2020届广东省广州市高三12月调研测试数学理试题
广东省2020届高三调研测试 数学(理)
2020届高中毕业班调研测试题理科数学一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1、21ii ++= A .3122i - B .1322i - C .32i - D 、112i -2.已知集合A ={x |x 2+2x 一3>0},B ={x |0<x ≤4},则A ∩B = A .{x |一3<x ≤4} B .{x |1<x ≤4} C .{x |一3<x <0或1<x ≤4} D .{x |一3<x <一1或1<x ≤4} 3.已知抛物线C :y =3 x 2,则焦点到准线的距离是 A .16 B .32 C .3 D .134.设3log 5a =,4log 5b =,132c -=,则A .b >c >aB .b >a >cC .a >b >cD .a >c >b5.某学校组织高一和高二两个年级的同学,开展“学雷锋敬老爱老”志愿服务活动,利用暑期到敬老院进行打扫卫生、表演文艺节目、倾听老人的嘱咐和教诲等一系列活动.现有来自高一年级的4名同学,其中男生2名、女生2名;高二年级的5名同学,其中男生3名、女生2名.现从这9名同学中随机选择4名打扫卫生,则选出的4名同学中恰有2名男生,且这2名男生来自同一个 年级的概率是6.函数的部分图象大致是7.《九章算术》是我国最重要的数学典籍,曾被列为对数学发展形响最大的七部世界名著之一。
其中的“竹九节”问题,题意是:有一根竹子,共九节,各节的容积依次成等差数列·已知较粗的下3节共容4升,较瘦的上4节共容3升.根据上述条件,请问各节容积的总和是A 、20122 B 、21122 C 、60166 D 、611668.已知62(1)(1)a x x++的展开式中各项系数的和为128,则该展开式中2x 的系数为A .15B .20C .30D .359.在以BC 为斜边的直角△ABC 中,AB =2,2BE EC =u u u r u u u r ,则AB AE u u u r u u u rg =A 、3B 、73 C 、83D 、2 10·在长方体ABCD 一A 1B 1C 1D 1中,AB =AD =2,AA 1=3,点E 为棱BB 1上的点,且BE =2EB 1,则异面直线DE 与A 1B 1所成角的正弦值为 A 、52 B 、63 C 、64 D 、7311.将函数g (x )=cos2x 一sin 2x 图象上的所有点的横坐标伸长到原来的2倍,再把所得各 点向右平移6π个单位长度,最后把所得各点纵坐标扩大到原来的2倍,就得到函数()f x 的图象,则下列说法中正确的个数是 ①函数()f x 的最小正周期为2π ②函数()f x 的最大值为2, ③函数()f x 图象的对称轴方程为.④设12,x x 为方程()f x 的两个不相等的根,则12||x x -的最小值为4πA .1·B .2C .3D .412.已知F 1,F 2分别为双曲线C :22126x y -=的左、右焦点,过F 2的直线与双曲线C 的右支交于A ,B 两点(其中点A 在第一象限).设点H ,G 分别为△AF 1F 2,△BF 1F 2的内心,则|HG |的取值范围是二、填空题:本大题共4小题,每小题5分,共20分.13.曲线32()21f x x x =-++在点(1,f (l ))处的切线方程为14.在产品质量检测中,已知某产品的一项质量指标X N (100,100),且110<X <120的产品数量为5 436件.请估计该批次检测的产品数量是 件。
广州市2020届高三年级12月调研考试数学(文)试题(PDF版)
绝密★启用前2020届广州市高三年级调研测试文科数学2019.12本试卷共5页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号、并将试卷类型(A )填图在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须卸载答题卡各题目制定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔盒涂改液,不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知复数z=i 435 ,则复数z 的虚部为()A.4iB.C.54iD.542.设集合A={x|x 2−2x−3}≤0,B={x|y=ln(2−x)},则A ∩B=()A.[−3,2)B.(2,3]C.[−1,2)D.(−1,2)3.如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成,在图案内随机取一点,则此点取自黑色部分的概率是()A.41 B.3 C.32 D.434.命题“∀x>0,lnx ≥1−x 1”的否定是()A.∃x ≤0,lnx ≥1−x 1 B.∃x ≤0,lnx<1−x 1C.∃x>0,lnx ≥1−x 1 D.∃x>0,lnx<1−x15.设a ,b 是单位向量,a 与b 的夹角是60°,则c =a +3b 的模为()A.13B.13C.16D.46.已知实数x ,y 满足,则z=x−3y 的最小值为()A.−7B.−6C.1D.67.已知点(m,8)在幂函数f(x)=(m−1)x n 的图像上,设a=f(33),b=f(lnπ),c=f(22),则a,b,c 的大小关系为()A.b<a<cB.a<b<cC.b<c<aD.a<c<b8.已知F 为双曲线C:12222=-by a x 的右焦点,过点F 作C 的渐近线的垂线FD ,垂足为D ,且满足|FD|=|OF|(O 为坐标原点),则双曲线C 的离心率为()A.332 B.2 C.3 D.3109函数f(x )=x x e e x x -+-|2|ln 的图象大致为()10.已知函数f(x)=sin(2x+ϕ)0<ϕ<2π,将函数f(x)的图象向左平移个单位长度,得到的函数的图象关于y 轴对称,则下列说法错误的是()A.f(x)在(-32π,2π)上单调递减B.f(x)在(0,3π)上单调递增C.f(x)的图象关于(125π,0)对称 D.f(x)的图象关于x=−3π对称11.已知三棱锥P−ABC 中,PA=1,PB=7,AB=22,CA=CB=5,面PAB ⊥面ABC ,则此三棱锥的外接球的表面积为()A.920π B.1225π C.325π D.35π12.已知各项均为正数的数列{a n }的前n 项和为S n ,满足122log ,02)12(+==---n a n n n n n b S S ,若[x]表示不超过x 的最大正数,则2021202032212020....20202020b b b b b b +++=()A.2018B.2019C.2020D.2021二、填空题(本大题共4小题,每小题5分,共20分)13.已知抛物线x 2=2py(p>0)的焦点与椭圆=1的一个焦点重合,则p=__________.14.设数列{a}为等比数列,若2a ,4a ,8a 成等差数列,则等比数列{a}的公比为__________.15.奇函数f(x)=x (x xe a e +)(其中e 为的底数)在x=0处的切线方程为__________.16.已知正方体ABCD−A 1B 1C 1D 1的棱长为2,M 为CC 1的中点,若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为__________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)在∆ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知csin(A+3π)−asinC=0.(1)求角A 的值;(2)若∆ABC 的面积为3,周长为6,求a 的值.18.(本小题满分12分)随着手机的发展,“微信”逐渐成为人们交流的一中形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频率分布及“使用微信交流”赞成人数如下表.年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数510151055赞成人数51012721(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关:年龄不低于45岁的人数年龄低于45岁的人数合计赞成不赞成合计(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.附:19.(本小题满分12分)如图,已知四边形ABCD 是边长为2的菱形,∠ABC=60,平面AEFC ⊥平面ABCD ,EF AC ,且AE=1,AC=2EF.(1)求证:平面BED ⊥平面AEFC ;(2)若四边形AEFC 为直角梯形,且EA ⊥AC ,求点A 到平面FCD 的距离.20.(本小题满分12分)已知椭圆C:13222=+y ax (a>0)的右焦点F 到左顶点的距离为3(1)求椭圆C 的方程;(2)设O 为坐标原点,过F 的直线与椭圆C 交于A ,B 两点(A,B 不在x 轴上),若OB OA OE +=延长AO 交椭圆于点G ,求四边形AGBE 的面积S 的最大值.21.(本小题满分12分)已知a ≥1,函数f(x)=xlnx−ax+1+a(x−1)2.(1)若a=1,求f(x)的单调区间;(2)讨论f(x)的零点个数.(二)选考题:共10分。
广东省广州市2020届高三年级调研测试理科数学(图片版,答案解析)
2
2
2
即
x2
y2
1
y
1
,整理得: x2
y ,因为曲线 x2
1 y 是以 P 0, 为焦点的抛物线,而
4 2
4
1
1
1
AM r y , MP y ,此时 MA MP 为定值.
2
4
4
A
O
P
B
M
x
12.已知偶函数 f (x) 满足 f (4 x) f (4 x) ,且当 x [0, 4]时, f (x) xe 2 ,若关于 x 的不等式
a2 b2
1 FD OF ( O 为坐标原点),则双曲线的离心率为( )
2
23
A.
3
B.2
C.3
10
D.
3
7.答案:A
1 解析:知识点:双曲线的焦点到渐近线的距离为 b ,所以 FD b ,又 OF c ,由 FD OF ,可知
2
1
c 2 23
b c ,不妨设 b 1,则 c 2, a 3 ,离心率 e .
切.若存在定点 P ,使得当 A 运动时, MA MP 为定值.则点 P 的坐标为( )
1
A.
0,
4
1
B.
0,
2
1
C.
0,
4
1
D.
0,
2
11.答案:C
1
1
2
2
2
2020届广州市高三年级调研测试理科数学
且 4a=2
b2
+ 2c2 ,则
S a2
的最大值为_______.
二、解答题(共 70 分。解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分 12 分)
已知 {an} 为单调递增的等差数列, a2 + a5 = 18 , a3 a4 = 80 ,设数列 {bn} 满足 2b1 + 22 b2
涂黑。注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题。
如果多做,则按所做的第一题计分。
22. (本小题满分 10 分)选修 4-4:坐标系与参数方程
在平面直角坐标系
xOy
中,已知曲线
C
的参数方程为
x=
y=
m+ 1 m ( m 为参数),以原点
m− 1 m
A. 3 C. − 3
B. 3 D. −3
10. 1772 年德国的天文学家 J·E 波得发现了求太阳和行星间距离的法则,记地球距离太阳 的平均距离为 10,可以算得当时已知的六大行星距离太阳的平均距离如下表:
除水星外,其余各星与太阳的距离都满足波得定则(某一数列现律),当时德国数学家
高斯根据此定则推算,火星和木星之间距离太阳之间 28 应该还有一颗大行星.1801 年,
20. (本小题满分 12 分) 已知椭圆 C: x2 + y2 = 1(a > 0) 的右焦点 F 到左顶点的距高为 3. a2 3 (1)求椭圆 C 的方程; (2)设 O 为坐标原点,过点 F 的直线与椭圆 C 交于 A、B 两点(A、B 不在 x 轴上),
若 O=E OA + OB ,延长 AO 交圆于点 G 求四边形 AGBE 的面积 S 的最大值.
2020届广东省广州市2017级高三12月调研考试数学(理)试卷参考答案
展开式中的常数项为
C64
(3x)2
1
135 .
x
x
15.答案:6
解析:设外接球半径为 R ,则 4 R3
125
,解得 R
5
,底面正三角形外接圆的半径 r
2 ,设三棱
3
6
2
锥的高为 h
,由 (h
R)2
r2
R2
,解得 h
4
,则其侧视图的面积为 S侧视图
1 3 4
2
6
.
16.在△ABC 中,设角 A, B,C 所对的边分别为 a,b, c ,记△ABC 的面积为 S ,且 4a2 b2 2c2 ,则 S a2
11.答案:C
1
1
解析:设 M (x, y) ,则 M 的半径 r y , AO ,
2
2
2
2
2
由于 MO AO ,所以 MO AO AM ,
A
2
即 x2
y2 1
1 y
,ห้องสมุดไป่ตู้理得: x2
y,
4 2
O
P
因为曲线
x2
y
是以
P
0,
1
为焦点的抛物线,
B
M
4
1
1
1
而 AM r y , MP y ,此时 MA MP 为定值.
3 24
8
2
3
3
1 P( ABC) 1 P( A)P(B)P(C) 1 (1 m) (1 n) ,(1 m)(1 n) ,
3
4
8
2
13
3
(1 m)(1 n) 1 (m n) mn 1 (m n) ,m n .
