第四章-飞机总体布置

合集下载

飞机结构与系统(第四章 飞机机身结构)

飞机结构与系统(第四章 飞机机身结构)
3)硬壳式: 结构特点: • 无桁梁,无桁条; • 蒙皮厚,与少数隔框组成机身。 受力特点: • 机身总体弯、剪、扭引起的全部轴 力和剪力由厚蒙皮承担; • 隔框用于维持机身截面形状,支持 蒙皮、承担框平面内的集中力。 不宜大开口,机身实际应用很少,只 适于局部气动载荷较大,要求蒙皮局部刚 度大的部位,如机头、尾锥等。
桁梁剖面
南京航空航天大学民航学院
机身结构组成
3. 机身蒙皮 1)功用: • 构成机身气动外形,保持表面光滑,承受局部空气动力; • 承受xoy,xoz两个平面内的剪力和绕x轴扭矩; • 和长桁一起组成壁板承 受两个平面内弯矩引起 的轴力; • 气密增压座舱部位的蒙 皮还要承受环向和轴向 的张应力。
南京航空航天大学民航学院
机身结构组成
2. 长桁与桁梁
1)功用: 长桁: • 承受和传递机身弯矩引起的轴力; • 与蒙皮组成承力壁板; • 承受部分作用在蒙皮上的气动力并传给隔框。 桁梁的截面积大于长桁,功用类似。
2)构造型式 简单式:从横剖面看只有一个结构元件; 组合式:从横剖面看有几个结构元件。 长桁多为简单式,桁梁有时采用组合式。
机身垂直面内剪力图及弯矩图
南京航空航天大学民航学院
机身结构组成
机身主要构件: • 蒙皮 • 纵向骨架:长桁、桁梁 • 横向骨架:隔框
南京航空航天大学民航学院
机身结构组成
机身主要构件: • 蒙皮 • 纵向骨架:长桁、桁梁 • 横向骨架:隔框
南京航空航天大学民航学院
机身结构组成
1. 隔框 1)分类
南京航空航天大学民航学院
机身与其它部件的连接
四、发动机在机身上的安装
1. 机身内发动机的安装 另一种典型的发动机安装形式。
南京航空航天大学民航学院

飞机总体设计PPT课件

飞机总体设计PPT课件

经济性能设计
燃油经济性
在保证飞行性能的前提下,通过 优化飞机气动外形、减轻结构重 量、提高发动机效率等措施,降 低飞机的燃油消耗率。
维护经济性
通过采用先进的维护理念和技术 手段,降低飞机的维护成本和停 场时间,提高飞机的出勤率和利 用率。
直接运营成本
包括燃油费、维护费、机组人员 工资等直接与飞机运营相关的成 本。设计中需要考虑如何降低这 些成本以提高飞机的经济性能。
采用遗传算法、模拟退火等启发 式算法,处理飞机设计中的复杂 问题,寻求全局最优解。
利用代理模型对飞机性能进行快 速评估,减少计算量,提高优化 效率。
多学科优化方法探讨
多学科设计优化(MDO)
综合考虑气动、结构、控制等多学科因素,实 现飞机总体设计的协同优化。
分解协调方法
将复杂问题分解为若干子问题,分别进行优化 后再进行协调,降低问题求解难度。
06
确保飞机满足适航法规和标准的要求,包括噪声、排放等 环保指标。
02
飞机总体布局设计
布局形式的选择与特点
常规布局
水平尾翼和垂直尾翼都 放在机翼后面的飞机尾
部。
鸭式布局
水平尾翼位于机翼的前 面,具有较好的大迎角
特性。
无尾布局
没有水平尾翼,靠机翼 后缘襟翼或扰流片等部
件实现俯仰操纵。
三翼面布局
在常规布局上增加一对 鸭翼。
垂直尾翼
主要功能是保持飞机的方 向平衡和操纵飞机的方向 运动。
V型尾翼
由左右两个倾斜的垂直尾 翼组成,像是固定在机身 尾部带大上反角的平尾。
起落架布局设计
前三点式起落架
自行车式起落架
两个主轮对称地布置在飞机重心之后, 前轮位于机身前部。

