直角坐标系中的图形
人教版初一数学下册平面直角坐标系中求三角形的面积
![人教版初一数学下册平面直角坐标系中求三角形的面积](https://img.taocdn.com/s3/m/a37ff999551810a6f52486e0.png)
在直角坐标系中求图形的面积图形的面积可以利用相应的面积公式求得,但是在平面直角坐标系内的求面积问题,往往不直接给出边或高之类的条件,而是给出一些点的坐标。
我们常常会遇到在平面直角坐标系中求三角形面积和一些不规则图形面积的问题,解题时我们要注意其中的解题方法和解题技巧。
现对这类题目的解法举例说明如下:一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y 轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C (-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD ×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.。
《平面直角坐标系》ppt课件
![《平面直角坐标系》ppt课件](https://img.taocdn.com/s3/m/fb4d3dadaa00b52acfc7cae8.png)
叫做点P的横坐标;
b
P(a, b)
(2)过点P作y轴的垂线, 1
垂足在y轴上对应的数b
叫做点P的纵坐标;
-1 O 1
(3)点P的坐标表示为P(a, b)。-1
ax
注:坐标是一对有序的实数对,必需是“横前纵后”8
合作交流
ⅲ、下面是教室座位示意图,请找出“3列6行” 是哪个座位,“4列4行” 呢?
行
8行 7行 6行 5行 4行 3行 2行 1行
C. (0, 5)
D.(5,0)
38
3.已知P(x,y),Q(m,n),如果x+m=0,y+n=0,那么 点P、Q( A )
A、关于原点对称 B、关于 x 轴对称
C、关于 y 轴对称 D、关于过点(0, 0), (1,1) 的直线对称
4.点(4,3)与点(4,- 3)的关系是( B ) (A)关于原点对称 (B)关于 x轴对称 (C)关于 y轴对称 (D)不能构成对称关系
30
新知归纳
“关于坐标轴对称的点”的坐标特征: (1) 关于x轴对称的点的坐标:横同纵反;
31
合作交流
ⅲ、如图,以矩形ABCD的中心为原点建立平面
直角坐标系:
(1)点A与点D有什么位
y
置关系?点B与点C呢? 点A与点D关于y (–3,
A 5)
D(3, 5)
轴对称,点B与点C
关于y轴对称;
(2)关于y轴对称的点的
3
y
2
1
-5 -4 -3 -2 -1 0 -1
想一想:P点 到x轴、y轴的 -2 距离与P点的 -3 坐标有何关系? -4
P点到x轴的距离是纵坐标 的绝对值;
P点到y轴的距离是横坐标的 绝对值;
平面直角坐标系下的图形变换
![平面直角坐标系下的图形变换](https://img.taocdn.com/s3/m/b547fa68b4daa58da0114aae.png)
平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
平面直角坐标系与图形的对称变换
![平面直角坐标系与图形的对称变换](https://img.taocdn.com/s3/m/909b4967cec789eb172ded630b1c59eef8c79ab8.png)
根据点P所在的象限,可以确定其坐标符号。第一象限内点的坐标符号为(+,+) ,第二象限内点的坐标符号为(-,+),第三象限内点的坐标符号为(-,-),第四象 限内点的坐标符号为(+,-)。
距离公式和中点公式应用
距离公式
两点A(x1,y1)和B(x2,y2)之间的距离 公式为d=√[(x2-x1)²+(y2-y1)²]。
其他特殊图形对称性质
除了上述几种特殊图形外,还有许多其他图 形也具有对称性质,如菱形、矩形、正六边 形等。这些图形的对称性质可以根据其定义 和性质进行推导和证明。
03
平面直角坐标系中图形对称变换规 律
轴对称变换在坐标系中实现方法
确定对称轴
根据题目要求或图形特点 ,确定对称轴的位置。
找对应点
在对称轴的一侧任取一点 ,通过翻折找到它的对应 点。
逐步进行变换
按照基本变换的顺序,逐步进行 变换操作。
注意变换顺序
复合对称变换中,变换的顺序可 能会影响最终的结果。
