过程装备腐蚀与防护第三章final
过程装备腐蚀与防护

第一章腐蚀电化学基础一、概念及简答1.双电层金属浸入电解质溶液内,其表面的原子与溶液中的极性水分子、电解质离子、氧等相互作用,使界面的金属和溶液侧分别形成带有异性电荷的结构——双电层。
2.电极电位电极反应使电极和溶液界面上建立的双电层电位跃。
3.极化、极化曲线及极化图电池工作过程中,由于电流流动而引起电极电位偏离初始值的现象。
用来表示极化电位与极化电流或极化电流密度之间关系的曲线。
将构成腐蚀电池的阴极和阳极极化曲线绘在同一E-I坐标上得到的图线,简称极化图。
4.超电压腐蚀电池工作时,由于极化作用使阴极电位下降,阳极电位升高。
这个值与各极的平衡电位差值的绝对值称为超电压或过电位。
以η表示。
5.钝化金属表面从活性溶解状态变成非常耐蚀的状态的突变现象称为钝化。
6.去极化反应:发生在阴极上的吸收电子的还原反应。
析氢腐蚀其发生的条件析氢腐蚀定义:指溶液中的氢离子作为去极剂,在阴极上进行阴极反应,使金属持续溶解而被腐蚀。
条件:腐蚀电池中的阳极电位必须低于阴极的析氢电极电位。
7. 耗氧腐蚀其发生的条件腐蚀电池上的阴极反应由溶液内氧分子参与完成,称为吸氧或耗氧反应。
耗氧腐蚀的条件为:腐蚀电池中的阳极初始电位EºM必须低于该溶液中氧的平衡电位Ee,O28.金属腐蚀的热力学条件金属溶解的氧化反应若进行,则金属的实际电位必更正于金属的平衡电极电位。
E>Ee,M 去极化反应若进行,则有金属电极电位必更负于去极剂的氧化还原反应电位。
E<Ee,k 上述条件需同时满足。
9.腐蚀速度的工程表示方法重量法和深度法10.耐蚀性评定及其适用范围第二章局部腐蚀一、概念及简答1、应力腐蚀:在固定拉应力和特定介质的共同作用下所引起的破裂。
应力腐蚀产生的条件(特定材料+)固定拉应力+ 特定腐蚀性介质2、腐蚀疲劳:金属材料在循环应力或脉动应力和腐蚀介质的联合作用下,所引起的腐蚀。
(注意与疲劳断裂的区别)条件:变应力+腐蚀性介质3、磨损腐蚀:腐蚀性流体与金属以较高速度做相对运动而引起金属的腐蚀损坏,简称磨蚀。
过程装备腐蚀与防护-第三章-final

选用对接焊接结构、大的曲率半径、采用流型设计等。
2.2 力学因素
③ 降低材料对SCC的敏感性
退火热处理消除残余应力,时效处理改善合金组织(消除晶间 偏析)降低对SCC的敏感性。
④ 其他方法
合理选材,采取阴极保护。
(2) 疲劳腐蚀
疲劳断裂-金属构件在变动负荷作用下,经过一定周期后所发 生的断裂。疲劳腐蚀-由腐蚀介质和变动负荷的联合作用而引 起的断裂破坏。 循环应力以交变的张应力和压应力(拉-压应力交替变化)最为常 见。如海上、矿山的卷扬机牵引钢索、油井钻杆、深井泵轴等。 脉动应力为交变应力和拉伸应力的叠加。如凿岩机所承受的是 脉动应力。
高温氧化的热力学条件
金属不仅在氧气和空气中可以发生高温氧化,在氧化性气体CO2, 水蒸汽,SO2中也可以发生高温氧化。
金属氧化 - 狭义的金属氧化是指金属与环境介质中的氧化合而生 成金属氧化物的过程。反应式如下:
x M O MO 2 x 2
广义的金属氧化就是金属与介质作用失去电子的过程,氧化反 应产物不一定是氧化物,也可以是硫化物、卤化物、氢氧化物或其他 化合物,可以下式表示:
M→M n+ +ne xM + Yx = MxYy
3.1 高温腐蚀
高温氧化倾向的判断 —自由焓准则 :将金属高温氧化反应 方程式写成 1 M O MO 2 2
当 G<0 ,金属发生氧化,转变为氧化物 MO 。 G 的绝对 值愈大,氧化反应的倾向愈大。当 G=0 ,反应达到平衡。 当 G > 0 ,金属不可能发生氧化;反应向逆方向进行, 氧化物分解。 当PO2>PMO,G<0,金属能够发生氧化,二者差值愈大, 氧化反应倾向愈大。当 PO2=PMO , G=0 ,反应达到平衡。
过程装备腐蚀与防护课件-绪论

船舶在海洋环境中的腐蚀
绪论
3、能源电力
水电:水轮机组的腐蚀,叶片空蚀; 火电:锅炉和管道的腐蚀; 核电站:高温、辐照、液态金属等腐蚀; 煤矿安全; 油气开采、运输。
绪论
4、化工工业
5、机械电子
6、民生
7、环境污染
绪论
腐蚀造成的经济损失(美国): 占国民生产总值的1.8%~4.2%
绪论
腐蚀造成的经济损失(中国):
2002年 柯伟院士
绪论
腐蚀防护的意义:
绪论
腐蚀防护的意义:
绪论
腐蚀防护的意义:
腐蚀科学的发展:
绪论
绪论
腐蚀科学的发展:
绪论
腐蚀科学的发展:
腐蚀的定义:
绪论
绪论
绪论
腐 蚀
金属腐蚀
机 理 破坏 特征
非金属腐蚀
腐蚀 环境
化 学 腐 蚀
电 化 学 腐 蚀
全 面 腐 蚀
局 部 腐 蚀
大 气 腐 蚀
土 壤 腐 蚀
电 解 质 溶 液 腐 蚀
熔 融 盐 中 的 腐 蚀
高 温 Байду номын сангаас 体 腐 蚀
应 力 腐 蚀
疲 劳 腐 蚀
磨 损 腐 蚀
小 孔 腐 蚀
晶 间 腐 蚀
缝 隙 腐 蚀
电 偶 腐 蚀
其 它
绪论
1.
腐蚀的危害性
材料腐蚀给国民经济带来巨大损失
腐蚀事故危及人身安全
腐蚀造成资源和能源浪费
腐蚀引起环境污染
目录
绪论
第一章 金属电化学腐蚀基本原理
第二章 影响腐蚀的 结构因素 第三章 金属在某些环境中的腐蚀 第四章 金属结构材料的耐蚀性 第五章 非金属结构材料的耐蚀特性
高中化学 第三章第二节《金属的腐蚀和防护》精品同步课件 新人教版必修1

例2:下列叙述中,可以说明金属甲比乙活泼性 (C) 强A.的甲是和乙用导线连接插入稀盐酸溶液中,乙溶解, 甲
B上.在有氧H2化气–放还出原;反应中,甲比乙失去的电子多;
C.将甲乙作电极组成原电池时甲是负极;
D.同价态的阳离子,甲比乙的氧化性强;
3、电化学保护法——牺牲阳极的阴极保护法 原理:形成原电池反应时,让被保护金属做正极,
不反应,起到保护作用;而活泼金属反应受到腐蚀。
牺牲阳极的阴极保护法示意图
1、下列装置中四块相同的Zn片,放置一段时间后腐 蚀速率由慢到快的顺序是 (4) (2) (1) (3)
2、如图, 水槽中试管内有一枚铁钉,放置数天观察: (1)若液面上升,则溶液呈_中__性_或__碱__性,发生___吸_氧___ 腐蚀,电极反应式为:负极:___2_F_e__–_4_e_-_=__2_F_e_2+_____, 正极:__O_2_+_2_H__2O__+_4_e_-=__4_O__H_-___;
A.
B.
C.
D.