飞机的总体布置

飞机的总体布置
对飞机内部各舱段的成品设备及各系统管路、电 缆等的通路进行布置和协调 重点对机身内部进行协调布置,以确定机身的最 大横截面、机身总长度和总体积等,并根据调整 重心的要求最后确定机身与机翼、尾翼、发动机 等的位置关系 在总体布置的基础上对飞机的几何外形进行修形 与完善 对飞机的重量、重心位置进行校核
设计过程中的演化—准备重画方案
— “Do not „fall in love‟ with your design”
总是会有的改进余地
• • • • • 起落架够简洁吗? 机身可否更短些? 浸湿面积能否减少? 设计是否具有改进的潜力? …...
必然会根据后续的分析和优化结果进行修改
34
9.4 飞机设计布置图
来源:Fielding J. P. Introduction to Aircraft Design
12
9.2 飞机内部的总体布置
结构间隙量的估计
对于初始布置,设计师必须估计内部部件周 围所需的结构间隙量,以免出现大量的返工 —估算间隙没有简单公式,需要根据经验判断 和参考现有的设计 大型客机的客舱内壁到外蒙皮一般需要约 4in.{10cm}的间隙 常规战斗机机身内部部件一般距离外蒙皮约 2in.{5cm} 内部部件的类型会影响所需的间隙
19
构造横截面外形
• •
9.3 飞机外形设计
机身外形设计基本步骤(续)
控制站位处的控制横截面外形构成了整个机 身外形的骨架,再在骨架上铺上光滑连续的 曲面就构成了整个机身外形
20
9.3 飞机外形设计
机翼整流带
机翼整流带通常由半径变化的、与机翼和机 身相切的圆弧定义。典型整流带的半径大约 是根弦长度的10%
表示飞机个主要组成部分的布置,主要设备、 成品附件的安装位置和相互关系的一组图样, 一般由侧视布置图、俯(仰)视布置图和剖 视布置图等组成 内部布置图比初始布局详细得多

《飞机总体设计》电子教案2009最新版-南航-余雄庆-620页-单个PDF

《飞机总体设计》电子教案2009最新版-南航-余雄庆-620页-单个PDF
• 设计要求通常包括: - 性能、载荷和使用要求 - 适航条例和设计规范 - 工艺和生产要求 - 环境要求 - 成本
飞机设计的过程
• 概念设计 ( Conceptual Design )=技术经济可行性论证 • 初步设计 ( Preliminary Design )=预发展(总体方案论证)
设设 计计 要要 求求
技技
术术
储储
备备
总体设计 =
概念设计 + 初步设计
概念设计
输入
• 设计要求 • 设计规范
目标
• 可行性论证:能否达到设计指标 ? • 获得一个或几个能满足要求的初步方案
工作内容
• 确定全机布局 • 确定主要参数确定 • 选择发动机 • 分系统架构 • 确定部件主要几何参数 • 初步的总体布置 • 方案分析与评估 • 总体参数优化 • 绘制三面图
Integrated Multidisciplinary analysis and optimization
…… aerodynamics
structure performance
conceptual
preliminary
detail
飞机总体设计的重要性
总体设计影响全寿命周期成本的85%!
影 100
2000.
7.
Torenbeek, Synthesis of Subsonic Airplane Design,Delft University Press, 1982.
8. 余雄庆,徐惠民,昂海松,飞机总体设计,航空工业出版社,2000年。
9. 顾诵芬、解思适等编,飞机总体设计,北京航空航天大学出版社,2001年。
95%

85%

飞机总体设计的主要内容

飞机总体设计的主要内容

飞机总体设计的主要内容
飞机总体设计主要包括3各⽅⾯:⽅案设计、总体参数详细设计、决策和优化。

⽅案设计
⽅案设计的输⼊在飞机设计的前两个阶段(⽬标确定和概念设计)中确定,并在⽅案设计任务书中给出,⼀般包括:
(1)装载和装载类型
(2)航程或待机要求
(3)起飞着陆场长
(4)爬升要求
(5)机动要求
(6)鉴定基准(例如:试验、航标或军⽤标准)
⽅案设计的主要任务是确定下列主要总体参数:
(1)起飞总重:飞机为了完成设计⽬标任务所需的起飞前总重量。