图形对称性质在解题中运用策略
利用对称性简化问题
01
利用图形的对称性,可以将复杂的问题简化为更易于解决的问
题。
构造对称图形辅助解题
02
根据题目要求,构造出具有对称性的辅助图形,帮助解题。
性质
平面直角坐标系具有对称性、平 移不变性和旋转不变性。
坐标轴上点表示方法
01
02
03
原点
坐标系的原点用O表示, 其坐标为(0,0)。
x轴上点
x轴上的点用(x,0)表示, 其中x为实数。
y轴上点
y轴上的点用(0,y)表示, 其中y为实数。
平面内任意点坐标确定
平面直角坐标系中的位似变换
![平面直角坐标系中的位似变换](https://img.taocdn.com/s3/m/84987781ac51f01dc281e53a580216fc710a5307.png)
2
标是( D )
y
A
A' A''
B''
A.(3,2) C.(12,8)
O
x
B'
B
B.(12,8)或(-12,8) D.(3,2)或(-3,-2)
(2)、在平面直角坐标系中,四边形OBCD与四边形OEFG位似,位似
中心是原点O,已知C与F是对应点,且C、F的坐标分别是C(3,7)F
(9,21),那么四边形OBCD与四边形OEFG的相似比是 1:3 ,
复习提问:
从下列图形中找出位似图形 : (1)(2)(4)
(1)
(2)
(3)
1、什么是位似图形? 2、如何判断两个图形位似? 3、怎样求两个图形的位似比?
(4)
学习目标
重点:能熟练在坐标系中根据坐标的变化规律做出位似图形 难点:理解位似图形的坐标变换规律.
问题探究
探究一:
如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为
坐标 都
C
乘以
-
1 2
,画出所得到的图形,你发
现了什么?
x
探究点拨:当图中各点的 横、纵坐标缩小一定的倍 数k,依次连接各点所得到 新图形与原图形 位似 , 位似中心是 坐标原点,位似 比是 |k| 。
定理 在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘 同一个数k(k≠0),所对应的图形与原图形 位似 ,位似中心是 坐标原点 , 它们的位似比为 |k| .
D、 (m , n ) 22
课堂小结
定理
平面直角坐标系 中的位似变化
在平面直角坐标系中,将一个多边形每个顶点的横 坐标、纵坐标都乘同一个数k(k≠0),所对应的图形 与原图形位似,位似中心是坐标原点,它们的相似 比位|k|.
2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移授课课件新版沪科版78
![2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移授课课件新版沪科版78](https://img.taocdn.com/s3/m/389afce9aff8941ea76e58fafab069dc502247fd.png)
平面直角坐 标系
图形在坐标 系中的平移
2. 在平面直角坐标系中,把图形向左(右)平移,点的___纵_ 坐标不变;向上(下)平移,点的___横_坐标不变;所得图形与 原图形相比,__形__状__大__小不变.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月22日星期二2022/3/222022/3/222022/3/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/222022/3/222022/3/223/22/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/222022/3/22March 22, 2022
并写出点B′,C′的坐标; (2)试说明三角形ABC经过怎样的平移
得到三角形A′B′C′; (3)若三角形ABC内部一点P的坐标为(a,b),则点P的 对应点
P′的坐标是___________.
感悟新知
导引:根据一对对应点的坐标可确定平移的方向和平移的距
离, 图形边上的点和图形内部的点平移方式相同.
感悟新知
知1-练
3 已知点M(a-1,5),现在将平面直角坐标系先向左 平移3个单位,再向下平移4个单位,此时点M的坐 标为(2,b-1),则a=________,b=________.
