先进高强度钢研究与发展状况

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先进高强度钢研究与发展状况

传统的高强度钢多是通过固溶、析出和细化晶粒作为主要强化手段,而先进高强度钢(AHSS )是指通过相变进行强化的钢种,组织中含有马氏体、贝氏体和(或)残余奥氏体,主要包括双相(DP) 钢、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相(CP) 钢、热成形(HF) 钢和孪晶诱导塑性(TWIP) 钢。

先进高强度钢的强度和塑性配合优于普通高强钢,兼具高强度和较好的成形性,特别是加工硬化指数高,有利于提高冲撞过程中的能量吸收,这对减重的同时保证安全性十分有利。AHSS 的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件;DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。先进高强度钢开发和研究进展

所有的高速钢的生产都要控制奥氏体相或奥氏体加铁素体相的冷却速度,可以在外围表面进行热磨削(如热轧产品),也可以在连续退火炉中局部冷却(连续退火或热浸涂产品)。马氏体钢是通过快速淬火致使大部分奥氏体转变成马氏体相而产生的。铁素体加马氏体双相钢的生产,是通过控制其冷却速度,使奥氏体相(见于热轧钢中)或铁素体+马氏体双相(见于连续退火和热浸涂钢中)在残余奥氏体快速冷却转变成马氏体之前,将其中一

些奥氏体转变成铁素体。TRIP钢通常需要保持在中温等温的条件以产生贝氏体。较高的硅碳含量使TRIP钢在最后的微观结构含过多的残余奥氏体。多相钢还遵循一个类似的冷却方式,但这种情况之下,化学元素的调整会产生极少的残余奥氏体并形成细小的析出以加强马氏体和贝氏体相。

汽车用高强度钢分为热轧、冷轧和热镀锌产品,其工艺特点都是通过相变实现强化。此外,还有一种热冲压成形模具淬火硬化的超高强钢再欧洲的汽车制造业获得了广泛应用。

随着安全性和燃油经济性需求的增长,汽车工业对高强度、轻质材料的需求越来越大。再汽车轻量化的推动下,汽车中铝合金、镁合金、塑料等零部件的使用比例逐年增加,钢铁在汽车材料中的主导地位也受到了威胁。为提高汽车的安全性并应对来自其他材料的挑战,目前钢铁材料的开发重点是高强度钢。

1 双相钢双相钢是由低碳钢或低碳微合金钢经两相区热处理或控轧控冷而得到,其显微组织主要为铁素体和马氏体。普通的高强钢是通过控制轧制细化晶粒,并通过微合金元素的碳氮化物的析出来强化基体,而双相钢是在纯净的铁素体晶界或晶内弥散分布着较硬的马氏体相,因此其强度与韧性得到了很好的协调。双相钢的强度主要由硬的马氏体相的比例来决定,其变化范围为5 ~30 。拉伸力学性能特点是:①应力一应变曲线呈光滑的拱形,无屈服点延伸;②具有高的加工硬化速率,尤其是初始加工硬化速率;③低的屈服强度和高的抗拉强度,成形后构件具有高的压溃抗力、抗撞击

吸收能和高的疲劳强度;④大的均匀的伸长率和总伸长率。双相钢是兼有高强度和良好成形性的理想汽车

2 相变诱发塑性钢

相变诱发塑性钢是指钢中存在多相组织的钢。这些相通常为铁素体、贝氏体、残余奥氏体和马氏体。在形变过程中,稳定存在的残余奥氏体向马氏体转变时引起了相变强化和塑性增长,为此残余奥氏体必须有足够的稳定性,以实现渐进式转变,一方面强化基体,另一方面提高均匀的伸长率,达到强度和塑性同步增加的目标TRIP钢的性能范围为:屈服强度340~860MPa,抗拉强度610~1080 MPa,伸长率22% ~37% 。

