圆锥曲线内接顶点直角三角形的一个性质

合集下载

高中数学圆锥曲线性质与公式总结

高中数学圆锥曲线性质与公式总结


1 r22

1 a2
1 b2
(r1 | OP |, r2
| OQ |)
.
16.若椭圆
x2 a2

y2 b2
1(a>b>0)上中心张直角的弦
L
所在直线方程为
Ax By
1
( AB
0)
,则(1)
1 a2
1 b2

A2 B2 ;(2)
L
2 a4 A2 b4B2 a2 A2 b2B2
或(o, m)为其对称轴上除中心,顶点外的任一点,过 M 引一
条直线与椭圆相交于 P、Q 两点,则直线 A1P、A2Q(A1 ,A2 为对称轴上的两顶点)的交点 N 在直线 l :x a2 (或 m
y b2 )上. m
40.设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相
1
则直线
BC
有定向且 kBC

b2 x0 a2 y0
(常数).
x2 20.椭圆 a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2 ,则椭圆
的焦点三角形的面积为 SF1PF2
b2
tan 2
, P(
a c
c2 b2 tan 2 , b 2 tan ) 2c 2
应于焦点 F 的椭圆准线于 M、N 两点,则 MF⊥NF.
41.过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和 A2Q 交于点 M,
A2P 和 A1Q 交于点 N,则 MF⊥NF.

