
具体而言,对于随机变量X和某个取值x,我们可以通过查找分布列找到对应的概率P(X=x)。
五、总结与回顾5.1 概括概念通过本教案的学习,我们了解了离散型随机变量的基本概念及其分布列。
离散型随机变量的分布列描述了随机变量取各个值的概率。
5.2 理解计算方法我们学会了通过分布列计算离散型随机变量的概率的方法。
离散型随机变量及其分布教案
离散型随机变量及其分布教案一、引言随机变量是概率论中的重要概念,它描述了随机试验中的各种可能结果与相应的概率分布之间的关系。
离散型随机变量是指在一定范围内取有限个或可列无限个离散值的随机变量。
本教案将介绍离散型随机变量及其分布。
二、离散型随机变量的概念离散型随机变量可以理解为能够取到离散值的随机变量。
例如,抛掷一个骰子出现的点数就是一个离散型随机变量,因为它只能取到1、2、3、4、5、6这几个离散值之一。
三、离散型随机变量的分布律离散型随机变量可以通过分布律来描述其各个取值的概率。
1. 定义离散型随机变量的分布律是指在给定取值情况下的概率分布。
对于离散型随机变量X,其分布律可以表示为P(X=x),其中x表示X的某个取值。
2. 性质离散型随机变量的分布律必须满足以下两个性质:(1)非负性:对于任意的x,P(X=x)≥0;(2)归一性:所有可能的取值情况的概率之和等于1,即∑P(X=x)=1。
四、常见离散型随机变量及其分布1. 伯努利分布伯努利分布是最简单的离散型随机变量分布之一,它描述了一个随机试验只有两个可能结果的情况。
例如,投掷硬币的结果只能是正面或反面。
2. 二项分布二项分布是描述n个独立的伯努利试验中成功次数的离散型随机变量的分布。
例如,投掷一枚硬币n次,正面朝上的次数就是一个满足二项分布的离散型随机变量。
3. 泊松分布泊松分布是描述在给定时间段或空间范围内某事件发生次数的离散型随机变量的分布。
例如,单位时间内到达某一地点的车辆数量就可以用泊松分布来描述。
4. 几何分布几何分布是描述在一系列独立的伯努利试验中,首次获得成功所需要的试验次数的离散型随机变量的分布。
例如,第一次抛掷正面朝上的硬币所需要的抛掷次数就可以用几何分布来描述。
五、总结离散型随机变量及其分布是概率论中的重要概念,通过分布律可以准确描述随机变量的取值情况和相应的概率分布。
常见的离散型随机变量包括伯努利分布、二项分布、泊松分布和几何分布,它们在实际问题中具有广泛应用。
离散型随机变量分布列教学案
离散型随机变量分布列教学案一、知识目标1.能够定义离散型随机变量;2.了解离散型随机变量分布的概念;3.能够构造离散型随机变量分布列,了解分布列的意义及其特点;4.能够求离散型随机变量分布的期望和方差。
二、教学重点四、教学方法讲授、举例、讨论。
五、教学过程1.引入现实生活中经常碰到的事件有可能是某种情况的多次发生,每次事件的结果都是不确定的,这样的现象叫做随机事件。
而随机变量则是随机事件的结果所标示的数值。
本节课将着重介绍离散型随机变量的概念、分布列的构造及相关计算方法。
2.概念解释(1)离散型随机变量:若随机变量取值只能是由有限个或无限个可数的数值所构成的集合中的一个,则该随机变量称为离散型随机变量。
3.分布列的构造及意义离散型随机变量的分布列是对离散型随机变量分布的一种简洁的表达方式,它由随机变量的可能取值和对应的概率构成。
(1)列出随机变量可能取的所有值;(2)确定每个值出现的概率;(3)将每个值及其对应的概率填入表格。
例如,某种硬币正面朝上的概率为0.4,反面朝上的概率为0.6,则构造硬币正面朝上的次数的分布列如下:正面朝上的次数 x 概率 P(x)0 0.64.分布列的特点(1)每个值的概率都非负,即P(x)≥0。
5.分布的期望和方差(1)期望离散型随机变量的期望定义为E[X]=∑xP(x),其中x为随机变量的取值,P(x)为x取某一特定值的概率。
(2)方差离散型随机变量的方差定义为Var[X]=E[X^2]-(E[X])^2,其中E[X^2]表示随机变量的二次方的期望。
6.范例讲解某小组4名同学和参加模拟考试,假设每位同学的通过率为0.8,未通过率为0.2。
求小组中通过数的概率分布。
解:构造通过数的分布列如下:其中,P(0)=0.2^4=0.0016,P(1)=C(4,1)×0.8×0.2^3=0.0256,P(2)=C(4,2)×0.8^2×0.2^2=0.1536,P(3)=C(4,3)×0.8^3×0.2=0.4096,P(4)=0.8^4=0.4096。
离散型随机变量及其分布列教案
离散型随机变量及其分布列教案离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。
离散型随机变量通常用来描述一些试验的结果,例如抛硬币的结果,掷骰子的结果等。
在教学过程中,可以通过引入离散型随机变量教授概率论的基本概念和计算方法。
以下是一个关于离散型随机变量及其分布列的教案:教学目标:1.了解离散型随机变量的定义和特点;2.掌握计算离散型随机变量的分布列;3.学会使用分布列计算期望值和方差。
教学内容:1.离散型随机变量的定义和特点:-定义:离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。
-特点:离散型随机变量的取值是可以数清的,不能取到区间之外的值。
2.离散型随机变量的分布列:-分布列是用来描述离散型随机变量各个取值的概率的表格或公式。
-分布列的特点:各个取值的概率之和为13.离散型随机变量的期望值和方差:-期望值是离散型随机变量各个取值与其相应概率的乘积之和。
表示为E(X)。
E(X) = x1*p1 + x2*p2 + ... + xn*pn- 方差是离散型随机变量各个取值与其相应概率的乘积减去期望值的平方之和。
表示为Var(X)。
Var(X) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn教学步骤:Step 1:引入离散型随机变量的概念通过实际例子引入离散型随机变量的概念,例如掷骰子的结果就是一个离散型随机变量。