Cd, NiO(OH), Cd(OH)2 Ni(OH)2
例7、 盐酸与锌片反应时,若加入可溶性醋酸铜
〔(CH3COO)2Cu〕,将产生两种影响生成速率的 因素,Z其n置换出Cu形成了原电池,从而加快了反 一 应H速+与率CH3COO-结合生成CH3COOH,使H+ 是: 浓度减小,从而减慢了反应速率。 例8、 ,
一、化学腐蚀: 金属跟接触到的物质(如O2、Cl2、SO2等)直接
发生化学反应而引起的腐蚀,叫化学腐蚀。
二、电化学腐蚀 不纯的金属(或合金)跟电解质溶液接触时,
过程装备腐蚀与防护综述

一、腐蚀的危害性与控制腐蚀的重要意义腐蚀现象几乎涉及国民经济的一切领域。
腐蚀不仅造成经济上的巨大损失,并且往往阻碍新技术、新工艺的发展。
因此,研究材料的腐蚀规律,弄清腐蚀发生的原因及采取有效的防止腐蚀的措施。
对于延长设备寿命、降低成本、提高劳动生产率无疑具有十分重要的意义。
二、设计者掌握腐蚀基本知识的必要性腐蚀控制通常有两种措施,一是补救性控制,即腐蚀发生后再消除它;二是预防性控制,即事先采取防止腐蚀的措施,避免或延缓腐蚀,尽量减少可能引起的其他有害影响。
三、腐蚀的定义与分类腐蚀是在金属材料和环境介质在相界面上反应作用的结果,因而金属腐蚀可以定义为“金属与其周围介质发生化学或电化学作用而产生的破坏”。
腐蚀有不同的分类方法。
按照腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。
1) 化学腐蚀是指金属与非电解质直接发生化学作用而引起的破坏。
2) 电化学腐蚀是金属与电解质溶液发生电化学作用而引起的破坏。
按照金属破坏的特征,可分为全面腐蚀和局部腐蚀两类。
(1) 全面腐蚀是指腐蚀作用发生在整个金属表面,它可能是均匀的,也可能是不均匀。
(2) 局部腐蚀是指腐蚀集中在金属的局部区域,而其他部分几乎没有腐蚀或腐蚀很轻微。
局部腐蚀有以下几种:a.应力腐蚀破裂在拉应力和腐蚀介质联合作用下,以显著的速率发生和扩展的一种开裂破坏。
b.腐蚀疲劳金属在腐蚀介质和交变应力或脉动应力作用下产生的腐蚀。
c.磨损腐蚀金属在高数流动的或含固体颗粒的腐蚀介质中,以及摩擦副在腐蚀性质中发生的腐蚀损坏。
d.小孔腐蚀腐蚀破坏主要集中在某些活性点上,蚀孔的直径等于或小于蚀孔的深度,严重时可导致设备穿孔。
e.晶间腐蚀腐蚀沿晶间进行,使晶粒间失去结合力,金属机械强度急剧降低。
破坏前金属外观往往无明显变化。
f.缝隙腐蚀发生在铆接、螺纹接头、密封垫片等缝隙处的幅度hi。
g.电偶腐蚀在电解质溶液中,异种金属接触时,电位较正的金属促使电位铰负的金属加速腐蚀的类型。
人教版高二化学第三章知识点:金属的腐蚀和防护

人教版高二化学第三章知识点:金属的腐蚀和防护
人教版高二化学第三章知识点:金属的腐蚀和防
护
人教版高二化学第三章知识点介绍了金属的腐蚀和防护。
金属是一种具有光泽〔即对可见光强烈反射〕、富有延展性、容易导电、导热等性质的物质。
人教版高二化学第三章知识点:金属的腐蚀和防护
金属原子失去电子变为金属阳离子,金属发生氧化反响。
(1)化学腐蚀与电化学腐蚀
(2)析氢腐蚀与吸氧腐蚀
以钢铁的腐蚀为例进行分析:
铁锈的形成:4Fe(OH)2+O2+2H2O===4Fe(OH)3,
2Fe(OH)3===Fe2O3·xH2O(铁锈)+(3-x)H2O。
(1)电化学防护
①牺牲阳极的阴极保护法—原电池原理
a.负极:比被保护金属活泼的金属;
b.正极:被保护的金属设备。
②外加电流的阴极保护法—电解原理
a.阴极:被保护的金属设备;
b.阳极:惰性金属。
(2)改变金属的内部结构,如制成合金、不锈钢等。
(3)加防护层,如在金属外表喷油漆、涂油脂、电镀、喷镀或外表钝化等方法。
小编为大家提供的人教版高二化学第三章知识点,大家仔细阅读了吗?最后祝同学们学习进步。
高中化学 第三章第二节 金属的腐蚀和防护教案1人教版必修1

第二节金属的腐蚀和防护(第一课时)教学设计一、教学内容1.课标中的内容主题2 生活中的材料(4)描述金属腐蚀的化学原理,知道金属防护的常用方法,认识防止金属腐蚀的重要意义;2.教材中的内容本节简单介绍了生活中金属的腐蚀和防护知识。
内容涉及金属腐蚀的化学原理(化学腐蚀、电化学腐蚀):在化学腐蚀中,以家用燃气灶的中心部位很容易生锈,而食品罐头放在南极已差不多90年了,却很少生锈为例(图3-14),强调温度(反应条件)对化学腐蚀的影响比较明显。
在电化学腐蚀中,通过“科学探究”,让学生分析铁钉锈蚀需要哪些条件,以及在什么条件下锈蚀速率较快,引出电化学腐蚀。
教科书中没有出现“吸氧腐蚀”和“析氢腐蚀”这两个名词,只是介绍了钢铁发生电化学腐蚀时在正极上发生的这两类原电池反应。
最后强调指出化学腐蚀和电化学腐蚀的本质是金属原子失去电子变成阳离子的过程。
金属的防护内容:教科书通过图示(图3-16和图3-18)和活动(2个“思考与交流”)的方式,由学生自己总结对金属防护常用的方法,并解释这些方法为什么可以达到防止金属腐蚀的目的;最后简单介绍了牺牲更活泼金属的防护方法的原理及其应用。
二、教学对象分析1.知识技能方面在高中课程标准必修模块化学2《化学能与电能》中,学生已经学习了化学能与电能的转换,即原电池的相关知识。
本节是在此基础上,引导学生了解金属腐蚀的化学原理和防护方法等。
内容包括:金属的腐蚀(第一课时)和金属的防护(第二课时)。
2.学习方法方面在高中课程标准必修模块化学2《化学能与电能》中,学生掌握了正确判断原电池的正负极的方法,能够将原电池负极失电子被消耗的原电池原理应用到金属腐蚀的知识点上来;具有一定的学习方法基础。
三、设计思想选修1模块第三章第二节《金属的腐蚀和防护》分为两个课时进行。
本教学设计为第一课时,主要内容为“金属的腐蚀”。
本节课可采取问题解决和实验探究相结合的教学模式,其基本流程为:①问题引入:列举生活实例(展示:家庭、校园金属腐蚀图)→②提出问题:金属腐蚀有哪些危害?金属为什么会被腐蚀?→③科学探究(分组实验:不同条件下铁钉的锈蚀)→④探究金属腐蚀发生的条件→⑤金属腐蚀的分类→⑥多媒体展示:化学腐蚀和电化学腐蚀→⑦电化学腐蚀的原理:电极反应→金属腐蚀的本质。
过程装备腐蚀与防护章习题与题解