2020届广东省高三调研(12月)考试数学(理)试题(解析版)
2020届广东省高三调研(12月)考试数学(理)试题一、单选题1.已知集合{|4}A x x =<,{}2|50B x x x =-≤,则A B =( )A .{|04}x x ≤<B .{|5}x x ≤C .{|04}x x <<D .{|0}x x ≤【答案】A【解析】先分别求出集合A 和B ,由此能求出A ∩B . 【详解】因为{|4}A x x =<,{|05}B x x =≤≤,所以{|04}A B x x ⋂=≤<. 故选:A 【点睛】本题考查两个集合的交集的求法,考查二次不等式解法及交集定义等基础知识,考查运算求解能力,是基础题.2.函数()38x f x =-的零点为( ) A .83B .33log 2C .38D .8log 3【答案】B【解析】由函数零点与方程的根的关系,解方程3x﹣8=0,即可得解. 【详解】由()0f x =,得38x =,即33log 83log 2x ==. 故选:B 【点睛】本题考查了函数零点与方程的根的关系,考查指对互化及对数运算,属简单题. 3.若复数12zi+的虚部为-1,则z 可能为( ) A .16i -- B .16i -+C .13i -D .13i +【答案】C 【解析】设()12za i a i=-∈+R ,利用复数代数形式的乘除运算化简得a 值可得答案 【详解】 依题意可设()12za i a i=-∈+R ,则2(21)z a a i =++-.当21a +=-时,a-=-,217a+=时,213a-=-;当21故选:C.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况,如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是()A.他们健身后,体重在区间(90kg,100kg)内的人增加了2个B.他们健身后,体重在区间[100kg,110kg)内的人数没有改变C.他们健身后,20人的平均体重大约减少了8 kgD.他们健身后,原来体重在区间[110kg,120kg)内的肥胖者体重都有减少【答案】C【解析】利用饼状图逐项分析即可求解【详解】体重在区间[90kg,100kg)内的肥胖者由健身前的6人增加到健身后的8人.故人增加了2个,故A正确;他们健身后,体重在区间[100kg,110kg)内的百分比没有变,所以人数没有变,故B 正确;他们健身后,20人的平均体重大约减少了⨯+⨯+⨯-⨯+⨯+⨯=;因为图(2)(0.3950.51050.2115)(0.1850.4950.5105)5kg中没有体重在区间[110kg,120kg)内的比例,所以原来体重在区间[110kg,120kg)内的肥胖者体重都有减少,故D正确故选:C【点睛】本题考查识图能力,考查统计知识,准确理解图形是关键,是基础题 5.某几何体的三视图如图所示,则该几何体的表面积为( )A .115πB .140πC .165πD .215π【答案】A【解析】由三视图可知,直观图是由半个球与一个圆锥拼接,即可求出表面积. 【详解】由三视图可知,该几何体由半个球与一个圆锥拼接而成,所以该几何体的表面积251325115S πππ=⨯⨯+⨯=.故选:A 【点睛】本题考查三视图,考查表面积的计算,考查学生分析解决问题的能力,属于中档题. 6.最早发现勾股定理的人应是我国西周时期的数学家商高,根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的(九章算术也有记载,所以,商高比毕达哥拉斯早500多年发现勾股定理.现有ABC ∆满足“勾3股4弦5”.其中4AB =.D 为弦BC 上一点(不含端点),且ABD ∆满足勾股定理.则AB AD ⋅=( )A .25144B .25169C .16925D .14425【答案】D【解析】先由等面积得AD ,利用向量几何意义求解即可 【详解】由等面积法可得341255AD ⨯==,依题意可得,AD BC ⊥,则AB 在AD 上的投影为||AD ,所以2144||25AB AD AD ⋅==. 故选:D【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,是基础题 7.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( )A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 【答案】B【解析】由值域为[5,3]-确定,a b 的值,得()5cos4g x x =--,利用对称中心列方程求解即可 【详解】因为()[,2]f x b a b ∈+,又依题意知()f x 的值域为[5,3]-,所以23a b += 得4a =,5b =-,所以()5cos4g x x =--,令4()2x k k ππ=+∈Z ,得()48k x k ππ=+∈Z ,则()g x 的图象的对称中心为,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z . 故选:B 【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为08.已知等比数列{}n a 的前n 项和为n S ,且54S =,1010S =,则15S =( ) A .16 B .19C .20D .25【答案】B【解析】利用5S ,105S S -,1510S S -成等比数列求解 【详解】因为等比数列{}n a 的前n 项和为n S ,所以5S ,105S S -,1510S S -成等比数列,因为54S =,1010S =,所以1056S S -=,15109S S -=,故1510919S =+=.故选:B 【点睛】本题考查等比数列前n 项性质,熟记性质是关键,是基础题9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A【解析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( ) ABC .2D【答案】C【解析】由0FA FB +=得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可【详解】因为0FA FB +=,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==. 故选:C 【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题. 11.已知函数()32cos f x x x =+,()()2()15xxg x e e=--,若1(,0]x ∀∈-∞,2x ∀∈R ,()()12f x a g x +≤,则a 的取值范围是( )A .(,2]-∞-B .40,27⎛⎤-∞-⎥⎝⎦C .(,3]-∞-D .,2794⎛⎤-∞-⎥⎝⎦【答案】D【解析】求导,确定max ()(0)2f x f ==,换元,构造函数求出()()2()15x xg x e e =--的最小值,列不等式求解a 即可 【详解】因为()32sin 0f x x '=->,所以()f x 在(,0]-∞上为增函数,所以max ()(0)2f x f ==.令(0)x t e t =>,()2()(1)5h t t t =--,()(1)(35)h t t t '=+-.当503t <<时,()0h t '<;当53t >时,()0h t '>.所以min 552540()1533927h t h ⎛⎫⎛⎫⎛⎫==--=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,从而max 40()27g x =-.依题意可得40227a +≤-,即9427a ≤-. 故选:D 【点睛】本题考查函数最值的求解,考查换元法的应用,着重考查导数的应用,是中档题,注意最值的转化.12.在三棱锥P ABC -中,5AB BC ==,6AC =,P 在底面ABC 内的射影D 位于直线AC 上,且2AD CD =,4PD =.设三棱锥P ABC -的每个顶点都在球Q 的球面上,则球Q 的半径为( )A .8B .6C .8D .6【答案】A【解析】设AC 的中点为O 先求出ABC ∆外接圆的半径,设QM a =,利用QM ⊥平面ABC ,得QM PD ∥ ,在MBQ ∆ 及DMQ ∆中利用勾股定理构造方程求得球的半径即可 【详解】设AC 的中点为O,因为AB BC =,所以ABC ∆外接圆的圆心M 在BO 上.设此圆的半径为r .因为4BO =,所以222(4)3r r -+=,解得258r =.因为321OD OC CD =-=-=,所以8DM ==. 设QM a =,易知QM ⊥平面ABC ,则QM PD ∥.因为QP QB ==即22113625(4)6464a a -+=+,解得1a =.所以球Q 的半径R QB ===. 故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题二、填空题13.若抛物线28x y =上的点P 到焦点的距离为8,则P 到x 轴的距离是________. 【答案】6【解析】由抛物线的焦半径公式得则()00,P x y 的坐标,则到x 轴的距离可求.【详解】设点()00,P x y ,则028y +=,即06y =,即P 到x 轴的距离是6. 故答案为:6 【点睛】本题考查抛物线的标准方程,着重考查抛物线定义的应用,是基础题.14.某中学音乐社共有9人,其中高一的同学有4人,高二的同学有3人,高三的同学有2人.他们排成一排合影,则同年级的同学都排在一起的概率为________. 【答案】1210【解析】用捆绑法分析,视三个班为三个元素,再分析高一、高二、高三三个元素的之间的排法数目,进而由分步计数原理计算可得答案. 【详解】由捆绑法可得所求概率23432339941210A A A A P A ==. 故答案为:1210【点睛】本题考查排列、组合的运用及古典概型,涉及分步计数原理的应用,本题实际是相邻问题,可用捆绑法分析求解.15.已知函数2()log )f x x =,则不等式(1)(2)0f x f x ++>的解集为________.【答案】1,3⎛⎫-+∞ ⎪⎝⎭【解析】证明()f x 为奇函数,并确定为增函数,去掉函数符号f 列不等式求解 【详解】由题2()log )f x x =定义域为R,2()log )()f x x f x -==-故()f x 为奇函数,则(1)(2)0f x f x ++>等价于(1)(2)f x f x +>-,又()f x 为增函数,所以12x x +>-,解得1,3x ⎛⎫∈-+∞ ⎪⎝⎭.故答案为:1,3⎛⎫-+∞ ⎪⎝⎭【点睛】本题主要考查不等式的求解,利用条件判断函数的奇偶性和单调性是解决本题的关键. 16.在数列{}n a 中,13a =,且()()12(1)22n n n a n a n +-=++- (1){}n a 的通项公式为________; (2)在1a ,2a ,3a ,,2019a 这2019项中,被10除余2的项数为________.【答案】222n a n n =-+ 403【解析】(1)等式两边同除()1n n +构造数列为等差数列即可求出通项公式; (2)利用通项公式及被10除余2 的数的特点即可求解 【详解】(1)因为()()12(1)22n n n a n a n +-=++-,所以122221n n n a a n a n n n+-+--==+ 2+,即12221n n a a n n +---=+,则2n a n -⎧⎫⎨⎬⎩⎭为等差数列且首项为1,差为2,所以212(1)n a n n-=+- 21n =-,故222n a n n =-+(2)因为(21)2n n n a =-+,所以当n 能被10整除或n 为偶数且21n -能被5整除时,n a 被10除余2,所以8,10,18,20,,2010,2018n =,故被10除余2的项数为201014035+=. 故答案为:222n a n n =-+;403【点睛】本题考查数列的通项,考查构造法,注意解题方法的积累,属于中档题.三、解答题17.如图.四棱柱1111ABCD A B C D -的底面是直角梯形,BC AD ∥,AB AD ⊥,22AD BC ==,四边形11ABB A 和11ADD A 均为正方形.(1)证明;平面11ABB A ⊥平面ABCD ;(2)求二面角1B CD A --的余弦值. 【答案】(1)证明见解析;(2)【解析】(1)证明1AA ⊥平面ABCD ,再利用面面垂直判定定理证明(2)由(1)知1AA ,AB ,AD 两两互相垂直,故以A 为坐标原点,AB ,A D ,1AA 所在直线分别为x ,y ,z 轴建系,求出两个半平面的法向量,再利用二面角的向量公式求解即可 【详解】(1)证明:因为四边形11ABB A 和11ADD A 均为正方形,所以1AA AD ⊥,1AA AB ⊥. 又AD AB A ⋂=,所以1AA ⊥平面ABCD .因为1AA ⊂平面11ABB A ,所以平面11ABB A ⊥平面ABCD .(2)(法—)由(1)知1AA ,AB ,AD 两两互相垂直,故以A 为坐标原点,AB ,A D ,1AA 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,1(2,0,2)B ,(2,1,0)C ,(0,2,0)D ,则(2,1,0)CD =-,1(0,1,2)CB =-.设(,,)m a b c =为平面1B CD 的法向量,则120,20,m CD a b m CB b c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令1a =,则2b =,1c =,所以(1,2,1)m =.又因为1AA ⊥平面ABCD ,所以1(0,0,2)AA =为平面ABCD 的一个法向量.所以1cos ,6m AA 〈〉==因为二面角1B CD A --是锐角.所以二面角1B CD A --的余弦值为6(法二)过B 作BH CD ⊥于H ,连接1B H .由(1)知1BB ⊥平面ABCD ,则1BB CD ⊥, 而1BHBB B =,所以CD ⊥平面1BB H所以1B H CD ⊥从而1BHB ∠为二面角1B CD A --的平面角.12=⨯,即BH =.所以1B H ==故11cos 6BH BHB B H ∠==. 【点睛】本题考查面面垂直的证明,考查二面角的余弦值的求法,解题时要注意向量法的合理运用.18.设函数23()cos sin 2f x x x x =+-,a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知()0f A =,2b =. (1)若a =B ; (2)若2a c =,求ABC ∆的面积. 【答案】(1) 6B π=. (2)【解析】(1)运用二倍角正余弦公式和辅助角公式,化简f (x ),并求得3A π=,再利用正弦定理求得1sin 2B =,可得结论;(2)由三角形的余弦定理得c =结合面积公式,求得b ,c 的关系,即可得到所求三角形的周长. 【详解】 (1)1cos23()2sin 212226x f x x x π-⎛⎫=+-=-- ⎪⎝⎭, 因为()0f A =,所以262A ππ-=,即3A π=.因为sin sin a b A B=,所以sin 1sin 2b A B a ==, 因为(0,)B π∈,所以6B π=或56π, 又b a <,所以6B π=.(2)由余弦定理,可得222(2)222cos3c c c π=+-⨯⨯,即23240c c +-=,解得c =(负根舍去),故ABC ∆的面积为11sin 2sin 223bc A π=⨯=【点睛】本题考查三角函数的恒等变换,正弦函数的图形和性质,考查解三角形的余弦定理和面积公式,考查化简整理的运算能力,属于中档题.19.某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i )若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii )已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为(01)p p <<,若2020届高考本科上线人数乙市的均值不低于甲市,求p 的取值范围.可能用到的参考数据:取40.360.0168=,40.160.0007=. 【答案】(1)60%;(2) (i )0.12 (ii ) 2,13⎡⎫⎪⎢⎣⎭【解析】(1)利用上线人数除以总人数求解;(2)(i )利用二项分布求解;(ii )甲、乙两市上线人数分别记为X ,Y ,得~(40000,0.6)X B ,~(36000,)Y B p .,利用期望公式列不等式求解【详解】(1)估计本科上线率为4678560%50++++=.(2)(i )记“恰有8名学生达到本科线”为事件A ,由图可知,甲市每个考生本科上线的概率为0.6,则882241010()0.6(10.6)0.360.16450.01680.160.12P A C C =⨯⨯-=⨯⨯=⨯⨯≈.(ii )甲、乙两市2020届高考本科上线人数分别记为X ,Y , 依题意,可得~(40000,0.6)X B ,~(36000,)Y B p . 因为2020届高考本科上线人数乙市的均值不低于甲市, 所以EY EX ≥,即36000400000.6p ≥⨯, 解得23p ≥, 又01p <<,故p 的取值范围为2,13⎡⎫⎪⎢⎣⎭. 【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.20.已知圆22260x y ++-=的圆心为1F ,直线l 过点2F 且与x 轴不重合,l 交圆1F 于C ,D 两点,过2F 作1F C 的平行线,交1F D 于点E .