数学建模-优化模型
数学建模第二讲简单的优化模型
数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
数学建模~最优化模型(课件)
投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
数学建模最优化模型
数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。
在众多的数学建模方法中,最优化模型是一种常用的方法。
最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。
最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。
决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。
最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。
线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。
线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。
非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。
非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。
整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。
max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。
最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。
通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。
总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。
最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。
数学建模-简单的优化模型
3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 的解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
假设1) 假设2)
dB
b t1,
t t b
由模型决定队员数量x
问题
4 最优价格
根据产品成本和市场需求,在产销平
衡条件下确定商品价格,使利润最大
假设
1)产量等于销量,记作 x 2)收入与销量 x 成正比,系数 p 即价格 3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数
进一步设 x( p) a bp, a, b 0
C~
c1
c2
Q 2
T
c1 c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解
dC 0 dT 模型分析
求 T 使C(T ) c1 c2rT Min T2
T 2c1 rc2
Q rT 2c1r c2
c1 T,Q
模型应用
c2 T,Q
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员的平均灭火速度)
优化模型一:线性规划模型数学建模课件
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。
数学建模中的优化模型
数学建模中的优化模型优化模型在数学建模中起着重要的作用。
通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。
本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。
让我们来了解一下什么是优化模型。
优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。
这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。
在优化模型中,目标函数是我们希望最大化或最小化的指标。
它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。
约束条件是对变量的限制,可以是等式约束或不等式约束。
变量则是我们需要优化的决策变量,可以是连续变量或离散变量。
常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。
线性规划是指目标函数和约束条件都是线性的优化模型。
它可以通过线性规划算法来求解,如单纯形法和内点法。
非线性规划是指目标函数和约束条件中包含非线性项的优化模型。
它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。
整数规划是指变量取值只能是整数的优化模型。
它的求解方法包括分支定界法和割平面法等。
动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。
优化模型在实际问题中有着广泛的应用。
例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。
在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。
在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。
优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。
通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。
优化模型在数学建模中是非常重要的。
它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。
数学建模 四大模型总结
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模动态优化模型
数学建模动态优化模型数学建模是一种通过建立数学模型来解决实际问题的方法。
动态优化模型则是指在一定的时间尺度内,通过调整决策变量,使系统在约束条件下达到最优效果的数学模型。