为什么说“材料的腐蚀是自发产生的”自然界中物质最稳定的存在状态是以金属化合物的形态存在..如:Fe 2O 3、FeS 、Al 2O 3等等..由于它们的强度、硬度、刚度等性能不能满足工业结构材料的要求;用冶金方法外加能量将它们还原成金属元素及其合金;它们比其化合物具有更高的自由能;根据热力学第二定律;金属元素必然自发地转回到热力学上更稳定的化合物状态..这就是金属的腐蚀过程..有机非金属材料是由有机小分子材料经聚合成为大分子材料而具有一定的强度、刚度和硬度;具备满足工业结构材料性能的..在聚合过程中加入的能量;使其比小分子具有更高的自由能..在介质中材料发生一些化学或物理作用;使其从高能的聚合态向低能而稳定的小分子状态转变;使材料的原子或分子间的结合键破坏..也是服从热力学第二定律的.. 无机非金属材料有天然的和人工的..两者均是由在自然界较稳定的化合物状态的分子或元素;在天然或人工外部作用下;结合成具有一定形状、强度、刚度和硬度的材料..这些材料在形成过程中受到的外部作用;使其内能增加;具有比它们的化合物状态的分子或元素高的能态;同样由热力学第二定律;它们在腐蚀性介质环境下;发生化学或物理作用;使材料的原子或分子间的结合键断裂破坏..也服从热力学第二定律..材料腐蚀危害性 a.涉及范围广泛:因腐蚀是自发产生的;腐蚀现象就涉及到所有使用材料的一切领域;b.造成的经济损失巨大;间接损失:由于腐蚀引起停产、更新设备、产品和原料流失、能源浪费..一般间接损失比直接损失大很多..污染环境、造成中毒、火灾、爆炸等重大事故..c.阻碍新技术、新工艺的发展..直接损失:由于腐蚀造成的材料自身的损失;使材料变成废物..间接损失:由于腐蚀引起停产、更新设备、产品和原料流失、能源浪费..一般间接损失比直接损失大很多..污染环境、造成中毒、火灾、爆炸等重大事故..控制腐蚀重要意义 研究材料的腐蚀规律;弄清腐蚀发生的原因及采取有效的防腐蚀措施;可以延长设备寿命、降低成本、提高劳动生产率.. 什么叫腐蚀 材料由于环境作用引起的破坏或变质..化学腐蚀 金属与非电解质直接发生化学作用引起的破坏..电化学腐蚀 金属与电解质溶液发生电化学作用引起的破坏..腐蚀按腐蚀机理 化学腐蚀和电化学腐蚀两类腐蚀按破坏特征 全面腐蚀和局部腐蚀两类局部腐蚀 应力腐蚀破裂、腐蚀疲劳、磨损腐蚀、小孔腐蚀、晶间腐蚀、缝隙腐蚀、电偶腐蚀、氢脆、选择性腐蚀、空泡腐蚀、丝状腐蚀腐蚀按腐蚀环境 大气腐蚀、土壤腐蚀、电解质溶液腐蚀、熔融盐中的腐蚀、高温氧化腐蚀和氢腐蚀作为过程装备设计人员;学习腐蚀知识有哪些必要性 a.合理选材:满足工艺和机械性能、防腐蚀要求;b.合理的结构设计:在结构设计时;要考虑工艺要求、强度要求;同时考虑腐蚀问题;c.制定正确的机械制造工艺和热处理方法;d.采用经济实用的防腐蚀技术..金属腐蚀过程;可能按照哪些历程进行 各具有什么特点 金属腐蚀过程 可按化学和电化学两种历程进行..化学历程 氧化剂直接与金属表面的原子相碰;化合物形成腐蚀产物;该过程无电流产生..电化学历程 金属腐蚀的氧化还原反应的两个过程同时进行又相对独立;该过程有电流产生..电化学腐蚀的条件 阳极氧化、阴极还原、电解质存在..金属在含有其自身离子的盐溶液中;界面上形成双电层;使金属表面带有:①一定是正电;②一定是负电;③可能是正电;也可能是负电..三者哪个正确;为什么 说明双电层的特点答:②正确..在含有其自身离子的盐溶液中;盐溶液的极性水分子与金属离子之间的水化力大于金属离子与电子之间的结合力;形成的双电层;在金属表面上带负电;在金属和溶液界面溶液侧带正电.. 双电层的特点:①双电层的两层“极板”可能分处于不同的相中;如第一类双电层;也可能分处于同一相中;如第二类和第三类双电层..②双电层的内层有过剩的电子或阳离子;当系统形成回路时;电子可沿导线流入或流出电极..③双电层间存在很大的电位跃..举例说明什么是平衡电极电位和非平衡电极电位;标准电极电位是哪一种电位 非平衡电极电位能否用能斯特公式进行计算 为什么 铜电极放入硫酸铜溶液中;当溶液中铜离子的浓度达到使铜电极的溶解与铜离子在铜电极上析出的速率相等时;这时电极反应的正逆两过程的电荷和物质都达到了动态平衡;此时铜电极的电位就是铜的平衡电极电位..如果把铁电极放入硫酸铜溶液中;铁电极溶解使溶液中铁离子浓度逐渐增加;到达一定程度后;溶液中的铁离子也会在铁电极上析出;但铜离子也析出;总不能使溶解出的金属离子在电量和质量上同时达到动态平衡;铁电极的电位成为非平衡电极电位..标准电极电位是标准状态下的平衡电极电位..非平衡电极电位不能用能斯特方程计算..因为能斯特方程是建立在平衡状态条件下计算电极电位的方程..写出下列电极反应的电极电位表达式.. 解:①查表1-5标准氧化还原电位;电极电位表达式①的标准氧化还原电位为0②查表1-5标准氧化还原电位;电极电位表达式②的标准氧化还原电位为+0.771V③查表1-5标准氧化还原电位;电极电位表达式③的标准氧化还原电位为+0.401说明什么叫氧化还原电极 什么叫氧化还原电位答:各种去极化反应在阴极进行时;阴极的电极材料本身不发生任何变化;只是当反应物在其表面氧化或还原时起输送或带走电子的作用;且氧化或还原的产物留在溶液中而不在电极上析出;这种电极称为氧化还原电极当去极化反应达到动态平衡时;其相应的平衡电位称为氧化平衡电位写出金属电化学腐蚀的热力学条件.. 答:0.K M e E E E <<何谓腐蚀电池 腐蚀电池有哪些类型 如图请标明腐蚀电池的各个组成部分..和原电池的工作原理一样;所不同的是腐蚀系统中电子回路短接;电流不对外作功;实际上是一个短路原电池..有宏观腐蚀电池和微观腐蚀电池两种类型..由铜和铁在稀H 2SO 4溶液中组成电池;指出正、负极和阴、阳极;并写出两电极反应的方程式;说明发生腐蚀的是哪个电极..答:铜是负极和阳极;铁是正极和阴极..e Fe Fe e Cu Cu 2;222+⇔+⇔++;铁电极发生腐蚀..极化现象 阳极极化和阴极极化 答:腐蚀电池工作时;由于电流流动而引起电极电位偏离初始值的现象;称为极化现象..通阳极电流后;阳极电位向正方向偏离称为阳极极化..通阴极电流后;阴极电位向负方向偏离称为阴极极化..电化学极化 浓差极化和膜阻极化 答:阴极上由于去极剂与电子结合的反应速度迟缓;来不及全部消耗来自阳极流来的电子;造成阴极电子增高;便阴极电位向负方向变化;阳极上金属失去电子成为水化离子的反应速度落后于电子流出阳极的速度;造成阳极电位向正方向偏离;叫做电化学极化..溶液中的去极剂到达阴极上与电子结合的速度比去极剂扩散到阴极上的速度高很多;造成阴极电位向负方向偏离..去极剂的扩散速度决定它在溶液中的浓度差;从而由它造成的极化叫浓差极化..金属表面形成的保护膜;具有较大的电阻;造成阳极溶解过程受阻;产生阳极电位向正方向的偏离;称为膜阻极化..解释P a 、P k 的物理意义..答:P a 是阳极极化曲线的极化率;P K 是阴极极化曲线的极化率;它们分别表示阳极过程和阴极过程的阻力大小..它们的数值大说明电极过程阻力大..腐蚀极化图;Evans 图 把构成腐蚀电池的阴极和阳极极化曲线绘在同一个电位E —I 电流强度坐标上;得到的图线称为腐蚀极化图.. 腐蚀极化图略去电位随电流的详细过程;将极化曲线简化成直线;这种简化了的极化图称为Evans 图..混合电位 腐蚀电位答:由于金属表面的电化学不均一性;存在很多微阳极和微阴极;在电解质溶液中在金属表面上同时进行着两个以上的共轭电极反应..因阴极与阳极间从金属内部自然导通;金属上总的阳极反应电流必然等于总的阴极电流;恰好抵消..当达到稳定状态时;阴极和阳极彼此相互极化到同一电位;这一电位就是腐蚀电位;又称自腐蚀电位..腐蚀电位既非金属上阳极的平衡电位;也不是阴极的平衡电位;而是处在二者之间;又称为混合电位..1. 