设点E 的轨迹为Ω. (1)求Ω的方程;(2)直线1l 与Ω相切于点M ,1l 与两坐标轴的交点为A 与B ,直线2l 经过点M 且与1l 垂直,2l 与Ω的另一个交点为N ,当||AB 取得最小值时,求ABN ∆的面积.【答案】(1) 221(0)82x y y +=≠ (2) 【解析】(1)根据三角形相似得到DE BEAD AC=,得到AE +DE =4,再利用椭圆定义求解即可(2)设1l 的方程为(0)y kx m k =+≠,与椭圆联立,由直线1l 与Ω相切得2282m k =+,由1l 在x 轴、y 轴上的截距分别为mk-,m ,得||AB 表达式,结合基本不等式求得M 坐标及2l ,进而得||MN ,则面积可求 【详解】(1)因为12FC EF ∥,所以12FCD EF D ∠=∠. 又11=F C F D ,所以11FCD F DC ∠=∠,则22EDF EF D ∠=∠, 所以2||ED EF =,从而2111||EF EF ED EF DF +=+=.22260x y ++-=化为22(32y x y ++=,所以21EF EF +==>从而E的轨迹为以1(F,2F为焦点,长轴长为右顶点).所以Ω的方程为221(0)82x y y +=≠.(2)易知1l 的斜率存在,所以可设1l 的方程为(0)y kx m k =+≠,联立22,1,82y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得()222148480k x kmx m +++-=.因为直线l 与Ω相切,所以()()222(8)414480km k m∆=-+-=,即2282m k =+.1l 在x 轴、y 轴上的截距分别为mk-,m ,则||AB ====≥= 当且仅当2228k k =,即2k =±时取等号. 所以当212k =时,||AB 取得最小值,此时26m =,根据对称性.不妨取2k =,m=282143M km x k =-=-+,即3M x =-323M y =-⨯+=.联立22,1,82y x x y ⎧=+⎪⎪⎭⎨⎪+=⎪⎩消去y,得29160x ++=,则39M N N x x x +=-+=-,解得9N x =-,所以8||3M N MN x =-=,故ABN ∆的面积为1823⨯⨯=【点睛】本题考查了椭圆定义求轨迹方程,考查直线和椭圆的关系,考查基本不等式求最值,确定取得最值时直线方程是关键,属于压轴题.21.已知函数2()ln f x bx a x =+的图象在点(1,(1))f 处的切线的斜率为2a +. (1)讨论()f x 的单调性; (2)当02e a <≤时,证明:222()x f x x e x-<+. 【答案】(1) 见解析 (2)证明见解析【解析】(1)先求导,求出1b =,再分类讨论当0a ≥和0a <时导数的符号变化,即可得出单调性;(2)原不等式即证明22max minln 2x a x e x x -⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,构造函数ln ()02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭和222()(0)x e h x x x-=>,分别求导确定最大值和最小值即可证明【详解】(1)()2a f x bx x'=+,则(1)22f b a a '=+=+, 解得1b =,22()2(0)a x af x x x x x'+=+=>.当0a ≥时,()0f x '>,()f x 在(0,)+∞上单调递增. 当0a <时,令()0f x '>,得x >()0f x '<,得0x <<. 所以()f x在⎫+∞⎪⎪⎭上单调递增,在⎛ ⎝上单调递减.(2)证明:要证222()x f x x e x -<+,只要证22ln 2x a x e x x-<.令ln ()02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则2(1ln )()a x g x x'-=, 当()0g x '>时,得0x e <<;当()0g x '<时,得x e >. 所以max ()()ag x g e e==, 令222()(0)x e h x x x -=>,则232(2)()x e x h x x-'-=. 当()0h x '>时,得2x >,当()0h x '<时,得02x << 所以min 1()(2)2h x h == 因为e02a <≤,所以max 1()2a g x e =≤, 又2e ≠,所以22ln 2x a x e x x-<,222()x f x x e x -<+得证.【点睛】本题考查了导数和函数的单调性和最值的关系,需要分类讨论,考查不等式证明,通常拆分为两个基本函数求最值是常用方法,属于难题.22.在直角坐标系xOy 中,直线l的参数方程为1222x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数),曲线C 的参数方程为3cos 33sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知点P 的极坐标为(2,)π,l 与曲线C 交于,A B两点,求2.【答案】(1)6sin ρθ=;(2)6+.【解析】(1)利用消参数将参数方程化成普通方程,再利用公式cos ,sin ,x y ρθρθ=⎧⎨=⎩化成极坐标方程;(2)将点P 的极坐标化为直角坐标,得点P 为直线参数方程所过的定点,再利用参数的几何意义进行求解. 【详解】解:(1)曲线C 的直角坐标方程为22(3)9x y +-=,即226x y y +=,因为cos ,sin ,x y ρθρθ=⎧⎨=⎩所以26sin ρρθ=,即6sin ρθ=,故曲线C 的极坐标方程为6sin ρθ=.(2)将12,22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(3)9x y +-=,得2(240t t -++=.设A 、B 两点对应的参数分别为1t ,2t,则122t t +=+124t t =.因为点P 的极坐标为(2,)π,所以点P 的直角坐标为(2,0)-,所以212||||6PA PB t t +=++=++=+.【点睛】本题考查曲线的参数方程、普通方程、极坐标方程的互化、直线参数方程参数的几何意义,考查转化与化归思想的应用,求解是要注意利用直线的参数的几何意义解题时,要保证参数方程为标准形式.23.已知函数()7 1.f x x x =-++ (1)求不等式2()10x f x <<的解集;(2)设[]x 表示不大于x 的最大整数,若[()]9f x ≤对[,9]x a a ∈+恒成立,求a 的取值范围.【答案】(1)(2,4)-;(2)(2,1)--.【解析】(1)将函数()f x 的绝对值去掉等价于62,1,()8,17,26,7,x x f x x x x -<-⎧⎪=-≤≤⎨⎪->⎩再分别解不等式并取交集;(2)利用取整函数的定义,将不等式[()]9f x ≤转化为()10f x <,再利用(1)的结论进行求解. 【详解】(1)62,1,()8,17,26,7,x x f x x x x -<-⎧⎪=-≤≤⎨⎪->⎩由()2f x x >得:1,622,x x x <-⎧⎨->⎩或17,82,x x -≤≤⎧⎨>⎩或7,262,x x x >⎧⎨->⎩解得:4x <;由()10f x <,1,6210,x x <-⎧⎨-<⎩或17,810,x -≤≤⎧⎨<⎩或7,2610,x x >⎧⎨-<⎩解得:28x -<<.故不等式2()10 x f x <<的解集为:(2,4)-. (2)依题意可得[()]9f x ≤等价于()10f x <, 由(1)知[()]9f x ≤的解集为(2,8)-. 因为[()]9f x ≤对[,9]x a a ∈+恒成立,所以[,9](2,8)a a +⊆-,所以2,98,a a >-⎧⎨+<⎩解得21a -<<-,所以a 的取值范围为(2,1)--. 【点睛】本题考查绝对值不等式的求解、取整函数的应用,考查分类讨论思想和数形结合思想的应用,第(2)问取整函数不等式的等价转化是求解问题的关键.。
2020届广州市高三年级调研测试 理科数学(含详细解析)
C.1
D.6
5.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进
入这三个社团成功与否相互独立,2019 年某新生入学,假设他通过选拔进入该校的“篮球”,“电子竞技”,
1
1
“国学”三个社团的概率依次为 m, , n .已知这三个社团他都能进入的概率为 ,至少进入一个社团的
配送员每单提成 3 元;若Y (400, ) ,配送员每单提成 4 元.小王计划在 A 公司和 B 公司之间选择一
份外卖配送员工作,他随机调查了 A 公司外卖配送员和 B 公司外卖配送员在 9 月份(30 天)的送餐量数
据,如下表:
表 1:A 公司外卖配送员甲送餐量统计
日送餐量 x 单
13
88
4
1
6.答案:B 解析:打印的点分别为 (3, 6), (2,5), (1, 4), (0,3), (1, 2), (2,1) ,
O
π
π
2
其中位于圆 x2 y2 25 内的有 (1, 4), (0, 3), (1, 2), (2,1) ,共 4 个.
1
7.答案:A 解析:知识点:双曲线的焦点到渐近线的距离为 b ,所以 FD b ,又 OF c ,
始由近到远算,第 10 个行星与太阳的平均距离大约是( )
A.388
B.772
C.1540
D.3076
11.已知点 A、B 关于坐标原点 O 对称, AB 1,以 M 为圆心的圆过 A、B 两点,且与直线 2 y 1 0 相
切.若存在定点 P ,使得当 A 运动时, MA MP 为定值.则点 P 的坐标为( )
(2)若将甲乙 9 月份的日送餐量的频率视为对应公司日送餐量的概率, (i)分别计算外卖配送员甲和乙每日送餐量的数学期望; (ii)请利用你所学的知识为小王作出选择,并说明理由.
广东省广州市2020届高三数学调研测试试题答案
广州市2020届高三年级调研测试数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一.选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二.填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.3 13.8π 14.1 15.⎡⎢⎣⎦ 三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 解:(1)在△ABC 中,A B C ++=π.………………………………………………………………1分所以coscos 22A C Bπ+-= …………………………………………………………………………2分sin2B ==.………………………………………………………………………3分所以2cos 12sin 2BB =- …………………………………………………………………5分13=.………………………………………………………………………………………7分(2)因为3a =,b =,1cos 3B =,由余弦定理2222cos b a c ac B =+-,………………………………………………………………9分 得2210c c -+=.……………………………………………………………………………………11分 解得1c =.……………………………………………………………………………………………12分17.(本小题满分12分)解:(1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a =人.………………………………………………………………………………………1分且0.08251000.02b =⨯=人.……………………………………………………………………………2分总人数252500.025N ==⨯人.………………………………………………………………………3分(2)因为第1,2,3组共有25+25+100=150人,利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为:第1组的人数为2561150⨯=,…………………………………………………………………………4分 第2组的人数为2561150⨯=,…………………………………………………………………………5分 第3组的人数为10064150⨯=,………………………………………………………………………6分所以第1,2,3组分别抽取1人,1人,4人.……………………………………………………7分 (3)由(2)可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1234,,,C C C C ,则从6人中抽取2人的所有可能结果为: (,)A B ,1(,)A C ,2(,)A C ,3(,)A C ,4(,)A C ,1(,)B C ,2(,)B C ,3(,)B C ,4(,)B C ,12(,)C C ,13(,)C C ,14(,)C C ,23(,)C C ,24(,)C C ,34(,)C C ,共有15种.……………………………9分其中恰有1人年龄在第3组的所有结果为:1(,)A C ,2(,)A C ,3(,)A C ,4(,)A C ,1(,)B C ,2(,)B C ,3(,)B C ,4(,)B C ,共有8种.…………………………………………………11分所以恰有1人年龄在第3组的概率为815.…………………………………………………………12分18.(本小题满分14分)(1)证明:在正AMB ∆中,D 是AB 的中点,所以MD AB ⊥.……………………………………1分 因为M 是PB 的中点,D 是AB 的中点,所以//MD PA ,故PA AB ⊥.……………………2分又PA AC ⊥,AB AC A =I ,,AB AC ⊂平面ABC , 所以PA ⊥平面ABC .…………………………………4分因为⊂BC 平面ABC ,所以PA BC ⊥.……………5分又,,,PC BC PA PC P PA PC ⊥=⊂I 平面PAC , 所以⊥BC 平面PAC .………………………………7分 (2)解法1:设点B 到平面DCM 的距离为h ,………8分 因为10PB =,M 是PB 的中点,所以5MB =.因为AMB ∆为正三角形,所以5AB MB ==.……………………………………………………9分 因为4,BC BC AC =⊥,所以3AC =.所以1111143322222BCD ABC S S BC AC ∆∆==⨯⨯⨯=⨯⨯⨯=.…………………………………10分因为23525522=⎪⎭⎫⎝⎛-=MD , 由(1)知//MD PA ,所以DC MD ⊥.在ABC ∆中,1522CD AB ==,所以8325252352121=⨯⨯=⨯⨯=∆CD MD S MCD .…………………………………………11分因为MCDB BCD M V V --=,……………………………………………………………………………12分所以hS MD S MCD BCD ⋅=⋅∆∆3131,即11333h ⨯=.……………………………………………………………………13分所以512=h .故点B 到平面DCM 的距离为512.………………………………………………………………14分解法2:过点B 作直线CD 的垂线,交CD 的延长线于点H ,…………………………………………8分 由(1)知,PA ⊥平面ABC ,//MD PA , 所以MD ⊥平面ABC .因为BH ⊂平面ABC ,所以MD BH ⊥. 因为CD MD D =I ,所以BH ⊥平面DCM . 所以BH 为点B 到平面DCM 的距离.………………9分 因为10PB =,M 是PB 的中点,所以5MB =. 因为AMB ∆为正三角形,所以5AB MB ==.……10分因为D 为AB 的中点,所以52CD BD ==.以下给出两种求BH 的方法:方法1:在△BCD 中,过点D 作BC 的垂线,垂足为点E ,则1322DE AC ==.…………………………………………………………………………………11分因为1122CD BH BC DE⨯⨯=⨯⨯,………………………………………………………………12分所以34122552BC DE BH CD⨯⨯===方法2:在Rt △BHD 中,222254BH DH BD +==. ①…………………………11分在Rt △BHC 中,因为4BC =,所以222BH CH BC +=,即225162BH DH ⎛⎫++= ⎪⎝⎭. ②…………………………………12分由①,②解得125BH =.故点B 到平面DCM 的距离为512.………………………………………………………………14分19.(本小题满分14分)解:(1)因为321212222n n a a a a n -++++=L ,*n ∈N , ①所以当1=n 时,12a =.……………………………………………………………………………1分当2≥n 时,()31212221222n n a a a a n --++++=-L , ② …………………………………2分①-②得,122nn a -=.…………………………………………………………………………………4分所以2nn a =.…………………………………………………………………………………………5分因为12a =,适合上式,所以2n n a =()*n ∈N.………………………………………………………………………………6分(2)由(1)得2nn a =.