本文将介绍数学建模中动态优化模型的基本原理、方法和应用。
动态优化模型是一种考虑时间因素的优化模型。
在解决实际问题时,往往需要考虑到系统随时间变化的特性,因此单纯的静态优化模型可能无法满足需求。
动态优化模型对系统的演化过程进行建模,通过引入时间因素,能够更准确地描述系统的行为,并找到最优的策略。
动态优化模型的核心是建立一个数学模型来描述系统的演化过程。
在建模过程中,需要确定决策变量、目标函数、约束条件和系统的动态特性。
决策变量是指在不同时间点上的决策变量值,目标函数是指目标的数量指标,约束条件是系统必须满足的条件,系统的动态特性是指系统状态随时间的变化规律。
动态优化模型的建模方法有很多种,常见的方法包括状态空间建模、差分方程建模和优化控制建模等。
其中,状态空间建模是一种通过描述系统状态和系统状态之间的关系来建立模型的方法;差分方程建模是一种通过描述离散时间点上系统的状态之间的关系来建立模型的方法;优化控制建模则是一种将优化方法和控制方法相结合的建模方法。
动态优化模型在实际问题中有广泛的应用。
例如,在生产调度问题中,我们需要根据不同时间的产销情况来安排生产任务,以使得产能得到充分利用并满足市场需求;在交通控制问题中,我们需要根据交通流量的变化来调整信号灯的配时方案,以最大程度地减少交通拥堵;在能源管理问题中,我们需要根据电网的负荷变化来调整发电机组的出力,以实现能源的有效利用。
在建立动态优化模型时,需要考虑到模型的复杂性和求解的难度。
一方面,动态优化模型往往比静态优化模型复杂,需要考虑到系统的动态特性和约束条件的演化;另一方面,求解动态优化模型需要考虑到系统的运行时间和求解算法的效率。
因此,在建立动态优化模型时,需要合理选择模型和算法,以保证模型的可行性和求解的可行性。
数学建模作业---优化模型
P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。
制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。
(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。
数学建模中的模型优化与参数校准
数学建模中的模型优化与参数校准数学建模是解决实际问题的一个重要手段,通过对实际问题进行抽象和建模,可以利用数学方法求解问题并得到结果。
模型的优化和参数校准是数学建模过程中的两个重要的环节,本文将对这两个环节进行详细的探讨。
一、模型优化模型优化是指对已有的模型进行改进,使其更加适合于解决实际问题。
在实际应用中,我们往往会发现原有的模型存在一些缺陷,或者不能满足我们的需求,这时就需要对模型进行优化。
模型优化的方法很多,常用的方法包括参数调整、模型结构调整、数据采集等。
其中,参数调整是最常用的方法之一。
在建立模型时,我们往往需要确定一些参数,这些参数对模型的性能有着重要的影响。
如果模型的参数选择不合适,那么模型的预测结果可能会偏差较大。
因此,在实际应用中,我们需要对模型的参数进行调整,以获得更好的预测效果。
模型参数的调整通常有两种方法,一种是手动调节,另一种是自动调节。
手动调节的方式需要根据实际经验和知识对参数进行调整,这种方法虽然简单,但存在人为主观性较强的问题。
自动调节的方式则通过计算机算法自动调整模型参数,可以较好地解决人为主观性较强的问题,并且可以快速找到最优的参数组合,提高模型的预测精度。
另外,模型结构调整也是模型优化的一个重要方法。
模型的结构可以根据实际问题进行调整,例如,可以增加一些变量来改进模型的预测效果。
此外,数据采集也是模型优化的一个重要环节,通过增加更多的数据可以提高模型的预测精度,但同时也需要保证数据的质量和可靠性。
二、参数校准参数校准是指对模型中的参数进行调整,使得模型更加符合实际情况。
在实际应用中,我们往往需要将模型对实际问题进行预测,而模型中的参数是根据历史数据确定的,这些参数未必完全适用于实际问题。
因此,我们需要对模型中的参数进行校准,以获得更准确的预测结果。
参数校准通常需要依赖于实验数据,通过实验数据对模型中的参数进行调整,以获得更符合实际情况的模型。
参数校准的方法很多,常用的方法包括随机搜索、改进的遗传算法、模拟退火算法等。
数学建模优化建模实例课件
6米钢管根数 0 1 0 2 1 3 0
8米钢管根数 0 0 1 0 1 0 2
余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式
切割多少根原料钢管,最为节省?
两种 1. 原料钢管剩余总余量最小 标准 2. 所用原料钢管总根数最少
18
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模型建立
xij--第i 种货物装入第j 个货舱的重量
目标 函数 (利润)
Max Z 3100(x11 x12 x13) 3800(x21 x22 x23) 3500(x31 x32 x33) 2850(x41 x42 x43)
货舱 x11 x21 x31 x41 10 重量 x12 x22 x32 x42 16
3
货机装运
模型建立
xij--第i 种货物装入第j 个货舱的重量
约束
平衡 要求
x11 x21 x31 x41 10
x12 x22 x32 x42 16
10; 6800
16; 8700
8; 5300
条件
x13 x23 x33 x43 8
货物 供应
x11 x12 x13 18 x21 x22 x23 15
如何装运, 使本次飞行 获利最大?
1
货机装运
模型假设
每种货物可以分割到任意小; 每种货物可以在一个或多个货舱中任意分布; 多种货物可以混装,并保证不留空隙;
模型建立
决策 xij--第i 种货物装入第j 个货舱的重量(吨) 变量 i=1,2,3,4, j=1,2,3 (分别代表前、中、后仓)
数学建模中经济与金融优化模型分析
数学建模中经济与金融优化模型分析在当今复杂多变的经济与金融领域,数学建模已成为一种不可或缺的工具。
通过建立数学模型,我们能够对经济和金融现象进行定量分析,预测趋势,制定优化策略,从而为决策提供有力支持。
本文将深入探讨数学建模中常见的经济与金融优化模型,分析它们的原理、应用以及优缺点。
一、线性规划模型线性规划是数学建模中最基本也是应用最广泛的优化模型之一。
它主要用于解决在一组线性约束条件下,如何使线性目标函数达到最优值的问题。
在经济领域,线性规划常用于生产计划的制定。
例如,一家工厂生产多种产品,每种产品需要不同的原材料、生产时间和劳动力,同时市场对每种产品的需求也有限制。
通过建立线性规划模型,工厂可以确定每种产品的生产数量,以在满足各种约束条件的前提下,实现利润最大化。