(2)最⼤升⼒系数:在飞⾏器的仿真计算中,升⼒求解的⼀般表达式是 Y=Cx*q*S,其中q为动压,S为参考⾯积,Cx即为升⼒系数。

(3)零升阻⼒系数
(4)推重⽐
(5)翼载
对应的,⽅案设计的内容可分为
(1)重量估算:计算起飞总重、空机重量、载重、油重等参数
(2)升阻特性估算:计算升⼒系数、阻⼒系数
(3)确定推重⽐和翼载:
(4)总体布局形式选择。

现代飞机结构与总体设计ppt课件

现代飞机结构与总体设计ppt课件

❖ 通常垂直尾翼后缘设有方向舵,某些高速飞机,
没有独立的方向舵,整个垂尾跟着操纵而偏转, 称为全动垂尾。
18
水平尾翼
飞机的结构
❖ 水平尾翼水平安装在机身尾部,主要功能为保持 俯仰平衡和俯仰操纵。
❖ 低速飞机水平尾翼前段为水平安定面,是不可操 纵的,其后缘设有升降舵,飞行员利用升降舵进行 俯仰操纵。
36
什么是飞机设计
❖飞机设计是指设计人员应用气动、结构、 动力、材料、工艺等学科知识通过分析综 合和创造思维,将设计要求转化为一组能 完整描述飞机的参数的过程
37
什么是飞机设计
❖飞机研制过程 —五个阶段的划分方式
▪ 论证阶段 —研究设计新飞机的可行性
▪ 方案阶段 —设计出可行的飞机总体技术方案
▪ 工程研制阶段 —进行详细设计,提供图纸试制原型机
飞机结构与总体设计
蔡波
通航产品部
主要内容
❖1.现代飞机结构 ❖2.飞机总体设计
2
航空发展历程
➢第一次有动力飞行
❖ 自从1903年12月17号,莱特兄弟的“飞行者”一号离开地 面的那刻起,人类已经开始把目光投向天空,此后的一百多 年来,这片领域已经发生了翻天覆地的变化。
3
航空发展历程
4
航空发展历程
也有三、四或六叶的。
26
飞机的结构
发动机的分类
二 涡轮喷气发动机: ❖ 又称空气涡轮喷气发动机,简称“涡喷” ❖ 以空气为氧化剂,靠喷管高速喷出的燃气产生反
作用推力的燃气涡轮航空发动机,。 ❖ 组成:压气机、燃烧室、涡轮和尾喷管。推力用
牛或千克表示。
27
飞机的结构
发动机的分类
三 涡轮螺旋桨发动机: ❖从涡喷发动机派生而来 ❖涡轮螺旋桨发动机是一种由螺旋桨提供拉力和喷气

飞机总体设计纲要

飞机总体设计纲要

飞机总体设计一:飞机研制的五个阶段:1)论证阶段;2)方案阶段;3)工程研制阶段;4)设计定型阶段;5)生产定型阶段二:初步重量估计m0:乘员m cy;装载m zz;燃油m ry;结构m kj。

三:影响翼型气动特性的主要参数:前缘半径;相对厚度;弯度;雷诺数1:前缘半径:前缘半径小,前缘在小迎角开始分离;前缘半径越小越易分离,最大升力小,波阻小;圆前沿翼型从后缘开始分离,随迎角增大分离前移,其失速迎角大,最大升力系数大,波阻也大;一般亚声速采用圆前沿翼型,超声速采用尖前缘翼型。

2:相对厚度变化对亚声速阻力影响不大,对超声速影响阻力大;直接影响飞机阻力(尤其是波阻)3:翼型弯度:最大弯度点靠前可得到高的最大升力系数。

但弯度引起翼型有较大的零升低头力矩系数,而且随马赫数增大而激增,因此高速飞机不采用有弯度的翼型。

(平尾、立尾等翼面要在正负迎角、正负侧滑角下工作,因此采用对称翼型)4:展弦比:展弦比越大,翼尖效应对机翼影响越小(A380翼尖)。

四:边条翼作用:在中等到大迎角范围,边条产生强的脱体涡,增大涡升力,控制改善外翼部分的分离流动从而提高飞机升力。

五:设计机身时要求阻力小:头部平滑收缩;要求机身长细比大,以减小超声速波阻;尾部为轴对称旋成体,收缩缓和。

而对于亚声速飞机,机身长细比过大会加大机身浸润面积而加大摩阻。

六:保证俯仰安定性和操作性的气动布局:1)飞机处于前重心位置时,满足抬前轮、起降操纵的要求;2)对静安定的飞机,在重心后有最小允许的纵向静安定度余量;对静不定飞机,可提供足够的恢复平衡低头俯仰力矩。