请解释下式中各参数的物理意义..C PP P R E E a aa k a o =++=⨯∆∆100% C a -阳极控制程度; -阳极极化率;P K -阴极极化率;R-腐蚀系统电阻;ΔEa=I P a ;阳极极化引起的电位差;ΔE 0-阳极和阴极平衡电极电位之差下列电极过程为何种控制 为什么 答:a 为阳极控制过程;因为阳极极化率>阴极极化率;b 为阴极控制过程;因为阴极极化率>阳极极化率;c 为混合控制;阳极极化率与阴极极化率接近相等;d 是电阻控制;系统电阻在腐蚀控制中占主导地位根据下图你能得出何结论 此时;改变阳极极化曲线对其腐蚀有无影响 答:当阳极极化曲线在A 点以上变化时;对腐蚀速度无影响;低于A 点后;随阳极极化曲线变化;对腐蚀速度的变化有较大影响..如图说明为什么标准氢电极参比电极采用金属铂制成..答:是因为金属铂的超电压在较大电流密度下相对其他金属的小;偏离平衡电位的数值就小;作为标准氢电极采用的金属;测定的电极电位误差就小..说明影响析氢腐蚀的因素和特点.. 答:影响析氢腐蚀的因素有: a.电极表面状态 粗糙表面析氢超电压低;光滑表面析氢超电压高..原因是粗糙表面积大;阴极面积大..b.PH 值 酸性溶液中PH 值上升;析氢超电压升高;碱性溶液中PH 值下降;析氢超电压升高..c.温度 温度升高析氢超电压下降;约温度每增加1℃;析氢超电压减小2mV..d.溶液中的添加剂的性质不同;引起析氢超电压的变化不同.. 析氢腐蚀的特点:①阴极材料的性质对腐蚀速度影响很大..②溶液的流动状态对腐蚀速度影响不大..③阴极面积增加;腐蚀速度加快..④氢离子浓度增高PH下降、温度升高均会促使析氢腐蚀加剧..求25℃1atm时氢在中性溶液中的平衡电极电位.. 题给条件是标准状态;在标准状态下;氢的平衡电极电位规定为0..影响耗氧腐蚀的因素有哪些如何影响答:影响耗氧腐蚀的因素有:金属的本性、溶液的含氧量、阴极面积大小、溶液的流动状态..阳极金属的电位和极化性能不同;它的极化曲线与耗氧腐蚀的阴极极化曲线相交的位置不同;腐蚀速度不同;溶液的含氧量不同;耗氧腐蚀阴极极化曲线不同;氧含量大时;对应同样的阳极极化曲线;腐蚀电流大;对于宏观腐蚀电池阴极面积大;腐蚀速率大;对于微观腐蚀电池;阴极面积大小对腐蚀电流大小的影响很小;几乎无影响;溶液流动状态不同;造成溶液中的氧量补充到阴极的数量不同;一般流速大时腐蚀速率高..对一般电化学腐蚀;微阴极的数目对腐蚀有很大影响;为什么若阴极过程为耗氧反应;是否受微阴极多少的影响为什么答:因为一般电化学腐蚀;微阴极数目大时;还原反应进行的多;阳极就必须提供相应量的电子;腐蚀速度就大..到达微阴极的去极剂是溶解在电解质溶液中靠浓度差传递的;阴极面积越大;与去极剂相遇的机会就高..若为耗氧反应;氧从气液界面进入溶液向金属界面传递;传递途径类似一个圆锥体;一定数量的微阴极就已经利用了全部输送氧的扩散通道;微阴极增加;并不能增加扩散到微阴极上的总量..何为金属的钝化指出钝化时典型阳极极化曲线上各区域的名称活态区;过渡区、钝态区、过钝化区及各符号的物理意义..画图说明答:金属从活性溶解状态变成非常耐蚀的状态;这种表面状态的突变过程称为“钝化”铁制容器能否用来盛稀硝酸和浓硝酸为什么答:不能..因为铁虽可在硝酸浓度>40%后;被钝化;但钝化层会随温度升高;硝酸浓度的变化出现溶解;失去钝化作用..成相膜理论和吸附理论的要点是什么答:成相膜理论认为:钝化是由于金属溶解时;在金属表面生成了致密的、覆盖性良好的固体产物保护膜;这层保护膜作为一个独立的相而存在;它或者使金属与电解质溶液完全隔开;或者强烈地阻滞了阳极过程的进行;结果使金属的溶解速度大大降低;亦即使金属转变为钝态..吸附理论认为:金属钝化并不需要固态产物膜;而只要在金属表面或部分表面上生成氧或含氧粒子的吸附层就足够使金属钝化了..当这些粒子在金属表面上吸附以后;就改变了金属—溶液的界面的结构;并使阳极反应的活化能显着升高;因而金属表面本身的反应能力降低了;亦即呈现钝态..何谓金属的应力腐蚀破裂金属的应力腐蚀破裂有何特征金属的应力腐蚀破裂是金属结构在拉应力和腐蚀环境共同作用下引起的破裂.. ①在拉应力作用下;发生应力腐蚀破裂的金属材料对应的腐蚀环境是特定的—包括腐蚀介质性质、浓度、温度..②SCC断裂速度约0.01~3mm/h;比不存在拉应力时的局部腐蚀速率大很多倍;比无腐蚀环境时的纯力学断裂速度低很多;但承受的应力水平也低很多..③断口形貌;宏观上属于脆性断裂;微观上在断裂面上仍有流变痕迹..应力腐蚀破裂的机理电化学阳极溶解理论的论点:认为合金中存在一条阳极溶解的“活性途径”;腐蚀沿这些途径优先进行;阳极侵蚀处就形成狭小的裂纹或蚀坑..小阳极的裂纹内部与大阴极的金属表面构成腐蚀电池;由于活性阴离子如Cl—进入形成闭塞电池的裂纹或蚀坑内部;使浓缩的电解质溶液水解而被酸化;促使裂纹尖端的阳极快速溶解;在应力作用下使裂纹不断扩展;直至破裂..防止金属应力腐蚀破裂的途径有哪些答:有①降低设计应力;使最大有效应力或应力强度降低到临界值以下..②合理设计与加工减少局部应力集中..③采用合理的热处理方法消除残余应力..④合理选材;去除介质中的有害成分;添加缓蚀剂;阴极保护..金属的腐蚀疲劳是什么金属构件在交变负荷和腐蚀环境的联合作用下;经过一定周期后发生的断裂破坏;称为腐蚀疲劳..特点:①腐蚀疲劳的产生条件;没有特定的腐蚀介质的限定;只要有交变载荷存在;任何腐蚀环境中都可能发生..②腐蚀疲劳裂纹多为穿晶型;裂纹分支较少..③不存在疲劳极限;同样循环次数;承受的应力幅度值大量降低..④疲劳裂纹的断面大部分被腐蚀产物所覆盖;小部分呈粗糙的碎裂状..防止金属腐蚀疲劳的方法:①降低局部应力集中..②金属表面电镀..③介质中加缓蚀剂..④金属表面氮化和喷丸处理..⑤阴极保护..金属的SCC与腐蚀疲劳有何区别答:SCC承受的是拉应力;当拉应力低于某一定应力水平时不发生..腐蚀疲劳承受的是交变载荷;并不存在疲劳极限;也就是应力水平无下限..腐蚀疲劳的产生条件与应力腐蚀比较;它没有特定的腐蚀介质的限定;也就是说;在任何腐蚀环境中都可能发生..从撕裂特征来看;应力腐蚀裂纹既可为穿晶型;也可能为晶间型;且裂纹分枝多;呈树根状..而腐蚀疲劳裂纹多为穿晶型;裂纹分支较少..它所产生的裂纹数量往往比纯力学疲劳的多得多..从破坏的断面来看;纯力学疲劳破坏的断面大部分是光滑的;小部分是粗糙面;呈现一些结晶形状..腐蚀疲劳破裂的断面大部分被腐蚀产物所覆盖;小部分呈粗糙的碎裂状..磨损腐蚀腐蚀性流体与金属构件以较高的速度作相对运动而引起金属的腐蚀损坏;称为磨损腐蚀..形式有:湍流腐蚀、空泡腐蚀、微振腐蚀..湍流腐蚀的机理:流体速度达到湍流状态;击穿紧贴金属表面几乎静态的边界液膜;加速去极剂供应和阴、阳极腐蚀产物迁移;产生附加切应力;带动颗粒磨损..这些都加速了腐蚀速度..空泡腐蚀的机理:腐蚀介质与金属构件作高速相对运动;使流体的动能增加;而静压能降低..当流速足够高时;流体的静压力将低于流体的蒸汽压;使流体蒸发形成汽泡..在低压区产生的汽泡在高压区被压缩崩溃;气泡崩溃所产生的冲击波将对金属表面起强烈的锤击作用;使金属表面膜被破坏;甚至可使膜下金属的晶粒产生龟裂和剥落..