近年来,TRIP钢的发展迅速。TRIP钢主要用来制作汽车的挡板、底盘部件、车轮轮辋和车门冲击梁等。此外,TRIP钢板可作为热镀锌和Zn—Ni电镀锌的基板,以生产高强度、高塑性、高拉深胀形性以及高耐腐蚀性的镀锌板。韩国浦项已成功开发出800MPa和1000MPa级的TRIP钢,钢板的成形性能非常好,可以加工成复杂形状的汽车部件。目前,他们正着手开发1200MPa级的TRIP钢。在日本,三菱汽车公司与新日铁、住友金属及神户制钢等合作开发出汽车底盘零件用TRIP高强度钢板,在其新车型中已有8O余种底盘零件用TRIP钢板制造。

许多研究结果表明,高硅含量的TRIP钢与低合金高强度钢相比具有更好的延展性和抗拉强度,其成分系列有:C—Mn—Si—N—V,C—Mn—Si—Ti和Si—Nb等。但硅含量高将导致带钢表面产生红色

氧化皮以及热镀锌性能变差等缺点。近年来,一些研究者开始侧重于用其它元素(如铝、磷等)部分取代硅,以降低钢中的硅含量,改善涂镀性能,并通过添加铌、钒、钛及钼等元素来提高TRIP钢的强度。

3 复相钢

复相钢的组织与TRIP钢类似,其主要组织是细小的铁素体和高比例的硬相(马氏体、贝氏体),含有铌、钛等元素口。通过马氏体和贝氏体以及析出强化的复合作用,CP钢的强度可达800~1000MPa,具有较高的吸收能和扩孔性能,特别适合于汽车的车门防撞杆、保险杠和B立柱等安全零件。

依靠合金成分设计、微合金化、控轧控冷技术和连续退火技术,热轧和冷轧高强度带钢可以得到不同的组织,如铁素体+贝氏体双相组织、铁素体+马氏体双相组织、铁素体+贝氏体+残余奥氏体复相组织和马氏体组织,钢的强度可从500MPa提高到1000MPa以上,甚至可以达到1200MPa。实践表明,由于钢中的微合金元素含量较高,在非再结晶区控轧时的变形抗力增加,导致轧机负荷变大。在控轧控冷过程中,钛元素对加热温度和卷取温度很敏感。板坯加热温度和轧后卷取温度的波动容易导致卷板性能,如屈服强度和抗拉强度出现非常明显的波动。

对于冷轧高强度结构钢,可以在连续退火过程中通过复相热处理工艺获得不同组织体积比率的铁素体+贝氏体+马氏体复相组织。这种冷轧复相钢具有良好的综合力学性能,与常规淬火马氏体钢相在强度相同的条件下,有较高的韧性及塑性,因此在汽车工业具有广阔的应

用市场。

4 马氏体钢

马氏体钢的生产是通过高温奥氏体组织快速淬火转变为板条马氏体组织,可通过热轧、冷轧、连续退火或成形后退火来实现,其最高强度可达1600MPa,是目前商业化高强度钢板中强度级别最高的钢种。因此,当生产板状产品时,由于受成形性的限制,只能用滚压成形生产或冲压形状简单的零件,主要用于成形要求不高的车门防撞杆等零件以代替管状零件,降低制造成本。热冲压成形钢(MnB钢)是新日本钢铁方法,通过热成形后急冷获得高的成形度和极高的强度。具体的热成形方法为:钢板一加热(880--950℃)一冲压(在冲压机模具内实现淬火处理)一抛丸处理(去除氧化铁皮)一成品(1500MPa)。整个热冲压成形过程需要15~25S。为解决钢板热加工易生成氧化铁皮的问题,一般需要在超高强度钢板表面进行镀铝处理。超高强度MnB钢板主要用来制作防撞零件。

5 孪晶诱导塑性钢

孪晶诱导塑性钢:第二代先进高强度汽车用钢,其室温组织为单相奥氏体。大多数的奥氏体钢,如奥氏体不锈钢和高锰钢,层错能处于中低的水平,因此趋向于形成大范围的堆垛层错、孪晶及平面位错结构。当高锰钢中加入C 或Al 和Si 时,可以发现大范围的机械孪晶。当w(Mn)达到25 % ,w (Al) > 3 % , w ( Si) 在2 %~3 %范围之间时,钢中存在大面积的机械孪晶,同样的情况发生在当碳很低的时候。这些钢拥有非常高的延展性,最高可达80 % 。他们引入了

相关文档
最新文档