3)在做机动时能保证飞机达到所规定的最大过载。

七:全动平尾转轴方式:直轴斜轴(大后掠角)八:1、外挂布局形式:外部; 半埋;共形;内部。

2、外挂低阻设计:1)最佳安装高度2)最佳弹体间隔(不小于弹径)3)弹体安装角4)合理布局5)半埋悬挂6)保形悬挂九:四种气动布局特点十:外形隐身设计原则:1)消除形成角反射器的外形布局;(变单立尾为双立尾)2)变后向散射为非后向散射; (F22棱形机头)3)采用一个部件对另一强散射部件遮挡;(F22 S型进气道,F117进气道叶栅)4) 将翼面棱边安排在非重要照射方向上;(F22 平行翼边)5)消除强散射源;6)结构细节设计;(缝隙,铆钉)7)吸波涂层;(涂层厚度1/4雷达波长)十一:气动弹性问题:1)操纵面反效:增大机翼结构扭转刚度,增加翼型厚度,减小后掠角展弦比,选择合适操纵面;2)机翼发散:采用复合材料,利用其各向异性控制变形方向;3)颤振:改善气动外形结构刚度。

总体简答题

总体简答题

1,费效分析(DAPCA4)例题:DAPCA IV模型中工时、费用的组成-兰德DAPCA IV模型是飞机发展与采购费用模型(DAPCA) 的最终形式。

-DAPCA IV模型通过工程、工艺装备、制造、质量控制等小组来分析估算研究、发展、试验与鉴定及生产所需的工时,然后将这些工时乘以相应的小时费率,就可得到一部分发展与采购费用;(人工费)-通过发展支援、飞行试验、制造材料和发动机制造等方面的费用直接得到另一部分发展与采购费用。

2,飞机形式例题:选择飞机形式,主要决定哪些内容?(1) 机翼外形和机翼与机身的相对位置(2) 尾翼外形及其与机翼、机身的相对位置(3) 机身形状(4) 发动机及进气道的数目及安装形式(5) 起落架及其收放型式及位置等选择飞机型式,应根据飞机设计要求,从气动、强度、工艺、使用维护、重量等方面进行综合分析考虑,选择理想、恰当的飞机型式。

3,总体布置例题:飞机总体布置(部位安排)的具体任务有哪些?(1) 对全机的几何外形进行协调;(2) 具体安排飞机内部的各种装载和设备;(3) 合理布置飞机各部件的结构承力系统;(4) 对飞机重心进行定位。

