高中物理-原子结构章末复习
新教材 人教版高中物理选择性必修第三册 第四章 原子结构和波粒二象性(知识点详解及配套习题)
第四章原子结构和波粒二象性1. 普朗克黑体辐射理论................................................................................................. - 1 -2. 光电效应 .................................................................................................................... - 1 -3.原子的核式结构模型.............................................................................................. - 15 -4. 氢原子光谱和玻尔的原子模型............................................................................... - 26 -5. 粒子的波动性和量子力学的建立........................................................................... - 39 -章末复习提高................................................................................................................ - 47 -1. 普朗克黑体辐射理论2. 光电效应一、能量量子化1.黑体辐射(1)随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
(2)维恩和瑞利的理论解释①建立理论的基础:依据热力学和电磁学的知识寻求黑体辐射的理论解释。
人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构
人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。
新教材 人教版高中物理选择性必修第三册 第五章 原子核 知识点考点重点难点提炼汇总
第五章原子核1.原子核的组成............................................................................................................ - 1 -2. 放射性元素的衰变..................................................................................................... - 6 -3. 核力与结合能........................................................................................................... - 13 -4. 核裂变与核聚变....................................................................................................... - 19 -5. “基本”粒子 ................................................................................................................ - 19 -章末复习提高................................................................................................................ - 29 -1.原子核的组成一、天然放射现象及三种射线1.天然放射现象(1)1896年,法国物理学家贝克勒尔发现某些物质具有放射性。
(2)①放射性:物质发射射线的性质。
高中原子物理知识点归纳
高中原子物理知识点归纳
1.原子结构
-原子是由带正电的原子核和围绕核运动的电子组成的。
-原子核由质子和中子构成,质子带有正电荷,中子则是中性的。
-电子分布在不同的能级上,每个能级对应一定的能量。