感悟新知
知识点 2 图形在坐标系中的平移
知2-讲
思考
把平面直角坐标系中的一个图形,按下面的要求
平移,那么,图形上任一个点的坐标(x,y)是如何 变
(2)三角形A2B2C2与三角形ABC的大小、形状完全相同, 三角形A2B2C2可以看作是将三角形ABC向上平移4个单 位长度得到的.
在平面直角坐标系中,求三角形面积的求法
![在平面直角坐标系中,求三角形面积的求法](https://img.taocdn.com/s3/m/fab95ebf05a1b0717fd5360cba1aa81144318fc7.png)
在平面直角坐标系中,求三角形面积的求法在平面直角坐标系中, 求三角形面积的求法1. 引言在平面直角坐标系中,我们经常需要计算三角形的面积。
三角形的面积是一个基本的几何概念,它用于很多实际应用中,比如计算土地面积、建筑物的面积或者计算图形的面积等。
在这篇文章中,我们将学习在平面直角坐标系中求解三角形面积的几种不同方法。
2. 方法一:行列式法使用行列式法求解三角形的面积是最常见的方法之一。
该方法基于行列式的性质,通过计算三个点的坐标来求解。
在平面直角坐标系中,设三角形的三个顶点分别为A(x1,y1)、B (x2,y2)和C(x3,y3)。
那么,三角形的面积可通过以下公式来计算:S = |(1/2) * (x1 * (y2-y3) + x2 * (y3-y1) + x3 * (y1-y2))|其中,竖线表示计算行列式的值。
3. 方法二:海伦公式海伦公式也是求解三角形面积的另一种常用方法。
该方法是基于三角形的三条边长来计算的。
假设三角形的三边长分别为a、b和c,半周长为s = (a+b+c)/2,那么三角形的面积可以用以下公式计算:S = √(s * (s-a) * (s-b) * (s-c))海伦公式的优点是在不知道三角形顶点坐标的情况下,只需知道边长即可计算三角形面积。
4. 方法三:向量法向量法是一种通过向量的运算来求解三角形面积的方法。
设三角形的两边向量为a和b,则三角形的面积S可以通过如下公式计算:S = (1/2) * |a × b|其中,× 表示向量的叉积。
叉积的结果是一个向量,其模表示平行四边形的面积,所以需要除以2来得到三角形的面积。
5. 总结和回顾在平面直角坐标系中,我们可以使用行列式法、海伦公式和向量法来求解三角形的面积。
根据不同的情况和已知条件,我们可以选择最合适的方法来计算。
行列式法基于三角形的顶点坐标,适用于已知三个顶点坐标的情况;海伦公式基于三角形的边长,适用于只知道边长的情况;向量法适用于已知两条边的向量的情况。
平面直角坐标系中的图形与性质
![平面直角坐标系中的图形与性质](https://img.taocdn.com/s3/m/586c7f6dec630b1c59eef8c75fbfc77da2699799.png)
平面直角坐标系中的图形与性质在数学中,平面直角坐标系是一种常见的坐标系统,用于描述平面上的点的位置。
它由两条相互垂直的坐标轴组成,通常是x轴和y轴。
在这个坐标系中,我们可以通过给定的坐标来表示和研究各种图形,并研究它们的性质。
本文将探讨平面直角坐标系中常见的图形以及它们的性质。
一、点(Point)在平面直角坐标系中,点是最基本的图形。
一个点由两个数值坐标确定,分别是x坐标和y坐标。
点在坐标系中没有大小和形状,只是用来标记平面上的位置。
