2020年成人考试文科数学模拟试卷
2020年一般高等学校招生全国统一考试模拟卷(文科数学含答案详解)
2020年一般高等学校招生全国统一考试模拟卷(1)文科数学本试题卷共6页,23题(含选考题)。
全卷总分值150分。
考试历时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,那么集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0 【答案】D 【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0M N =.选D .2.设复数12i z =+(i 是虚数单位),那么在复平面内,复数2z 对应的点的坐标为( )A .()3,4-B .()5,4C .【答案】A 【解析】()2212i 12i 144i 34iz z =+⇒=+=-+=-+,因此复数2z 对应的点为()3,4-,应选A .3.元朝闻名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如下图,即最终输出的0x =,那么一开始输入的x 的值为( )A .34B .78C .【答案】C【解析】1i =, (1)21,2x x i =-=, (2)()221143,3x x x i =--=-=,(3)()243187,4x x x i =--=-=,(4)()28711615,5x x x i =--=-=,因此输出16150x -=,得1516x =,应选C .4.已知()cos 2cos 2ααπ⎛⎫+=π- ⎪⎝⎭,那么tan 4απ⎛⎫-= ⎪⎝⎭( )A .4-B .4C .13-D .13 【答案】C 【解析】因为()cos 2cos 2ααπ⎛⎫+=π- ⎪⎝⎭,因此sin 2cos tan 2ααα-=-⇒=,因此1tan 1tan 41tan 3αααπ-⎛⎫-==- ⎪+⎝⎭,应选C .5.已知双曲线22221x ya b -=()0,0a b >>的一个核心为(F -的方程为( )A .2213x y -= B .2213y x -= C .2213y x -=D .2213x y -= 【答案】B【解析】令22220x y a b-=,解得by x a =±,故双曲线的渐近线方程为by x a=±.由题意得2222 ba c c ab ===+⎧⎪⎪⎨⎪⎪⎩,解得2213a b ==⎧⎨⎩,∴该双曲线的方程为2213y x -=.选B .6.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,依照表中提供的全数数据,用最小二乘法得出y 与x 的线性回归方程为ˆ8ˆyx b =+,那么ˆb 为( ) A .5 B .15C .12【答案】C【解析】由题意可得:2456855x ++++==,2535605575525y ++++==,回归方程过样本中心点,那么:ˆ5285b=⨯+,1ˆ2b ∴=.此题选择C 选项.7.已知()201720162018201721f x x x x =++++,以下程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+ 【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++,第一201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.设π02x <<,那么“2cos x x <”是“cos x x <”的( )A .充分而没必要要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <解集为,2m π⎛⎫ ⎪⎝⎭,cos x x <解集为,2n π⎛⎫ ⎪⎝⎭,因为,2m π⎛⎫ ⎪⎝⎭,2n π⎛⎫⊂ ⎪⎝⎭,因此选A . 9.如图为正方体1111ABCD A BC D -,动点M 从1B 点起身,在正方体表面上沿逆时针方向运动一周后,再回到1B 的运动进程中,点M 与平面11A DC 的距离维持不变,运动的路程x 与11l MA MC MD =++之间知足函数关系()l f x =,那么此函数图象大致是( )A .B .C .D .【答案】C【解析】取线段1B A 中点为N ,计算得:11126232N B l NA NC ND l =++=+<+==.同理,当N 为线段AC或1CB的中点时,计算得1112N Bl NA NC ND l=++=<+,符合C项的图象特点.应选C.10.已知双曲线E:22221x ya b-=(0,0)a b>>的右极点为A,右核心为F,B为双曲线在第二象限上的一点,B关于坐标原点O的对称点为C,直线CA与直线BF的交点M恰好为线段BF的中点,那么双曲线的离心率为()A.12B.15C.2 D.3【答案】D【解析】不妨设2,bB ca⎛⎫- ⎪⎝⎭,由此可得(),0A a,2,bC ca⎛⎫-⎪⎝⎭,(),0F c,20,2bMa⎛⎫⎪⎝⎭,由于A,C,M三点共线,故222b ba aa a c=--,化简得3c a=,故离心率3e=.11.已知点()4,3A和点()1,2B,点O为坐标原点,那么()OA tOB t+∈R的最小值为()A.B.5C.3 D【答案】D【解析】由题意可得:()4,3OA=,()1,2OB=,那么:()()()4,31,24,32OA tOB t t t+=+=++=,结合二次函数的性质可得,当2t=-时,minOA tOB+==.此题选择D选项.12.已知椭圆()221112211:10x yC a ba b+=>>与双曲线()222222222:10,0x yC a ba b-=>>有相同的核心12,F F,假设点P是1C与2C在第一象限内的交点,且1222F F PF=,设1C与2C的离心率别离为1e,2e,那么21e e-的取值范围是()A.1,3⎡⎫+∞⎪⎢⎣⎭B.1,3⎛⎫+∞⎪⎝⎭C.1,2⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】设122F F c=,令1PF t=,由题意可得:22t c a-=,12t c a+=,据此可得:12a a c-=,那么:12111e e-=,221eee=+,那么:2222122222211111e e e e e e e e e -=-==++⎛⎫+ ⎪⎝⎭,由21e >可得:2101e <<, 结合二次函数的性质可得:()222110,1e e ⎛⎫+∈ ⎪⎝⎭, 那么:2112e e ->,即21e e -的取值范围是1,2⎛⎫+∞⎪⎝⎭.此题选择D 选项.第Ⅱ卷本卷包括必考题和选考题两部份。