Step 2:介绍离散型随机变量的定义和特点详细介绍离散型随机变量的定义和特点,并与连续型随机变量进行对比。
Step 3:讲解离散型随机变量的分布列解释离散型随机变量分布列的含义,给出分布列的例子,并教授计算分布列的方法。
Step 4:演示如何计算离散型随机变量的期望值和方差从分布列的角度出发,演示如何计算离散型随机变量的期望值和方差。
Step 5:练习和巩固提供一些练习题,让学生通过计算离散型随机变量的分布列、期望值和方差来巩固所学知识。
高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1
教学准备
1. 教学目标
离散型随机变量的分布列
2. 教学重点/难点
离散型随机变量的分布列
3. 教学用具
4. 标签
教学过程
一、基本知识概要:
1. 随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作;
说明:若是随机变量,,其中是常数,则也是随机变量。
2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区间内的一切值。
说明:①分类依据:按离散取值还是连续取值。
②离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。
说明:放回抽样时,抽到的次品数为独立重复试验事件,即。
例2:一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,写出随机变量的分布列。
剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即可以取1,2,3。
三、课堂小结
1会根据实际问题用随机变量正确表示某些随机试验的结果与随机事件;2熟练应用分布列的两个基本性质;
3能熟练运用二项分布计算有关随机事件的概率。
四、作业布置:教材P193页闯关训练。
高中三年级上学期数学《离散型随机变量的分布列》(教学设计)
7.2.2离散型随机变量的分布列(教学设计)【学习目标】1.能知道取有限个值的离散型随机变量及其分布列的概念2.会求出简单的离散型随机变量的分布列并能记住分布列的性质3.能知道两点分布及其导出过程,并能简单的运用【自主学习】知识点一离散型随机变量的分布列(1)所有取值可以一一列出的随机变量,称为离散型随机变量.(2)离散型随机变量X可能的取值为x1,x2,…,x i,…,x n,则它的概率分布列用表格可表示为用等式可表示为P(X=x i)=p i,i=1,2,…,n,离散型随机变量分布列的变化情况可以用图象来表示.知识点二两点分布随机变量X的分布列是:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的两点分布.称p=P(X=1)为成功概率.【合作探究】探究一求离散型随机变量的分布列【例1】从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.【解】(1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X=-2;当取到1个白球,1个黄球时,随机变量X=-1;当取到1个白球,1个黑球时,随机变量X=1;当取到2个黄球时,随机变量X=0;当取到1个黑球,1个黄球时,随机变量X=2;当取到2个黑球时,随机变量X=4.所以随机变量X的可能取值为-2,-1,0,1,2,4.P(X=-2)=26212=522,P(X=-1)=112212=211,P(X=0)=22212=166,P(X=1)=114212=411,P(X=2)=112212=433,P(X=4)=24212=111.所以X的分布列如下:(2)P(X>0)=P(X=1)所以赢钱的概率为1933.归纳总结:解题的关键有两点:一是依据试验的所有可能结果写出随机变量的可能取值;二是依据随机变量取值所对应的结果求出随机变量取每一个值的概率.另外,利用随机变量分布列中各个概率和为1对所求分布列进行验证也会防止出错【练习1】一袋中装有4只同样大小的球,编号分别为1,2,3,4,现从中随机取出2个球,以X 表示取出球的最大号码,则X 的分布列为.解析:由题意随机变量X 所有可能取值为2,3,4.且P (X =2)=124=16,P (X =3)=1224=13,P (X =4)=1324=12. 因此X 的分布列为探究二 分布列的性质【例2】设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3});(2)⎪⎭⎫⎝⎛<<2521X P .解 题中所给的分布列为=110. (1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25.(2)⎪⎭⎫⎝⎛<<2521X P =P (X =1)+P (X =2)=110+210=310.归纳总结:本题是一道离散型随机变量的分布列的计算与离散型随机变量的分布列的性质的应用综合起来的好题.主要先由离散型随机变量的分布列的性质求出a 的值,然后写出其相应的离散型随机变量的分布列,再利用离散型随机变量的分布列求出其相应的概率.本题中离散型随机变量取不同的值时所表示的随机事件彼此互斥,故由概率的加法公式求出其概率【练习2】已知离散型随机变量ξ的分布列如下:求k 的值.解:因为1=k +2k +…+2n -1k =k (1+2+…+2n -1)=k ·1-2n1-2=(2n -1)k ,所以k =12n -1.探究三 两点分布【例3】袋内有10个白球,5个红球,从中摸出2个球,记X =0,两球全红;1,两球非全红.)求X 的分布列.解 由题设可知X 服从两点分布 P (X =0)=25215=221; P (X =1)=1-P (X =0)=1921. ∴X 的分布列为归纳总结:(1)看取值:随机变量只取两个值:0和1.(2)验概率:检验P(X=0)+P(X=1)=1是否成立.如果一个分布满足以上两点,则该分布是两点分布,否则不是两点分布.