这样重复的锤击作用;使金属造成小阳极大阴极而遭受腐蚀..微振腐蚀机理:由于流体高速流动;产生卡曼涡街;造成金属构件的振动;从而使边界层减薄或破碎;加速了阴、阳极腐蚀产物的迁移和去极剂的供应;从而加速了腐蚀速度..小孔腐蚀腐蚀破坏主要集中在某些活性点上;蚀孔的直径等于或小于蚀孔的深度的腐蚀现象..机理:易钝化金属在含有活性阴离子的溶液中;在钝化膜破损处;金属光滑表面上有夹杂的硫化物处、晶间有碳化物沉积处等很小的局部缺陷处;由于钝化膜的高电阻;造成小阳极大阴极的腐蚀电池;而形成蚀核..有些蚀核不再长大;有些蚀核继续长大;长成蚀孔..形成蚀孔后;孔内表面金属处于活态;电位较负..蚀孔外的金属表面处于钝态;电位较正;孔内外构成一个活态~钝态微电池..钝态表面被保护;孔内金属加速腐蚀..随腐蚀过程进行;孔深加深;孔外的氧不易扩散入孔内;孔内溶解的金属离子也不易往外扩散;孔内带正电的金属离子浓度增加;为保持溶液的电中性;带负电的氯化物水解;生成盐酸;使孔内介质的酸度增高;加速阳极溶解;从而形成具有“自催化酸化作用”的闭塞电池..从而使蚀孔沿重力方向迅速深化;以至把金属断面蚀穿..防止方法:①降低金属材料中的有害杂质..②在金属材料中加抗孔蚀合金元素..③降低溶液中氯离子浓度..④改善热处理制度;结构设计上消除死区..⑤阴极保护..什么叫缝隙腐蚀金属与金属或金属与非金属之间存在很小的缝隙时;缝内介质不易流动而形成滞留状态;促使缝隙内的金属加速腐蚀;称为缝隙腐蚀..原因有:开始在缝隙口处是氧去极化作用;继而是氧扩散的浓差极化控制;最后形成闭塞电池的自催化腐蚀过程..简述小孔腐蚀与缝隙腐蚀的区别.. 答:区别为腐蚀的起因不同;一旦腐蚀发展两者一样都属于闭塞电池的自催化腐蚀过程..小孔腐蚀的起因为:在易钝化的金属表面钝化层有破损处形成蚀孔活性中心;有些活性中心发展成为蚀孔..缝隙腐蚀的起因为:初期缝隙内外发生氧去极化的均匀腐蚀..随后构成宏观的氧浓差电池;缺氧的缝内成为阳极;缝外为阴极;逐步发展为闭塞电池..电偶腐蚀异种金属彼此接触或通过其他导体连通;处于同一种介质中;会造成接触部位的局部腐蚀..其中电位较低的金属;溶解速度大;电位较高的金属;溶解速度反而减小;这种腐蚀称为电偶腐蚀;或称接触腐蚀、双金属腐蚀..机理:一种阳极电位较负的金属和一种阳极电位较正的金属偶接;电位较低的金属成为偶接电池的阳极;电位较高的金属成为偶接电池的阴极..从而使电位较低的金属在偶接电池的腐蚀电流强度比单独存在时;更大;电位较高的金属在偶接电池的腐蚀电流强度比单独存在时更小..电位较低的金属腐蚀速度增加;电位较高的金属腐蚀速度减小..防止电偶腐蚀可采用哪些方法①选择相容性材料;选择电偶序表中;相邻的金属偶接;减小偶接电位差..②合理的结构设计a.尽量避免小阳极大阴极结构;b.将不同金属的部件彼此绝缘;c.插入第三种金属;降低两种金属间的电位差;d.将阳极性部件设计为易于更换的或适当增厚以延长寿命..焊接表面缺陷主要有哪几种它们引起什么腐蚀类型有焊瘤、咬边、飞溅及电弧熔坑..焊瘤或咬边常形成可见的狭缝;而飞溅往往在母材板和金属颗粒的接触区形成缝隙;从而引起缝隙腐蚀..熔坑是孔蚀的发源地..写出焊接残余应力的分布情况.. 答:当已凝固的焊缝金属在冷却的时候;由于垂直焊缝方向上各处的温度差别很大;结果高温区金属的收缩会受到低温区金属的限制;而使这两部分金属中都引起内应力;高温区金属内部产生残余拉应力;低温区金属内部产生残余压应力..焊缝晶间腐蚀的特征..焊缝晶间腐蚀的特征为;在表面还看不出破坏时;晶粒间已几乎完全丧失了结合强度;并失去金属声音;严重时只要轻轻敲打即可破碎;甚至成粉状..特别是不锈钢材料;有时即使晶间腐蚀已发展到相当严重的程度;其表观仍保持着光亮无异的原态..晶间腐蚀的机理..奥氏体不锈钢在450~850℃长时间加热;例如焊接时;焊缝两侧2~3㎜处将被加热到这个温度范围的所谓晶间腐蚀敏化区;此时晶间的铬和碳化合成为Cr、Ni、Fe4C、Cr、Fe、Ni7C3或Cr23C6;从固溶体中沉淀出来;生成的碳化物;每1%C 约需10%~20% Cr;导致晶间铬含量降低..这时由于晶内与晶间的元素存在浓度梯度;晶内的碳及铬将同时向晶间扩散;但在450~850℃;Cr 比C 的扩散速度慢原子半径Cr=1.28;C=0.771;因此进一步形成的碳化铬所需的Cr 仍主要来自晶粒边缘;致使靠近碳化铬的薄层固溶体中严重缺Cr;使Cr 量降到钝化所必需的最低含量11%以下..这样;当与腐蚀介质接触时;晶间贫铬区相对于碳化物和固溶体其他部分将形成小阳极对大阴极的微电池;而发生严重的晶间腐防止晶间腐蚀有哪些方法答:有固溶处理、稳定化退火、超低碳法、合金化法和焊接材料中掺入铁素体形成元素使焊缝呈奥氏体-铁素体双相组织..金属F e 在P O2=1atm 的环境中腐蚀达到平衡后;把其放入P=1atm 的空气环境中;平衡将有何变化 为什么答:出现铁的氧化物分解..因为在1个大气压的空气中;氧的分压只有0.21个大气压;而氧化是在氧压力为1个大气压下达到平衡的;它高于空气中氧的分压;因此分解..如下图;造成氧化膜生长的位置不同的原因 a 图的膜生长位置在MO/O 2界面;是因为氧化膜中金属离子过剩;过剩的金属离子可能处于晶格的间隙位置上;膜内晶格缺陷便是间隙金属离子和自由电子;间隙金属离子和电子通过膜中的间隙向外扩散;在MO/O 2界面与O 2反应生成MO..当氧化膜中金属离子不足时;则膜内晶格缺陷是金属离子空位和电子空位;在氧化期间;金属离子和电子通过金属离子空位和电子空位向外扩散;并在MO/O 2界面与O 2反应生成MO..b 图膜中过剩的金属离子处于正常晶格位置;膜内晶格缺陷则是阴离子如O 2-和自由电子;氧化期间;电子向外运动;O 2-通过O 2-空位向内扩散;并在M/MO 界面与M 2+反应生成MO..c 图膜中的晶格缺陷同时包含以上两种情况下的晶格缺陷;因此膜生成双向扩散同时存在;膜在中间位置生长.. 什么叫N 型半导体氧化物和P 型半导体氧化物 N 型半导体氧化物是:主要通过带负电荷的自由电子而导电的氧化物..P 型半导体氧化物是:主要通过电子空位的运动而导电的氧化物..金属表面膜完整的必要条件是什么 庇林-贝德沃斯比r>1.. 完整的表面膜不一定具有保护性..保护膜的条件:①膜必须是完整的;②膜具有足够的强度和塑性..并且与基体金属结合力强;膨胀系数相近;③膜内晶格缺陷浓度较低;④氧化膜在高温介质中是稳定的;表现为高的熔点和高的生成热..在氧化物中加入少量高价离子或低价离子N 型、P 型半导体氧化物有何影响答:对于金属离子过剩型的氧化膜N 型半导体;加入少量较高原子价的金属离子;可以减少间隙金属离子浓度;使金属氧化速度降低..