2020年成人高考高起点《数学文》试题模拟试题
○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2020年成人高等学校招生全国统一考试数学(文科)(考试时间120分钟)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试120分钟。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共85分)评卷人得分一、选择题:本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.()A.(-∞,-6)∪(1,+∞)B.(-6,1)C.(-∞,2)∪(3,+∞)D.(2,3)2.()A.b<c<a B.a<c<b C.a<b<c D.C<b<a 3.若x∈R,则“x>3”是“|x |>3”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件4.()○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………5.设ƒ(x)是反比例函数,且ƒ(-2)=4,则()6.在同一坐标系中,函数y=2-x 与y=log 2x 的图象是()7.函数ƒ(x)=|x |+cosx ()A.是奇函数B.是偶函数C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数8.已知|a|=4,|b|=5,向量a 与b 的夹角为π/3,则a·b 的值为()A.40B.20C.30D.109.经过点B(0,3)且与直线x+2y-3=0垂直的直线方程为()A.2x-y-3=0B.y-2x-3=0C.X+2y-6=0D.2x+y-3=010.Y=(1-x 2)2的导数是()A.2-2x 2B.2x 2-2C.4x 3-4x D.4x-4x 311.如果椭圆的一焦点与短轴的两个端点连线互相垂直,则这个椭圆的离心率是()○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………12.从北京开往某地的一列火车,沿途停靠车站共12个(包括起点和终点),这列火车共需车票种数为()A.12B.24C.66D.13213.()A.第n 项B.第2+1项C.第n+2项D.第n+3项14.抛物线的顶点是双曲线9x 2-4y 2=36的中心,而焦点是双曲线的左顶点,则抛物线的方程为()A.y 2=-4x B.y 2=-8x C.y 2=-9x D.y 2=-18x 15.()A.a>b B.a<b C.a=b D.a,b 大小不确定16.函数y=cos 2x-sin 2x+2sin xcosx 的最小正周期和最大值分别是()17.在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某城市一个投保人能活到75岁的概率为詈,则两个投保人都能活到75岁的概率为()○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………第Ⅱ卷(非选择题,共65分)评卷人得分二、填空题:本大题共4小题,每小题4分.共16分.把答案填在题中横线上.18.19.点P(7,-5)到直线5x+12y+3=0的距离是__________.20.△ABC 中,a,b,c 分别是角A,B,C 的对边.如果a 2-b 2-c 2=bc,则角A=__________.21.评卷人得分三、解答题:本大题共4小题,共49分.解答应写出推理、演算步骤.22.(本小题满分12分)23.(本小题满分12分)24.(本小题满分12分)○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………25.(本小题满分13分)已知函数ƒ(x)=ax 3-x 2+bx+1(a,b∈R)在区间(-∞,0)和(1,+∞)上都是增函数,在(0,1)内是减函数.(Ⅰ)求a,b 的值;(Ⅱ)求曲线y=ƒ(x)在x=3处的切线方程.模拟试题参考答案一、选择题1.【考点指要】本题要求按二次根式定义域来解一元二次不等式,求定义域是成人高考的常见题.2.○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………【考点指要】本题考查对数函数的性质,比较对数的大小是成人高考常见题.3.A【解析】根据充分条件、必要条件以及充要条件的概念可知,原题中,当x>3时。
2020年文科数学全国卷高考模拟1【含答案】
2020年文科数学全国卷高考模拟1文科数学本试卷共23小题, 满分150分. 考试用时120分钟.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. (){},|0,,A x y x y x y R =+=∈,(){},|20,,B x y x y x y R =--=∈,则集合A B I =( )A .(1,1)-B .{}{}11x y ==-UC .{}1,1-D .(){}1,1- 2.等差数列{}n a 中,若58215a a a -=+,则5a 等于( )A .3B .4C .5D .6 3.下列函数中,在其定义域内是减函数的是( ) A .1)(2++-=x x x f B . xx f 1)(=C . 13()log f x x = D . ()ln f x x =4.已知函数(1),0()(1),0x x x f x x x x +<⎧=⎨-≥⎩,则函数()f x 的零点个数为( )A 、1B 、2C 、3D 、45.已知0a >,4()4,f x x a x =-+则()f x 为( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 有关6.已知向量(12)a =r ,,(4)b x =r ,,若向量a b //v v,则x =( ) A .2 B . 