【练习3】篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.85,求他一次罚球得分的分布列.解由题意,结合两点分布的特征可知,所求分布列为探究四分布列与统计知识的综合应用【例4】经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的分布列.【思路分析】每一个小矩形的面积即相应的概率.【解】(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000,当X∈[130,150]时,T=500×130=65 000.所以T=800X-39 000,100≤X<130,65 000,130≤X≤150.)(2)由(1)知利润T不少于57 000元时120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为归纳总结:【练习4】某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.解:(1)根据频率分布直方图可知,重量超过505克的产品数量为40×(0.05×5+0.01×5)=40×0.3=12.(2)Y的可能取值为0,1,2,且Y服从参数为N=40,M=12,n=2的超几何分布,故P(Y=0)=0228240=63130,P(Y=1)=1128240=2865,P(Y=2)=2028240=11130.所以Y的分布列为。
人教版高中数学《离散型随机变量的分布列》教学设计(全国一等奖)
《离散型随机变量的分布列》教学设计一、教材分析《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。
离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。
从近几年的高考观察,这部分内容有加强命题的趋势。
一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。
二、学情分析在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。
处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。
三、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会。
本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。
四、目标分析1.理解核心概念——离散型随机变量分布列及两点分布模型,掌握分布列的性质,会求离散型随机变量的分布列,并能解决实际问题;2. 在对抽奖问题的分析中经历数学建模过程,通过与函数的类比使学生理解离散型随机变量的分布列的函数属性,通过对抽奖方案的分析得出特殊的离散型随机变量的分布列,再从特殊的离散型随机变量的分布列归纳出一般的离散型随机变量的分布列,再通过对例题的抽奖方案的分析得出两点分布模型,让学生感知从特殊到一般再从一般到特殊的认知过程;3. 通过情境导入使学生在具体情境中认识分布列对于刻画随机现象的重要性,体会数学来源于生活,又应用于生活的本质。
(完整版)离散型随机变量及其分布列教案定稿
2.1.2离散型随机变量及其分布列一、教学目标知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:认识概率分布对于刻画随机现象的重要性。
情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。
二、教学重难点教学重点:离散型随机变量的分布列的概念。
教学难点:求简单的离散型随机变量的分布列。
三、教学过程复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示。
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量。
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出。
若ξ是随机变量,η=aξ+b,a,b是常数,则η也是随机变量,并且不改变其属性(离散型、连续型)。
讲解新课:1.分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为ξPx 1P 1x 2P 2P (ξ=x i)=pi,则称表…………x i P i为随机变量ξ的概率分布,简称ξ的分布列。
2.分布列的两个性质:任何随机事件发生的概率都满足:0≤P (A )≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:P i ≥0,i =1,2,…;P 1+P 2+ (1)对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即P (ξ≥x k)=P (ξ=x k)+P (ξ=xk +1)+⋅⋅⋅例题讲解:例1.在掷一枚图钉的随机试验中,令⎧1,针尖向上;X=⎨⎩0,针尖向下.如果针尖向上的概率为p ,试写出随机变量X 的分布列.解:根据分布列的性质,针尖向下的概率是(1-p ).于是,随机变量X 的分布列是ξ01P1-pp像上面这样的分布列称为两点分布列。
离散型随机变量及分布列优秀教学设计