4,作战效能评估(对数评估法)作战飞机的作战能力可分两方面,一为空对空作战能力,一为空对地作战能力。

两者在飞机总作战能力评估中各占多少份量要根据使用方对该型飞机的要求而定。

总作战能力指数E为:E = a1 C + a2 K1 D其中C为空战能力指数,D为空对地攻击能力指数。

a1、a2分别为空对空和空对地任务分配系数,a1+ a2 = 1。

K1为平衡系数。

例如:制空歼击机a1为1.0,a2 为0,即不要求对地攻击能力。

战斗机a1 为0.8,a2 为0.2。

战斗轰炸机a1 为0.3,a2为0.7。

而轰炸机则a1 为0,a2 为1.0。

空对空作战能力指数C:空对地作战能力指数D:空对地作战能力指数分两部分组成,即航程指数和武器效能指数。

两者相加得出总值(D); 航程指数是当量航程的自然对数,武器效能指数是当量载弹量的自然对数。

《航空概论》第4章 飞机的基本构造

《航空概论》第4章  飞机的基本构造

第4章 飞机的基本构造
(4) 动力装置。动力装置包括产生推力的发动机,以及 保证发动机正常工作所需要的附属系统和附件传动装置,其 中包括发动机的启动、操纵、固定、燃油、滑油、散热、防 火、灭火、进气和排气等装置和系统。
(5) 操纵系统。操纵系统包括驾驶杆(盘)、脚蹬、拉杆、 摇臂或钢索、滑轮等。驾驶杆(盘)控制升降舵(或全动水平尾 翼)和副翼,脚蹬控制方向舵。为了改善操纵性能和稳定性 能,现代飞机操纵系统中还配备有各种助力系统(包括液压 式和电动式)、增稳装置和自动驾驶仪。
第4章 飞机的基本构造
3.结构完整性要求 所谓的结构完整性,是指关系到飞机安全使用、使用费 用和功能的机体结构的强度、刚度、损伤容限及耐久性(或 疲劳安全寿命)等飞机所要求的结构特性,是飞机结构特性 的总体要求。
第4章 飞机的基本构造
4.最小重量要求 在满足飞机的空气动力要求和结构完整性的前提下,应 使结构的重量尽可能减轻,即达到最小重量要求。因为结构 重量的增加,在总重量不变的情况下,就意味着有效载荷的 减小,或飞行性能的降低。减轻结构重量是飞机设计和制造 人员的重要使命,也是飞机型号研制成功的关键。世界各国 所有的飞机设计和制造部门,都有一个共同的口号:“为减 轻飞机的每一克重量而奋斗”。
第4章 飞机的基本构造
图4-4 机翼上所受的剪力、弯矩和扭矩
第4章 飞机的基本构造
4.2.2 机翼受力构件的基本构造 机翼结构的受力构件主要分蒙皮和骨架结构,如图4-5
所示。骨架结构中,纵向构件有翼梁、长桁(桁条)、纵墙(腹 板),横向构件有翼肋(普通翼肋和加强翼肋)。
第4章 飞机的基本构造
合理的结构布局是减轻结构重量最主要的环节,飞机通 常用结构重量系数来表示结构设计水平。结构重量系数是用 飞机结构重量与飞机正常起飞重量的百分比来表示的。统计 结果表明,第一代歼击机的结构重量系数平均在35%左右, 第二代歼击机的结构重量系数平均在33%左右,第三代歼击 机的结构重量系数平均在30.5%左右。目前发展的第四代歼 击机,如美国的F-22飞机,据悉结构重量系数为28%。

飞机总体设计纲要

飞机总体设计纲要

飞机总体设计一:飞机研制的五个阶段:1)论证阶段;2)方案阶段;3)工程研制阶段;4)设计定型阶段;5)生产定型阶段二:初步重量估计m0:乘员m cy;装载m zz;燃油m ry;结构m kj。

三:影响翼型气动特性的主要参数:前缘半径;相对厚度;弯度;雷诺数1:前缘半径:前缘半径小,前缘在小迎角开始分离;前缘半径越小越易分离,最大升力小,波阻小;圆前沿翼型从后缘开始分离,随迎角增大分离前移,其失速迎角大,最大升力系数大,波阻也大;一般亚声速采用圆前沿翼型,超声速采用尖前缘翼型。

2:相对厚度变化对亚声速阻力影响不大,对超声速影响阻力大;直接影响飞机阻力(尤其是波阻)3:翼型弯度:最大弯度点靠前可得到高的最大升力系数。

但弯度引起翼型有较大的零升低头力矩系数,而且随马赫数增大而激增,因此高速飞机不采用有弯度的翼型。

(平尾、立尾等翼面要在正负迎角、正负侧滑角下工作,因此采用对称翼型)4:展弦比:展弦比越大,翼尖效应对机翼影响越小(A380翼尖)。

四:边条翼作用:在中等到大迎角范围,边条产生强的脱体涡,增大涡升力,控制改善外翼部分的分离流动从而提高飞机升力。

五:设计机身时要求阻力小:头部平滑收缩;要求机身长细比大,以减小超声速波阻;尾部为轴对称旋成体,收缩缓和。

而对于亚声速飞机,机身长细比过大会加大机身浸润面积而加大摩阻。

六:保证俯仰安定性和操作性的气动布局:1)飞机处于前重心位置时,满足抬前轮、起降操纵的要求;2)对静安定的飞机,在重心后有最小允许的纵向静安定度余量;对静不定飞机,可提供足够的恢复平衡低头俯仰力矩。