2- C . 8D .8-7.设数列{}n a 是等差数列,且5,8152=-=a a ,n S 是数列{}n a 的前n 项和,则 ( ) A.109S S < B.109S S = C.1011S S < D.1011S S =8.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则l β⊥10题③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m . 其中,真命题有( )A .0个B .1个C .2个D .3个9.已知离心率为e 的曲线22217-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为( )A .34B 423C .43D 2310.给出计算201614121++++Λ 的值的一个 程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 11.lg ,lg ,lg x y z 成等差数列是2y xz =成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件12.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =( )A .2-B .1C .2- 或1D .2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
2024年成人高考成考(高起专)数学(文科)试题及答案指导
2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。
A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。
2020年成人考试文科数学模拟试卷
西安工业大学北方信息工程学院继续教育学院航空服务与管理专业期末考试试卷课程名称:数学(基础模块)上册;试卷编号: A 卷 ;考试时间: 120分钟一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合M={1,3,5,7,9},N={1,3,6,9},则集合M ∩N= ( ) A. {1,3,9} B.{3,5,7} C.{1,3,5,6,7,9} D.{2,4,8} 2. 不等式|x +3|>5的解集为 ( ) A. {x |x >2} B.{x |x <-8或x >2} C.{x |x >0} D.{x |x >3} 3. 函数y=3sin(2x )的最小正周期是 ( ) A.3π B.2π C.4π D.π 4. 3227+8log 2= ( ) A.12 B.6 C.11 D.9 5. 已知函数5)(3+=x x f 则=')2(f ( )A.11B.8C.6D.136.}{n a 为等差数列,首项11=a ,公差3=d ,则=12a ( )A.34B.36C.31D.357. )4,2(=a ,)3,1(=b ,则=⋅b a ( )A. -10B.10C.14D.-148. 某同学在阅览室陈列的5本科技杂志和6本文娱杂志中任选1本阅读,他选中科技杂志的概率是 ( )A. 65B.115C.51D.219. 从13名学生中选出两人担任正、副班长,不同的选择结果有 ( )A.26种B.78种C.156种D.169种10. 设椭圆方程为1251622=+y x ,则该椭圆的离心率为 ( )A. 54B.53C.43D.34二、填空题:本大题共5小题,每小题4分,共20分。
请同学将正确答案填写在横线上。
11. 点(-3,1)到直线052=--y x 的距离是: .12. 若)2,(m a = ,)3,2(-=b ,且a ∥b ,则=m .13. 函数169)(2++-=x x x f 的驻点是: .14. =+︒︒15cos 75sin .15. 某次测试7位同学的成绩分别为79,81,85,75,80,90,70,则他们成绩的平均数为: ,众数为: ,中位数为: .三、解答题:本大题共4小题,每小题10分,共计40分。
2020最新高考模拟数学考试(文科)含答案
65C . -33D . - 63,第Ⅰ卷(选择题,共 60 分)一、选择题:本大题共 l2 小题,每小题 5 分.共 60 分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设集合 A = {x || x - 2 |≤ 2, x ∈ R }, B = { y || y = - x 2,-1 ≤ x ≤ 2}, 则等于()A .RB . {x | x ∈ R 且x ≠ 0}C .{0}D . ∅R(A∩B )2 . 已 知 cos(α - β ) =3 ,sin β = - 5 , 且α ∈ (0, π ), β ∈ (- π ,0), 则 s in α =51322()A . 3365B . 63653.对于平面α 和共面的直线m ,n 下列命题中真命题是()A .若 m ⊥ α , m ⊥ n , 则n // αC .若 m ⊂ α,n // α,则m // nB .若 m // α,n // α,则m // nD .若 m ,n 与α所成的角相等,则m // n4.数列{a }中,若 a = 1 , a =n12n1 1 - an -1(n ≥ 2, n ∈ N ) 则 a2007的值为A -1B1 C 1D225.如果 f '(x) 是二次函数, 且 f '(x) 的图象开口向上,顶点坐标为(1,-那么曲线 y=f(x)上任一点的切线的倾斜角α的取值范围是()3),A. (0, 2π 3 ]B. [0, π 2π π 2π )∪[ , π)C. [0, ]∪[ 2 3 2 3, π) D.π 2π[ , ] 2 3a 2b 2| A .(1,2 + 3 ⎤B (1, 3 ⎤⎡2+ 3, +∞)D ⎡2 - 3,2 + 3 ⎤11.如图, 直线 MN 与双曲线 C: x 2线相交于 P 点, F 为右焦点,若|FM|=2|FN|, 又NP= λPM (λ∈R), 则6.两直线 3x +y -2=0 和 y +a=0 的夹角为()A. 30°B. 60°C. 120°D. 150°7.