…………………………………………………………………………………7分所以()()111nn n n a b a a +=--()()122121n n n +=--…………………………………………………8分1112121n n +=---.…………………………………………………………………………10分 所以12n nS b b b =+++L1111111113377152121n n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭L ………………………………12分11121n +=--.………………………………………………………………………………14分20.(本小题满分14分)(1)解法1:由MD PD 2=知点M 为线段PD 的中点.……………………………………1分设点M 的坐标是(,)x y ,则点P 的坐标是(),2x y .……………………………………………2分因为点P 在圆422=+y x 上, 所以()2224x y +=.…………………………………………………………………………………3分所以曲线C 的方程为1422=+y x .…………………………………………………………………4分解法2:设点M 的坐标是(,)x y ,点P 的坐标是()00,y x ,由MD PD 2=得,x x =0,y y 20=.……………………………………………………………1分因为点P ()00,y x 在圆422=+y x 上, 所以42020=+y x . ①………………………………………………………………………2分把xx =0,yy 20=代入方程①,得4422=+y x .……………………………………………3分 所以曲线C 的方程为1422=+y x .…………………………………………………………………4分(2)解:因为EB EA ⊥,所以0=⋅.…………………………………………………………5分 所以()2=-⋅=⋅.……………………………………………………………7分设点()11,A x y ,则221114x y +=,即221114x y =-.………………………………………………8分 所以()222221111112114x EA BA EA x y x x ⋅==-+=-++-u u u r u u u r u u u r 221113342224433x x x ⎛⎫ ⎪⎝⎭=-+=-+.……………………………………………………………10分因为点()11,A x y 在曲线C 上,所以122x -≤≤.………………………………………………11分所以21234293433x ⎛⎫≤-+≤ ⎪⎝⎭.……………………………………………………………………13分所以BA EA ⋅的取值范围为⎥⎦⎤⎢⎣⎡932,.………………………………………………………………14分21.(本小题满分14分)解:(1)因为2()ln (2)f x x ax a x =-+-, 所以函数()f x 的定义域为(0,)+∞.………………………………………………………………1分且1()2(2)f x ax a x '=-+-.………………………………………………………………………2分因为()f x 在1x =处取得极值, 所以()()11220f a a '=-+-=.解得1a =-.…………………………………………………………………………………………3分当1a =-时,1(21)(1)()23x x f x x x x --'=+-=,当102x <<时,()0f x '>;当112x <<时,()0f x '<;当1x >时,()0f x '>.所以1x =是函数()y f x =的极小值点.故1a =-.……………………………………………………………………………………………4分 (2)因为2a a <,所以01a <<.…………………………………………………………………………………………5分由(1)知(21)(1)()x ax f x x -+'=-.因为(0,)x ∈+∞,所以10ax +>.当102x <<时,()0f x '>;当12x >时,()0f x '<.所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增;在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.………………………………7分 ①当102a <≤时,()f x 在2[,]a a 上单调递增,所以[]32max ()()ln 2f x f a a a a a ==-+-.………………………………………………………9分②当21,21.2aa⎧>⎪⎪⎨⎪<⎪⎩即122a<<时,()f x在21,2a⎛⎫⎪⎝⎭上单调递增,在1,2a⎛⎫⎪⎝⎭上单调递减,所以[]max12()ln21ln22424a a af x f-⎛⎫==--+=--⎪⎝⎭.……………………………………11分③当212a≤,即12a≤<时,()f x在2[,]a a上单调递减,所以[]2532max()()2ln2f x f a a a a a==-+-.…………………………………………………13分综上所述:当12a<≤时,函数()f x在2[,]a a上的最大值是32ln2a a a a-+-;当12a<<时,函数()f x在2[,]a a上的最大值是1ln24a--;当12a≤<时,函数()f x在2[,]a a上的最大值是5322ln2a a a a-+-.…………14分。
2019年12月高2020届高2017级广东省广州市高三年级调研测试理科数学试题参考答案
广 州 市 教究 院 广 州 市 教 育 研 广 州 市 教 育 研 究 院 广 州 市 教 育 研 究院 州 市 教 育 研 究 院2020届广州市高三年级调研测试参考答案理科数学一. 选择题二.填空题 13.524 14. 135 15.6 16. 610三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(1)解法1:设{}n a 的公差为d ,因为{}n a 为单调递增的等差数列,所以,0>d .由253418,80,a a a a +=⎧⎨⋅=⎩得343418,80.a a a a +=⎧⎨⋅=⎩解得348,10.a a =⎧⎨=⎩所以234=-=a a d .所以()2233+=-+=n d n a a n . 解法2:设{}n a 的公差为d ,因为{}n a 为单调递增的等差数列,所以0>d .由253418,80,a a a a +=⎧⎨⋅=⎩得()()1112518,2380,a d a d a d +=⎧⎪⎨+⋅+=⎪⎩解得14,2.a d =⎧⎨=⎩所以()2211+=-+=n d n a a n .(2)由(1)得122422++==n n a n,当2≥n 时由42222233221-=++++n a n n b b b b ,………………………① 得42222211133221-=++++---n a n n b b b b ,……………………② ①-②得2,434421≥⨯=-=+n b n n n n n , 所以 2,23≥⨯=n b n n .当1=n 时,6221622211=-=-=a b 符合上式.所以n n b 23⨯=.所以()21216--=nn S 6231-⨯=+n . 广州调研广 州教 育 研 究 院 广州市 教育 研 究 院 广 州 市 教 育 研 究 院州 市 教 育 研 究院 州 市 教 育 研 究 院18.(1)证明:因为四边形ABCD 是菱形,所以⊥BD AC .又因为⊂BD 平面ABCD ,平面⊥AEFC 平面ABCD .平面AEFC 平面=ABCD AC ,所以⊥BD 平面AEFC . 因为⊂BD 平面BDE ,所以平面⊥BED 平面AEFC .(2)设 AC BD = O ,连接OF ,可知平面四边形 AEFC 为直角梯形,EA ⊥AC ,又因为AE ⊂平面 AEFC ,平面AEFC 平面 ABCD = AC , 平面AEFC ⊥平面ABCD ,所以AE ⊥平面 ABCD . 因为EF //AC ,1=2AC AO EF =,所以AE //OF ,所以OF ⊥平面 ABCD . 解法1:以OB ,OC ,OF 分别为 x ,y ,z 轴建立如图所示空间坐标系. 则)B,()010C ,,, ()D ,()0,1,0A -,()0,1,2E -,()0,0,2F ,设平面 BCF 的法向量()1111,,z y x n =,因为()0,1,3-=,()2,0,3-=,则⎪⎩⎪⎨⎧=⋅=⋅0011n n ,即1111020y z ⎧+=⎪⎨+=⎪⎩, 令12x =,解得()3,32,21=n .设平面的CDF 法向量()2222,,z y x n =,因为()2,1,0-=,()0,1,3--=,则⎪⎩⎪⎨⎧=⋅=⋅0022n n ,即2222200y z y -+=⎧⎪⎨-=⎪⎩, 令22x =,解得()3,32,21--=n . 因为1911-==, 结合图像可知二面角B FC D --的余弦值为1119-.广州调研广 州 市 教 育 研 究 院 广 州 市 教 育 研 究 院 广 州 市 教 育 研 究 院 广 州 教 育 研 究院州 教 研 究 院解法2:因为ABCD FO 面⊥且ABCD BD 面⊂,所以BD FO ⊥.因为O 为BD 中点,所以FD BF =. 又CD BC =,FC FC =, 所以DFC BFC ∆≅∆.过B 作FC BG ⊥交FC 于G 点,连结GD ,则FC DG ⊥, 所以BGD ∠为二面角D FC B --的平面角. 在Rt FBO ∆中,3232=⨯=BO ,2=FO , 所以()73222=+=BF ,322==BO BD ,同理5=CF ,在Rt FBC ∆中,7=BF ,2=BO ,5=CF .由三角形面积公式得519=BG ,则519=DG .在BGD ∆中,1911519212519519cos -=⨯-+=∠BGD . 所以二面角B FC D --的余弦值为1119-. 19. 解:(1)因为Y X =且](600,300,∈Y X ,所以()()Y g X g =,当](400300,X ∈时,()()()()03003210041800>-=+-+=-X X X X g X f . 当](600400,X ∈时,()()()()03004210041800<-=+-+=-X X X g X f .故当](400300,X ∈时,()()X g X f >, 当](600400,X ∈时,()()X g X f <.(2)(ⅰ)送餐量x 的分布列为:则()16151201511851175216511415113=⨯+⨯+⨯+⨯+⨯+⨯=x E .送餐量y 的分布列为:广州调研广 州 市 教 育 研 究 院 广 州 市 教 育 研 究 院 广 州市 育研 究 院 广 州 市 育 研 究院 州 市 教 育 研 究院则()14301186116101155214611315211=⨯+⨯+⨯+⨯+⨯+⨯=y E .(ⅱ)()()](60030048030,x E X E ∈==,()()()+∞∈==,y E Y E 40042030.A 公司外卖配送员,估计月薪平均为()372041800=+X E 元.B 公司外卖配送员,估计月薪平均为()378042100=+Y E 元.因为3780元3720>元,所以小王应选择做B 公司外卖配送员.20.解:(1)由已知得23b =,3a c +=,222a b c =+,所以所求椭圆C 的方程为22143x y +=.(2)解法1:因为过()1,0F 的直线与椭圆C 交于A ,B 两点(A ,B 不在x 轴上),所以设:1l x ty =+,由()2222134690143x ty t y ty x y =+⎧⎪⇒++-=⎨+=⎪⎩, 设()11,A x y 、()22,B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,因为OE OA OB =+,∴AOBE 为平行四边形,所以3AGBE AOBE OGB AOB S S S S ∆∆=+=1232y y =-==1=m ,得218181313==++m S m m m, 由函数的单调性易得当1m =,即0t =时,max 92=S . 解法2:因为OE OA OB =+,所以AOBE 为平行四边形,所以3AGBE AOBE OGB AOB S S S S ∆∆=+=.当直线AB 的斜率不存在时,93=2AGBE AOB S S ∆=. 当直线AB 的斜率存在时,设为()1y k x =-,广州调研广 州 市育 研 究 院 广 州 市 教 院 广 州 市 教 育 研 究 院 广 州 市 教 育 研 究院 州 市 教 育 研 究 院由()()22222143690143y k x k y ky k x y =-⎧⎪⇒++-=⎨+=⎪⎩. 设()11,A x y 、()22,B x y ,则1222122643943k y y k k y y k -⎧+=⎪+⎪⎨-⎪=⎪+⎩, 所以3AGBE AOBS S ∆=1232y y =-==, 令2433k m +=>,得92S =<, 综上可知,max 92=S .21.(1)解:由x k x x )x (f ln +-=2知函数的定义域为)(+∞,0.则xkx x x k x )x (f +-=+-='2212.令0=')x (f 得022=+-k x x . 其k 81-=∆.①当081≤-=∆k 即81≥k 时,0≥')x (f 在)(+∞,0上恒成立, 所以)(x f 在)(+∞,0上为单调递增函数. ②当081>-=∆k 即81<k 时,(1)式的两根为48111k x --=,48112k x -+= 若810<<k ,则210x x <<,当)(10x ,x ∈,),(+∞2x 时有0>')x (f ,当)(21x ,x x ∈时有0<')x (f ,从而知函数)x (f 在)(10x ,和),(+∞2x 单调递增,在)(21x ,x 单调递减.若0≤k ,则210x x <≤,当)(20x ,x ∈时有0<')x (f ,)(x x 2+∞∈,时0>')x (f ,从而知函数)x (f 的在)(20x ,单调递减,在),(+∞2x 单调递增.综上,当81≥k 时,)(x f 在)(+∞,0上为单调递增函数;当810<<k 时, )x (f 在)(10x ,和),(+∞2x 单调递增,在)(21x ,x 单调递减; 当0≤k 时,)x (f 的在)(20x ,单调递减,在),(+∞2x 单调递增.广州调研广 州 市 教 育 研 究 院 广 州 市 教 育 研 究 院 广 州 市 教 育 研 究 院 广 州 市 教 育 研 究院 州 市 教 育 研 究 院(2)证明:设()22g x x x k =-+,由题意和(1)得810<<k . 则极值点12,x x 为方程()0g x =的两根,且12104x x <<<, 所以1212x x +=,1212x x k =. 且()y f x =在1(0,)x 上单增,在12(,)x x 上单减,在2(,)x +∞上单增, 所以1212()()()()f x f x f x f x -=-22111222(ln )(ln )x x k x x x k x =-+--+ 11221()ln 2x x x k x =--+……………………………① 11211(2)ln 22x x k x =--+1112212ln 4x x x x x =-+. 要证11121221112ln 24444x x x x k x x x -+<-=-, 即证1122221ln222x x x x x x +<-=-, 即证1122ln1x x x x <- . 构造()ln (1)h x x x =-- ((01)x <<2'11()1x h x x x-=-=,(0,1)x ∈时, '()0h x >, 所以()y h x =在(0,1)上单增,()(1)0h x h ∴<=. 即1ln -<x x 成立. 综上可知,原不等式成立.广州调研广 州 市 教 育研 院 广 州 市 教 育 研 究 院 广 州 市 教 育 研 究 院广市 教 育 研 究院州 市 育 研 究 院【说明】化简到①后的其他变形思路:思路1:由()0g x =,解得1x =,2x =. 则212x x -=,12144x k x k -=. 先证明1ln -<x x .则由①得12()()f x f x -<11221()12x x x k x ⎛⎫--+- ⎪⎝⎭124k =-. 思路2:令12x t x =,结合1212x x +=,1212x x k =,其中01t <<. 可得()121t x t =+,()2121x t =+,()221t k t =+.则由①得,需证明12()()f x f x -<112211()ln 224x x x k k x --+<-. 整理得,需证明ln 1t t <-(01t <<).22.(1)解:因为⎪⎪⎩⎪⎪⎨⎧-=+=m m y m m x 11,所以⎪⎪⎩⎪⎪⎨⎧-+=-=++=+=21)1(21)1(22222222m m m m y m m m m x ,所以422=-y x .所以曲线C 的直角坐标方程为422=-y x .把cos x ρθ=,sin y ρθ=代入直线的极坐标方程03cos sin 3=--θρθρ, 得直线的直角坐标方程为033=--x y .所以直线的直角坐标方程为033=+-y x .(2)解法1:由220,4,x x y ⎧=⎪⎨-=⎪⎩解得13,22A ⎛⎪⎝⎭,13,22B ⎛⎫++ ⎪ ⎪⎝⎭. 因为点(0,1)P ,所以1PA =,1PB =. 所以115PA PB +==. 广州调研广州 市 教 育研 院 广 州 市 教 研 究 院 广 州 市 教 育 研 究 广 州 市 教 育 研 究院 州 市 教 育 研 究 院解法2:因为点(0,1)P 在直线l 上,则直线l 的参数方程为11+2x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 设A ,B 对应的参数分别为1t ,2t ,将211+2⎧=⎪⎪⎨⎪=⎪⎩x y t 代入422=-y x , 得22100--=t t ,044)10(14)2(2>=-⨯⨯--=∆, 所以122+=t t ,12100⋅=-<t t .因为1=PA t ,2=PB t ,所以1212121111-+=+====t t PA PB t t t t 所以11+=PA PB .23.解:(1) 当2a =时,()22(2)f x x x =--,由22(2)0x x --<,解得2x <;所以不等式()0f x <的解集为(),2-∞.(2)因为(2)0=f ,所以由(),x a ∈-∞时,()0f x <,得2a ≤.当2a ≤,(,)x a ∈-∞时,()(2)2()=--+--f x x a x x x a()(2)(2)()=--+--a x x x x a2()(2)0=---<a x x ,所以a 的取值范围是(],2-∞.广州调研。