-能级结构可以用波尔模型或者量子力学的薛定谔方程来描述,能级之间的跃迁伴随着能量的变化,这对应着原子光谱的现象。
-核内的质子和中子可以通过核反应(如裂变、聚变)释放或吸收能量。
2.原子核的特性
-原子核的质量远大于电子,集中在原子的中心部位。
-原子核大小与原子整体相比很小,但密度极高。
-卢瑟福通过α粒子散射实验证实了原子的核式结构模型,即大部分空间是空的,电子在核外空间运动。
3.原子序数与核电荷数
-原子序数等于原子核内质子的数量,决定了元素的化学性质。
-原子的核电荷数等于质子数,也等于核外电子总数(在中性原子中)。
4.放射性衰变
-放射性元素自发发生核转变,释放出α粒子、β粒子(电子或正电子)或γ射线等形式的能量。
-放射性衰变遵循一定的半衰期规律。
5.核能与核反应
-核能来源于核子重组过程中释放的能量,如核裂变(如铀-235的链式反应)和核聚变(如氢弹中的氘氚反应)。
6.量子数与电子排布
-电子在原子轨道中的排布遵循泡利不相容原理、洪特规则等,形成了元素周期表中的电子构型。
7.原子光谱
-当电子在不同能级之间跃迁时,会发射或吸收特定波长的光,形成原子的发射光谱和吸收光谱。
高中物理原子与原子核知识点总结
高中物理原子与原子核知识点总结必修三原子、原子核这一章虽然不是重点;但是高考选择题也会涉及到;其实只要记住模型和方程式;就不会在做题上出错;下面的一些总结希望对大家有所帮助.卢瑟福根据α粒子散射实验提出了原子的核式结构学说;玻尔把量子说引入到核式结构模型之中;建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的;发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程..整个知识体系;可归结为:两模型原子的核式结构模型、波尔原子模型;六子电子、质子、中子、正电子、粒子、光子;四变衰变、人工转变、裂变、聚变;两方程核反应方程、质能方程..4条守恒定律电荷数守恒、质量数守恒、能量守恒、动量守恒贯串全章..1.汤姆生模型枣糕模型汤姆生发现电子;使人们认识到原子有复杂结构..从而打开原子的大门.2.卢瑟福的核式结构模型行星式模型卢瑟福α粒子散射实验装置;现象;从而总结出核式结构学说α粒子散射实验是用α粒子轰击金箔;实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进;但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上..卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核;叫原子核;原子的全部正电荷和几乎全部质量都集中在原子核里;带负电的电子在核外空间运动..由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m..而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定;②其发出的光谱是否连续3.玻尔模型引入量子理论;量子化就是不连续性;整数n叫量子数玻尔补充三条假设⑴定态--原子只能处于一系列不连续的能量状态称为定态;电子虽然绕核运转;但不会向外辐射能量..本假设是针对原子稳定性提出的⑵跃迁--原子从一种定态跃迁到另一种定态;要辐射或吸收一定频率的光子其能量由两定态的能量差决定本假设针对线状谱提出辐射吸收光子的能量为hf=E初-E末氢原子跃迁的光谱线问题一群氢原子可能辐射的光谱线条数为 ..大量处于n激发态原子跃迁到基态时的所有辐射方式⑶能量和轨道量子化----定态不连续;能量和轨道也不连续;即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应;原子的定态是不连续的;因此电子的可能轨道分布也是不连续的针对原子核式模型提出;是能级假设的补充氢原子的激发态和基态的能量最小与核外电子轨道半径间的关系是:说明氢原子跃迁① 轨道量子化r n=n2r1n=1;2.3…r1=0.53×10-10m=-13.6eV能量量子化:E1②③氢原子跃迁时应明确:一个氢原子直接跃迁向高能级跃迁;吸收光子一般光子某一频率光子一群氢原子各种可能跃迁向低能级跃迁放出光子可见光子一系列频率光子④氢原子吸收光子时——要么全部吸收光子能量;要么不吸收光子1光子能量大于电子跃迁到无穷远处电离需要的能量时;该光子可被吸收..即:光子和原于作用而使原子电离2光子能量小于电子跃迁到无穷远处电离需要的能量时;则只有能量等于两个能级差的光子才能被吸收..受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况..⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量实物粒子作用而使原子激发..因此;能量大于某两个能级差的电子均可被氢原子吸收;从而使氢原子跃迁..E51=13.06 E41=12.75 E31=12.09 E21=10.2;有规律可依E52=2.86 E42=2.55 E32=1.89; E53=0.97 E43=0.66; E54=0.31⑶玻尔理论的局限性..由于引进了量子理论轨道量子化和能量量子化;玻尔理论成功地解释了氢光谱的规律..但由于它保留了过多的经典物理理论牛顿第二定律、向心力、库仑力等;所以在解释其他原子的光谱上都遇到很大的困难..氢原子在n能级的动能、势能;总能量的关系是:EP=-2EK;E=EK+EP=-EK..类似于卫星模型由高能级到低能级时;动能增加;势能降低;且势能的降低量是动能增加量的2倍;故总能量负值降低..量子数1.天然放射现象的发现;使人们认识到原子核也有复杂结构..核变化从贝克勒耳发现天然放射现象开始衰变用电磁场研究:2.各种放射线的性质比较三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:四种核反应类型衰变;人工核转变;重核裂变;轻核骤变⑴衰变:α衰变:实质:核内α衰变形成外切同方向旋;β衰变:实质:核内的中子转变成了质子和中子β衰变形成内切相反方向旋;且大圆为α、β粒子径迹..+β衰变:核内γ衰变:原子核处于较高能级;辐射光子后跃迁到低能级..⑵人工转变:发现质子的核反应卢瑟福用α粒子轰击氮核;并预言中子的存在发现中子的核反应查德威克钋产生的α射线轰击铍人工制造放射性同位素正电子的发现约里奥居里和伊丽芙居里夫妇α粒子轰击铝箔⑶重核的裂变:在一定条件下超过临界体积;裂变反应会连续不断地进行下去;这就是链式反应..⑷轻核的聚变:需要几百万度高温;所以又叫热核反应所有核反应的反应前后都遵守:质量数守恒、电荷数守恒..注意:质量并不守恒..核能计算方法有三:①由△m单位为“kg”计算;②由△E=931.5△m△m 单位为“u”计算;③借助动量守恒和能量守恒计算..2.半衰期放射性元素的原子核有半数发生衰变所需的时间叫半衰期..对大量原子核的统计规律计算式为: N表示核的个数 ;此式也可以演变成或 ;式中m表示放射性物质的质量;n 表示单位时间内放出的射线粒子数..以上各式左边的量都表示时间t后的剩余量..半衰期由核内部本身的因素决定;与物理和化学状态无关、同位素等重要概念放射性标志3.放射性同位素的应用⑴利用其射线:α射线电离性强;用于使空气电离;将静电泄出;从而消除有害静电..γ射线贯穿性强;可用于金属探伤;也可用于治疗恶性肿瘤..各种射线均可使DNA发生突变;可用于生物工程;基因工程..⑵作为示踪原子..用于研究农作物化肥需求情况;诊断甲状腺疾病的类型;研究生物大分子结构及其功能..⑶进行考古研究..利用放射性同位素碳14;判定出土木质文物的产生年代..一般都使用人工制造的放射性同位素种类齐全;各种元素都有人工制造的放射性同位..半衰期短;废料容易处理..可制成各种形状;强度容易控制..高考对本章的考查:以α粒子散射实验、原子光谱为实验基础的卢瑟福原子核式结构学说和玻尔原子理论;各种核变化和与之相关的核反应方程、核能计算等..在核反应中遵循电荷数守恒和质量数守恒;在微观世界中动量守恒定律同样适用..。
高中物理选修3-5章末
工具
选考部分选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
栏目导引
二、动量守恒的应用 动量守恒定律是自然界普遍适用的基本规律之一.大到天体, 动量守恒定律是自然界普遍适用的基本规律之一 . 大到天体 , 小 到微观粒子,无论相互作用的是什么性质的力, 到微观粒子,无论相互作用的是什么性质的力,动量守恒定律都是适用 的.因此动量守恒定律也适用于原子或原子核之间的相互作用. 因此动量守恒定律也适用于原子或原子核之间的相互作用. 静止的锂核(36Li)俘获一个速度为 ×106 m/s的中子,发生核反 静止的锂核 俘获一个速度为7.7× 的中子, 俘获一个速度为 的中子 应后若只产生两个新粒子,其中一个粒子为氦核( 应后若只产生两个新粒子 , 其中一个粒子为氦核 24He),它的速度大小 , 是8×106 m/s,方向与反应前的中子速度方向相同. × ,方向与反应前的中子速度方向相同. (1)写出此核反应的方程式; 写出此核反应的方程式; 写出此核反应的方程式 (2)求反应后产生的另一个粒子的速度大小及方向. 求反应后产生的另一个粒子的速度大小及方向. 求反应后产生的另一个粒子的速度大小及方向