在金融领域,线性规划可用于资产配置。
投资者拥有一定的资金,并希望在多种资产(如股票、债券、基金等)之间进行分配,以在风险限制和预期收益目标下,实现投资组合的最优配置。
线性规划模型的优点在于计算简单、易于理解和求解。
然而,它也有局限性,比如只能处理线性关系,无法准确描述现实中许多复杂的非线性现象。
二、整数规划模型整数规划是在线性规划的基础上,要求决策变量取整数值的优化模型。
在经济领域,整数规划常用于项目选择和人员分配问题。
例如,一个企业有多个项目可供投资,但每个项目的投资金额是整数,且资源有限。
通过整数规划模型,可以确定投资哪些项目,以实现企业的长期发展目标。
在金融领域,整数规划可用于股票的买卖决策。
假设投资者只能以整数股买卖股票,且有资金和风险限制,整数规划可以帮助确定购买哪些股票以及购买的数量。
整数规划模型相较于线性规划更加符合实际情况,但求解难度也更大,往往需要更复杂的算法和计算资源。
三、非线性规划模型非线性规划用于处理目标函数或约束条件中包含非线性函数的优化问题。
在经济领域,非线性规划可用于研究成本函数和需求函数为非线性的企业生产决策。
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模之优化模型
从最小规模的子问题开始,逐步求解更大规模的子问 题,最终得到原问题的最优解。
自顶向下求解
从原问题开始,将其分解为子问题,通过迭代求解子 问题,最终得到原问题的最优解。
状态转移方程
通过状态转移方程描述子问题之间的关系,从而求解 子问题和原问题。
动态规划模型的应用实例
最短路径问题
如Floyd-Warshall算法,通过动 态规划求解所有节点对之间的最 短路径。
遗传算法
03
模拟生物进化过程的自然选择和遗传机制,通过种群迭代优化
,找到最优解。
整数规划模型的应用实例
生产计划问题
通过整数规划模型优化生产计划,提高生产效 率、降低成本。
投资组合优化
通过整数规划模型优化投资组合,实现风险和 收益的平衡。
资源分配问题
通过整数规划模型优化资源分配,提高资源利用效率。
THANKS
需要进行调整和改进。
02
CATALOGUE
线性规划模型
线性规划模型的定义与特点
线性规划模型是数学优化模型的 一种,主要用于解决具有线性约 束和线性目标函数的优化问题。
线性规划模型的特点是目标函数 和约束条件都是线性函数,形式
简单且易于处理。
线性规划模型广泛应用于生产计 划、资源分配、投资决策等领域
背包问题
如0-1背包问题、完全背包问题和 多重背包问题等,通过动态规划 求解在给定容量的限制下使得总 价值最大的物品组合。
排班问题
如工作调度问题,通过动态规划 求解满足工作需求和工人技能要 求的最优排班方案。
05
CATALOGUE
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊的线性规划,要求决策变量取整数值。
数学建模之优化模型
数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。
从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。
而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。
优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。
这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。
为了更好地理解优化模型,让我们先来看一个简单的例子。
假设你有一家小工厂,生产两种产品 A 和 B。
生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。
每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。
A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。
那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。
我们可以用数学语言来描述它。
设生产 A 产品的数量为 x,生产 B 产品的数量为 y。
那么我们的目标就是最大化利润函数 P = 5x + 8y。
同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。
接下来,我们就可以使用各种优化方法来求解这个模型。
常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。
对于上面这个简单的例子,我们可以使用线性规划的方法来求解。
线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。
通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。
然后,使用单纯形法或者图解法等方法,就可以求出最优解。
在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。
数学建模~最优化模型(课件ppt)
用MATLAB解无约束优化问题 解无约束优化问题
1. 一元函数无约束优化问题 一元函数无约束优化问题: min f ( x )
x1 ≤ x ≤ x 2
常用格式如下: 常用格式如下: (1)x= fminbnd (fun,x1,x2) ) (2)x= fminbnd (fun,x1,x2 ,options) ) (3)[x,fval]= fminbnd(…) ) , ( (4)[x,fval,exitflag]= fminbnd(…) ) , , ( (5)[x,fval,exitflag,output]= fminbnd(…) ) , , , ( 其中等式( )、( )、(5)的右边可选用( ) )、(4)、( 其中等式(3)、( )、( )的右边可选用(1)或(2) ) 的等式右边. 的等式右边 函数fminbnd的算法基于黄金分割法和二次插值法,它要求 函数 的算法基于黄金分割法和二次插值法, 的算法基于黄金分割法和二次插值法 目标函数必须是连续函数,并可能只给出局部最优解. 目标函数必须是连续函数,并可能只给出局部最优解
有约束最优化问题的数学建模
有约束最优化模型一般具有以下形式: 有约束最优化模型一般具有以下形式:
min
x
f (x)
或
max
x
f (x)
st. ...... .
st. ...... .