对于金属离子不足型的氧化膜P 型半导体;加入少量较低原子价的金属离子;可以减少金属离子空位度;提高金属的抗氧化能铁有三种腐蚀产物FeO 、Fe 2O 3、Fe 3O 4;如图;为什么最内层是FeO;最外层是Fe 2O 3 答:因为FeO 是P 型半导体;具有高浓度的Fe 2+空位;晶格缺陷是金属离子空位;使得Fe 2+快速向外扩散;在FeO/界面与O 2-结合成FeO..Fe 2O 3是具有阴离子O 2-空位的N 型半导体;O 2-通过空位向内扩散;在Fe 2O 3/ Fe 3O 4界面与结Fe 2+合成Fe 2O 3..Fe 3O 4中P 型半导体占优势;它的导电率比FeO 要低得多..Fe 3O 4膜的成长是由于离子电导的80%是Fe 2+向外扩散;20%是O 2-向内扩散..提高钢的抗氧化性的主要途径 :合金化..-铁碳合金发生氢腐蚀的机理和条件.. 机理:氢脆阶段;钢材与氢气接触后;氢被吸附在钢表面上;然后分解为氢原子并沿晶粒边界向钢材内部扩散..尤其当钢材受力变形时;会剧烈地加速氢原子的扩散;高速扩散的氢原子在滑移面上转变成为分子状态;而分子氢不具有扩散能力;在晶间积聚产生内压力;使钢材进一步变形受到限制而呈现脆性..氢侵蚀阶段;当温度和压力较高;或者钢材与氢气接触的时间很长;则钢材将由氢脆阶段发展为氢侵蚀阶段;溶解在钢中的氢将与钢中渗碳体发生脱碳反应生成甲烷;随着反应的不断进行;钢中的渗碳体不断脱碳变成铁素体;并不断生成甲烷;而甲烷在钢内扩散困难;积聚在晶界原有的微观空隙内;随着反应的不断进行而愈聚愈多;产生很大的内压力;形成局部高压;造成应力集中;使细微开口、扩大、传播;引起钢材中出现大量细小的晶界裂纹和气泡;使钢的强度和韧性大为降低;甚至开裂;导致设备破坏..钢内裂纹的产生;除了上述甲烷积聚形成局部高压、钢材脱碳强度降低以外;还由于渗碳体转变为铁素体后;体积缩小了0.7%;因而使钢材内部产生裂纹.. 条件:在一定的氢气压力下;渗碳体与氢气发生反应有一最低温度;称为氢腐蚀的起始温度;它是衡量钢材抗氢腐蚀的性能指标..低于这个温度时氢腐蚀反应速度极慢;可以认为对钢材无害..对应相应材料曲线;根据工作温度和氢气分压;查Nelson 线图;当纵坐标的工作温度和横坐标的氢气分压的交点在对应材料曲线的上方为发生腐蚀;在曲线下方为不发生腐蚀..方法:①在钢中加入强碳化物形成元素;它们把钢中的碳优先结合成稳定的碳化物;提高钢的抗氢腐蚀性能;②采用微碳纯铁含碳量<0.015%也具有很好的抗氢腐蚀性。
过程装备腐蚀与防护(闫康平)(二版)_第3章_金属在某些环境中的腐蚀

一、金属高温氧化与氧化膜
金属氧化:
狭义是指金属与环境介质中氧化合而生成氧化物的过程。
x M 2 O2 MO x
广义是金属与介质作用失去电子的过程
xM yX MxXy
X:氧、硫、卤素或其它气体
高温氧化是△G降低过程,对于 M 1 O2 2 po2 > pMO po2 < pMO 金属氧化反应自发进行 金属不能氧化
(2)依靠选择氧化生成保护膜 合金元素的离子半径 < 基体金属离子半径 合金离子半径愈小,越容易发生选择氧化,添加量越多, 越能在低加热温度下发生选择氧化。如Fe中加Cr、Al形 成Cr2O3、Al2O3氧化膜,致密,阻止氧化的继续进行。 (3)生成稳定的新相(复合氧化物) 离子在AB2O4氧化膜中的扩散速度迟缓(移动所需活 化能提高) 合金元素和基体金属氧化物相互溶解形成新的复合氧 化物,使反应物质在其中的扩散速率非常小,提高了金属 抗氧化性质。如Fe中加入10%以上Cr生成FeO· Cr2O3尖 晶石型复合氧化膜,使离子在其中扩散迟缓,显示耐氧化 性。
碳钢只能用于压力小于 5MPa,温度低于475℃的场 合,否则需采用耐热钢。碳钢在高于475℃时,机械强度 显著下降,高于570℃时就会剧烈地被氧化。 耐热钢:指在工作温度高于450℃时,具有一定强度 和抗氧化能力的钢种。是抗氧化钢和热强钢的通称。 1.抗氧化钢:高温下具有抗气体浸蚀能力的钢。钢中 加入合金元素Cr、Al、Si,如分别加入16%、5%、6.5% 在1000℃下氧化量只有普通碳钢的1%。加入合金元素Mn、
钢材受高温高压的氢气作用,变脆甚至破裂的现象 氢腐蚀分为两个阶段: I:氢脆阶段(也称为氢腐蚀的孕育期);
II:氢侵蚀阶段
Fe3C +2H2→3Fe + CH4↑
过程装备腐蚀与防护全套课件

(三)电极电位:
➢平衡电极电位:金属浸入含有同种金属离子的溶液中;
➢非平衡电极电位:金属浸入不含同种金属离子的溶液中 ➢ 气体电极的平衡电位:
氢电极
• 一种特殊的气体电极, 相当重要! • 在电化学中用氢电极作为标准电极,即设定其电极电
势为零; • 其他电极与之相比较来确定其相对于标准氢电极的电
腐蚀极化图:
理论最大电流Imax, 腐蚀电位Ecorr
单一金属在电解质溶液中实测的极极化曲线: 混合电位
腐蚀极化图的应用:
1、判断腐蚀过程的控制因素 (1)
微电池: 阴阳两级无法凭肉眼分辨(金属或合金表面因
电化学不均一而存在大量微小的阴极和阳极)
金属表面电化学不均一性的主要原因: 化学成分不均一;组织结构不均一;物理状态
不均一;表面膜不完整
腐蚀电池实质是一个短路的 原电池
宏观腐蚀电池和微电池工作 原理完全相同
阳极过程、阴极过程和电流 流动三个环节缺一不可
腐蚀控制措施:补救性控制 预防性控制
3. 腐蚀的定义与分类
腐蚀
金属腐蚀
非金属腐蚀
机理
破坏 特征
腐蚀 环境
化电
学 腐
化 学 腐
蚀蚀
全 局 大土 面 部 气壤 腐 腐 腐腐 蚀 蚀 蚀蚀
电
熔
解
融
质
盐
溶
中
液
的
腐
腐
蚀
蚀
高 温 气 体 腐 蚀
应 疲 磨 小 晶缝 电其 力 劳 损 孔 间隙 偶 腐 腐 腐 腐 腐腐 腐 蚀 蚀 蚀 蚀 蚀蚀 蚀它
2002年 柯伟院士
绪论
腐蚀防护的意义:
绪论
腐蚀防护的意义:
过程装备腐蚀与防护课程设计

过程装备腐蚀与防护课程设计
一、课程概述
本课程旨在介绍过程装备的腐蚀问题及其防护措施,内容主要包括以下几个方面:
•过程装备的腐蚀分类和机理
•各种材料的耐腐蚀性能及应用
•腐蚀监测和评估方法
•腐蚀防护技术和措施
•腐蚀事故案例分析和预防措施
本课程适合化工、冶金、能源等相关专业本科及研究生学生、工程师等参与学习。
二、课程大纲
章节主要内容学时
第一章过程装备腐蚀的分类及机理 2
第二章材料的耐腐蚀性及应用 4
第三章腐蚀监测与评估 2
第四章腐蚀防护技术和措施 4
第五章腐蚀事故案例分析及预防措施 2
第一章:过程装备腐蚀的分类及机理
学习目标: - 了解过程装备腐蚀的分类和机理 - 理解腐蚀对装备的危害
1。
过程设备腐蚀与防护3

● 腐蚀疲劳 腐蚀介质和变动负荷联合作用而引起金属的断裂破坏。
* 理解腐蚀疲劳 从特点、判断依据、影响因素、机理、防护五个方面
来看待。 ● 磨损腐蚀
腐蚀性流体与金属构件以较高速度作相对运动而引起金 属的腐蚀损坏。 * 湍流腐蚀 * 空泡腐蚀 * 磨损腐蚀的防护
◆ 焊接因素 化工设备几乎都不可避免的是焊接结构。
● 焊接缺陷与腐蚀 焊接表面缺陷、异种金属焊接、焊接残余应力、焊接热
影响区 ● 晶间腐蚀
从特征、机理、防护三方面理解
小结
本节主要讲解了影响局部腐蚀的四类 结构因素;对于每一种因素造成的腐蚀, 应从概念、机理、如• 1、影响局部腐蚀的结构因素有哪些? • 2、如何对晶间腐蚀进行防护?