二、直线(Line)直线是由无限个点组成的,它是所有与给定两个不重合点连结的点的集合。
在平面直角坐标系中,直线可以用线段的两个端点来表示,也可以用线性方程的解析式来表示。
1. 平行于坐标轴的直线:当直线与x轴平行时,其方程为y=b(b为常数);当直线与y轴平行时,其方程为x=a(a为常数)。
2. 斜率为k的直线:直线的斜率是指其斜率角的正切值,可以用直线上两个点的坐标来计算。
直线的斜率为k时,其方程可以表示为y=kx+b(k为斜率,b为截距)。
3. 两条直线的关系:两条直线可以相交、平行或重合。
当两条直线有唯一交点时,它们相交;当两条直线的斜率相等时,它们平行;当两条直线完全重合时,它们重合。
三、矩形(Rectangle)矩形是一种四边形,其中每个角都是直角的。
在平面直角坐标系中,矩形可以由它的对角线的两个端点来表示。
根据矩形的性质,我们可以得到以下结论:1. 矩形的对角线相等:矩形的两条对角线相等。
2. 矩形的边平行且相等:矩形的对边都是平行且相等的。
3. 矩形的对边互相垂直:矩形的对边互相垂直,也就是说,相邻的边两两互相垂直。
四、正方形(Square)正方形是一种特殊的矩形,它的四个边长相等且每个角都是直角。
在平面直角坐标系中,正方形可以由它的一个顶点和边长来表示。
正方形具有以下性质:1. 正方形的对角线相等:正方形的两条对角线相等。
2. 正方形的边平行且相等:正方形的边是平行且相等的。
平面直角坐标系课件
![平面直角坐标系课件](https://img.taocdn.com/s3/m/7e74a542fd4ffe4733687e21af45b307e871f92d.png)
(-3,0)
(0,0)
(3,0)
x
(3,-3)
2、春天到了,初一某班组织同学到人民公园春游.张明、 王丽二位同学和其他同学走散了.同学们已经到了中心广
场,而他们仍在牡丹园赏花,他们对着景区示意图在电 话中向老师告知了他们的位置.
张明:“我这里的坐标是(300,300)”
王丽:“我这里的坐标是(200,30y0)”. y
图3-5
解 如图3-5,先在x 轴上找到表示5的点,再在y 轴 上找出表示4 的点,过这两个点分别作x 轴,y
轴的垂线,垂线的交点就是点A. 类似地,其他
各点的位置如图所示.点A 在第一象限,点B 在 第二象限,点C在第三象限,点D在第四象限.
图3-5
写出平面直角坐标系中的A、B、C、E、F、G、H、O、T
2叫做点A的纵坐B(标2,3) A点在平面内的坐标为(3, 2) 记作:A(3,2)
·
·A(3,2)
方法:先横后纵
-4 -3 -2 -1 0 -1
1 2 3 4 5 x 横轴
平面直角坐标系上-2的点和有序实数对一一对应
-3
D
-4
E
(-3,-3)
(5,-4)
笛卡尔,法国数学家、 科学家和哲学家.早在 1637年以前,他受到了 经纬度的启示.(地理上 的经纬度是以赤道和本 初子午线为标准的,这 两条线从局部上看可以 看成平面内互相垂直的 两条线.)发明了平面直 角坐标系,又称笛卡尔 坐标系.
我们把北偏西60°,南偏东60°这样的角称为方位角.
例4 如图3-10,12 时我渔政船在H 岛正南方向, 距H岛30海里的A 处,渔政船以每小时40 海 里的速度向东航行, 13 时到达B处,并测 得H 岛的方向是北偏西53°6′. 那么此时渔 政船相对于H岛的位置怎样描述呢?