2020届广州市高三年级调研测试(理科数学)试题
秘密 ★ 启用前 试卷类型: A2020届广州市高三年级调研测试理科数学2019.12本试卷共5页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A )填图在答题卡的相应位置上.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图1,已知全集U =Z ,集合{}2,1,0,1,2--=A ,{}4,3,2,1=B ,则图中 阴影部分所表示的集合是A .{}3,4B .{}012,,--C .{}1,2D . {}2,3,42.已知()i1i 12+-=z (i 为虚数单位),在复平面内,复数z 对应的点在A .第一象限B .第二象限C .第三象限D .第四象限3.已知3121⎪⎭⎫ ⎝⎛=a ,3log 2=b ,6log 4=c ,则c ,b ,a 的大小关系为A .b c a >>B .c b a =<C .c b a >>D .b c a <<4.已知实数x ,y 满足⎪⎩⎪⎨⎧≥+-≤--≥-+042033022y x y x y x ,则3=-z x y 的最小值为A .7-B . 6-C . 1D . 65.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团.据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立.2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为n m ,31,.已知这三个社团他都能进入的概率为241,至少进入一个社团的概率为43,则=+n m A .21 B . 32 C . 43 D . 1256.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆2522=+y x 内的个数为A .3B .4C .5D .67.已知F 为双曲线1:2222=-by a x C 的右焦点,过F 作C 的渐近线的垂线FD ,垂足为D ,且满足12=FD OF (O 为坐标原点),则双曲线的离心率为 A .332 B . 2 C .3 D . 3108.函数()x x x f sin ln +=(ππ≤≤-x 且0≠x )的图象大致是A .B .C .D .9.如图3,在△ABC 中,AB AD ⊥,BD BC 3=,1=AD ,则=⋅AD AC A .3 B . 3C . 3-D . 3-10.1772年德国的天文学家J .E .波得发现了求太阳和行星间距离的法则.记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律).当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28应该还有一颗大行星.1801年,意大利天文学家皮亚齐通过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带.请你根据这个定则,估算出从水星开始由近到远算,第10个行星与太阳的平均距离大约是A .388B .772C .1540D .307611.已知点A ,B 关于坐标原点O 对称,1=AB ,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切.若存在定点P ,使得当A 运动时,MP MA -为定值.则点P 的坐标为A .⎪⎭⎫ ⎝⎛41,0 B .⎪⎭⎫ ⎝⎛21,0 C .⎪⎭⎫ ⎝⎛-41,0 D .⎪⎭⎫ ⎝⎛-21,012.已知偶函数()x f 满足()()x f x f -=+44,且当[]4,0∈x 时,()2exx x f -=,若关于x 的不等式()()02>+x af x f 在[]200,200-上有且只有300个整数解,则实数a 的取值范围是A .⎥⎥⎦⎤ ⎝⎛----223e 4,e 3B .⎥⎥⎦⎤ ⎝⎛----2123e ,e 3C .⎥⎥⎦⎤ ⎝⎛----231e 3,e 2 D .⎥⎥⎦⎤ ⎝⎛----221e 4,e二.填空题:本题共4小题,每小题5分,共20分.13.已知()π,0∈θ,344πtan =⎪⎭⎫ ⎝⎛+θ,则 =+θθcos sin ______________.14.若3⎛⎝n展开式的二项式系数之和为64,则展开式中的常数项的值是 .15.已知某正三棱锥的侧棱长大于底边长,其外接球体积为1256π,三视 图如图4所示,则其侧视图的面积为 .16.在ABC ∆中,设角C B A ,,对应的边分别为c b a ,,,记ABC ∆的面积为S ,且22224c b a +=,则2aS的最大值为___________.三.解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第13~21题为必考题,每个试题考生都必须做答.第22,23题为选考题,考生根据要求做答. (一)必考题:共60分.17.(12分)已知{}n a 为单调递增的等差数列,1852=+a a , 8043=⋅a a ,设数列{}n b 满足23123222224n a n n b b b b ++++=- ,*n ∈N .(1)求数列{}n a 的通项; (2)求数列{}n b 的前n 项和n S .如图5,已知四边形ABCD 是边长为2的菱形,60ABC ︒∠=, 平面AEFC ⊥平面ABCD ,AC //EF .AE AB =,2AC EF =.(1)求证:平面BED ⊥平面AEFC ;(2)若四边形AEFC 为直角梯形,且EA AC ⊥, 求二面角B FC D --的余弦值.19.(12分)某城市A 公司外卖配送员底薪是每月1800元/人,设每月每人配送的单数为X ,若[]300,1∈X ,配送员每单提成3元;若(]600,300∈X ,配送员每单提成4元;若()∞+∈,600X ,配送员每单提成54.元.B 公司外卖配送员底薪是每月2100元/人,设每月每人配送的单数为Y ,若[]400,1∈Y ,配送员每单提成3元;若()∞+∈,400Y ,配送员每单提成4元.小王计划在A 公司和B 公司之间选择一份外卖配送员工作,他随机调查了A 公司外卖配送员甲和B 公司外卖配送员乙在9月份(30天)的送餐量数据,如下表: 表1:A 公司外卖配送员甲送餐量统计表2:B 公司外卖配送员乙送餐量统计(1)设A 公司外卖配送员月工资为()X f (单位:元/人),B 公司外卖配送员月工资为()Y g (单位:元/人),当Y X =且](600,300,∈Y X 时,比较()X f 与()Y g 的大小; (2)若将甲乙9月份的日送餐量的频率视为对应公司日送餐量的概率, (ⅰ)分别计算外卖配送员甲和乙每日送餐量的数学期望; (ⅱ)请利用你所学的知识为小王作出选择,并说明理由.已知椭圆()222103+=>:x y C a a 的右焦点F 到左顶点的距离为3.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线与椭圆C 交于A ,B 两点(A ,B 不在x 轴上),若=+OE OA OB ,延长AO 交椭圆于点G ,求四边形AGBE 的面积S 的最大值.21.(12分)已知函数x k x x x f ln )(2+-=. (1)讨论函数)x (f 的单调性;(2)若)(x f 有两个极值点21,x x ,证明:()()12124f x f x k -<-.(二)选考题:共10分.请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧-=+=m m y mm x 11(m 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线lsin cos 0θρθ-=.(1)求曲线C 和直线l 的直角坐标方程;(2)已知点()0,1P ,直线l 与曲线C 交于B A ,两点,求11+PA PB的值.23.[选修4-5:不等式选讲](10分)已知()(2)2()f x x a x x x a =--+--. (1)当2a =时,求不等式()0f x <的解集;(2)若(),x a ∈-∞时,()0f x <,求a 的取值范围.。
【试卷】2020届广州市高三年级调研测试 理科数学
1 渐近线的垂线 FD ,垂足为 D ,且满足 FD OF
2 ( O 为坐标原点),则双曲线的离心率为( )
x x1
y y1
i i1
是 i>0? 否 结束
23
A.
3
B.2
C.3
8.函数 f (x) ln x sin x ( ≤ x ≤ 且x 0) 的图象大致是(
),
tan
4
3
,则 sin
cos
.
n
Байду номын сангаас
14.若 3x 展开式的二项式系数之和为 64,则展开式中的常数项的值是
x
125
15.已知某正三棱锥的侧棱长大于底边长,其外接球体积为
,
6
三视图如图 4 所示,则其侧视图的面积为
.
16.在△ABC 中,设角 A, B,C 所对的边分别为 a,b, c , 记△ABC 的面积为 S ,且 4a2 b2 2c2 ,
2020 届广州市高三年级调研测试
理科数学
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的.
1.如图 1,已知全集U Z ,集合 A {2, 1, 0,1, 2}, B {1, 2, 3, 4},则图中阴影部分所表示的集合是
3
24
3 概率为 ,则 m n ( )
4
1
A.
2
2
B.
3
3
C.
4
5
D.
12
6.如图 2,利用该算法在平面直角坐标系上打印一系列点,
2020届广州高三年级12月份调研测试理科数学试题+参考答案
2020届广州高三年级12月份调研测试理科数学一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图1,已知全集U=Z,集合A={-2,-1,0,1,2},集合B={1,2,3,4},则图中阴影部分表示的集合是()A.{3,4}B.{-2,-1,0}C.{1,2}D.{2,3,4}2.已知Z=()ii+-112(i为虚数单位),在复平面内,复数Z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知3121⎪⎭⎫⎝⎛=a,3log2=b,6log4=c,则a,b,c的大小关系为()A.bca>>B.cba=<C.cba>>D.bca<<4.已知实数yx,满足⎪⎩⎪⎨⎧≥+-≤--≥-+423322yxyxyx,则yxz3-=的最小值为()A.-7B.-6C.1D.65.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,31,n,已知三个社团他都能进入的概率为241,至少进入一个社团的概率为43,且m>n.则=+nm()A.21B.32C.43D.1256.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为()A.2B.3C.4D.57.已知F 为双曲线12222=-by a x 的右焦点,过F 做C 的渐近线的垂线FD ,垂足为D ,且满足OF FD 21=(O 为坐标原点),则双曲线的离心力为( ) A .332 B .2C .3D .310 8.函数()()0,sin ln ≠≤≤-+=x x x x x f 且ππ的大致图像是( )A .B .C .D .9.如图3,在ABC ∆中,,1,3,==⊥AD BD BC AB AD 则=⋅AD AC ( )A .3B .3C .3-D .-310.1772年德国的天文学家J.E.波得发现了求太阳的行星距离的法则。
2020届广州市高三年级调研测试(理科数学)试题及参考答案
2020届广州市高三年级调研测试理科数学2019.12本试卷共5页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号、并将试卷类型(A )填图在答题卡的相应位置上。
2. 作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须卸载答题卡各题目制定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔盒涂改液,不按以上要求作答无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图1,已知全集U=Z ,集合A ={-2,-1,0,1,2},集合B={1,2,3,4},则图中阴影部分表示的集合是( ) A .{3,4} B .{-2,-1,0} C .{1,2} D .{2,3,4}A .第一象限B .第二象限C .第三象限D .第四象限A .b c a >>B .c b a =<C .c b a >>D .b c a <<4.已知实数y x ,满足⎪⎩⎪⎨⎧≥+-≤--≥-+042033022y x y x y x ,则y x z 3-=的最小值为( )A .-7B .-6C .1D .65.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m ,31,n ,已知三个社团他都能进入的概率为241,至少进入一个社团的概率为43,且m >n .则=+n m ( ) A .21B .32 C .43 D .125 6.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆x 2+y 2=25内的个数为( ) A .2 B .3 C .4 D .57.已知F 为双曲线12222=-by a x 的右焦点,过F 做C 的渐近线的垂线FD ,垂足为D ,且满足OF FD 21=(O 为坐标原点),则双曲线的离心力为( ) A .332 B .2 C .3 D .310 8.函数()()0,sin ln ≠≤≤-+=x x x x x f 且ππ的大致图像是( )A .B .C .D .9.如图3,在ABC ∆中,,1,3,==⊥AD BD BC AB AD 则=⋅AD AC ( )A .3B .3C .3-D .-310.1772年德国的天文学家J.E.波得发现了求太阳的行星距离的法则。
高中数学-广东省广州市12月调研测试2024届高三数学答案