已知函数 y = f ( x )( x ∈ R)满足f ( x + 2) = f ( x ) 且当 x ∈ [-1,1]时f ( x ) = x 2 ,则y = f ( x )与y = log x 的图像的交点个数为()7A .3B .4C .5D .68.若关于 x 的方程 4cos x - cos 2 x + m - 3 = 0 恒有实数解,则实数 m 的取值范围是A. [ -1,+∞)B. [-1,8]C [0,8]D [0,5]9.如图,在杨辉三角中,斜线的上方从 1 开始按箭 头所示的数组成一个锯齿形数列 1,3,3,4,6,5,10,……,记此数列为{a } ,则 a 等于n21A .55B .65C .78D .6610.已知点 F 、F 为双曲线 x 2 - y 2 = 1 (a > 0, b > 0) 的左、右焦点, P 为右1 2支上一点,点 P 到右准线的距离为 d ,若 | PF | 、PF| 、d 依次成等差数列,12则此双曲线离心率的取值范围是()⎦⎦C⎣ ⎣ ⎦a 2 - y 2b 2 = 1的左右两支分别交于 M 、N 两点, 与双曲线 C 的右准→ →实数λ的取值为 ( )11A. B.1 C.2 D.2312.△ABC的AB边在平面α内,C在平面α外,AC和BC分别与面α成30°和45°的角,且面ABC与α成60°的二面角,那么sin∠ACB的值为()1221A.1B.C.D.1或333第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.x2113.二项式(-)9展开式中的系数为________2x x14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为_________15.过定点P(1,4)作直线交抛物线C:y=2x2于A、B两点,过A、B 分别作抛物线C的切线交于点M,则点M的轨迹方程为_________ 16.定义在R上的函数f(x)满足f(x+5)+f(x)=0,且函数f(x+5)为奇函24数,给出下列结论:①函数f(x)的最小正周期是5;②函数f(x)的2图像关于点(5,0)对称;③函数f(x)的图像关于直线x=5对称;④42函数f(x)的最大值为f(5).2其中正确结论的序号是__________(写出所有你认为正确的结论的序号)三、解答题:本大题共6小题,共74分。
成人高考成考(高起本)数学(文科)试题与参考答案
成人高考成考数学(文科)(高起本)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.下列哪个数是有理数?A. √2B. πC. -3/4D. e2.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 413、如果一个数的小数点向左移动2位,则这个数缩小了原来的()倍。
A、100B、10C、1/100D、1/104、若函数f(x)满足f(1) = 4, f’(1) = 2, x > 0。
若存在一个常数c,使得对于任意x > 0,都有f(x) ≥ cx^2,则c的最大值是(A、0B、1C、2D、45、一元二次方程的判别式为零时,该方程的实数根的情况是()A. 方程有两个相等的实数根B. 方程没有实数根C. 方程有两个非相等的实数根D. 以上都不正确6.等差数列2, 5, 8, 11, … 的第 20 项是多少?A. 59B. 61C. 65D. 677、直线l过点(1, 3)且与双曲线x 22−y21=1一条渐近线平行,则()。
A. 直线l无斜率B. 直线l的斜率为±√2C. 直线l的斜率为-1或-√2D. 直线l的斜率为±1解析:双曲线x 22−y21=1的渐近线方程为y=±√22x,又直线l过点(1, 3),故当直线l 与渐近线y=√22x 平行时,直线l 的斜率为√22(舍去);当直线l 与渐近线y=-√22x 平行时,直线l 的斜率为-√22;当直线l 与渐近线垂直时,直线l 的斜率不存在。
综上可知:直线l 的斜率为-1或-√2。
选C 。
8、在多项式x 2+2x +1中,x 2+2x 的系数是( )。
A. -1B. 1C. -2D. 29、一个多项式函数的最小项是关于x 的3次幂,则该多项式函数的次数至少是( )次。
A 、4B 、3C 、2D 、110、已知函数 f(x) = ax^3 + bx^2 + cx 在 x=x ₀ 处取得极值,且 f’(x ₀) = 0,则关于函数 f(x) 的极值说法正确的是:A. f(x) 在 x=x ₀ 处一定有极大值或极小值B. 若 f’(x ₀) 是正的或负的,则 f(x) 在 x=x ₀ 处有极大值或极小值C. f(x) 在 x=x ₀ 处没有极值,导数等于零不一定有极值点出现D. 函数是否存在极值与变量 x ₀ 有关,所以需要通过实际代入求解来确定极值的存在性。
2020年全国统一高考数学模拟试卷(文科)(新课标Ⅱ)(解析版)【打印版】
【答案】C
【解析】
【分析】
根据原位大三和弦满足 ,原位小三和弦满足
从 开始,利用列举法即可解出.
【详解】根据题意可知,原位大三和弦满足: .
∴ ; ; ; ; .
原位小三和弦满足: .
∴ ; ; ; ; .
故个数之和为10.
故选:C.
【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.
12.若 ,则()
A. B. C. D.
【答案】A
【解析】
【分析】
将不等式变为 ,根据 的单调性知 ,以此去判断各个选项中真数与 的大小关系,进而得到结果.
【详解】由 得: ,
令 ,
为 上的增函数, 为 上的减函数, 为 上的增函数,
,
, , ,则A正确,B错误;
与 的大小不确定,故CD无法确定.
故选:A.
A.10名B.18名C.24名D.32名
【答案】B
【解析】
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】由题意,第二天新增订单数为 ,
故需要志愿者 名.
故选:B
【点晴】本题主要考查函数模型的简单应用,属于基础题.
5.已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()
则 垂直于平面 内所有直线,
直线 平面 , 直线 直线 ,
命题 为真命题.
综上可知, 为真命题, 为假命题,
为真命题, 为真命题.
故答案为:①③④.