工具
选考部分 选修3-5
动量守恒定律 波粒二象性 原子结构与原子核
栏目导引
解析: 解析: (1)36Li+01n―→24He+13H + + (2)用m1、m2和m3分别表示中子 01n)、氦核 24He)和氚核 13H)的质量, 用 分别表示中子( 和氚核( 的质量, 、氦核( 和氚核 的质量 由动量守恒定律得m 由动量守恒定律得 1v1=m2v2+m3v3 代入数值, =-8.1× 代入数值,得v3=- ×106 m/s 即反应后生成的氚核的速度大小为8.1× , 即反应后生成的氚核的速度大小为 ×106 m/s,方向与反应前中 子的速度方向相反. 子的速度方向相反. 答案: 答案: (1)36Li+01n―→24He+13H (2)8.1×106 m/s + + × 前中子的速度方向相反 方向与反应
高中物理原子物理知识点总结
高中物理原子物理知识点总结一、原子的组成原子是物质的基本单位,由原子核和电子组成。
原子核位于原子的中心,由质子和中子组成,质子带正电荷,中子不带电荷;电子绕着原子核运动,带负电荷。
二、原子的结构1. 核原子核的直径约为10^-15米,质子和中子都存在于核中。
质子的质量大约是中子的1.6726219 × 10^-27 千克,它们的电量相等,大小为1.60217662 × 10^-19 库仑。
2. 电子壳层电子围绕在原子核外部的轨道上,称为电子壳层。
电子壳层的数量决定了原子的大小。
第一层能容纳最多2个电子,第二层最多容纳8个电子,第三层最多容纳18个电子。
三、原子的质量数和原子序数原子的质量数是指原子核中质子和中子的总数。
原子的质量数通常用字母A表示。
原子的原子序数是指原子核中质子的个数,也称为元素的序数。
原子的原子序数通常用字母Z表示。
四、同位素同位素是指化学元素原子中,质子数相同,中子数不同的原子。
同位素具有相同的化学性质,但物理性质可能有所不同。
五、原子的电离原子的电离是指从一个原子中剥离出一个或多个电子形成带电离子的过程。
当原子失去电子后变为带正电荷的离子,称为正离子;当原子获得电子后变为带负电荷的离子,称为负离子。
六、电子能级和电子排布规则电子能级是指电子在原子中的能量状态。
电子按照一定的能级顺序依次填充到不同的能级中。
根据泡利不相容原理和伯利斯规则,电子排布规则如下:1. 每个能级最多只能容纳一定数量的电子;2. 电子填充时要先填满较低的能级;3. 每个能级的轨道填充电子时,按照上层轨道的能级对轨道进行排布。
七、原子的能级跃迁原子的能级跃迁是指电子在不同能级之间跃迁的过程。
根据能级跃迁所产生的能量差异,原子可以发射光线,这种现象称为光谱。
八、原子核的衰变和辐射原子核可以通过放射性衰变进行变化,衰变过程伴随着放射性辐射的释放。
常见的原子核衰变方式包括α衰变、β衰变和γ衰变。
2021年高中物理选修三第四章《原子结构和波粒二象性》经典复习题(答案解析)(1)
一、选择题1.氢原子能级示意如图。
现有大量氢原子处于n=3能级上,下列正确的是()A.这些原子跃迁过程中最多可辐射出6种频率的光子B.从n=3能级跃迁到n=1能级比跃迁到n=2能级辐射的光子频率低C.从n=3能级跃迁到n=4能级需吸收0.66eV的能量D.n=3能级的氢原子电离至少需要吸收13.6eV的能量2.关于α粒子散射实验的下述说法中正确的是()A.实验表明原子中心的核带有原子的全部正电及全部质量B.实验表明原子中心有一个较大的核,它占有原子体积的较大部分C.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°D.使α粒子发生明显偏转的力是来自带正电的核及核外电子,当α粒子接近核时是核的推斥力使α粒子发生明显偏转,当α粒子接近电子时,是电子的吸引力使之发生明显偏转3.如图,当电键K断开时,用光子能量为2.5eV的一束光照射阴极P,发现电流表读数不为零。
合上电键,调节滑线变阻器,发现当电压表读数小于0.60V时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。
由此可知阴极材料的逸出功为()A.1.9eV B.0.6eV C.2.5eV D.3.1eV4.以下说法正确的是()A.密立根用摩擦起电的实验发现了电子;B.密立根用摩擦起电的实验测定了元电荷的电荷量;C.密立根用油滴实验发现了电子;D.密立根用油滴实验测定了元电荷的电荷量.5.如图所示为氢原子的能级图,已知金属钨的逸出功为4.54eV,则下列说法正确的是A.处于基态的氢原子可以吸收10.3eV的光子而被激发B.一个氢原子处于n=4能级,最多辐射6种波长的光C.用n=4能级跃迁到n=2能级的辐射光照射钨,能发生光电效应D.氢原子从能级n=4跃迁到n=3比从能级n=3跃迁到n=2辐射的电磁波波长要长6.分别用波长为λ和34λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:2,以h表示普朗克常量,c表示真空中的光速,则此金属板的逸出功为()A.12hcλB.23hcλC.34hcλD.45hcλ7.某金属发生光电效应,光电子的最大初动能E k与入射光频率ν之间的关系如图所示。