2024届广州市高三年级调研测试数学试题参考答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.一、选择题:本题共8小题,每小题5分,共40分.题号12345678答案C A C BD D B A二、选择题:本题共4小题,每小题5分,共20分.题号9101112答案AC ACD BC ABD 三、填空题:本题共4小题,每小题5分,共20分.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算骤.17.解:(1)因为21=-n n S a ,①当1=n 时,11121=-=S a a ,则11=a ..........................1分当2n ≥时,1121--=-n n S a ,②..........................2分①-②得122-=-n n n a a a ,即12(2)-=≥n n a a n ,..............3分所以{}n a 是首项为1,公比为2的等比数列..........................4分所以12-=n n a .................................................5分(2)因为122log log 21-==-n n a n ,所以12,1,,--⎧=⎨⎩为奇数为偶数.n n n n b n ........................7分所以21232=++++ n nT b b b b 1321242()()n n b b b b b b -=+++++++ 132********()()[02(22)](222)n n n b b b b b b n--=+++++++=+++-++++ ........................7分(022)2(14)214n n n +-⋅-=+-........................9分22(41).3n n n -=-+...................................10分18.解:(1)设点P 到平面ABCD 的距离为h ,则133B PAD P ABD ABD V V h S --==⋅=△,...................................1分由题可知142ABD S AB BC =⋅=△,...................................2分所以3424P ABD ABDV h S -===△,...................................3分故P 到平面ABCD 的距离为2.....................................................4分(2)取AD 的中点M ,连接PM ,因为PA PD =,所以PM AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PM ⊂平面PAD ,PM AD ⊥⊥平面ABCD ........................................5分由(1)知PM = (6)分由题意可得BD =,AD ==,.所以222AD BD AB +=,故AD BD ⊥.法一(坐标法):以D 点为坐标原点,DA 为x 轴,DB 为y 轴,过D 点作PM 的平行线为z 轴,建立如图所示的空间直角坐标系,则)(0,0,22A ,)(2,0,2P ,)(0,2,2-C .......................................7分依题意(0)DC = ,(AP= ,2,0,333AN AP ⎛⎫==-⎪ ⎪⎝⎭,所以,0,33DN DA AN ⎛⎫=+= ⎪ ⎪⎝⎭.......................................8分设平面NCD 的法向量为1111(,,)x y z =n ,则1100.DC DN ⎧⋅=⎪⎨⋅=⎪⎩,n n 即11110,42220.33x z ⎧=⎪⎨+=⎪⎩令11x =,得1(1,1,2)=-n .......................10分又平面ABCD 的法向量为2(0,0,1)=n 设平面NCD 与平面ABCD 的夹角为θ,则121212cos cos ,3θ=<>===⋅ n n n n n n ,即平面NCD 与平面ABCD 的夹角的余弦值为36..................................................12分法二(几何法):在线段AM 上取点H ,使得2AH HM =,连接NH ,过点H 作HK CD ⊥,垂足为K ,连接NK ...................................7分因为2AN NP =,所以NH ∥PM ,233NH PM ==,..................................8分2122333AH AM AD ===.因为PM ⊥平面ABCD ,所以NH ⊥平面ABCD ,所以NH ⊥CD ,又HK CD ⊥,且HK NH H = ,所以CD ⊥平面NHK ,..................................9分所以CD ⊥NK ,所以∠NKH 是二面角N CD A --的平面角...................................10分在Rt △HDK 中,易知423HD =,∠45KDH =︒,所以4sin 453KH DH =⋅︒=,所以43cos 3HKNKH NK∠===.故平面NCD 与平面ABCD 的夹角的余弦值为36...................................12分19(1)证明:因为C B b A a C c B b sin sin 2sin sin sin =-+,由正弦定理得B bc a c b sin 2222=-+,...........................................1分又因为bca cb A 2cos 222-+=.......................2分所以B bc A bc sin 2cos 2=,即B A sin cos =........................3分又⎪⎭⎫ ⎝⎛-=A A 2πsin cos ,所以B A sin 2πsin =⎪⎭⎫⎝⎛-.又π),0(∈B A ,,所以B A =-2π或π2π=+⎪⎭⎫⎝⎛-B A .............................4分又2π≠C ,所以A B +=2π.............................................5分(2)解:由(1)知A B +=2π,A A A B A C 22π2πππ-=⎪⎭⎫ ⎝⎛+--=--=...........6分由)π,0(∈C B A ,,,解得⎪⎭⎫⎝⎛∈4π,0A ..................................................7分所以⎪⎫⎛-+⎪⎫ ⎛++=++A A A C B A 22πsin 2πsin cos sin sin cos(别解:因为cos sin sin 2cos cos 2A B C A A ++=+在0,4⎛⎫⎪⎝⎭上单调递减,2cos cos 23A A <+<,所以C B A sin sin cos ++的取值范围为)3,2(.)(ⅱ)当2a >时,,(1e )1e 0-+=-++->,设()()2()ln 1ln 122ax ag x x x a x x =+-=++-,(1,0)x ∈-.当2a >时,开口向上,对称轴,,,所以存在唯一0(1,0)x ∈-,使得0()0q x =,......................9分当0(1,)x x ∈-时,()0q x >,()0g x '>;当0(,0)x x ∈时,()0q x <,从而()0g x '<从而()g x 在区间0(1,)x -递增,在区间0(,0)x 递减,故当0(,0)x x ∈,()(0)0g x g >=,矛盾,舍去......................11分综上,a 的取值范围为(],2-∞.......................12分21.解:(1)由题意可知X 所有可能取值为2,3,4,...............................................1分3133)2(2===X P ,943)3(31223===C A X P ,923)4(333===A X P ................................................4分(其他解法:31)31()2(213=⨯==C X P ,943231()3(21213=⨯⨯==C C X P ,92)3()2(1)4(==-=-==X P X P X P .)则X 的分布列如下:.....................5分(2)设甲一次性购买x 个吉祥物盲盒,集齐三款吉祥物需要的总费用为Z .依题意,x 可取0,1,2,3.方案1:不购买盲盒时,则需要直接购买三款吉祥物,总费用903031=⨯=Z 元.方案2:购买1个盲盒时,则需要直接购买另外两款吉祥物,总费用79302192=⨯+=Z 元........................................6分方案3:购买2个盲盒时,当2个盲盒打开后款式不同,则只需要直接购买剩下一款吉祥物,总费用68301923=+⨯=Z ,323)68(2233===A Z P ;(或323231)68(133=⨯⨯==C Z P )当2个盲盒打开后款式相同,则需要直接购买另外两款吉祥物,总费用983021923=⨯+⨯=Z ,313131)98(133=⨯⨯==C Z P .所以7831983268)(3=⨯+⨯=Z E (元)........................................8分(别解:7838313023230)(3=+⨯⨯+⨯=Z E (元))方案4:购买3个盲盒时,当3个盲盒打开后款式各不相同,则总费用571934=⨯=Z ,9231()57(3334===A Z P ;当3个盲盒打开后恰有2款相同,则需要直接购买剩下一款吉祥物,总费用87301934=+⨯=Z ,323131)87(234=⨯⨯==A Z P ;当3个吉祥物盲盒打开后款式全部相同,则需要直接购买另外两款吉祥物,总费用117601934=+⨯=Z ,91)31()117(3134=⨯==C Z P .所以32519111732879257)(4=⨯+⨯+⨯=Z E (元)...........................11分(别解:3251193913023230)(4=⨯+⨯⨯+⨯=Z E (元))显然1423)()()(Z Z E Z E Z E <<<.综上,应该一次性购买2个吉祥物盲盒.................................12分22.解:(1)法一:设PF 的中点为G ,依题意以PF 为直径的圆内切于圆22:4O x y +=,所以||||22PF GO =-,即||42||PF GO =-,........................1分X 234P319492设2F ,又22||||OG PF =,所以22||||=4||PF PF FF +>=,.............2分所以点P 的轨迹是以2,F F 为焦点,4为长轴长的椭圆,设E 的方程为22221(0)x y a b a b+=>>,则2,1c a b ====,所以P 的轨迹方程22:14x E y +=...........................................4分法二:设(,)P x y ,则PF的中点为(,)22x yG ,........................1分依题意得1||2||2OG PF =-2=......................2分4=,........................3分化简得点P 的轨迹方程22:14x E y +=.....................................................4分(2)设1122(,),(,)S x y T x y ,先证明直线ST 恒过定点,理由如下:法一:由对称性可知直线ST 的斜率不为0,所以设直线ST 的方程为:x my n =+.联立直线ST 与E 的方程2214x my n x y =+⎧⎪⎨+=⎪⎩,,消去x 得:222(4)240m y mny n +++-=,所以0∆>,即2240m n +->,①12224mn y y m -+=+,212244n y y m -=+.②....................................5分所以直线AS 的方程为:11(1)1x x y y =--,令0y =,解得点M 横坐标111x t y -=-,同理可得点N 横坐标2241x t y --=-,故1212411x x y y --+=--,...................................6分将1122,x my n x my n =+=+代入上式整理得:1212(24)(4)()420m y y n m y y n ++--++-=.③......................7分将②代入③并整理得222220m mn n m n ++--=,.........................8分即,m n 满足方程()(2)0m n m n ++-=.若0m n +=,即n m =-,则直线ST 方程为(1)x m y =-,过点(0,1)A ,不合题意;所以20m n +-=,此时2n m =-,直线ST 的方程为(1)2x m y =-+,所以直线ST 过定点(2,1)Q ..........................10分因为直线ST 过定点(2,1)Q ,且与轨迹E 始终有两个交点,又(0,1)A ,AH ST ⊥,垂足为H ,故点H 的轨迹是以AQ 为直径的半圆(不含点,A Q ,在直线AQ 下方)...........11分设AQ 中点为C ,则圆心)1,1(C ,半径为1.所以||||11OH OC ≥-=-,当且仅当点H 在线段OC 上时,故||OH 1-.....................................12分法二:①当直线ST 斜率存在,设直线ST 的方程为y kx m =+.联立直线ST 与椭圆E 的方程2214y kx m x y =+⎧⎪⎨+=⎪⎩,,消去x 得:222(14)8440k x kmx m +++-=,所以0∆>,即22410k m +->,①122814km x x k -+=+,21224414m x x k-=+.②....................................5分所以直线AS 的方程为:11(1)(1)x y y x -=-,(备注:若直线AS 方程写成1111y y x x --=,需另外考虑10x =的情形,可参考方法四①.)令0y =,解得点M 横坐标111x t y -=-,同理可得点N 横坐标2241x t y --=-,所以1212411x x y y +=---,....................................6分即122112(1)(1)4(1)(1)x y x y y y -+-=---,将1122,y kx m y kx m =+=+代入上式,得221212(42)(14)(1)()4(1)0k k x x k m x x m +++-++-=,..............................7分将②代入上式,得222224(1)8(42)(14)(1)4(1)01414m kmk k k m m k k--+++-+-=++.整理得22221(1)(21)0km k m m m k m -+-+=-+-=,.............................8分所以12m k =-.(其中1m =时,直线:1ST y kx =+过点A ,不符合题意,舍去.)直线ST 的方程为:(12)y kx k =+-恒过定点(2,1)Q .②当直线ST 斜率不存在,此时1111(,),(,)S x y T x y -,同理可得1111411x x y y +=----,即21112xy =-,又221114x y +=,解得10x =或12x =.若10x =,则,S T 中必有一点与A 重合,不符合题意;若12x =,则,M N 重合,也不符合题意..........................................9分综上,所以直线ST 过定点(2,1)Q ...........................................10分后略,同法一.法三:①若直线,AS AT 的斜率均存在,即10x ≠,20x ≠,则1111AS y k x t -==-,22114AT y k x t -==-故1212411x x y y +=---....................................5分依题意直线ST 不经过点A ,设直线:(1)1ST mx n y +-=,椭圆E :2222220444[(1)1]44(1)8(1)x y x y x y y =+-=+-+-=+-+-,....................................6分联立ST 与E 的方程22(1)14(1)8(1)0mx n y x y y +-=⎧⎨+-+-=⎩,,得224(1)8(1)[(1)]0x y y mx n y +-+-+-=,整理得22(48)(1)8(1)0n y m y x x +-+-+=,除以2(1)y -,得2(48)8()011x x n my y +++=--,...................................7分因为1122(,),(,)S x y T x y 满足上式,故由韦达定理得12128411x xm y y +=-=---,解得12m =....................................8分所以直线1:(1)12ST x n y +-=恒过定点(2,1)Q ....................................9分②若直线AS 或AT 的斜率不存在时,易求直线:1ST y x =-,过点(2,1)Q .综上,所以直线ST 过定点(2,1)Q ...........................................10分后略,同法一.法四:①当0t =时,易知直线0AM x =:;直线114AN y x =-+:.AM ,AN 分别与轨迹E 的方程联立求得(0,1)S -,83(,)55T ,故直线:1ST y x =-.....................................5分②当4t =时,同理求得直线:1ST y x =-.③当0,2,4t ≠时,直线:AM 1xy t+=,联立直线AM 与轨迹E 的方程,消去y 得2242(04t x x t t+-=,所以1284t x t =+(S 异于A ),所以11218114y x t t -=-+=++....................6分同理得22228(4)8,1(4)4(4)4t x y t t --==+-+-+.....................................7分所以直线ST 的斜率221222128[(4)4]8(4)8[(4)4]8(4)(4)ST y y t t k x x t t t t ---+++==--+--+24(2)t =-,....................................8分所以直线ST 的方程为2228481()4(2)4ty x t t t +-=-+-+①2222248(2)841()(2)(2)444(2)t t y x x t t t t --=--⋅=--++-综上,所以直线ST 过定点(2,1)Q ..........................10分后略,同法一.。
2020届广东省高三调研(12月)考试数学(文)试题(解析版)