课题:离散型随机变量及分布列一、教学内容分析本节课是普通高中新课程标准实验教科书《数学》(选修2-3)中第二章《随机变量及其分布》第一节“离散型随机变量及其分布列”的第二课时.引入随机变量的目的是研究随机现象发生的统计规律,及所有随机事件发生的概率.离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.对随机变量的概率分布的研究,实现了随机现象数学化的转化.学生在第一课时已经学习了“离散型随机变量”,对离散型随机变量的概念有了一定的认识.了解到建立从随机试验结果到随机变量的映射的目的是将实际问题数量化,便于用数学工具更好地研究问题,进一步体会数学建模的思想. 教师的重要作用就在于培养学生“数学地”观察事物,对现象或问题“数学地”思考,进而合理地量化和转化,把问题“数学化”,用数学的思想方法加以解决.本节课要研究随机变量所表示的随机事件的概率分布情况,即建立“离散型随机变量的分布列”这一数学模型. 离散型随机变量和其对应的概率之间是一种函数关系,因此可以类比函数来研究. 教师引导学生用数学的思维分析问题,用数学的思想方法解决问题. 通过类比函数的表示方法,首先对三个具体实例进行表示,获得对“离散型随机变量的分布列”模型的初步认识,再从这些具体实例中抽象概括出离散型随机变量的分布列的一般定义并进一步探索性质. 在概念得出的过程中,可以培养学生的抽象概括能力. 在此基础上学习两点分布等特殊的分布列,理解分布列对于刻画随机现象的重要性,能够应用分布列解决实际问题.在实际问题的解决中,可以培养学生的数学建模能力.因此,本节课的教学重点:理解离散型随机变量的分布列的概念,理解分布列对于刻画随机现象的重要性,理解两点分布的模型及其应用.二、教学目标设置1.通过具体实例,理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性;类比函数的几种表示法学习离散型随机变量的表示方法;探索离散型随机变量的性质.2.通过学生的自主探究,进一步体会数学抽象、数学建模的思想,培养学生抽象概括能力.3.通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法. 在解决实际问题的过程中,同学们加深对有关数学概念本质的理解,认识数学知识与实际的联系,并学会用数学解决一些实际问题.4.通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感.经历数学建模的过程并从中获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心.三、学生学情分析(一)学生程度我所授课的对象是天津市实验中学的学生.学生的水平相对较高,基础知识掌握得较好,学生的理解能力比较强.虽然已经经历了概率的学习,但是对随机变量的学习还处于初期阶段,一些数学方法和数学思想的掌握还有待进一步加强.(二)知识层面1.学生已经学习过概率的知识并掌握了计数原理;2.掌握了离散型随机变量的定义.(三)能力层面1.具有一定的数学抽象的能力;2.具有一定的数学建模的基础.根据以上三个方面的分析,在学生已有的认知基础的条件下,学生可以自主利用古典概型计算概率的公式完成求基本事件的概率.在具体操作过程中,需要老师的引导和帮助.教学难点:理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性.四、教学策略分析1.《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,以问题串驱动整个课堂的进行,采用启发、引导、探究相结合的教学方法.2.本节教学内容的脉络是:复习旧知,引入新课——研究实例,抽象概括——探索性质,辨析概念——数学建模,两点分布——实际应用,解决问题——课堂小结,反思提升.首先对上节课已经学习的随机变量的概念加以回顾,并进一步提出后续问题,即“我们更关心随机事件发生的可能性有多大,即随机变量取不同值的概率分布情况是怎样的”,以开门见山的方式提出问题,引发学生的思考.然后对于如何解决这个问题,以三道实际问题“掷骰子”、“掷硬币”、“摸次品”为背景,启发学生寻求解决问题的方法.类比函数的表示方法,研究离散型随机变量分布列的表示方法,进而抽象概括随机变量分布列的概念;探索离散型随机变量的性质,并辨析概念;通过举例,掌握两点分布的分布列模型及其应用;在解决实际问题的过程中,使学生加深对有关数学概念本质的理解,认识数学知识与实际的联系.利用离散型随机变量思想描述和分析某些随机现象,通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法.3.在探索两点分布和解决实际问题的过程中,通过小组合作交流,同桌协作探究的方式,借助图形计算器等信息技术手段,为学生的数学探究与数学思维提供支持完成调动学生学习的积极性和主动性,培养学生的探究精神及协作意识,使学生真正体会数学抽象、数学建模思想,并能体验成功的喜悦.五教学过程分析教学环节创设情境——概念形成——概念深化——知识应用——总结反思—达标检测附:板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2离散型随机变量的分布列
教学目标:
知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:认识概率分布对于刻画随机现象的重要性。
情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。
教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列 授课类型:新授课 课时安排:2课时
教 具:多媒体、实物投影仪 教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离散型、连续型)
请同学们阅读课本P 5-6的内容,说明什么是随机变量的分布列? 二、讲解新课:
1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,
ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表
2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)
对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ
3.两点分布列:
例1.在掷一枚图钉的随机试验中,令 ⎧⎨
⎩1,针尖向上;X=0,针尖向下.