52.圆锥曲线内接直角三角形的性质

52.圆锥曲线内接直角三角形的性质

[中国高考数学母题一千题](第0001号)圆锥曲线内接直角三角形的性质圆锥曲线的弦过定点的母题由圆内接直角三角形的斜边恒过定点(圆心),可类比猜测圆锥曲线内接直角三角形的斜边恒过定点;利用构造二次齐次方程的方法易证猜测正确,该猜测是生成一类高考试题的母题.[母题结构]:过圆锥曲线G 上任意一点P(x 0,y 0)作两条互相垂直的直线PA 、PB,分别交圆锥曲线于A 、B 两点,求证:直线AB 经过定点.①当曲线G 是抛物线G:y 2=2px(p>0)时,直线AB 恒过定点M(x 0+2p,-y 0);②当曲线G 是椭圆G:22a x +22b y =1(a>b>0)时,直线AB 恒过定点M(2222b a b a +-x 0,-2222b a b a +-y 0);③当曲线G 是双曲线G:22a x -22b y =1(a>0,b>0)时,直线AB 恒过定点M(2222b a b a -+x 0,-2222b a b a -+y 0).[母题解析]:仅证②:设直线AB:y=kx+m,则y-y 0=k(x-x 0)+m+kx 0-y 0⇒1=0000)()(y kx m x x k y y -+---;由22ax +22by =1,220ax +220by =1⇒b 2(x-x 0)2+a 2(y-y 0)2=2a 2b 2-2(b 2x 0x+a 2y 0y)⇒b 2(x-x 0)2+a 2(y-y 0)2=2[(b 2x 02+a 2y 02)-(b 2x 0x+a 2y 0y)]⇒b 2(x-x 0)2+a 2(y-y 0)2=-2[b 2x 0(x-x 0)+a 2y 0(y-y 0)]⇒b 2(x-x 0)2+a 2(y-y 0)2+00022y kx m x b -+[(x-x 0)(y-y 0)-k(x-x 0)2]+00022y kx m y a -+⋅[(y-y 0)2-k(x-x 0)(y-y 0)]=0⇒a 2(m+kx 0+y 0)(00x x y y --)2+2(b 2x 0-a 2ky 0)00x x y y --+b 2(m-kx 0-y 0)=0;由k {A k :B =-1⇒22ab ⋅0000y kx m y kx m ++-- =-1⇒m=-2222b a b a +-kx 0-2222b a b a +-y 0⇒直线AB:y=k(x-2222b a b a +-x 0)-2222b a b a +-y 0⇒直线AB 恒过定点M(2222b a b a +-x 0,-2222b a b a +-y 0);同理可证①③.1.抛物线内接直角三角形子题类型Ⅰ:(2005年山东高考试题)己知动圆过定点(2p ,0),且与直线x=-2p相切,其中p>0. (Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π)时,证明:直线AB 恒过定点,并求出该定点的坐标.[解析]:(Ⅰ)如图,设动圆圆心为M,点F(2p ,0),过点M 作直线l:x=-2p 的垂线,垂足为N,则|MF|=|MN|⇒点M 的轨迹是以点F 为焦点,l 为准线的抛物线,方程为y 2=2px(p>0);(Ⅱ)设A(x 1,y 1),B(x 2,y 2),直线AB:y=kx+m,则tan α=11x y ,tan β=22x y;由tan(α+β)=tan θNF(p2,0)M ABx=-p 2oyx⇒tan α+tan β=(1-tan αtan β)tan θ⇒11x y +22x y =(1-11x y ⋅22x y )tan θ;又由y=kx+m 与y 2=2px ⇒my 2=2px(y-kx)⇒m(xy )2 -2p ⋅x y +2pk=0⇒11x y +22x y =m p 2,11x y ⋅22x y=m pk 2⇒m p 2=(1-mpk 2)tan θ⇒m=2pk+2pcot θ⇒直线AB:y=k(x+2p)+2pcot θ⇒恒过定点(-2p,2pcot θ).[点评]:对于抛物线G:y 2=2px(p>0)上的定点P(x 0,y 0)和两动点A,B,当k PA k PB =λ时,直线AB 过定点M(x 0-λp 2,-y 0);当k PA +k PB =λ(λ≠0)时,直线AB 过定点M(x 0-λ2y ,λp2-y 0).2.椭圆内接直角三角形子题类型Ⅱ:(2007年山东高考试题)己知椭圆C 的中心在原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l:y=kx+m 与椭圆C 相交于A 、B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.[解析]:(Ⅰ)设椭圆C:22a x +22b y =1(a>b>0),则a+c=3,a-c=1⇒a=2,c=1⇒椭圆C:42x +32y =1; (Ⅱ)由右顶点N(2,0),直线l:y=kx+m ⇒y=k(x-2)+m+2k ⇒1=km x k y 2)2(+--;椭圆C:3x 2+4y 2=12⇒3(x-2)2+4y 2+12(x-2)=0⇒3(x-2)2+4y 2+12(x-2)k m x k y 2)2(+--=0⇒4(2-x y )2+k m 212+⋅2-x y +km k m 263+-=0;由以AB 为直径的圆过椭圆C 的右顶点N ⇒k NA ⋅k NB =-1⇒)2(463k m k m +-=-1⇒m=-72k ⇒直线l:y=k(x-72)过定点(72,0).[点评]:对于椭圆G:22a x +22b y =1(a>b>0)上的定点P(x 0,y 0)和两动点A,B,当k PA k PB =λ(λ≠22a b )时,直线AB 过定点M(2222b a b a -+λλx 0,-2222b a b a -+λλy 0);当k PA +k PB =λ(λ≠0)时,直线AB 过定点M(x 0-λ2y ,λ222a b x 0-y 0).3.双曲线内接直角三角形子题类型Ⅲ:(2009年全国高中数学联赛陕西初赛试题)如图,已知两点A(-5,0), B(5,0),△ABC 的内切圆的圆心在直线x=2上移动. (Ⅰ)求点C 的轨迹方程;(Ⅱ)过点M(2,0)作两条射线,分别交(Ⅰ)中所求轨迹于P,Q 两点,且MP ⋅MQ =0,求证:直线PQ 必过定点.[解析]:(Ⅰ)如图,设△ABC 内切圆分别在AB,BC,AC 上的切点为G,F,E,由切线长定理知,|AG|=|AE|,|CE|=|CF|,|BG|=|BF|⇒|AC|-|BC|=|AG|-|BG|=4<|AB|⇒点C 是以A,B 为焦点,实轴长 为4的双曲线右支,其方程为:42x -y 2=1(x>2); (Ⅱ)设P(x 1,y 1),Q(x 2,y 2),直线PQ:y=k(x-2)+m(m ≠0)⇒k MP =211-x y ,k MQ =222-x y ,1=mx k y )2(--;由x 2-4y 2=4⇒(x-2)2-4y 2+4(x-2)=0⇒(x-2)2-4y 2+4(x-2)⋅m x k y )2(--=0⇒4(2-x y )2-m 4⋅2-x y +(mk 4-1)=0⇒211-x y ⋅222-x y =m k -41;由MP ⋅MQ = 0⇒211-x y ⋅222-x y =-1⇒m k -41=-1⇒m=-34k ⇒直线PQ:y=k(x-310)过定点(310,0). [点评]:对于双曲线G:22a x -22b y =1(a>0,b>0)上的定点P(x 0,y 0)和两动点A,B,当k PA k PB =λ(λ≠22a b )时,直线AB 过定点M(2222b a b a +-λλx 0,-2222b a b a +-λλy 0);当k PA +k PB =λ(λ≠0)时,直线AB 过定点M(x 0-λ2y ,λ222a b x 0-y 0).4.子题系列:1.(2005年山东高考文科试题)己知动圆过定点(2p ,0),且与直线x=-2p相切,其中p>0. (Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明:直线AB 恒过定点,并求出该定点的坐标.2.(2009年全国高中数学联赛河南初赛试题)已知抛物线C:y 2=4x,以M(1,2)为直角顶点作该抛物线的内接直角三角形MAB.(Ⅰ)求证:直线AB 过定点;(Ⅱ)过点M 作AB 的垂线交AB 于点N,求点N 的轨迹方程.(Ⅱ)由(Ⅰ)知,点N 的轨迹是以PM 为直径的圆(除去点(1,±2)),其方程为(x-3)2+y 2=8(x ≠1).3.(1999年全国高中数学联赛试题)已知点A(1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B,C,那么,△ABC 是( ) (A)锐角三角形 (B)钝角三角形 (C)直角三角形 (D)答案不确定4.(2012年第三届世界数学锦标赛(青年组)试题)已知抛物线y=x 2上三点A(1,1)、B 、C,满足AB ⊥BC.求△ABC 的外接圆面积的最小值. 5.子题详解:1.解:(Ⅰ)如图,设动圆圆心为M,点F(2p ,0),过点M 作直线l:x=-2p的垂线,垂足为N,则|MF|=|MN|⇒点M 的轨迹是以点F 为焦点,l 为准线的抛物线,方程为y 2=2px(p>0);(Ⅱ)设A(x 1,y 1),B(x 2,y 2),直线AB:y=kx+m,则tan α=11x y ,tan β=22x y;由tan(α+β)=tan 4π⇒tan α+tan β=1-tan αtan β⇒11x y +22x y =(1-11x y ⋅22x y )tan θ;又由y=kx+m 与y 2=2px ⇒my 2=2px(y-kx)⇒m(x y )2-2p ⋅x y +2pk=0⇒11x y +22x y =m p 2,11x y ⋅22x y=m pk 2⇒m p 2=1-mpk 2 ⇒m=2pk+2p ⇒直线AB:y=k(x+2p)+2p ⇒恒过定点(-2p,2p).2.解:(Ⅰ)设直线AB:y-2=k(x-1)+m(m ≠0)⇒1=mx k y )1()2(---;由y 2=4x ⇒(y-2)2-4(x-1)+4(y-2)=0⇒(y-2)2-4(x-1)⋅m x k y )1()2(---+4(y-2)⋅m x k y )1()2(---=0⇒(m+4)(12--x y )2-4(k+1)⋅12--x y +4k=0⇒44+m k=-1⇒m=-4k-4⇒直线AB:y+2=k(x-5)过定点T(5,-2);)0,2(p F 2px =。