3)在做机动时能保证飞机达到所规定的最大过载。

七:全动平尾转轴方式:直轴斜轴(大后掠角)八:1、外挂布局形式:外部; 半埋;共形;内部。

2、外挂低阻设计:1)最佳安装高度2)最佳弹体间隔(不小于弹径)3)弹体安装角4)合理布局5)半埋悬挂6)保形悬挂九:四种气动布局特点十:外形隐身设计原则:1)消除形成角反射器的外形布局;(变单立尾为双立尾)2)变后向散射为非后向散射; (F22棱形机头)3)采用一个部件对另一强散射部件遮挡;(F22 S型进气道,F117进气道叶栅)4) 将翼面棱边安排在非重要照射方向上;(F22 平行翼边)5)消除强散射源;6)结构细节设计;(缝隙,铆钉)7)吸波涂层;(涂层厚度1/4雷达波长)十一:气动弹性问题:1)操纵面反效:增大机翼结构扭转刚度,增加翼型厚度,减小后掠角展弦比,选择合适操纵面;2)机翼发散:采用复合材料,利用其各向异性控制变形方向;3)颤振:改善气动外形结构刚度。

飞机总体布置

飞机总体布置

6.总体布置6.1发动机布置发动机安装在后机身,双发布局,双发喷管间距取(),可以有效的减小双发喷管之间的干扰阻力损失,获得尽可能大得有效推力。

在由于故障单发飞行时,由于两边推力不平衡而引起的使机头偏向一边的力矩比较小,安全系数高。

喷管采用矢量喷管,可以保证在飞机作低速、大攻角机动飞行而操纵舵面几近失效时利用推力矢量提供的额外操纵力矩来控制飞机机动。

然而当飞机采用了推力矢量之后,发动机喷管上下偏转,产生的推力不再通过飞机的重心,产生了绕飞机重心的俯仰力距,这时推力就发挥了和飞机操纵面一样的作用。

由于推力的产生只与发动机有关系,这样就算飞机的迎角超过了失速迎角,推力仍然能够提供力矩使飞机配平,只要机翼还能产生足够大的升力,飞机就能继续在空中飞行了。

而且,通过实验还发现推力偏转之后,不仅推力能产生直接的投影升力,还能通过超环量效应令机翼产生诱导升力,使总的升力提高。

采用水平尾翼以及外倾的双垂直尾翼。

水平尾翼超出机尾向后延伸以遮蔽喷嘴,可降低雷达目标有效截面。

6.2进排气系统布置采用DSI进气道,布置在腋下,机翼与机身连接处。

洛•马开发了一种革命性的发动机进气道概念,具有出色的气动性能,并取消了传统超音速进气道上的复杂结构,降低了生产和使用费用。

DSI 是固定几何形状进气道,取消了附面层隔道、放气系统和旁通系统,减少了 300 磅的结构重量在所有速度范围包括高超音速条件下,DSI 都具有出色的性能,而在机动条件下,DSI 仍然非常可靠。

在过去的 10 年里,这项技术从酝酿走向成熟,其低风险已经被 F-35 所确认。

现在的 DSI 在性能略由于固定式进气道的基础上,可以改善飞机的隐身特性,并有利于进气道——机身一体化设计。

而在超音速性能方面,即使目前的 DSI 尚不尽如人意,但并不足以严重影响 DSI 在战斗机设计中的应用。

这里可以清楚地看到DSI 进气口,边界层被鼓包从中间“破开”,被迫向鼓包的两侧分开,最后从后缩的进气口唇口和机身连接处泄放6.3燃油箱布置燃油系统由燃油箱、增压泵、输油泵、燃油测量装置和管路组成,机内燃油箱共有四部分组成,三个在机身中部,另一个布置在两侧机翼中间段。