空间直角坐标系常见图形
![空间直角坐标系常见图形](https://img.taocdn.com/s3/m/cc336b05f6ec4afe04a1b0717fd5360cbb1a8d10.png)
空间直角坐标系常见图形
1. 点
空间直角坐标系中最简单的图形是点。
点是一个没有大小和形状的几何概念,可以用坐标表示在三维空间中的位置。
在空间直角坐标系中,每个点可以用三个坐标值表示,分别对应于水平、垂直和竖直方向。
例如,一个点P的坐标可以表示为P(x, y, z),其中x、y、z分别表示点P在x轴、y轴和z轴上的位置。
2. 直线
在空间直角坐标系中,直线是由无限多个点组成的集合。
直线可以通过两点确定,也可以通过一个点和一个方向向量确定。
设直线L通过点P0(x0, y0, z0)且具有方向向量V(a, b, c),则直线L上任意一点P(x, y, z)都满足以下方程:
(x - x0) / a = (y - y0) / b = (z - z0) / c
直线也可以用参数方程表示。
设直线L上一点P(x, y, z)的坐标为:
x = x0 + at
y = y0 + bt
z = z0 + ct
其中t为参数。
3. 平面
平面是由无限多个点组成的集合,可以看做是一个二维的表面。
在空间直角坐标系中,平面可以通过三个不共线的点确定,也可以通过一个点和两个不共线的方向向量确定。
设平面α通过点P0(x0, y0, z0)且具有方向向量V1(a1, b1, c1)和
V2(a2, b2, c2),则平面α上任意一点P(x, y, z)都满足以下方程:
(a1, b1, c1) · (x - x0, y - y0, z - z0) = 0
(a2, b2, c2) · (x - x0, y - y0, z - z0) = 0
其中。
14.3.1平面直角坐标系中的图形
![14.3.1平面直角坐标系中的图形](https://img.taocdn.com/s3/m/5e14fe0276c66137ee0619f1.png)
课本习题11.3 第1、2、3题
学习目标
1:对给定的简单图形(三角形、长方形)会 选择合适的直角坐标系,写出它的顶点坐 标,体会可以用坐标刻画一个简单图形。 2:在具体情境中,能建立适当的平面直角坐 标系,描述物体的位置。 3:通过图形的建立与坐标之间的联系,体会 “数”与“形”之间的相互依存、相互决 定的关系。
1.你会建立平面直角坐标系? 2.两条坐标轴如何称呼,方向如何确定? 3.坐标轴分平面为四个部分,分别叫做什么? 4.各个象限内的点的坐标有何特点? 坐标轴上的点的坐标有何特点? 5.坐标轴上的点属于各象限吗?
交流与发现
1)在直角坐标系中分别描出下列个点: A(3,4),B(5,2),C(4,2),D(4,0),E(2,0),F(2,2) y G(1,2) 2)顺次连接点A,B,C,D,E F,G,A。 你得到一个怎样的图形?
x
例1
如图:在直角坐标系中,正方形ABCD的各边 都分别平行于坐标轴。 已知点A的坐标是(3,1), 正方形的边长是5,写出 B点的坐标。 你能写出C,D点的坐标吗? 试一试。
例2
如图在直角坐标系中
1)写出△ABC各顶点的坐标。 2)求△ABC的面积。 解:
拓展提高
已知ABC在平面直角坐标系中的位置如图所示,将 ABC向右平移6个单位,则平移后A点的坐标是( B )
A.(-2,1) B.(2,1) C.(2-1) D.(-2,-1)
y 6 5 4
Байду номын сангаас
C
3
2 A -5 -4 -3 B 1 -2 -1
o
1
2
3
4
5
x
我收获· 我快乐 · 我自信
1.本节课我们经历了如何建立直角坐标 本节课我们学习了平面直角坐标系内的图形。 学习本节我们要掌握以下三方面的内容: 系的过程,感受到直角坐标系的变化 对平面内同一个点的坐标的影响 1、能够感受直角坐标系的变化 对平面内同一 2.在同一直角坐标系中,感受图形上点 个点的坐 标的影响。 2、在同一直角坐标系中,感受图形上点的坐标 的坐标的变化与图形变换之间的相互 的变化与 图形之间的相互影响。 影响. 3、经历图形坐标变化与图形的平移、轴对称 3.经历图形坐标变化与图形的平移、轴 之间的变 化关系。 对称之间关系的探索过程.. 4.学习了数形结合思想. ,
平面直角坐标系与函数及图像
![平面直角坐标系与函数及图像](https://img.taocdn.com/s3/m/4ac85a57a1c7aa00b42acb4a.png)
第三模块函数3.1平面直角坐标系与函数及图像考点一、平面直角坐标系内点的坐标1.有序数对(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.2.平面内点的坐标规律(1)各象限内点的坐标的特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.考点二、平面直角坐标系内特殊点的坐标特征1.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.2.平面直角坐标系各象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点,横、纵坐标相等.(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.3.平面直角坐标系对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.(3)关于原点对称的两点,横、纵坐标均互为相反数.【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是 ( )解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎨⎧m <12,m <1.