高二下物理周末同步辅导12原子结构
第十二讲原子结构【考点分解】考点一:关于原子结构的重要史实1.汤姆孙通过对阴极射线的研究,发现了电子。
2.汤姆孙发现,不同的阴极材料均可打出相同的电子,热电子发射、光电效应等其他现象也有电子产生,表明电子是组成物质的基本结构。
3.汤姆孙提出原子结构的枣糕模型。
4.卢瑟福通过α粒子散射实验提出原子的核式结构模型。
5.原子光谱的分立性和原子稳定性成为原子结构的两大困难。
6.巴尔末提出氢原子在可见光范围谱线的经验公式(巴尔末公式)7.玻尔建立在轨道量子化、定态假设、频率条件基础上的玻尔模型成功地解释了氢原子光谱。
1.英国物理学家汤姆孙通过对阴极射线的实验研究发现() A.阴极射线在电场中偏向正极板一侧B.阴极射线在磁场中受力情况跟正电荷受力情况相同C.不同材料所产生的阴极射线的比荷不同D.汤姆孙幵未得出阴极射线粒子的电荷量2.以下说法中符合汤姆孙原子模型的是()A.原子中的正电部分均匀分布在原子中B.原子中的正电部分集中在很小的体积内C.电子在原子内可以自由运动D.电子在原子内不能做任何运动3.关于空气导电性能,下列说法正确的是()A.空气导电,因为空气分子中有的带正电,有的带负电,在强电场作用下向相反方向运动的结果B.空气能够导电,是因为空气分子在射线或强电场作用下电离的结果C.空气密度越大,导电性能越好D.空气密度变得越稀薄,越容易发出辉光4.如图所示,一只阴极射线管左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的轨迹往下偏,则()A.导线中的电流由A流向BB.导线中的电流由B流向AC.若要使电子束的轨迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的轨迹与AB中电流方向无关5.如图所示为汤姆孙用来测定电子比荷的装置。
当极板P和P′间不加偏转电压时,电子束打在荧光屏的中心O点处,形成一个亮点;加上偏转电压U后,亮点偏离到O′点,O′点到O点的竖直距离为d,水平距离可忽略不计;此时在P与P′之间的区域里再加上一个方向垂直于纸面向里的匀强磁场,调节磁感应强度,当其大小为B时,亮点重新回到O点。
【高中物理】原子结构和波粒二象性章节复习课件2022-2023学年高二物理人教版2019必修第二册
光电效应
▪ 1) 材料逸出功为常数,因此电子的动能完全由频率决定——截止电压仅由频率决定; ▪ 2的) 存Ek 在> 0;恒成立,因此当 hν < W 时,不会出现电子溢出——解释了图(d)中截止电压 ▪ 3) 光的强度由光子的数目决定——解释了饱和光电流的存在以及饱和光电流仅有光
▪ 这些值是某一最小能量单元 ε0 = hν 的整数倍, 其中 ν 为谐振子的频率。
电子的发现
▪ 电子的发现—Thomson 阴极射线实验 ▪ 阴极射线的本质——电磁辐射?带电微粒? ▪ 汤姆孙实验(在电磁场中偏转) ——阴极射
线是带电粒子流 ▪ 汤姆孙实验(不同材料的阴极,不同的气
体) ——射线粒子的电荷与氢离子一样
玻尔模型的局限性
▪ 玻尔理论成功地解释了氢原子光谱的实验规律。 但对于稍微复杂一点的原子如氦原子,玻尔理 论就无法解释它的光谱现象。
2 光电效应方程与光的波粒二象性
实验结果
▪ 1. 当电压大于一定数值后,光电流达到饱和值 Im ,不随电压的增加而增加 → 从阴极逸出的光电子全部达到了阳极 C;
强决定; ▪ 4) 光强一定,频率变化,饱和光电流就不变,只有截止电压改变——解释了图(b)中
的现象; ▪ 5) 光强变化,频率一定,截止电压就不变,只有饱和光电流改变——解释了图(c)中
的现象; ▪ 6) 电子吸收一个光子后,马上就会有光电子的发射——光电流的响应无时间延迟; ▪ 7) 根据光电方程我们得到了另一种有别于黑体辐射的,测量普朗克常数的方法。
▪ 3.量子理论:玻尔提出的定态和在定态之间跃迁的概念都被保留下来,而不 正确的经典轨道概念就被抛弃了。
1 原子的能级结构
2025《高中物理总复习》16.2原子结构 氢原子光谱
动相对应.原子的定态是不连续的,因此电子的可能轨道也是 __不__连_续___的.