4飞机性能估算

4飞机性能估算
28
4.2 飞机性能估算
将各种速度下的升限画在飞行包线图上, 就可得到飞行包线的上边界。
29
4.2 飞机性能估算
机动性能计算
飞机的机动性能是指飞机在一定时间内改 变其高度、速度和飞行方向的能力,是反 映飞机作战能力的重要性能。 飞机的机动性能包括:爬升性能、水平加 (减)速、盘旋和特技性能等。 为了便于对比,常把50%机内燃油的飞机 重量作为计算重量。
4
4.1 重心定位与调整
各部件重心位置估算(续) 机身 • 喷气运输机:
– 发动机安装在机翼上: 0.42 ~ 0.45机身长 – 发动机安装在机身后部:0.47 ~ 0.50机身长
• 战斗机:
– 发动机安装在机身内: 0.45机身长
• 螺浆单发
– 拉力式: – 推进式: 0.32 ~ 0.35机身长 0.45 ~ 0.48机身长
12
4.2 飞机性能估算
1.右边界最大速度限制 最大速度限制通常取下列速度的最小值: (1)发动机推力最大时可达到的最大平飞速度; (2)结构强度所能承受的最大动压载荷所对应的 速度; (3)由抖振或颤振特性限制的最大速度; (4)由飞机安定性、操纵性下降所限制的最大速 度; (5)由气动加热限制的最大速度。
各部件重心位置估算* 机翼
平直翼
后掠或三角翼
*这部分数据取自南京航空航空大学《飞机总体设计》课件、 《民用喷气飞机设计》及P.7所列之表,而不同的参考资料中的数 据会有一定的差异
3
4.1 重心定位与调整
各部件重心位置估算(续) 平尾/鸭翼/垂尾: 40%MAC * 注意三种翼面包含范围的不同取法
xzx xzx xA bA 100%

飞机总体布局设计

飞机总体布局设计

“火神”采用无尾三角翼布局形式,4台发动 机。 B-47采用后掠翼的布局型式,6台发动机。
B-47与“火神”飞机
7
航空宇航学院
单击此处编辑母版标题样式 1.尾翼的数目及其与机翼、机身的相对位置
• 单击此处编辑母版文本样式 • 平尾前、后位置与数目的三种形式
– 第二级 1.正常式(Conventional)
• 第三级 2.鸭式(Canard) – 第四级
第五级 3.无尾式» ( Tailless )
8
航空宇航学院
正常式飞机 单击此处编辑母版标题样式
• •水平尾翼的气动力 单击此处编辑母版文本样式 • 第三级 • 优点与缺点第四级 –
- 技术成熟,所积累的经验和资料丰富,设计容易成功。 » 第五级 - 机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大。 - 平尾对全机升力贡献的大小与重心的位置有关 - – 第二级 纵向静稳定性
• • 第三级 置,有可能满足大迎角时纵向稳定性的要求。 – 第四级 避开发动机尾喷流的不利干扰 » 第五级
平尾安装在机身上对减轻结构重量有利
• 有利于结构布置
考虑角度 结构重量
上平尾 轻
中平尾 较轻
下平尾 轻
“T” 平尾 重
高置平尾 较重
19
航空宇航学院
不同平尾高低位置的实例 单击此处编辑母版标题样式
• 第三级
1 – 第四级 » 第五级 1 3** 1 1
9
航空宇航学院
鸭式布局 单击此处编辑母版标题样式
• 全机升力系数较大; • 单击此处编辑母版文本样式 • L/D可能较大; – 第二级 • 第三级 • 为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角;
– 第四级 • 前翼应先失速,否则飞机有可能无法控制。 » 第五级

飞机总体设计框架

飞机总体设计框架
2)对结构重量的影响
▲ η增加,可减轻机翼结构重量
3)对内部容积的影响
▲ η增加,有利于布置起落架
4)对于高速飞机
▲ η=3∼5,主要是从结构重量考虑
11
• 后掠角χ
航空宇航学院
1)对气动特性的影响
▲ χ增大,可以提高临M界数,延缓激波的产生;
▲ χ增大,波阻降低;
▲ χ增大,升力线斜率降低;
C
α L
4
• 几何参数之间的关系
如果给定: S, λ, η, χ1/ 4 则:
航空宇航学院
l = λ⋅S
c根 = 2 ⋅ S /[l(1+ 1η)]
c尖
=
1
η
c根
cA
=
2 3
c根