2020届广东省高三调研(12月)考试数学(文)试题一、单选题1.若(1312)z i i =++)(,则( ) A .z 的实部等于虚部 B .z 的实部与虚部互为相反数 C .z 的实部大于虚部 D .z 的实部与虚部之和大于零【答案】B【解析】先化简得55=-+z i ,易知实部为5-,虚部为5,故互为相反数 【详解】∵55=-+z i ,∴z 的实部与虚部互为相反数 故选:B 【点睛】本题考查复数的运算,考查实部与虚部的关系,属于基础题 2.已知集合{|4}A x x =<,{}2|50B x x x =-≤,则A B =( )A .{|04}x x ≤<B .{|5}x x ≤C .{|04}x x <<D .{|0}x x ≤【答案】A【解析】先分别求出集合A 和B ,由此能求出A ∩B . 【详解】因为{|4}A x x =<,{|05}B x x =≤≤,所以{|04}A B x x ⋂=≤<. 故选:A 【点睛】本题考查两个集合的交集的求法,考查二次不等式解法及交集定义等基础知识,考查运算求解能力,是基础题.3.为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况,如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是( )A .他们健身后,体重在区间(90kg,100kg)内的人增加了2个B .他们健身后,体重在区间[100kg,110kg)内的人数没有改变C .他们健身后,20人的平均体重大约减少了8 kgD .他们健身后,原来体重在区间[110kg,120kg)内的肥胖者体重都有减少 【答案】C【解析】利用饼状图逐项分析即可求解 【详解】体重在区间[90kg,100kg)内的肥胖者由健身前的6人增加到健身后的8人.故人增加了2个,故A 正确;他们健身后,体重在区间[100kg,110kg)内的百分比没有变,所以人数没有变,故B 正确;他们健身后,20人的平均体重大约减少了(0.3950.51050.2115)(0.1850.4950.5105)5kg ⨯+⨯+⨯-⨯+⨯+⨯=;因为图(2)中没有体重在区间[110kg,120kg)内的比例,所以原来体重在区间[110kg,120kg)内的肥胖者体重都有减少,故D 正确 故选:C 【点睛】本题考查识图能力,考查统计知识,准确理解图形是关键,是基础题4.已知函数310()20x x f x x x ⎧+>=⎨+⎩,,,,…,若()1f a =,则()f a -=( )A .2B .4C .6D .10【答案】B【解析】根据指数函数的性质可知当0x >时,()3121xf x =+>>,则()21f a a =+=,即得1a =-,则代入求解可得()f a -【详解】因为当0x >时,()3121xf x =+>>,所以()21f a a =+=,解得1a =-,则()()11314f a f -==+=,故选:B 【点睛】本题考查分段函数求值,考查指数函数性质的应用5.在ABC △中,AC =135ABC ∠=︒,则ABC △的外接圆的面积为( ) A .12π B .8πC .16πD .4π【答案】D【解析】由正弦定理可得2sin b R B =,即2sin ACR ABC=∠,可得2R =,进而求得外接圆面积即可 【详解】由2sin b R B =,则2sin ACR ABC=∠,22R=,则2R =,所以外接圆面积为24S R ππ==故选:D 【点睛】本题考查正弦定理比值的几何意义,属于基础题6.第28届金鸡百花电影节将于11月19日至23日在福建省厦门市举办,近日首批影展片单揭晓,《南方车站的聚会》《春江水暖》《第一次的离别》《春潮》《抵达之谜》五部优秀作品将在电影节进行展映.若从这五部作品中随机选择两部放在展映的前两位,则《春潮》与《抵达之谜》至少有一部被选中的概率为( ) A .12B .35C .710D .45【答案】C【解析】分别列举出五部作品中选择两部的情况,共有10种,再找到《春潮》与《抵达之谜》至少有一部的情况,共有7部,求出概率即可 【详解】从这五部作品中随机选择两部放在展映的前两位的所有情况为(《南方车站的聚会》,《春江水暖》),(《南方车站的聚会》,《第一次的离别》),(《南方车站的聚会》,《春潮》),(《南方车站的聚会》,《抵达之谜》),(《春江水暖》,《第一次的离别》),(《春江水暖》,《春潮》,(《春江水暖》,《抵达之谜》),(《第一次的离别》,《春潮》)(《第一次的离别》,《抵达之谜》),(《春潮》,《抵达之谜》),共10种情况,其中《春潮》与《抵达之谜》至少有一部被选中的有7种,故所求概率为710故选:C 【点睛】本题考查列举法计算基本事件数及事件发生的概率,考查古典概型,属于基础题 7.某几何体的三视图如图所示,则该几何体的表面积为( )A .115πB .140πC .165πD .215π【答案】A【解析】由三视图可知,直观图是由半个球与一个圆锥拼接,即可求出表面积. 【详解】由三视图可知,该几何体由半个球与一个圆锥拼接而成,所以该几何体的表面积251325115S πππ=⨯⨯+⨯=.故选:A 【点睛】本题考查三视图,考查表面积的计算,考查学生分析解决问题的能力,属于中档题. 8.最早发现勾股定理的人应是我国西周时期的数学家商高,根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的(九章算术也有记载,所以,商高比毕达哥拉斯早500多年发现勾股定理.现有ABC ∆满足“勾3股4弦5”.其中4AB =.D 为弦BC 上一点(不含端点),且ABD ∆满足勾股定理.则AB AD ⋅=( )A .25144B .25169C .16925D .14425【答案】D【解析】先由等面积得AD ,利用向量几何意义求解即可 【详解】由等面积法可得341255AD ⨯==,依题意可得,AD BC ⊥,则AB 在AD 上的投影为||AD ,所以2144||25AB AD AD ⋅==. 故选:D【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,是基础题 9.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( )A .,5()4k k π⎛⎫-∈ ⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 【答案】B【解析】由值域为[5,3]-确定,a b 的值,得()5cos4g x x =--,利用对称中心列方程求解即可 【详解】因为()[,2]f x b a b ∈+,又依题意知()f x 的值域为[5,3]-,所以23a b += 得4a =,5b =-,所以()5cos4g x x =--,令4()2x k k ππ=+∈Z ,得()48k x k ππ=+∈Z ,则()g x 的图象的对称中心为,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z . 故选:B 【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为010.设tan 211a ︒=,则sin17cos17sin17cos17︒+︒=︒-︒( )A .221aa - B .221-a a C .21a a - D .241aa - 【答案】A【解析】先对式子进行化简,分子分母同时除以cos17︒,再利用正切的和角公式求解可得,原式tan62=-︒,根据诱导公式可得tan 211tan31︒=︒=a ,进而利用倍角公式求解即可 【详解】()sin17cos17tan171ta tan 4n 5tan 45117tan 1745tan 62sin17cos17tan171tan17︒︒︒︒+︒++===-+=---︒︒︒︒︒︒︒︒-,因为tan 211tan31︒=︒=a , 所以222tan 312tan 621tan 311︒︒==-︒-a a ,故2sin17cos172sin17cos171︒+︒=︒-︒-aa 故选:A 【点睛】本题考查利用正切的和角公式、倍角公式进行化简,考查三角函数分式齐次式求值问题11.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( )A .BC .2D 【答案】C【解析】由0FA FB +=得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可 【详解】因为0FA FB +=,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==. 故选:C 【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题. 12.已知函数2()()(0)f x x x a a =->,则函数()()()g x ff x =的零点个数不可能为( ) A .2 B .3C .4D .5【答案】A【解析】先利用导数求得函数的极值,根据()0f x =时,10x =,2x a =,则()()()g x f f x =的零点即方程()0f x =与()f x a =的根,显然()0f x =有2个根,则讨论3427a 与a的关系即可得到()()()g x f f x =可能的零点个数【详解】由题,()3222f x x ax a x =-+,则()()()22343f x x ax a x a x a '=-+=--,令()0f x '>,得3a x <或x a >;令()0f x '<,得3<<ax a ,所以()f x 的极大值为34327⎛⎫=⎪⎝⎭a af ,极小值为()0f a = 令()0f x =得10x =,2x a =,所以()()()g x ff x =的零点即方程()0f x =与()f x a =的根,()0f x =显然有2个根,则当3427=a a ,即=a 时,()f x a =有2个根;当3427>a a ,即>a 时,()f x a =有3个根;当3427<a a ,即0<<a ,()f x a =有1个根,故()()()g x f f x =的零点个数可能为3,4,5 故选:A 【点睛】本题考查利用导数求函数极值,考查零点的个数问题,考查分类讨论思想和运算能力二、填空题13.不等式组020220y x y x y ⎧⎪+-⎨⎪-+⎩………,表示的可行域的面积为______.【答案】3【解析】由题画出可行域,进而求得面积即可 【详解】作出可行域,如图所示,可行域的面积为13232⨯⨯=故答案为:3 【点睛】本题考查二元一次不等式组表示平面区域的应用问题,属于基础题14.若抛物线28x y =上的点P 到焦点的距离为8,则P 到x 轴的距离是________. 【答案】6【解析】由抛物线的焦半径公式得则()00,P x y 的坐标,则到x 轴的距离可求. 【详解】设点()00,P x y ,则028y +=,即06y =,即P 到x 轴的距离是6. 故答案为:6 【点睛】本题考查抛物线的标准方程,着重考查抛物线定义的应用,是基础题.15.已知函数2()log )f x x =,则不等式(1)(2)0f x f x ++>的解集为________.【答案】1,3⎛⎫-+∞ ⎪⎝⎭【解析】证明()f x 为奇函数,并确定为增函数,去掉函数符号f 列不等式求解 【详解】由题2()log )f x x =定义域为R,2()log )()f x x f x -==-故()f x 为奇函数,则(1)(2)0f x f x ++>等价于(1)(2)f x f x +>-,又()f x 为增函数,所以12x x +>-,解得1,3x ⎛⎫∈-+∞ ⎪⎝⎭.故答案为:1,3⎛⎫-+∞ ⎪⎝⎭【点睛】本题主要考查不等式的求解,利用条件判断函数的奇偶性和单调性是解决本题的关键.16.在三棱锥P ABC -中,PA ⊥平面ABC ,2AB =,3AC =,120BAC ∠=︒,D 为线段BC 上的动点,若PC 与底面ABC 所成角为30°,则PD 与底面ABC 所成角的正切值的最大值为______.【解析】由题可得PA =分析可得当AD BC ⊥时,PD 与底面ABC 所成角PDA ∠最大,即要求出tan ∠=PAPDA AD,在ABC ∆中,由余弦定理解得BC =利用等面积法求得=AD ,代入求解即可 【详解】因为PA ⊥平面ABC ,PC 与底面ABC 所成角为30°,所以30∠=︒PCA , 又3AC =,所以PA =当AD BC ⊥时,PD 与底面ABC 所成角PDA ∠最大,且tan ∠=PAPDA AD在ABC ∆中,由余弦定理得BC ===又11sin 22ABC S AB AC BAC BC AD ∆=⋅⋅∠=⋅,即112322⨯⨯=AD ,解得=AD , 则PD 与底面ABC所成角的正切值的最大值为PA AD ==【点睛】本题考查线面成角,考查利用余弦定理解三角形,考查运算能力三、解答题17.某公司一产品的销售额逐年上升,下表是部分统计数据:其中年份编号1x =代表2014年,2x =代表2015年,……依此类推.(1)利用所给数据求年销售额y 与年份编号x 之间的回归直线方程ˆˆˆybx a =+; (2)利用(1)中所求出的直线方程预测该产品2019年的销售额.参考公式:1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆ=-ay bx . 【答案】(1)ˆ12.821.6=+yx (2)98.4百万元【解析】(1)根据平均数公式求出x 与y ,将数据代入求出ˆb,再代入ˆ=-a y bx 求得ˆa ,即可得到回归直线方程;(2)由于1x =代表2014年,则ˆ6=x代表2019年,代入回归直线方程求解即可 【详解】 解:(1)由图表可知,()11234535x =⨯++++=,()13646577685605y =⨯++++=, 所以511362463574765851028i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555ii x==++++=∑,则1222110285360ˆ12.85553ni ii nii x y nx ybxnx ==-⋅-⨯⨯===-⨯-∑∑,ˆˆ6012.8321.6=-=-⨯=ay bx , 故所求的回归方程为ˆ12.821.6=+yx (2)由题,当ˆ6=x时,ˆ12.8621.698.4y =⨯+=, 故该产品2019年的销售额估计为98.4百万元 【点睛】本题考查求回归直线方程,考查回归直线方程的应用,考查运算能力 18.已知正项等比数列{}n a 的前n 项积为n ∏,且364∏=,71∏=. (1)求{}n a 的通项公式;(2)求{}22log +n n a a 的前n 项和n S .【答案】(1)412-⎛⎫= ⎪⎝⎭n n a (2)247216nn S n n -=-+-+【解析】(1)利用等比数列性质可得331232I 64===a a a a ,771274II 1===a a a a ,解得24a =,41a =,则12q =,18a =,进而求得{}n a 的通项公式; (2)由(1)可得2log 4=-n a n ,分组求和即可求解 【详解】解:(1)因为正项等比数列{}n a ,所以331232I 64===a a a a ,771274II 1===a a a a ,则24a =,41a =,从而24214a q a ==, 依题意得0q >,所以12q =,则214812a a q ===, 故{}n a 的通项公式为1411822n n n a --⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭(2)因为412-⎛⎫= ⎪⎝⎭n n a ,所以4221log log 42n n a n -⎛⎫==- ⎪⎝⎭,则21log 413a =-=,显然{}2log n a 是首项为3的等差数列,所以()24181342272161212n n n n n S n n -⎛⎫- ⎪+-⎡⎤⎝⎭⎣⎦=+⨯=-+-+-【点睛】本题考查等比数列的性质的应用,考查求等比数列通项公式,考查分组求和法求前n 项和,考查运算能力19.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,O 为11A C 的中点,且2AB =.(1)证明:OD平面1AB C .(2)若异面直线OD 与1AB 所成角的正弦值为11,求三棱柱111ABC A B C -的体积.【答案】(1)证明见解析(2)【解析】(1)连接1OB ,连接BD 交AC 于G ,连接1B G ,证明四边形1OB GD 为平行四边形,得到证明.(2)线OD 与1AB 所成角即直线1B G 与1AB 所成角,1sin 11AB G ∠=,证明1AC B G ⊥,再计算得到1BB =.【详解】(1)连接1OB ,连接BD 交AC 于G ,连接1B G . 易证1OB DG ,且1O B D G =,所以四边形1OB GD 为平行四边形,所以1ODB G .因为1B G ⊂平面1AB C ,OD ⊄平面1AB C ,所以OD 平面1AB C .(2)由(1)知,1ODB G ,所以异面直线OD 与1AB 所成角即直线1B G 与1AB 所成角,所以1sin 11AB G ∠=. 因为底面ABCD 为正方形,所以AC BD ⊥,又侧棱垂直底面,所以1BB AC ⊥. 因为1BB BD B ⋂=,所以AC ⊥平面11BB D D ,所以1AC B G ⊥.因为AG =1sin 11AB G ∠=,所以1AB =1BB ==故三棱柱111ABC A B C -的体积2122V =⨯=【点睛】本题考查了线面平行,体积的计算,计算出1BB 的长度是解题的关键,意在考查学生的计算能力和空间想象能力. 20.