如果针尖向上的概率为p ,试写出随机变量 X 的分布列.
解:根据分布列的性质,针尖向下的概率是(1p -) .于是,随机变量 X 的分布列是
像上面这样的分布列称为两点分布列.
两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X 的分布列为两点分布列,就称X 服从两点分布 ( two 一point distribution),而称p =P (X = 1)为成功概率.
两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利( Bernoulli ) 试验,所以还称这种分布为伯努利分布.
()q P ==0ξ, ()p P ==1ξ,
10<<p ,1=+q p .
4. 超几何分布列:
例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率.
解: (1)由于从 100 件产品中任取3 件的结果数为3
10C ,从100 件产品中任取3件, 其中恰有k 件次品的结果数为3595k
k
C C -,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为
3595
3
100
(),0,1,2,3k k
C C P X k k C -===。
所以随机变量 X 的分布列是
(2)根据随机变量X 的分布列,可得至少取到 1 件次品的概率 P ( X ≥1 ) = P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) ≈0.138 06 + 0. 005 88 + 0. 00006 = 0. 144 00 .
一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=k }发生的概率为
(),0,1,2,,k n k M N M
n
N
C C P X k k m C --===,
其中min{,}m M n =,且,,,,n N M N n M N N *
≤≤∈.称分布列
X 0
1
… m
P
0n M N M n N C C C - 11n M N M
n
N
C C C -- …
m n m M N M
n
N
C C C --
为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布( hypergeometriC distribution ) .
例 3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.
解:设摸出红球的个数为X ,则X 服从超几何分布,其中 N = 30 , M=10, n=5 .于是中奖的概率
P (X ≥3 ) = P (X =3 ) + P ( X = 4 )十 P ( X = 5 )
=353454555103010103010103010555
303030
C C C C C C C C C ------++≈0.191. 思考:如果要将这个游戏的中奖率控制在55%左右,那么应该如何设计中奖规则?
()n
N k k N k m C C C k P /-==ξ
例 4.已知一批产品共 件,其中 件是次品,从中任取 件,试求这 件产品中所含次品件数 的分布律。
解 显然,取得的次品数 只能是不大于 与 最小者的非负整数,即 的可能取值为:0,1,…,min{,}M n ,由古典概型知
(),0,1,2,,k n k M N M
n
N
C C P X k k m C --=== 此时称 服从参数为(,,)N M n 的超几何分布。
四、课堂练习:
某一射手射击所得环数ξ分布列为
ξ
4 5 6 7 8 9 10 P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
求此射手“射击一次命中环数≥7”的概率
解:“射击一次命中环数≥7”是指互斥事件“ξ=7”,“ξ=8”,“ξ=9”,“ξ=10”的和,根据互斥事件的概率加法公式,有:
P (ξ≥7)=P (ξ=7)+P (ξ=8)+P (ξ=9)+P (ξ=10)=0.88 注:求离散型随机变量ξ的概率分布的步骤:
(1)确定随机变量的所有可能的值x i
(2)求出各取值的概率p( =x i)=p i
(3)画出表格
五、小结:⑴根据随机变量的概率分步(分步列),可以求随机事件的概率;⑵两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一
(3)离散型随机变量的超几何分布
六、课后作业:
七、板书设计(略)。