考点三、确定物体位置的方位1.平面内点的位置用一对有序实数来确定.2.方法 (1)平面直角坐标法(2)方向角和距离定位法用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.考点四、点到坐标轴的距离考点五、平面直角坐标系中的平移与对称点的坐标-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为________.解析:由A(-2,3)平移后点A1的坐标为(3,1),可知A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的坐标变化相同,故C1(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换前后点所在的象限.考点六、函数及其图象1.函数的概念(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不变的,称它们为常量.(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x在其取值范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说,x是自变量,y是x的函数.函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫做自变量的值为a 时的函数值注:函数不是数,它是指某一变化过程中的两个变量之间的关系(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.2.函数的表示法及自变量的取值范围(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形叫这个函数的图象.(1)画函数图象,一般按下列步骤进行:列表、描点、连线.(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是否有等号,有等号时画实心点,无等号时画空心圆圈.【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限C .第二象限D .第二、四象限解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.⎩⎨⎧2x<3(x -3)+1,①3x +24>x +a.② 由①得x >8,由②得x <2-4a ,其解集为8<x <2-4a.因不等式组有四个整数解,为9,10,11,12,则⎩⎨⎧2-4a>12,2-4a≤13,解得-114≤a<-52. 故选B.【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.考点七、自变量取值范围的确定方法求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.1.自变量以整式形式出现,它的取值范围是全体实数.2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;以奇次方根出现时,它的取值范围为全体实数.4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.【例6】(1)(2010·遵义)函数y =1x -2的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.(3)(2010·黄冈)函数y =x -3x +1的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.(2)由x +4≥0,得x≥-4.(3)由⎩⎨⎧ x -3≥0,x +1≠0,得x≥3. (4)由x +1>0,得x >-1.。
平面直角坐标系中三角形面积的求法(例题及对应练习)
![平面直角坐标系中三角形面积的求法(例题及对应练习)](https://img.taocdn.com/s3/m/949f7a2bf90f76c660371a27.png)
例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
直角坐标系中的轴对称,轴对称图形PPT
![直角坐标系中的轴对称,轴对称图形PPT](https://img.taocdn.com/s3/m/6bfbfb40f7ec4afe04a1df49.png)
联
系
1.都有对称轴、对称点。 2.沿一条直线折叠,直线两旁的部分能够互相重合。 3. 如果把一个轴对称图形沿对称轴分成两个图形, 那么这两个图形关于这条直线成轴对称;如果把两 个成轴对称的图形看成一个图形,那么这个图形就 是轴对称图形。
如图,△ABC和△A′B′C′关于直线MN对 称,点A′、B′、C′分别是A、B、C的对称点, 线段AA′、BB′、CC′和直线MN有什么关系?
轴对称图形
对称轴
探究1:如图,在平面直角坐标系中你能 画出点A关于x轴的对称点吗 ? y
5 4 3 2 1 -4 -3 -2 -1 0 -1 1 2 3 4 5
·
A (2,3)
x
-2角坐标系中 画出点A关于y轴的对称点吗?
5
A’’(-2,3)
M A P A'
B
B'
C N
C'
线段垂直平分线:经过线段中点并且 垂直于这条线段的直线,叫做这条线段的 垂直平分线. 轴对称的性质:如果两个图形关于某 条直线对称,那么对称轴是任何一对对应 点的所连线段的垂直平分线;反之,如果 两个图形各对对应点的连线被同一条直线 垂直平分,那么着两个图形关于这条直线 对称。 轴对称图形的对称轴,是任何一对对 应点所连线段的垂直平分线 .