2 影响局部腐蚀的结构因素
按破坏特征来讲,分为全面腐蚀和局部腐蚀,后者仅集中在金属 表面局部地区,而金属其余大部分地区腐蚀很微弱,甚至不发生腐蚀。
◆力学因素
● 应力腐蚀破裂(SCC)—金属的拉应力和特定腐蚀环境共同作用下引 起的破裂。
* 条件 敏感材料、特定环境、拉应力 因此,消除SCC也应从这几方面着手,对于一定的材
以合理的结构设计来尽量避免产生涡流和湍流;选择保 护性好的表面膜材料以及提高材料的硬度。
● 氢(致)损伤 由氢引起的金属材料力学性能的破坏。
* 氢腐蚀、氢鼓泡与氢致开裂、氢脆 ● 表面状态与几何因素 * 孔蚀、缝隙腐蚀、 ● 异种金属组合因素
异种金属彼此接触或通过其他导体连通,造成的基础部 位的局部腐蚀。 * 电偶腐蚀原理 * 面积比与“有效距离” * 电偶腐蚀的防护
金属腐蚀3金属在某些环境中的腐蚀

例如,铁即使没受雨淋也会生锈。
(3)湿大气腐蚀:湿大气腐蚀指金属在相对湿度大于100%的大气中,表面存在 肉眼可见的水膜(1um~1mm)发生的腐蚀。
如:水分以雨、雾、水等形式直接溅落在金属表面上。
— 过程装备腐蚀与防护
大气腐蚀原理
3 金属在某些环境中的腐蚀
O2 O2
化学凝聚
H2O
毛细管凝聚
H2O
吸附凝聚
H2O
OH-
M
Mn+
ee
阴极反应:O2+ H2O + 4e 4OH— 阳极反应:Fe Fe2++2e
湿条件: 4Fe2O3 + Fe2++ 2e 3Fe3O4 干条件: 3Fe3O4 + 0.75 O2 4.5 Fe2O3
变得困难,腐蚀速度下降,阴极过程控制。
(iv)湿度很大,相当于完全浸在电解质
液中,腐蚀速度基本不变。
大气中水蒸气含量随地域、季节、时间等条件而变化。
液膜往复干湿交变,金属腐蚀形式可能相互转换。
— 过程装备腐蚀与防护
4影响大气腐蚀的因素
1、大气相对湿度的影响 金属腐蚀临界相对湿度:
不同物质或同一物质的不同 表面状态,对大气中水分的 吸附能力不同,当空气中相 对湿度达到某一临界值时, 水分在金属表面形成水膜。 从而使腐蚀速度大大上升。 如图所示。该值受大气杂质 的影响较大。
日常生活中,常可看到海边城市自行车圈锈蚀比 内陆的严重的多,据文献介绍钢在海岸的腐蚀比在沙 漠中大400~500倍;离海岸24m的钢试样比内陆mm的 腐蚀快12倍;工业大气比沙漠区的腐蚀可能大50至 100倍。
过程装备腐蚀与防护考点内容

主要试题题型:一、简答题(约30分)二、填空题(约20分)三、选择题(约10分)四、腐蚀事例分析(3- 4小题,共40分)第一章 腐蚀电化学基础1、金属与溶液的界面特性——双电层金属浸入电解质溶液内,其表面的原子与溶液中的极性水分子、电解质离子、氧等相互作用,使界面的金属和溶液侧分别形成带有异性电荷的双电层。
2.电极电位电极电位:电极反应使电极和溶液界面上建立的双电层电位跃。
3.金属电化学腐蚀的热力学条件(1). 金属溶解的氧化反应若进行,则金属的实际电位必更正于金属的平衡电极电位。
E>Ee,M(2)去极化反应若进行,则有金属电极电位必更负于去极剂的氧化还原反应电位。
E<Ek0上述条件需同时满足。
4、极化极化现象:电池工作过程中,由于电流流动而引起电极电位偏离初始值的现象。
极化现象的根本原因:电极反应与电子迁移的速度差。
极化曲线定义:用来表示极化电位与极化电流或极化电流密度之间关系的曲线。
作用:判断电极材料的极化特性。
腐蚀极化图定义:将构成腐蚀电池的阴极和阳极极化曲线绘在同一E -I 坐标上得到的图线,简称极化图。
对给定的腐蚀电池,工作稳定时的腐蚀电流为Icorr ,则初始电动势问题:如增加最有效的阴极的面积,或添加去极剂,搅拌等,将使Ex -S 水平线向正方向移动(为什么?)5、超电压(过电位)腐蚀电池工作时,由于极化作用使阴极电位变负,阳极电位变正。
这个值与各极的初始电位差值的绝对值称为超电压或过电位。
以η表示。
超电压量化的反映了极化的程度,对研究腐蚀速度非常重要。
6.金属的耐蚀性能评定(针对全面腐蚀 为什么?)金属耐蚀性也叫化学稳定性,即金属抵抗介质作用的能力。
对全面腐蚀,通常以腐蚀速度评定。
对受均匀腐蚀的金属,常以年腐蚀深度来评定耐腐蚀的等级7、腐蚀速度的工程表示方法重量法:以金属腐蚀前后金属质量的变化来表示,分失重法和增重法。
常为实验室采用。
失重法适用于腐蚀产物能很好地除去而不损伤主体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当PO2>PMO,G<0,金属能够发生氧化,二者差值愈大, 氧化反应倾向愈大。当PO2=PMO ,G=0,反应达到平衡。
当PO2<PMO ,G>0,金属不可能发生氧化,而是氧化物 分解。
2.2 力学因素
应力腐蚀机理
电化学溶解理论-存在活性途径优先进行,阳极侵蚀 处形成狭小裂纹。
小阳极的裂纹内部 大阴极的金属表面 由于活性阴离子Cl- 填充到裂纹处,使浓缩 的电解质溶液水被酸化, 导致裂纹尖端的阳极溶 解加速,在应力作用下 裂纹不断扩展,直至破 裂。
2.4 焊接因素
(1) 焊接缺陷和腐蚀
焊接表面缺陷
焊瘤-熔化金属流淌到焊缝之外未熔化部位堆积而成,与目材没有融合。 咬边-在工件上沿焊缝边缘所形成的沟槽会凹陷。电流过大、焊缝太长等。
2.4 焊接因素
2.3 表面状态和几何因素
电偶腐蚀-galvanic corrosion
定义 异种金属彼此接触或通过其他导体连通,处于同一介质中,会造
成接触部位的局部腐蚀。电位低的金属溶解速度大,电位高的溶解速 度小。实际为不同电极构成的宏观腐蚀电池所致。
2.3 表面状态和几何因素
电偶腐蚀原理-混合电位 金属M1和M2分别发生共轭电极反应:
2.2 表面状态和几何因素
孔蚀发生的条件
具有钝化膜的金属表面,同时钝化膜有破损,即腐蚀电位处于钝 化膜破损的某一区域。Ebr-孔蚀电位 或临界破裂电位,Ep-保护电位或钝化 电位。 电位> Ebr 发生孔蚀 Ebr>电位> Ep 不产生新蚀核,原有的
蚀核长大 电位< Ep 不产生新的蚀核,原有的
2.2 表面状态和几何因素
小孔腐蚀机理
小孔腐蚀的过程包括:
① 在钝态金属表面上小孔的成核-孔蚀核-主要与活性 阴离子有关,Cl-,蚀孔优先在一些敏感位置上形成, 这些敏感位置(即腐蚀活性点)包括:晶界(特别是有碳化 物析出的晶界),晶格缺陷;非金属夹杂,特别是硫化 物,如FeS、MnS是最为敏感的活性点;钝化膜的薄弱 点(如位错露头、划伤等)。
影响因素 ① 耐磨损腐蚀性能与它的耐蚀性和耐磨性都有关系。 ② 表面膜的保护性能和损坏后的修复能力,对材料耐磨损腐蚀性
能有决定性的作用。 ③ 流速:流速对金属材料腐蚀的影响是复杂的,当液体流动有利
于金属钝化时,流速增加将使腐蚀速度下降。流动也能消除液 体停滞而使孔蚀等局部腐蚀不发生。只有当流速和流动状态影 响到金属表面膜的形成、破坏和修复时,才会发生磨损腐蚀。 ④ 液体中含量悬浮固体颗粒(如泥浆、料浆)或气泡,气体中含有 微液滴 (如蒸气中含冷凝水滴),都使磨损腐蚀破坏加重。