3.氢原子的能量和能级跃迁 (1)氢原子的能极图:如图所示.
例1“梦天号”实验舱携带世界首套可相互比对的冷原子钟组发射升 空,对提升我国导航定位、深空探测等技术具有重要意义.如图所示 为某原子钟工作的四能级体系,原子吸收频率为ν0的光子从基态能级 Ⅰ跃迁至激发态能级Ⅱ,然后自发辐射出频率为ν1的光子,跃迁到钟 跃迁的上能级2,并在一定条件下可跃迁到钟跃迁的下能级1,实现受 激辐射,发出钟激光,最后辐射出频率为ν3的光子回到基态.该原子 钟产生的钟激光的频率ν2为( )
考点一 考点三
考点二 考点四
考点一
考点一 原子的核式结构模型 ●———【必备知识·自主落实】———● 1.电子的发现:英国物理学家汤姆孙研究_阴__极__射_线__发现了电子,证 明了原子可以再分.
2.原子的核式结构: (1)α粒子散射实验[注意关键词语“绝大多数”“少数”等]:1909~ 1911年,英国物理学家__卢__瑟_福___和他的助手进行了用α粒子轰击金箔 的实验,实验发现__绝_大__多__数_α粒子穿过金箔后基本上仍沿原来方向前 进,但有少数α粒子发生了__大__角__度__偏转,偏转的角度甚至大于90°, 也就是说它们几乎被“撞”了回来.(如图所示)
答案:D
3.[2023·黑龙江哈尔滨哈师大附中校考三模]在α粒子散射实验中, 下列图景正确的是( )
答案:B
考点二
考点二 氢原子光谱 、 氢原子能级图及原子跃迁 ●———【必备知识·自主落实】———●
1.氢原子光谱 (1)光谱:用光栅或棱镜可以把各种颜色的光按波长(频率)展开,获 得光的___波__长___(频率)和强度分布的记录,即光谱. (2)光谱分类
高中物理新高考考点复习47 原子结构 氢原子光谱
考点规范练47原子结构氢原子光谱一、单项选择题1.下列说法正确的是()A.α粒子散射实验揭示了原子不是组成物质的最小微粒B.玻尔的原子理论成功地解释了氢原子的分立光谱,因此玻尔的原子结构理论已完全揭示了微观粒子运动的规律C.阴极射线的实质是电子流D.玻尔原子理论中的轨道量子化和能量量子化的假说,启发了普朗克将量子化的理论用于黑体辐射的研究2.利用光谱分析的方法能够鉴别物质和确定物质的组成成分,下列关于光谱分析的说法正确的是()A.利用高温物体的连续谱就可鉴别其组成成分B.利用物质的线状谱就可鉴别其组成成分C.高温物体发出的光通过某物质后的光谱上的暗线反映了高温物体的组成成分D.同一种物质的线状谱的亮线与吸收光谱上的暗线由于光谱的不同,它们没有关系3.(2021·四川仪陇宏德中学高三模拟)氦原子被电离出一个核外电子,形成类氢结构的氦离子。
已知基态的氦离子能量E1=-54.4 eV,氦离子的能级示意图如图所示。
在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是()A.40.8 eVB.51.0 eVC.43.2 eVD.48.4 eV4.下图为氢原子的能级示意图。
现有大量的氢原子从n=4的激发态向低能级跃迁,辐射出若干种不同频率的光,下列说法正确的是()A.从n=4的激发态向基态跃迁时,只能辐射出3种特定频率的光B.氢原子由n=2能级跃迁到n=1能级时,辐射出的光频率最小C.氢原子由n=4能级跃迁到n=1能级时,电子的动能增加D.氢原子由n=3能级跃迁到n=1能级时,辐射出的光子能量为10.2 eV二、多项选择题5.氢原子的能级图如图所示,a 和b 是从高能级向低能级跃迁时辐射出的两种可见光,则( )A.a 光子的能量高于b 光子的能量B.a 光的波长大于b 光的波长C.a 光与b 光在空间叠加时可以发生干涉现象D.同一玻璃对a 光的折射率大于对b 光的折射率6.已知氢原子的基态能量为E 1,n=2、3能级所对应的能量分别为E 2和E 3,大量处于第3能级的氢原子向低能级跃迁放出若干频率的光子。
高中物理【原子结构和原子核】知识点、规律总结
两类核衰变在磁场中的径迹 [素养必备]
静止核在磁场中自发衰变,其轨迹为两相切圆,α 衰变时两圆外切,β 衰变时两圆 内切,根据动量守恒 m1v1=m2v2 和 r=mqBv知,半径小的为新核,半径大的为 α 粒子或 β 粒子,其特点对比如下表:
α 衰变
AZX→AZ--24Y+42He
β 衰变
AZX→Z+A1Y+0-1e