· · ·· B· ·B B · · A · C
2
1
-4 -3 -2 -1-10 -2 -3 -4
1 2 3 4 5
1
1
1
这节课你学到了什么?
1、你能写出平面坐标系中一个点关于x轴和y轴 对称的点的坐标吗? 关于x轴对称的点横坐标相等,纵坐标互为相反数. 关于y轴对称的点横坐标互为相反数,纵坐标相等. 2、你能在平面直角坐标系中画出一个图形关于x 轴或y轴的对称图形吗? 先求出已知图形中的一些特殊点(如多边形的顶点)的 对应点的坐标,描出并连接这些点,就可以得到这个图 形的轴对称图形.
平面直角坐标系中的图形
![平面直角坐标系中的图形](https://img.taocdn.com/s3/m/00f74f0fae1ffc4ffe4733687e21af45b207fe65.png)
你画出来了吗?
1
y
3
3
5
6
7
0
-1
x
8
9
10
(0,0),(5,4), (3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),(10,4),(6,0),(10,1),(10,-1),
3
5
6
7
0
-1
x
8
9
10
(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2)。
(x,y) (x+3,y)
鱼的形状、大小不变,整条鱼向右平移了3个单位长度。
2
例题
2
图案是如何拉伸或压缩的?
例题
2
例1 将上图中的 点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下的变化:
(3)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
你画出来了吗?
考考你的反应能力
0
1
2
3
4
-1
-2
-3
-4
1
2
3
4
-1
-2
X
Y
0
1
2
3
4
-1
-2
-3
-4
1
2
3
4
-1
-2
11.3直角坐标系中的图形
![11.3直角坐标系中的图形](https://img.taocdn.com/s3/m/e91efd49c850ad02de8041c6.png)
探究新知
如图,有一个长方 形的游泳池,南北长 50米,东西宽25米.小 亮站在游泳池的西北角 上,小莹位于游泳池的 中心位置.你能利用坐 标确定小亮和小莹的位 置吗?
• 小亮
•
小莹
50米
25米
北
想一想:
(1)以小莹所在位置为原点,经过
原点的东西方向的直线和南北方向的 直线分别为x轴和y轴,向东和向北的 方向分别为x轴和y轴的正方向,1米 为单位长度,建立直角坐标系.小莹、 小亮所在位置的坐标分别是什么? 50
在下图中,伞形图案分别有图1变成图2、3、4中 的图案(虚线为原图案) 问题:(1)观察图2、3、4中的图案,你能 发现它们分别是由图1中的图案怎样变成的吗? (2)分别写出图1、2、3、4 y 图1 各图案中三角形的顶点及伞柄端 点的坐标. 5 (3)在图2、3、4中, B(3,4) 你能发现上述各点与图1 4 中各对应点的坐标之间分 3 别有什么变化规律吗? 2 与同学交流. C(5,2) A (1,2) 1
义务教育课程标准实验教科书数学· 七年级· 下册(泰山版)
泰山出版社数学学科七年级 下学期多媒体教学课件
1.什么是平面直角坐标系? 2.两条坐标轴如何称呼,方向如何确定? 3.坐标轴分平面为四个部分,分别叫做什么? 4.什么是点的坐标?平面内点的坐标有几部分组成? 5.各个象限内的点的坐标有何特点? 坐标轴上的点的坐标有何特点? 6.坐标轴上的点属于各象限吗?
y
50 • 40
我所在的位置坐标 是(12.5,25) !