【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个
2020成人高考高起专数学文史类复习题与答案
2020年成人高考数学复习题第一章 集合与简易逻辑(一)集合1.(2006年)设集合M={}2,1,0,1-, N={}3,2,1,0,则 =N M ( ) (A){}1,0 (B){}2,1,0 (C){}1,0,1- (D){}3,2,1,0,1-2.(2008年)设集合A={}6,4,2, B={}3,2,1,则集合=B A ( ) (A){}4 (B){}6,4,3,2,1 (C) {}6,4,2 (D) {}3,2,1 3. (2009年) 设集合M={}3,2,1, N={}5,3,1,则 =N M ( ) (A)Φ (B){}3,1 (C){}5 (D){}5,3,2,1 4.(2010年)设集合M={}3-≥x x , N={}1≤x x ,则 =N M ( ) (A)R (B)(][)+∞-∞-,13, (C)[]1,3- (D) Φ5.(2011年)已知集合 A={1,2,3,4},B={x|-1<x<3},则 A ∩B= ( ) (A){0,1,2} (B){1,2} (C){1,2,3} (D){-1,0,1,2} {}2,1,0.1-6.(2012年)设集合M={0,1,2,3,4,5},N ={0,2,4,6},则=N M ( ) (A){0,1,2,3,4,5,6} (B) {1,3,5} (C) {0,2,4} (D )Φ7. (2013年)设集合{}1x 2==x A ,{}1x 3==x B ,则=B A ( )(A)Φ (B ){}1 (C ){}1- (D ){}1,1- 8. (2014年)设集合{}21x <≤-=x M ,{}1x ≤=x N ,则集合=N M ( ) (A) {}1x ->x (B ){}1x >x (C ){}11x ≤≤-x (D ){}21x ≤≤x (二).简易逻辑9.(2006年)设甲:1=x ;乙:02=-x x ,则 ( ) (A )甲是乙的充分条件,但不是乙的必要条件 (B )甲是乙的必要条件,但不是乙的充分条件 (C )甲不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件10. (2007年)若y x ,为实数,设甲:022=+y x ;乙:0=x 且0=y ,则( ) (A )甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条件 (C )甲不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件 11.(2008年)设甲:6π=x ;乙:21sin =x ,则( ) (A )甲是乙的必要条件但不是乙的充分条件 (B )甲是乙的充分条件但不是乙的必要条件 (C )甲不是乙的充分条件也不是乙的必要条件 (D )甲是乙的充分必要条件12. (2009年)b a ,为实数,则 22b a >的充分必要条件是( ) (A )b a > (B )b a > (C )b a < (D )b a -> 13.(2010年)设甲:2π=x ;乙:1sin =x ,则( )(A )甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条件 (C )甲不是乙的充分条,件也不是乙的必要条件 (D )甲是乙的充分必要条件14.(2012年)设甲:1=x ;乙:0232=+-x x ,则 ( )(A )甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条 (C )甲不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件 15.(2013年)设甲:1=x ;乙:12=x ,则 ( ) (A )甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分必要条件(C )甲是乙的充分条件,但不是乙的必要条件 (D )甲既不是乙的充分条件,也不是乙的必要条件16.(2014年)如a,b,c 为实数,且a ≠0,设甲:042≥-ac b ;乙:有实数根02=++c bx ax ,则 ( ) (A )甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条件 (C )甲既不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件第二章 不等式与不等式组选择题(一).不等式的性质17.(2006年)设R b a ∈,,且b a >,则下列各不等式中,一定成立的一个是:( ) (A )22b a > (B ))0(≠>c bc ac (C )ba 11> (D )0>-b a (二).绝对值不等式18.(2006年)不等式13≤+x 的解集是( )(A ){}24-≤≤-x x (B ){}2-≤x x (C ){}42≤≤x x (D ){}4≤x x 19. (2007年)不等式113<-x 的解集是( )(A )R (B ){x|x<0或x>32}(C )⎭⎬⎫⎩⎨⎧>32x x (D )⎭⎬⎫⎩⎨⎧<<320x x 20. (2008年)不等式32≤-x 的解集是( ) (A ){x|x 5-≤或1≥x } (B ){}15≤≤-x x (C ){x|x 1-≤或5≥x } (D ){}51≤≤-x x21.(2011年)不等式│x-2│<3 的解集包含的整数共有 ( ) (A )8 个 (B )7 个 (C )6 个 (D )5 个 22.(2013年)不等式1<x 的解集为( )(A ){}1>x x (B ){}1<x x (C ){x ∣11<<-x } (D) {}1-<x x 23.(2014年)不等式23>-x 的解集为( )(A ){}1<x x (B ){}5>x x (C ){}15<>x x x 或 (D) {}51<<x x (三)一元二次不等式24.(2009年)不等式012>-x 的解集为( )(A ){}1>x x (B ){}1-<x x (C ){x|x 1-<或1>x } (D ){}11<<-x x第三章 函数(一).平面直角坐标系33.(2009年)点P (3,2),Q (-3,2),则P 与Q ( ) (A)关于x 轴对称 (B) 关于y 轴对称 (C) 关于直线x y =轴对称 (D) 关于直线x y -=轴对称 (二).函数的概念(定义域,值域,求函数值) 一.