特征
3.氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ= R212-n12(n=3,4,5,…,R 是里德伯常量,R=1.10×107 m-1).
4.光谱分析:利用每种原子都有自己的_特__征__谱__线___可以用来鉴别物质和确定物质 的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.
(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的_正__电__荷___和几乎 全部__质__量__都集中在核里,带负电的电子在核外空间绕核旋转.
二、氢原子光谱 1.光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强 度分布的记录,即光谱. 2.光谱分类
连续
吸收
师生互动
1.α 衰变、β 衰变的比较
衰变类型
α 衰变
β 衰变
衰变方程
AZX→AZ--24Y+42He
AZX→Z+A1Y+-01e
2 个质子和 2 个中子结合成一个整体射 1 个中子转化为 1 个质子和 1 个电子
衰变实质 出
衰变规律
211H+210n→42Βιβλιοθήκη e10n→11H+-01e
电荷数守恒、质量数守恒、动量守恒
五、核力和核能 1.核力 原子核内部,_核__子__间___所特有的相互作用力. 2.核能 (1)核子在结合成原子核时出现质量亏损 Δm,其对应的能量 ΔE=__Δ__m_c_2___. (2)原子核分解成核子时要吸收一定的能量,相应的质量增加 Δm,吸收的能量为 ΔE =__Δ_m__c_2___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理-原子结构章末复习
【知识网络梳理】
【知识要点与方法指导】
一、重点、难点、方法
1.原子核式结构的提出与α粒子散射实验的关系
卢瑟福设计的α粒子散射实验是为了探究原子内电荷的分布,并非为了验证汤姆孙模型的正与误,他在做了α粒子散射实验后,根据实验现象的分析提出了原子的“核式结构”模型。
2.对氢原子能级跃迁的理解
(1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足
hv E E =-末初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hv
大于或小于E E -末初时都不能被原子吸收。
(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差。
(3)当光子能量大于或等于13.6eV 时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6eV 。
氢原子电离后,电子具有一定的初动能。
一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数为2
(1)2
n n n N C -=
=。
(4)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能
原
子结构
⎧⎪
⎪
⎪
⎪
⎨
⎪⎪⎪
⎪⎩
电子的发现原子模型⎧⎪⎪⎪⎨
⎪⎪⎪⎩光谱光谱分析:用明线光谱和吸收光谱分析物质的化学组成
⎧⎪
⎨⎪⎩吸收光谱发射光谱⎧⎨⎩连续谱
线状谱⎧⎨
⎩汤姆孙的发现:阴极射线为电子流
电子发现的意义:原子可以再分⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪
⎪⎪⎪⎩
汤姆孙枣糕式模型卢瑟福核式结构模型玻尔原子结构模型氢原子光谱和光谱分析⎧⎪
⎨⎪⎩能量量子化轨道量子化能级跃迁
可全部或部分地被原子吸收,所以只要入射粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的差值(m n E E E m n =->且),均可使原子发生能级跃迁。
(5)跃迁时电子动能、原子势能与原子能量的变化
当轨道半径减小时,库仑引力做正功,原子的电势能P E 减小,电子动能增大,原子能量减小。