1+η+η 2 η (பைடு நூலகம்+η )
tgχ 前缘
=
tgχ1/ 4
+
(1 −
1
η
)
/[λ (1 +
1
η
)]
5
• 平均气动力弦长 cA
航空宇航学院
飞机总体设计框架
设计 要求
主要参数计算 布局型式选择
发动机选择
部件外形设计
机机身身 机机翼翼 尾尾翼翼 起起落落架架 进进气气道道
是否满足 设计要求
最优?
分析计算
重重量量计计算算 气气动动计计算算 性性能能计计算算 结结构构分分析析
三面图 部位安排图 结构布置图
1
航空宇航学院
机翼的设计
∫ cA
=
2 S
l / 2 c2dz
0
∫ xA
=
2 S

第15讲:飞机总体布局

第15讲:飞机总体布局

Rear Lavatory (View Aft)
Flexible Design to Meet Highest Customer Requirements.
• 画出起落架的前轮和主轮
航空宇航学院
绘制飞机三面图(续)
• 尺寸标注与标题栏
- 总体尺寸: - 部件尺寸: - 部件相对位置尺寸:尾力臂,……, - 特征尺寸:bA, 后掠角,防后倒立角等 。 参见:附录B(p162-165)
航空宇航学院
航空宇航学院
航空宇航学院
飞机内部装载的布置
• 飞机内部装载布置包括: - 座舱布置 - 动力装置(进气道、发动机、尾喷管等) - 燃油系统(油箱、导管及主要附件)布置 - 主要载物舱、客舱和乘员舱、武器弹药布置 - 电气设备、雷达及主要天线的布置 - 起落架及其他结构性装载的布置 - 液压、冷气、操纵、高空系统的布置
From "aircraft design: where does it stand ? " By Roskam, Aerospace America ,Sept. 1991
航空宇航学院
主要承力结构布置的原则
• • • • • • 保证飞机结构具有足够的强度和刚度 有利于减轻结构重量 便于维护和使用 良好的工艺性 内部装载的要求 主承力构件的综合利用
• 要求:
- 满足所装武器的要求; - 要考虑武器发射时对飞机重心位置的影响; - 保证武器发射时,不影响发动机正常工作; - 保证维护和使用方便。
航空宇航学院
• 布置方式:
- 外挂式 - 机内式 - 半埋式 - 保形式
航空宇航学院
起落架的布置
• 任务:
– 起落架支点和转轴在承力结构中的安装位置; – 起落架舱的安排:起落架机轮收入机体中的 舱室位置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.飞机总体布置工作的具体任务
*对飞机内部各舱段的成品设备及各系统管路、电缆等的通路进行布置和协调
*重点对机身内部进行协调布置,以确定机身的最大横截面、机身总长度和总体积等,并根据调整重心的要求最后确定机身与机翼、尾翼、发动机等的位置关系*在总体布置的基础上对飞机的几何外形进行修形与完善
*对飞机的重量、重心位置进行校核
*在初步设计阶段结束前,还应对飞机各舱段分区进行打样协调,据此进行全尺寸样机的设计和制造,通过评审后冻结飞机的技术状态
2.结构总体方案确定的原则
*结构布局设计力求综合满足各种设计要求,结构传力合理,力求综合承载
*结构总体方案力求重量最轻
3.结构布局设计的主要工作内容
*根据飞机总体设计的安排,确定全机结构主要受力形式及传力方案,包括机翼、机身、尾翼和起落架结构布局形式的确定,其中最主要的是机翼与机身结构的总体布置形式
*分配结构重量指标
4.内部总体布置的主要内容
*机舱的布置
*发动机和进排气系统的布置
*燃油箱及其系统的布置
*武器装载的布置
*雷达及各种系统设备舱的布置
*操纵、电气、液压、冷气等各种系统的管路、电缆等的布置
*主要结构布置方面的考虑
5.飞机外形的内容
*机身外形
*机翼外形
*尾翼外形
*进气道内形
*需整流部分的部件外形
6.机身外形设计基本步骤
*根据总体布置草图,选定10个左右机身控制切面(又称控制横截面、控制剖面)典型的有:雷达天线切面、座舱切面、进气道进口切面、发动机进口切面......
*构造横截面外形
通常由圆弧、直线、二次曲线、样条曲线,或是由它们组成的组合曲线构成
要考虑到机身的纵向外形,要考虑到前后连接以至整个机身外形的形成
*控制站位处的控制横截面外形构成了整个机身外形的骨架,再在骨架上铺上光
滑连续的曲面就构成了整个机身外形。

相关文档
最新文档