其中f(x)为目标函数,省略号表示约束式子,可以是 为目标函数,省略号表示约束式子, 其中 为目标函数 等式约束,也可以是不等式约束。 等式约束,也可以是不等式约束。
标准型为: 标准型为:min F ( X ) 命令格式为: 命令格式为 );或 (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) ) ( ( (2)x= fminunc(fun,X0 ,options); ) ( ); 或x=fminsearch(fun,X0 ,options) ( ) (3)[x,fval]= fminunc(...); ) , ( ); 或[x,fval]= fminsearch(...) , ( ) (4)[x,fval,exitflag]= fminunc(...); ) , , ( ); 或[x,fval,exitflag]= fminsearch , , (5)[x,fval,exitflag,output]= fminunc(...); ) , , , ( ); 或[x,fval,exitflag,output]= fminsearch(...) , , , ( )
数学建模优化模型
数学建模优化模型数学建模是一种将实际问题抽象为数学模型,并通过数学方法求解的过程。
优化模型是数学建模中的一种重要类别,主要用于解决如何最大化或最小化目标函数的问题。
优化问题在日常生活和工业生产中非常常见,例如最佳路径规划、资源分配、流程优化等。
通过数学建模和优化模型,可以帮助我们在有限的时间、空间和资源下,找到最优的解决方案。
1.确定问题:首先,我们需要准确地确定问题,包括目标函数和约束条件。
目标函数是我们要最大化或最小化的指标,约束条件是问题的限制条件。
2.建立数学模型:根据实际问题的特点,我们选择合适的数学模型来描述问题。
常见的数学模型包括线性规划、整数规划、非线性规划等。
3.设计算法:根据数学模型,我们设计相应的算法来求解问题。
常见的优化算法包括单纯形法、分支定界法、遗传算法等。
4.求解模型:使用所选的算法,对数学模型进行求解。
这个过程涉及到数值计算和计算机程序的编写。
5.模型验证:对求解结果进行验证,确保结果符合实际问题的要求。
这可以通过计算误差、灵敏度分析等方法来实现。
6.结果分析和优化:对求解结果进行分析,比较不同算法的效果,并进行优化改进。
这可以帮助我们更好地理解问题,并提供更好的解决方案。
除了以上基本步骤外,数学建模优化模型还需要注意以下几个问题:1.模型的准确性:数学模型必须准确地反映实际问题的本质。
因此,我们需要对实际问题进行充分的了解,并进行有效的数据收集和分析。
2.算法的选择:不同的优化问题可能需要不同的优化算法。
因此,我们需要根据具体问题的特点选择合适的算法。
3.算法的效率和鲁棒性:在实际求解过程中,算法的效率和鲁棒性也是非常重要的。
我们需要选择高效的算法,并对算法进行充分的测试和验证。
数学建模优化模型在实践中具有广泛的应用,可以用于解决很多实际问题。
例如,在物流领域中,我们可以利用优化模型来确定最佳路线、最佳车辆配送方案等,以最大化效率和减少成本。
在制造业领域中,我们可以使用优化模型来优化生产流程、资源调度等,以提高生产效率和降低生产成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
周呈圆形蔓延,半径 r与 t 成正比. B
面积 B与 t2 成正比
dB/dt与 t 成正比
模型建立
假设1) 假设2)
dB
b t1,
t t b
2 1 x
dt
b
t
t t 1
2 1 x 0
t1
x t2 t
B(t2 )
t2 dB dt 0 dt
bt2 t12 2t12 2 2 2(x )
• 解释条件中正负号的实际意义
效用函数u(x1,x2)几种常用的形式
1. u ( )1 , , 0
x1 x2
p1x1 p1 ,
p2 x2
p2
u
x1 p1 u p2 x2
• 购买两种商品费用之比与二者价格之比的平方根 成正比, 比例系数是参数α与β之比的平方根.
• u(x1,x2)中参数 , 分别度量甲乙两种商品对消费
几何分析
消费线AB
u(x1, x2) = c 单调减、 下凸、互不相交.