高温氧化的热力学条件
金属不仅在氧气和空气中可以发生高温氧化,在氧化性气体CO2, 水蒸汽,SO2中也可以发生高温氧化。
金属氧化-狭义的金属氧化是指金属与环境介质中的氧化合而生
成金属氧化物的过程。反应式如下:
M
x 2
O2
MOx
广义的金属氧化就是金属与介质作用失去电子的过程,氧化反 应产物不一定是氧化物,也可以是硫化物、卤化物、氢氧化物或其他 化合物,可以下式表示:
2.2 力学因素
磨损腐蚀的两种形式-湍流腐蚀、空泡腐蚀
①湍流腐蚀(冲击腐蚀) 高速流体或流动截面突然变化形成了湍流或冲击,对金属材料表面
施加切应力,使表面膜破坏。湍流形成的切应力使表面膜破坏,不规 则的表面使流动方向更为紊乱,产生更强的切应力,在磨损和腐蚀的 协同作用下形成腐蚀坑。
2.2 力学因素
2.2 力学因素
应力腐蚀保护
① 降低设计应力 在空气条件下,
K1 K1c K1 Y a
K1-应力强度;-拉应力;a-裂纹深度;Y-修正系数;K1c-材料临界断裂韧性。 在腐蚀条件下同样存在K1SSC(小于K1c,通常为1/2-1/5)。
2.2 力学因素
② 合理设计与加工减少局部应力集中 选用对接焊接结构、大的曲率半径、采用流型设计等。
2.3 表面状态和几何因素
面积比与有效距离 小阳极、大阴极的结构危害,面积比Sk/Sa,析氢反应(电化学控
制)时,阴极电流密度减小,氢的超电压降低,阳极溶解加速;耗氧 (扩散控制)腐蚀时,阴极面积增加,提高了扩散电流,阳极溶解加速。
应采用小阴极、大阳极的结构。 电偶腐蚀的因素
① 金属材料的电极电位 差值越大,腐蚀 ② 面积效应 避免小阳极、大阴极 ③ 溶液电阻 腐蚀经常集中在结合(突起)处。 ④ 环境介质
②空泡腐蚀(Cavitation erosion),又叫气蚀、穴蚀。 当高速流体流经形状复杂的金属部件表面在某些区域流体静
压可降低到液体蒸气压之下,因而形成气泡在高压区气泡受压 力而破灭。气泡的反复生成和破灭产生很大的机械力使表面膜 局部毁坏,裸露出的金属受介质腐蚀形成蚀坑。蚀坑表面可再 钝化,气泡破灭再使表面膜破坏。
② 降低环境介质的有害元素 特别是卤素离子 ③ 合理的结构设计 ④ 采用阴极保护 对金属设备、装置采用电化学保护是防止小孔腐蚀
发生的较好措施。阴极极化使电位低于保护电位Ep,使设备材料处于 稳定的钝化区。 ⑤ 缓冲剂 封闭系统中采用缓冲剂,不锈钢采用硝酸盐、亚硝酸钠等。
2.2 表面状态和几何因素
(2) 缝隙腐蚀 定义
2.2 表面状态和几何因素
(1) 孔蚀-pitting corrosion 定义
金属的大部分表面不发生腐蚀或腐蚀很轻微, 但局部地方(粗糙界面的不连续保护膜)出现腐蚀 小孔并向深处发展的现象,称为小孔腐蚀或点 蚀。
小孔腐蚀是一种破坏性和隐患大的腐蚀形态 之一。在金属失重不大的情况下,设备就会发 生穿孔破坏,造成介质流失,设备报废。
2Байду номын сангаас2 表面状态和几何因素
② 小孔的成长-闭塞电池模型
形成的蚀孔处于活态,电位较低;而蚀孔周围的金属表面处于钝态,电位 较高;构成了活态-钝态微电池: 孔内金属氧化:Fe→Fe2++2e Ni →Ni2++2e Cr →Cr2++2e 孔外发生阴极:1/2O2+H2O+2e→2OH孔外金属阴极保护,处于钝态。 孔内富集氧离子,为了保持电中性。 阴离子不断迁入,形成了氯化物FeCl2。 可进一步水解 M2+Cl2+2H2O→M(OH)2↓+HCl 自催化酸性作用
2.2 力学因素
疲劳腐蚀影响因素
pH值、温度、含氧量以及变动负荷(大振幅、低频),pH 值越小、温度越高以及含氧量越大,
疲劳腐蚀机理
蚀孔应力集中理论力学-电化学交互作用,金属内部 位错滑移面上的原子处于较高的自由能而成为阳极,暴露 于新鲜金属表面产生溶解。当金属受压应力时,即逆向滑 移,不能复原,从而形成裂纹源,交变应力往复,裂纹不 断扩展沿滑移面扩展。
2.2 力学因素
疲劳腐蚀预防
① 合理选材 一般来说抗点蚀能力高的材料,其腐蚀疲劳 极限也较高;而应力腐蚀断裂敏感性高的材料,则其腐 蚀疲劳极限也低。但是应注意的是提高金属或合金抗拉 强度对改善疲劳有利,但对腐蚀疲劳有害,由于高强度 材料能阻止裂纹成核,但一旦产生裂纹,裂纹的扩展速 度和低强材料相比更快。
② 腐蚀措施 常用的有涂层、缓蚀剂及电化学保护。采 用这些措施时,应注意表面层的残余内应力及渗氢问题。 介质中添加铬 酸盐或乳化油,均可延长钢材的腐蚀疲 劳的寿命。采用阴极保护,已广泛用于海洋金属结构的 防腐蚀疲劳中,但注意出现氢脆问题。
2.2 力学因素
(3) 磨损腐蚀
磨损腐蚀(Erosion-Corrosion)-腐蚀介质与金属构件以较高速度作 相对运动而引起的金属腐蚀破坏,也叫冲刷腐蚀。
也钝化而停止发展 Ebr越高,耐孔蚀性越好; Ep越大,金属表面的钝化膜越稳定。
2.2 表面状态和几何因素
Ebr影响因素
① 材料因素 自钝化金属相对耐点蚀能力高;金属的表面粗糙核位错越容易形成 点蚀。
② 环境因素 介质的成分、pH值以及流速核温度等。
点蚀的防护
① 合理的选材,加入适量的能提高抗点蚀的合金元素,如Cr、Mo、Ni 等的不锈钢改善表面处理工艺,提高钝态稳定性。
① 氢腐蚀-高温条件下氢与金属的化学作用引起的不可逆腐蚀(第3章)。 ② 氢鼓泡或氢开裂-由于分子在夹杂或基体交界处积聚成很高的压力,引发
表面氢鼓泡HB或内部氢致开裂HIC。其中受介质、温度和夹杂物的影响较 大。酸性越大,越容易引起;HB主要出现于室温;降低夹杂有利改善材料 对HB或HIC的敏感性。 ③氢脆-氢与金属由于物理作用引起的可逆腐蚀。金属中的氢在应力梯度作 用下向高的三向应力区富集,当浓度超过临界值时,在应力场的联合作用 下导致材料开裂。裂纹通常不在表面,很少分枝,而且不连续。可通过适 当的热处理工艺使氢从材料中逸出来消除。
缝隙内阳极Fe→Fe2+十2e;缝隙外阴极1/2O2+H2O+2e→2OH-。由于 阴、阳极分离,二次腐蚀产物Fe(OH)3;在缝隙口形成,很快发展为 闭塞电池。
2.2 表面状态和几何因素
缝隙腐蚀防护
① 避免形成缝隙或造成表面沉积的几何构造
2.2 表面状态和几何因素
② 防止溶液浓缩,避免积液和死区
循环应力以交变的张应力和压应力(拉-压应力交替变化)最为常 见。如海上、矿山的卷扬机牵引钢索、油井钻杆、深井泵轴等。 脉动应力为交变应力和拉伸应力的叠加。如凿岩机所承受的是 脉动应力。
2.2 力学因素
疲劳腐蚀特点
不存在疲劳极限。
疲劳腐蚀判据-断口形貌
裂纹多为穿晶型,断口大部分有腐蚀产物覆盖,小部分断 口较为光滑,呈脆性断裂。在扫描电镜观察下,断口呈贝 壳状,或带有疲劳纹断口。
过程装备腐蚀与防护
讲授人:刘 新宝 专业:过程装备与控制工程
西北大学
第3章 金属在某些环境中的腐蚀
本章提示:主要针对金属在特定环境下的腐蚀进行研究, 具体如下: 高温腐蚀 大气腐蚀 土壤腐蚀 海水腐蚀 微生物腐蚀 硫化氢腐蚀 辐照环境下的腐蚀