二元一次方程和它的解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1 二元一次方程组和它的解

教学目的

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点、难点

1.重点:了解二元一次方程。二元一次方程组以及二元一次方程

组的解的含义,会检验一对数是否是某个二元一次方程组的解。

2.难点;了解二元一次方程组的解的含义。

教学过程

一、复习提问

1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一

个数是否是这个方程的解?

2.列方程解应用题的步骤。

二、新授

问题1:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛9场,得17分。

比赛规定胜一场得3分,平一场得1分,负一场得。分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?

这个问题可以用算术方法来解,也可以列一元一次方程来解,请同学们选一种方法试一试。

解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

学生尝试设勇士队胜了x场,平了y场。

让学生在空格中填人数字或式子:

(略)(见教科书)

那么根据填表结果可知

x十y=7 ①

3x+y=17 ②

这两个方程有什么共同的特点?

(都含有两个未知数,且含未知数的项的次数都是1)

这里的x、y要同时满足两个条件:一个是胜与平的场数和是7场;另一个是这些场次的得分一共是17分,也就是说,两个未知数x、y

必须同时满足方程①、②。因此,把两个方程合在一起,并写成

x+y=7 ①

3x+y=17 ②

上面,列出的两个方程与一元一次方程不同,每个方程都有两个未知数,并且未知数的次数都是1,像这样的方程,叫做二元一次方程。把这两个二元一次方程①、②合在一起,就组成了一个二元一次方程组。

结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

用算术方法或通过列一元一次方程都可以求得勇士队胜了5场,

平了2场,即x=5,y=2

这里的x=5,与y=2既满足方程①即5十2=7

又满足方程②,即3×5十2=17

我们就说x=5与y=2是二元一次方程组的解。

一般地,使二元一次方程组的两个方程左右两边的值都相等的两

个未知数的值,叫做二元一次方程组的解。

二元一次方程组的解的检验范例。

三、巩固练习

1.教科书第25页问题2。

2.补充练习。

四、小结

1.什么是二元一次方程,什么是二元一次方程组?

2.什么是二元一次方程组的解?如何检验一对数是不是某个方程组的解?

五、作业

教科书第26页习题7.1全部。

相关文档
最新文档