选择题34. (2006年)函数)3(log )(23x x x f -=的定义域是( )(A )()()+∞∞-,30, (B )()()+∞-∞-,03, (C )()3,0 (D )()0,3- 35. (2007年)函数)1lg(-=x y 定义域是( ) (A )R (B ){}0>x x (C ){}2>x x (D ){}1>x x 36. (2008年)函数x x y -+=3lg 定义域是( ) (A )()+∞,0 (B )()+∞,3 (C )(]3,0(D )(]3,∞- 37. (2010年)函数x y -=4定义域是( )(A )(][)+∞-∞-,44, (B )(][)+∞-∞-,22, (C )[]4,4-(D )[]2,2- 38.(2011年)函数 y= 24x -的定义域是 ( )(A)(]0-,∞ (B) [0,2] (C) [-2,2] (D)()2--,∞()∞+⋃,2 39.(2012年)函数)1lg(2-=x y 的定义域是 (A)(∞-,—1]∪[1,∞+) (B)(—1,1) (C )(∞-,—1)∪(1,∞+) (D) [—1,1] 40.(2014年)函数 51-=x y 的定义域是 ( ) (A)()5,∞- (B) ()+∞∞-, (C) ()+∞,5 (D) ()5,∞- ()+∞,5 41. (2008年)下列函数中,函数值恒大于零的是( ) (A )2x y = (B )xy 2=(C )x y 2log = (D )x y cos =42. (2010年)设函数,2)(2ax ax x f -=且6)2(-=f ,则=a ( )(A) -1 (B)43-(C) 1 (D) 4 43(2012年).设函数xx x f 2)1()(+=,则)2(f =( )(A) 12 (B) 6 (C ) 4 (D ) 244(2014年)设xx x f 1)(+=,则)1(-x f =( ) (A) 1+x x (B) 1-x x (C ) 11+x (D )11-x二.填空题45. (2007年)设x x xf -=241)2(,则=)(x f (三).函数的性质(单调性,奇偶性)46. (2009年)下列函数中,在其定义域上为增函数的是( ) (A )x y =(B )2x y =(C )3x y =(D )4x y = 47.(2013年)下列函数中,为减函数的是 ( )(A )3y x = (B )x sin y = (C ) 3y x -= (D) x cos y = 48. (2006年)下列函数中为偶函数的是( )(A )xy 2=(B )x y 2=(C )x y 2log =(D )x y cos 2= 49. (2007年)下列函数中既不是奇函数也不是偶函数的是( ) (A )211)(x x f +=(B )x x x f +=2)((C )3cos )(x x f =(D )x x f 2)(=50. (2008年)下列函数中,为奇函数的是( )(A )x y 3log =(B )xy 3=(C )23x y =(D )x y sin 3= 51. (2010年)下列函数中为,奇函数的是( )(A )3x y -=(B )23-=x y (C )xy )21(=(D ))1(log 2xy =52.(2011年) 已知函数)(x f y =是奇函数,且 ƒ(-5)=3.则ƒ(5)= ( ) (A )5 (B )3 (C )-3 (D )-553.(2011年)下列函数中,既是偶函数,又在区间(0,3)为减函数的是 ( )(A)x y cos = (B)x y 2log = (C)42-=x y (D)x y )31(=54. (2012年)下列函数中,为偶函数的是( )(A)132-=x y (B )33-=x y (C )xy 3= (D )x y 3log =55. (2014年)下列函数中,为奇函数的是( )(A )x y 2log =(B )x y sin =(C )2x y =(D )xy 3=(四).一次函数56.(2006年)设一次函数的图象过点(1,1)和(-2,0),则该一次函数的解析式为( ) (A )3231+=x y (B )3231-=x y (C )12-=x y (D )2+=x y 57.(2010年)如果一次函数b kx y +=的图象过点(1,7)和(0,2),则=k ( ) (A )-5(B )1(C )2(D )558(2012年).如果函数b x y +=的图像经过点(1,7),则b =( ) (A) —5 (B) 1 (C) 4 (D) 659.(2014年)已知一次函数b x y +=2的图象过点(-2,1),则图像也经过点( ) (A )(1,-3)(B )(1,-1)(C )(1,7)(D )(1,5) (五).二次函数 一.选择题60.(2006年)函数322+-=x x y 的一个单调区间是( ) (A )[)+∞,0(B )[)+∞,1 (C )(]2,∞-(D )(]3,∞-61. (2006年) 二次函数的图象交x 轴于(-1,0)和(5,0)两点,则该图象的对称轴方程为是( ) (A )1=x (B )2=x (C )3=x (D )4=x62. (2007年) 二次函数542+-=x x y 的对称轴方程为是( ) (A )2=x (B )1=x (C )0=x (D )1-=x63. (2007年)如果二次函数q px x y ++=2的图象经过原点和点(-4,0),则该二次函数的最小值为( ) (A )-8(B )-4 (C )0(D )1264. (2008年) 二次函数222++=x x y 的对称轴方程为是( ) (A )1-=x (B )0=x (C )1=x (D )2=x65. (2008年)曲线12+=x y 于直线kx y =只有一个公共点,则=k ( ) (A )-2或2(B )0或4(C )-1或1(D )3或766.(2010年)设函数3)3()(2+-+=x m x x f 是偶函数,则=m ( )(A )-3(B )1(C )3(D )567.(2011年) 二次函数 14y 2++=x x ( )(A )有最小值-3 (B )有最大值-3 (C )有最小值-6 (D )有最大值-668.(2012年)设函数4)3()(34+++=x m x x f 是偶函数,则m =( ) (A) 4 (B) 3 (C) —3 (D)—469.(2013年)二次函数22-+=x x y 图像的对称轴是( ) (A )2=x (B )2-=x (C )21-=x (D )1-=x 70.(2014年)二次函数232++=x x y 的图像与x 轴的交点是( )(A )(-2,0)和(1,0) (B )(-2,0)和(-1,0) (C )(2,0)和(1,0) (D )(2,0)和(-1,0)71.