已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b .(1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b (2)2642ln 2<-m【解析】(1)求导可得()()23114310f f x ax x''=--,由题,切线方程斜率为()1f k '=,解得13a =,代回函数求得()1013f =,即10103b =--,可求得403=-b ; (2)如果求()13f x m >对0x ∈+∞(,)恒成立,即求()min 13f x m >,利用导数判断单调性求得最小值即可求解不等式 【详解】解:(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-,()32143143x x f x x x x+-'=+-=, 设函数()()33140g x x x x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 【点睛】本题考查利用导数的几何意义求值,考查利用导数研究不等式恒成立问题,考查转化思想,考查运算能力21.已知圆22260x y ++-=的圆心为1F ,直线l 过点2F 且与x 轴不重合,l 交圆1F 于C ,D 两点,过2F 作1F C 的平行线,交1F D 于点E .设点E 的轨迹为Ω. (1)求Ω的方程;(2)直线1l 与Ω相切于点M ,1l 与两坐标轴的交点为A 与B ,直线2l 经过点M 且与1l 垂直,2l 与Ω的另一个交点为N ,当||AB 取得最小值时,求ABN ∆的面积.【答案】(1) 221(0)82x y y +=≠ (2) 【解析】(1)根据三角形相似得到DE BEAD AC=,得到AE +DE =4,再利用椭圆定义求解即可(2)设1l 的方程为(0)y kx m k =+≠,与椭圆联立,由直线1l 与Ω相切得2282m k =+,由1l 在x 轴、y 轴上的截距分别为mk-,m ,得||AB 表达式,结合基本不等式求得M 坐标及2l ,进而得||MN ,则面积可求【详解】(1)因为12FC EF ∥,所以12FCD EF D ∠=∠. 又11=F C F D ,所以11FCD F DC ∠=∠,则22EDF EF D ∠=∠, 所以2||ED EF =,从而2111||EF EF ED EF DF +=+=.22260x y ++-=化为22(32y x y ++=,所以21EF EF +==>从而E的轨迹为以1(F,2F为焦点,长轴长为右顶点).所以Ω的方程为221(0)82x y y +=≠.(2)易知1l 的斜率存在,所以可设1l 的方程为(0)y kx m k =+≠,联立22,1,82y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得()222148480k x kmx m +++-=.因为直线l 与Ω相切,所以()()222(8)414480km k m∆=-+-=,即2282m k =+.1l 在x 轴、y 轴上的截距分别为mk-,m ,则||AB ====≥= 当且仅当2228kk =,即k =时取等号. 所以当212k =时,||AB 取得最小值,此时26m =, 根据对称性.不妨取k =m=28214M km x k =-=+,即M x =2M y =+=.联立22,1,82y x x y ⎧=+⎪⎪⎭⎨⎪+=⎪⎩消去y,得29160x ++=,则39M N N x x x +=-+=-,解得9N x =-,所以8||3M N MN x =-=,故ABN ∆的面积为1823⨯⨯=【点睛】本题考查了椭圆定义求轨迹方程,考查直线和椭圆的关系,考查基本不等式求最值,确定取得最值时直线方程是关键,属于压轴题.22.在直角坐标系xOy 中,直线l的参数方程为122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数),曲线C 的参数方程为3cos 33sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知点P 的极坐标为(2,)π,l 与曲线C 交于,A B两点,求2.【答案】(1)6sin ρθ=;(2)6+.【解析】(1)利用消参数将参数方程化成普通方程,再利用公式cos ,sin ,x y ρθρθ=⎧⎨=⎩化成极坐标方程;(2)将点P 的极坐标化为直角坐标,得点P 为直线参数方程所过的定点,再利用参数的几何意义进行求解. 【详解】解:(1)曲线C 的直角坐标方程为22(3)9x y +-=,即226x y y +=,因为cos ,sin ,x y ρθρθ=⎧⎨=⎩所以26sin ρρθ=,即6sin ρθ=,故曲线C 的极坐标方程为6sin ρθ=.(2)将12,22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(3)9x y +-=,得2(240t t -++=.设A 、B 两点对应的参数分别为1t ,2t,则122t t +=+124t t =.因为点P 的极坐标为(2,)π,所以点P 的直角坐标为(2,0)-,所以212||||6PA PB t t +=++=++=+.【点睛】本题考查曲线的参数方程、普通方程、极坐标方程的互化、直线参数方程参数的几何意义,考查转化与化归思想的应用,求解是要注意利用直线的参数的几何意义解题时,要保证参数方程为标准形式.23.已知函数()7 1.f x x x =-++ (1)求不等式2()10x f x <<的解集;(2)设[]x 表示不大于x 的最大整数,若[()]9f x ≤对[,9]x a a ∈+恒成立,求a 的取值范围.【答案】(1)(2,4)-;(2)(2,1)--.【解析】(1)将函数()f x 的绝对值去掉等价于62,1,()8,17,26,7,x x f x x x x -<-⎧⎪=-≤≤⎨⎪->⎩再分别解不等式并取交集;(2)利用取整函数的定义,将不等式[()]9f x ≤转化为()10f x <,再利用(1)的结论进行求解. 【详解】(1)62,1,()8,17,26,7,x x f x x x x -<-⎧⎪=-≤≤⎨⎪->⎩由()2f x x >得:1,622,x x x <-⎧⎨->⎩或17,82,x x -≤≤⎧⎨>⎩或7,262,x x x >⎧⎨->⎩解得:4x <;由()10f x <,1,6210,x x <-⎧⎨-<⎩或17,810,x -≤≤⎧⎨<⎩或7,2610,x x >⎧⎨-<⎩解得:28x -<<.故不等式2()10 x f x <<的解集为:(2,4)-. (2)依题意可得[()]9f x ≤等价于()10f x <, 由(1)知[()]9f x ≤的解集为(2,8)-. 因为[()]9f x ≤对[,9]x a a ∈+恒成立,所以[,9](2,8)a a +⊆-,所以2,98,a a >-⎧⎨+<⎩解得21a -<<-,所以a 的取值范围为(2,1)--. 【点睛】本题考查绝对值不等式的求解、取整函数的应用,考查分类讨论思想和数形结合思想的应用,第(2)问取整函数不等式的等价转化是求解问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届广州市高三年级调研测试理科数学2019.12 本试卷共5页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B铅笔在答题卡的相应位置填涂考生号、并将试卷类型(A)填图在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须卸载答题卡各题目制定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔盒涂改液,不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图1,已知全集U=Z,集合A={-2,-1,0,1,2},集合B={1,2,3,4},则图中阴影部分表示的集合是()A.{3,4}B.{-2,-1,0}C.{1,2}D.{2,3,4}2.已知Z=()ii+-112(i为虚数单位),在复平面内,复数Z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知3121⎪⎭⎫⎝⎛=a,3log2=b,6log4=c,则a,b,c的大小关系为()A.bca>>B.cba=<C.cba>>D.bca<<4.已知实数yx,满足⎪⎩⎪⎨⎧≥+-≤--≥-+423322yxyxyx,则yxz3-=的最小值为()A.-7B.-6C.1D.65.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,31,n,已知三个社团他都能进入的概率为241,至少进入一个社团的概率为43,且m>n .则=+nm()A .21 B .32 C .43 D .125 6.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆x 2+y 2=25内的个数为( ) A .2 B .3 C .4 D .57.已知F 为双曲线12222=-by a x 的右焦点,过F 做C 的渐近线的垂线FD ,垂足为D ,且满足OF FD 21=(O 为坐标原点),则双曲线的离心力为( ) A .332 B .2C .3D .310 8.函数()()0,sin ln ≠≤≤-+=x x x x x f 且ππ的大致图像是( )A .B .C .D .9.如图3,在ABC ∆中,,1,3,==⊥AD BD BC AB AD 则=⋅AD AC ( )A .3B .3C .3-D .-310.1772年德国的天文学家J.E.波得发现了求太阳的行星距离的法则。
记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表: 星名水星金星 地球 火星 木星 土星 与太阳的距离 47101652100除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当是德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐用过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带。
请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是 A .388 B .772 C .1540 D .3076 11.已知点A,B 关于坐标原点O 对称,1=AB ,以M 为圆心的圆过A,B 两点,且与直线012=-y 相切,若存在定点P ,使得当A 运动时,MP MA -为定值,则点P 的坐标为A .⎪⎭⎫ ⎝⎛410,B .⎪⎭⎫ ⎝⎛210,C .⎪⎭⎫ ⎝⎛-410,D .⎪⎭⎫ ⎝⎛-210,12.已知偶函数()x f 满足()()x f x f -=+44,且当[]4,0∈x 时,()2x xe x f -=,若关于x 的不等式()()[]200,20002->+在x af x f上有且只有300个整数解,则实数a 的取值范围是A .⎥⎦⎤ ⎝⎛----2234,3e e B .⎥⎦⎤ ⎝⎛----2123,3e eC .⎥⎦⎤ ⎝⎛----2313,2e eD .⎥⎦⎤ ⎝⎛----2214,e e二.填空题:本题共4小题,每小题5分,共20分。
13.已知()344tan 0=⎪⎭⎫⎝⎛+∈πθπθ,,,则=+θθcos sin __________. 14.若nx x ⎪⎭⎫ ⎝⎛+13展开式的二项式系数之和是64,则展开式中的常数15.已知某三棱锥的侧棱长大雨底边长,其外接球体积为6125π,三视图如图3所示,则其侧视图的面积为__________.16.在△ABC 中,设角A ,B ,C 对应的边分别为c b a ,,,记△ABC 的面积为S ,且22224c b a +=,则2a S的最大值为__________.三.解答题:共70分。
解答应些出文字说明证明过程或演算步骤。
第13~21题为必考题,每个试题考生都必须作答。
第22,23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)已知{}n a 为单调递增的等差数列,1852=+a a ,8043=⋅a a ,设数列{}n b 满足42222233221-=++++n a n n b b b b Λ,*∈N n .(1)求数列{}n a 的通项;(2)求数列{}n b 的前n 项和n S .18.(12分)如图5,已知四边形ABCD 是变成为2的菱形,∠ABC=60°,平面AEFC ⊥平面ABCD ,EF ∥AC ,AE=AB,AC=2EF.(1)求证:平面BED ⊥平面AEFC ;(2)若四边形AEFC 为直角梯形,且EA ⊥AC ,求二面角B-FC-D 的余弦值。
19.(12分)某城市A 公司外卖配送员底薪是每月1800元/人,设每月每人配送的单数为X ,若X ∈[1,300],每单提成3元,若X ∈(300,600),每单提成4元,若X ∈(600,+∞),每单提成4.5元,B 公司配送员底薪是每月2100元,设每月配送单数为Y ,若Y ∈[1,400],每单提成3元,若Y ∈(400,+∞),每单提成4元,小想在A 公司和B 公司之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表: 表1:A 公司配送员甲送餐量统计 日送餐量x (单) 13 14 16 17 18 20 天数26 12 6 2 2 表2:B 公司配送员乙送餐量统计 日送餐量x (单) 11 13 14 15 16 18 天数4512351(1)设A 公司配送员月工资为f (X ),B 公司配送员月工资为g (Y ),当X=Y 且X ,Y ∈[300,600]时,比较f (X )与g (Y )的大小关系(2)将甲乙9月份的日送餐量的频率视为对应公司日送餐量的概率 (i )计算外卖配送员甲和乙每日送餐量的数学期望E (X )和E (Y ) (ii )请利用所学的统计学知识为小王作出选择,并说明理由.20.(12分)已知椭圆()013222>=+a y a x C :的右焦点F 到左顶点的距离为3. (1)求椭圆C 的方程;(2)设O 是坐标原点,过点F 的直线与椭圆C 交于A,B 两点(A,B 不在x 轴上),若OB OA OE +=,延长AO 交椭圆与点G ,求四边形AGBE 的面积S 的最大值.21.(12分)已知函数().ln 2x k x x x f +-=(1)讨论函数()x f 的单调性;(2)若函数()x f 有两个极值点21,x x ,证明:()().24111k x f x f -<-(二).选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分。
22.(10分)【选修4—4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程为⎪⎩⎪⎨⎧-=+=m m y m m x 11(m 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.03cos sin 3=--θρθρ (1)求曲线C 和直线l 的直角坐标系方程; (2)已知()1,0P 直线l 与曲线C 相交于A,B 两点,求PBPA 11+的值23. 【选修4—5:不等式选讲】(10分) 已知()()().22a x x x a x x f --+--= (1)当2=a 时,求不等式 ()0<x f 的解集; (2)若()a x ,∞-∈时,()0<x f ,求a 的取值范围.参考答案一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图1,已知全集U=Z,集合A={-2,-1,0,1,2},集合B={1,2,3,4},则图中阴影部分表示的集合是()A.{3,4}B.{-2,-1,0}C.{1,2}D.{2,3,4}答案:A2.已知Z=()ii+-112(i为虚数单位),在复平面内,复数Z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:C3.已知3121⎪⎭⎫⎝⎛=a,3log2=b,6log4=c,则a,b,c的大小关系为()A.bca>>B.cba=<C.cba>>D.bca<<答案:D4.已知实数yx,满足⎪⎩⎪⎨⎧≥+-≤--≥-+423322yxyxyx,则yxz3-=的最小值为()A.-7B.-6C.1D.6答案:A5.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,31,n,已知三个社团他都能进入的概率为241,至少进入一个社团的概率为43,且m>n.则=+nm()A.21B.32C.43D.125答案:A6.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为()A.2B.3C .4D .5答案:B 7、已知F 为双曲线12222=-by a x 的右焦点,过F 做C 的渐近线的垂线FD ,垂足为D ,且满足OF FD 21=(O 为坐标原点),则双曲线的离心力为( ) A .332 B .2C .3D .310 答案:A8.函数()()0,sin ln ≠≤≤-+=x x x x x f 且ππ的大致图像是( )A .B .C .D .答案:D9.如图3,在ABC ∆中,,1,3,==⊥AD BD BC AB AD 则=⋅AD AC ( )A .3B .3C .3-D .-3答案:A10.1772年德国的天文学家J.E.波得发现了求太阳的行星距离的法则。