30 20
10 -40 -30 -20 -10 0 -10 -20 -30 -40
•
10 20 30 40 50 x
1.在上面的例题中,你还可以怎样
5.3直角坐标系中的图形(1)
![5.3直角坐标系中的图形(1)](https://img.taocdn.com/s3/m/ed913c61caaedd3383c4d31e.png)
x
将各坐标的纵坐 标都乘以-1,横坐 标保持不变,则图 形怎么变化? 原坐标变为
与原图形关于x轴对称
(0,0) (5,-4) (3,0) (5,-1) (5,1) (3,0) (4,2) (0,0)
8 y
原图形被横向、纵向各拉伸2倍
6
7
5
4 3 2 1 0 –1 –2 –3 –4
原图形的形状没变, 面积是原来的4倍。
图中的鱼是将坐 标为:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) 的点用线段依次 连接而成的
想一想
将各坐标的纵 坐标保持不变,横 10 x 坐标都乘以-1, 图 形会变成什么样?
则原坐标变为(0,0) (-5,4) (-3,0) (-5,1) (-5,-1) (-3,0) (-4,-2) (0,0)
如果横坐标保持 不变,纵坐标变 x 成原来的 2倍, 那么所得图案又 会发生什么变化?
原图形被纵向拉伸2倍
8 y
7
6
5
4 3 2 1 0 –1 –2 –3 –4 1 2 3 4 5 6 7 8 9 10
图中的鱼是将坐 标为:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) 的点用线段依次 连接而成的
与左图三角形相比,右图中的三角形发生了怎样变化。 右图中的直角三角形顶点的坐标发生怎样变化。
8 y
7
6
延伸
5
4 3 2 1 0 –1 –2 –3 –4 1 2 3 4 5 6 7 8 9 10
如果横坐标 乘以2再减 去1 ,纵坐 标不变,那 么所得图案 会发生什么 变化?
x
(1.5,0) (2.5,1)
平面直角坐标系中的图形共28页文档
![平面直角坐标系中的图形共28页文档](https://img.taocdn.com/s3/m/2feec2153186bceb19e8bbeb.png)
平面直角坐标系中的图形
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
ቤተ መጻሕፍቲ ባይዱ
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
28
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角坐标系中的图形
日期:
学习目标:
1、知识目标:在同一直角坐标系中,感受上图形上点的坐标变化与图形变化(平移、轴对称、伸长、压缩)之间的关系。
2、能力目标:经历图形坐标变化与图形的平移,轴对称、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。
学习重难点:图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系
教具准备:投影仪、投影片
教学方法:自主探究、合作交流
教学过程:
一、创设情境,提出问题
P89图5-15中的鱼是怎样将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成?
出示投影片一
例1:将图5-15中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)分别做如下变化:
(1)纵坐标保持不变,横坐标分别变为原来的2倍,再将所得的点用线段依次连接,所得到图案与原来的图案相比有什么变化?
(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来图案有什么变化?
解:(1)纵坐标保持不变,横坐标分别变为原来的2倍,所得各个点的坐标依次是(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0)将各点用线段依次
连接起来,所得图案如图5-16所示,与原来图案相比,鱼的宽度没变,长被横向拉伸为原来的2倍。
(2)纵坐标保持不变,横坐标分别加3,所得各点的坐标依次是:(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0)将各点用线段依次连接起来,与原图案相比“鱼”的形状大小都没变,整条“鱼”向右平移了3个单位长度。
二、设置问题,步步引导
如果纵坐标保持不变,横坐标分别变为原来的1/2,那么所得的图案会发生什么变化?(1)试确定左图中左右眼睛和嘴角在右端点的坐标。
(2)你是怎样得到的?与同伴交流
2、(1)如图将图5-20中的右图沿x轴正方向平移1个单位长度,那么左右眼睛的坐标发生什么变化?
(纵坐标不变,横坐标加1)
(2)如图对图5-20中的右图案作关于x轴的轴对称图形,那么左右眼睛的坐标将发生什么变化?
(左右眼睛的纵坐标将分别变为原来的相反数,而横坐标不变)
五、归纳小结:
图形坐标发生变化与图形的平移,轴对称伸长、压缩之间的关系
六、随堂练习
P921、2P93 1
七、作业:P941、2。