(2014年)设两个正数a,b 满足a+b=20,则ab 的最大值为( ) (A )400 (B )200 (C )100 (D )50 二.填空题72.(2009年)二次函数32)(2++=ax x x f 的图象的对称轴为1=x ,则=a73.(2010年) 如果二次函数的图象经过原点和点(-4,0),则该二次函数图象的对称轴方程为 74.(2012年)若二次函数)(x f y =的图像过点(0,0),(1,1-)和)0,2(-,则=)(x f75.(2013年)若函数ax x x f +=2)(为偶函数,则=a(六).反比例函数 76.(2008年)过函数xy 6=的图像上一点作x 轴的垂线PQ,Q 为垂足,O 为坐标原点,则OPQ ∆的面积为 ( )(A )6(B )3 (C )2(D )1 77.(2009年)xy 1-=的图像在( ) (A )第一、二象限(B )第一、三象限 (C )第三、四象限(D )第二、四象限 78.(2013年)函数1+=x y 与x1y =图像交点的个数为( ) (A )0 (B )1 (C )2 (D) 3 (七).指数函数与对数函数79. (2006年) 对于函数xy 3=,当0≤x 时,y 的取值范围是( ) (A )1≤y (B )10≤<y (C )3≤y (D )30≤<x 80.(2007年)函数xy 2=的图像过点( )(A )⎪⎭⎫ ⎝⎛-81,3(B )⎪⎭⎫ ⎝⎛-61,3(C )()8,3--(D )()6,3-- 81.(2007年)设,1>>b a 则 ( )(A )2log 2log b a > (B )b a 22log log > (C )b a 5.05.0log log >(D )5.0log 5.0log a b > 82.(2008年)设,1>a 则 ( ) (A )0log 21<a (B )0log 2<a (C )01<-a(D )012<-a83.(2009年)设,1>>b a 则 ( )(A )b a 3.03.0> (B )ba 33<(C )b a 33log log <(D )b a 33log log >84.(2010年)设,10<<<b a 则 ( )(A )2log 2log b a < (B )b a 22log log >(C )2121b a > (D )ba )21()21(>85.(2012年)使27log log 32>a 成立的a 的取值范围是( ) (A) (0,∞+)(B)(3,∞+) (C)(9,∞+) (D)(8,∞+) 86.(2013年)设1>a ,则 ( )(A )02log <a (B )02log >a (C )12<a(D )1)1(2>a87.(2014年)若2lg lg 0<<<b a ,则 ( ) (A )10<<<b a (B )10<<<a b (C )1001<<<a b (D )1001<<<b a第四章 数列(一).等差数列 一.选择题88. (2006年)在等差数列{}n a 中,7,153-==a a ,则=7a ( ) (A )-11(B )-13(C )-15(D )-1789.(2010年)已知一个等差数列的第五项等于10,前3项的和等于3,那么这个等差数列的公差为( ) (A )3(B )1(C )-1(D )-390.(2011年)在首项是 20,公差为-3 的等差数列中,绝对值最小的一项是 ( ) (A )第 5 项 (B )第 6 项 (C )第 7 项 (D )第 8 项91. (2012年)已知一个等差数列的首项为1,公差为3,那么该数列的前5项和为( ) (A) 35 (B) 30 (C) 20 (D) 1092.(2013年)等差数列{}n a 中,若21=a ,63=a ,则=2a ( ) (A )3 (B )4 (C )8 (D)12二.解答题93. (2007年)已知数列{}n a 的前n 项和)12(+=n n S n (1)求该数列的通项公式;(2)判断39是该数列的第几项。
2020年高考文科数学模拟试题及答案(一).pdf
C. log 0.7 6 6 0. 7 0.7 6
D.
log 0. 7 6 0.7 6 6 0.7
7. 某学校美术室收藏有 6 幅国画,分别为人物、山水、花鸟各 2 幅,现从中随机抽取 2 幅进行展览,
则恰好抽到 2 幅不同种类的概率为
5
A.
6
4
B.
5
3
C.
4
2
D.
3
8. 下图虚线网格的最小正方形边长为 1,实线是某几何体的三视图,这个几何体的体积为(
0.001
10.828
19.(本试题满分 12 分)
如图,在四棱锥 P ABCD 中 , 底面 ABCD 为四边形, AC BD , BC CD , PB PD , 平面 PAC 平面
PBD , AC 2 3, PCA 30 , PC 4.
(1) 求证: PA 平面 ABCD ; (2) 若四边形 ABCD 中, BAD 120 , AB BC , M 为 PC 上
R ,使得
x
2 0
-
x0
1
0 ”的否定是 _________ .
4
14. 在区间( 0, 4)内任取一实数 t ,则 log 2(t 1) 1 的概率是 _____.
15. 已知 △ABC 中, AB
5 , AC
7,
ABC
2 ,则该三角形的面积是
________.
3
2
16.
已知双曲线
x2 C : a2
PM
一点,且满足
2 ,求三棱锥 M PBD 的体积
MC
20. (本试题满分 12 分)
已知椭圆 C : x2 a2
y2 b2
1(a b 0) 的左右焦点分别为 F1, F2 ,点 P 是椭圆 C 上的一点,若
成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)
2024年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列数中,有理数是()A、√2B、πC、−3.14D、2√32、在下列各数中,哪个数是负数?A、-5B、3C、0D、-2.53、若函数(f(x)=2x3−3x2+4),则(f(1))的值是多少?A. 3B. 5C. 7D. 94、若函数f(x)=x3−3x2+4x−1在x=1处取得极值,则该极值是:A、极大值B、极小值C、拐点D、非极值5、在下列各数中,属于实数集的有:A、√−1B、1C、πD、0.1010010001...6、已知函数f(x) = (x-1)^2 + 2,其图像的对称轴为:A. x = 1B. y = 1C. x = 0D. y = 0+√x+1)的定义域为((−∞,−1]∪(2,+∞)),则函数(f(x))7、已知函数(f(x)=1x−2的值域为:A.((−∞,−2]∪[1,+∞))B.((−∞,−2]∪[2,+∞))C.