AB必与一条等效用线
x2
· y/p2 A
相切于Q点 (消费点).
x2
Q (x1, x2) 唯一
0
u(x1,x2) = c
c增加
·Q
l 3
l
x1 1
·l2B
y/p1 x1
模型求解
max u(x1, x2 )
引入拉格朗日
s.t. p1x1 p2x2 y 乘子λ构造函数
模型求解 求 x使 C(x)最小
dC 0 dx
x c1t12 2c2t1
2c32
dB
dt b
x
0
t1
t2 t
结果解释 • / 是火势不继续蔓延的最少队员数
结果 解释
x c1t12 2c2t1
2c 2
3
c1~烧毁单位面积损失费, c2~每个队员单位时间灭火费, c3~每个队员一次性费用, t1~开始救火时刻,
结果 解释
u
x1 p1 u p2 x2
u , u ~ 边际效用——商品
x1 x2
数量 增加一个单位时效用的增量
当商品边际效用之比等于它们价格之比时效用函数最大.
效用函数的构造
等效用线u (x1, x2)=c 所确定的函数 x2(x1)单调减、下凸
充分条件
u
u
2u
2u
2u
x1 0, x2 0, x12 0, x22 0, x1x2 0
~火势蔓延速度, ~每个队员平均灭火速度.
c1, t1, x
c3 , x
c2 x 为什么?
模型 c1,c2,c3已知, t1可估计, ,可设置一系列数值
应用
由模型决定队员数量 x
3.2 消费者的选择
背景
消费者在市场里如何分配手里一定数量的钱, 选择购买若干种需要的商品. 根据经济学的一条最优化原理——“消费者 追求最大效用” ,用数学建模的方法帮助 消费者决定他的选择.
者的效用,或者消费者对甲乙两种商品的偏爱 .
效用函数u(x1,x2)几种常用的形式 2. u x1 x2 , 0 , 1
p1x1 p2 x2
u
x1 p1 u p2 x2
• 购买两种商品费用之比只取决于λ,μ, 与价格无关.
• u(x1,x2)中, 分别度量两种商品的效用或者偏爱.
第三章 简单的优化模型
--静态优化模型
3.1 森林救火 3.2 消费者的选择 3.3 生产者的决策 3.4 血管分支 3.5 冰山运输
简单的优化模型(静态优化)
• 现实世界中普遍存在着优化问题. • 静态优化问题指最优解是数(不是函数). • 建立静态优化模型的关键之一是根据
建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
存在恰当的x,使f1(x), f2(x)之和最小.
问题 分析
• 关键是对B(t)作出合理的简化假设.
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻t森林烧毁面积B(t)的大致图形.
B
分析B(t)比较困难, 转而讨论单位时间 B(t2)
烧毁面积 dB/dt
(森林烧毁的速度).
0
t1
t2
L(x1, x2 , ) u(x1, x2 ) ( y p1x1 p2 x2 )
L L
0, 0
x1
x2
与几何分析得到的 Q 一致
u
x1 x1 , x2 p1
u
p2
x x1 , x2 2
等效用线u (x1, x2)=c的斜率
dx2 u / u dx1 x1 x2
消费线AB的斜率 p1 / p2
假设3)4) f1(x) c1B(t2 ), f2 (x) c2x(t2 t1) c3x
目标函数——总费用 C(x) f (x) f (x)
1
2
模型建立
目标函数——总费用
C(x)
c1 t12
2
c t2 2
1
1
2(x c3, t1, ,为已知参数
互不相交的曲线.
x2
等效用线就是“ 实
u(x1,x2) = c
物交换模型”中的
c增加
无差别曲线,效用 就是那里的满意度.
0
l3
l1
l2
x1
效用最大化模型 x1, x2 ~购得甲乙两种商品数量
p1, p2~甲乙两种商品的单价, y~消费者准备付出的钱 在条件 p1 x1+p2 x2 =y 下使效用函数u(x1, x2)最大.
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度). 2)t1tt2, 降为-x (为队员的平均灭火速度).
3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3 . 假设1)的解释
火势以失火点为中心,均匀向四
3.1 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
问题 记队员人数x, 失火时刻t=0, 开始救火时刻t1, 分析 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定. • 救援费f2(x)是x的增函数, 由队员人数和救火时间决定.
• 假定只有甲乙两种商品供消费者购买, • 建立的模型可以推广到任意多种商品的情况.
效用函数
当消费者购得数量分别为x1, x2的甲乙两种商品时, 得到的效用可用函数u (x1, x2)度量,称为效用函数.
利用等高线概念在x1, x2平面上画出函数u 的等值线, u (x1, x2)=c 称为等效用线 ——一族单调减、下凸、