反之,轨道半径增大时,原子电势能增大,电子能动减小,原子能量增大。
二、要点深化
原子跃子时需注意以下几个问题: 1.一群氢原子和一个氢原子
氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能轨道上,在某段时间内,由某一轨道跃迁到另一轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了,所以,要注意一群氢原子处在量子数为n 的激发态时,可能辐射的光谱线条数为2
(1)2
n
n n N C -==,而一个氢原子处在量子数为n 的激发态时,可能辐射的光谱线条数为1n -。
2.直接跃迁与间接跃迁
原子从一种能量状态跃迁到另一种能量状态时,有时可能间接跃迁,两种情况的辐射(或吸收)光子的频率可能不同。
3.跃迁与电离
原子跃迁时,不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差,若想把处于某一定态的原子的电子电离出去,就需要给原子一定的能量,若基态原子电离(即上升到n =∞),其电离能为13.6ev ,只要能量等于或大于13.6ev 的光子都能将基态氢原子电离。
只不过入射光子的能量越大,电离后的电子获得的动能越大。
【典题探究】
【例1】在α粒子散射实验中,当在α粒子最接近原子核时,关于描述α粒子的有关物理量符合下列哪种情况?( )。
A .动能最小
B .势能最小
C .α粒子与金原子核组成的系统能量最小
D .α粒子所受金原子核的斥力最大 [解析]α粒子和金原子核都带正电,库仑力表现为斥力,两者距离减小时,库仑力做负功,故α粒子动能减小,电势能增加;系统的能量守恒,由库仑定律可知随着距离的减小,库仑斥力逐渐增大。
[答案]AD
【例2】氢原子的能级如图所示,已知可见光的光子能量范围约为1.62eV ~3.11eV 。
下列说法错误的是( )。
A .处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离
B .大量氢原子从高能级向n=3能级跃迁时,发出的光具有显著的热效应
C .大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光
D .大量处于n=4能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光 [解析]大量处于n=4能级的氢原子向低能级跃迁时,共可发出6种频率的光,其中在可见光范围内的有n=4到n=2和n=3到n=2两种,故选D 项,不选C 项。
n=3能级能量为 1.51eV -,因紫外线能量大于1.51eV ,故紫外线可使处于n=3能级的原子电离,故不选A 项。
n=4能级跃迁到n=3能级释放能量为0.66 1.62eV eV <,此光为红外线具有显著热效应,故不选B 项。
[答案]D
【例3】已知氢原子基态的电子轨道半径为1010.5310r m -=⨯,基态的能级值为113.6E eV =-。
(1)求电子在n=2的轨道上运动所形成的等效电流强度;
(2)有一群氢原子处于量子数n=3的激发态,画出一能级图并在图上用箭头表示这些氢原子能发出哪几条光谱线;
(3)计算出这几条谱线中最长的波长。
[解析](1)电子的绕核运转具有周期性,设运转周期为T ,由牛顿第二定律和库仑定律可知:2
22222ke m r r T π⎛⎫= ⎪⎝⎭
,且2
2114r n r r ==;对轨道上任一处,每一周期通过该处的电量为e ,由电流强度的定义式,可求得等效电流强度e
I T
=
;联立上述三式可得:111.310I A -=⨯。
(2)由于这群氢原子的自发跃迁辐射,会得到三条谱线,如图所示:
(3)三条光谱线中波长最长的光子能量最小,发生跃迁的两个能级的能量差最小,根据氢原子能级的分布规律可知,氢原子一定是从n=3的能级跃迁到n=2能级,设波长为λ,由
32hc
E E λ
=-;得732
6.5810hc
m E E λ-=
=⨯-。
n
,/F eV
∞04231
0.85-3.4-1.51-13.6
-
[答案](1)1.3111.310A -⨯ (2
(3)76.5810m -⨯
3=2
=1
=。