((−∞,−2]∪[0,+∞))D.((−∞,−2]∪[0,2])8、若函数(f(x)=3x2−4x+5)的图像开口向上,则其对称轴为:)A.(x=23B.(x=−23)C.(x=43)D.(x=−43)9、在下列函数中,f(x) = x^2 - 4x + 4 的图像是一个:A. 圆B. 抛物线C. 直线D. 双曲线10、若函数(f(x)=x3−3x2+4x)的图像在(x)轴上有一个交点,则(f(x))的对称中心为:A.((1,0))B.((2,0))C.((1,2))D.((2,2))11、已知函数(f(x)=2x2−3x+1),则该函数的对称轴为:A.(x=−b2a =−−32×2=34)B.(x=−b2a =−−32×2=34)C.(x=−b2a =−−32×2=34)D.(x=−b2a =−−32×2=34)12、在下列函数中,当x=2时,函数y=3x^2-5x+2的值是()A. 1B. 4C. 7D. 9二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=2x3−3x2+4x−5的图像与直线y=3相切,则该切点的横坐标是________ 。
2024年成人高考成考(高起本)数学(文科)试题与参考答案
2024年成人高考成考数学(文科)(高起本)自测试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,哪个是一次函数?A、y = x^2 + 3B、y = 2x + 1C、y = sin(x)D、y = e^x2、若函数(y=x 2−4x+2)的定义域为(D),则(D)等于:A.(R,)即所有实数B.((−2,+∞))C.((−∞,−2]∪[−2,+∞))D.((−∞,−2)∪(−2,+∞))3、已知函数f(x)=x2−4x+4,则该函数的对称轴为:A.x=1B.x=2C.y=1D.y=44、下列数中,不是有理数的是()B、-1/2C、πD、0.1010010001…5、函数(y=log2(4−x))的定义域是()。
A、((−∞,4])B、((4,+∞))C、((−∞,4))D、([4,+∞))6、函数f(x)=x2−4x+3的图像与x轴的交点坐标为:A. (1, 0) 和 (3, 0)B. (0, 3) 和 (4, 0)C. (1, 3) 和 (3, 1)D. (2, 0) 和 (2, 0)7、设函数(f(x)=x2−4x+3),则该函数的最小值为:A. -1B. 0C. 1D. 28、已知函数f(x)=x3−3x2+2,下列哪个选项是该函数的极值点?A.x=0B.x=1D.x=39、如果等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()。
A、11B、13C、15D、1710、已知函数f(x) = x^2 - 4x + 4,若函数f(x)的图像开口向上,且顶点坐标为(a,b),则下列说法正确的是:A、a=2,b=-4B、a=4,b=2C、a=2,b=0D、a=1,b=211、若函数f(x)=2x3−3x2+4的图像在区间[1,2]上是连续的,则f(x)在该区间上的极值点个数为()A. 1B. 2C. 3D. 012、设函数(f(x)=x2−4x+3),则该函数图像与(x)轴的交点个数为:A. 无交点B. 1个交点C. 2个交点D. 无法确定二、填空题(本大题有3小题,每小题7分,共21分)1、已知函数f(x)=x2−4x+4,若f(x)的对称轴为y=1,则a=______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安工业大学北方信息工程学院继续教育学院
航空服务与管理专业期末考试试卷
课程名称:数学(基础模块)上册;试卷编号: A 卷 ;考试时间: 120分钟
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合M={1,3,5,7,9},N={1,3,6,9},则集合M ∩N= ( ) A. {1,3,9} B.{3,5,7} C.{1,3,5,6,7,9} D.{2,4,8} 2. 不等式|x +3|>5的解集为 ( ) A. {x |x >2} B.{x |x <-8或x >2} C.{x |x >0} D.{x |x >3} 3. 函数y=3sin(2x )的最小正周期是 ( ) A.3π B.2π C.4π D.π 4. 3227+8log 2= ( ) A.12 B.6 C.11 D.9 5. 已知函数5)(3+=x x f 则=')2(f ( )
A.11
B.8
C.6
D.13
6.
}{n a 为等差数列,首项11=a ,公差3=d ,则=12a ( )
A.34
B.36
C.31
D.35
7. )4,2(=a ,)3,1(=b ,则=⋅
b a ( )
A. -10
B.10
C.14
D.-14
8. 某同学在阅览室陈列的5本科技杂志和6本文娱杂志中任选1本阅读,他选中科技杂志的概率是 ( )
A. 65
B.115
C.51
D.21
9. 从13名学生中选出两人担任正、副班长,不同的选择结果有 ( )
A.26种
B.78种
C.156种
D.169种
10. 设椭圆方程为125162
2=+y x ,则该椭圆的离心率为 ( )
A. 54
B.53
C.43
D.3
4
二、填空题:本大题共5小题,每小题4分,共20分。
请同学将正确答案填写在横线上。
11. 点(-3,1)到直线052=--y x 的距离是: .
12. 若)2,(m a = ,)3,2(-=b ,且a ∥b ,则=m .
13. 函数169)(2++-=x x x f 的驻点是: .
14. =+︒︒15cos 75sin .
15. 某次测试7位同学的成绩分别为79,81,85,75,80,90,70,则他们成绩的平均数为: ,众数为: ,中位数为: .
三、解答题:本大题共4小题,每小题10分,共计40分。
解答过程中请写出推理、演算步骤。
16. 在△ABC 中,AB=2,BC=3,∠B=60°,求边长AC (4分)及△ABC 的面积(6分)。
17. 已知等差数列}{n a 中,91=a ,083=+a a 。
(1)求数列}{n a 的通项公式(4分)。
(2)当n 为何值时,数列}{n a 的前n 项和n S 取最大值,并求该最大值(6分)。
18. 设直线1+=x y 是曲线a x x x y +++=4323的切线。
(1)求切点坐标(5分)。
(2)求a 的值(5分)。
19. 已知椭圆:1:22
22=+b y a x C ( a >b >0),斜率为1的直线l 与C 相交,期中一个交点的坐标为)2,2(,且C 的右焦点到l 的距离为1。
(1)求 b a ,(6分)。