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若为椭圆上任意一点,则有。

椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。

注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。

例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。

(2)椭圆的性质①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

同理令得,即,是椭圆与轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。

由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。

当且仅当时,两焦点重合,图形变为圆,方程为。

2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。

注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。

圆锥曲线中的三角形

圆锥曲线中的三角形

第15讲圆锥曲线中的三角形高屋建瓴1.阿基米德三角形定义圆锥曲线弦的两个端点和在这两端点处的切线的交点所构成的三角形叫作阿基米德三角形,这条弦叫作阿基米德三角形的底,两切线的交点叫作阿基米德三角形的顶点.特别地,我们把底边过焦点的阿基米德三角形称为阿基米德焦点三角形.阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23.以抛物线22(0)x py p =>为例,如图151-所示,抛物线上两个不同的点A ,B 的坐标分别为()11,A x y ,()22,B x y ,以A ,B 为切点的切线PA ,PB 相交于点P ,我们称弦AB 为阿基米德PAB ∆的底边.2.阿基米德三角形性质性质1:阿基米德三角形底边上的中线平行于抛物线的轴且点P 的坐标为1212,22x x x x p ⎛⎫+ ⎪⎝⎭.证明:如图15-2所示,设()11,A x y ,()22,B x y ,M 为弦AB 的中点,则过A 的切线方程为()11x x p y y =+,过B 的切线方程为()22x x p y y =+,联立方程组得,()()221121122222x x p y y x x p y y x py x py ⎧=+⎪=+⎪⎨=⎪⎪=⎩,解得两切线交点1212,22x x x x P p ⎛⎫+ ⎪⎝⎭,进而可知//PM y 轴.性质2:PM 的中点Q 在抛物线上,且Q 处的切线与AB 平行.【证明】:如图15-3,由性质1知,1212,22x x x x P p ⎛⎫+ ⎪⎝⎭,1212,22x x y y M ++⎛⎫ ⎪⎝⎭,易得Q 点的坐标为()21212,28x x x x p ⎛⎫++ ⎪ ⎪⎝⎭,此点显然在抛物线上.过Q 的切线的斜率为121222x x x x x k y p +=+='=,而221212121212222AB x x y y x x p p k x x x x p --+===--,结论得证.性质3:若阿基米德三角形的底边AB 过抛物线内定点C ,则另一顶点P 的轨迹一条直线.【证明】如图154-,设(),P x y ,()00,C x y ,()11,A x y ,()22,B x y ,由性质1,122x x x +=,122x x y p =,所以122x x x +=,122x x py =.由A ,B ,C 点共线知2222211011222x x x y p p px x x x --=--,即()0121202x x x x x py +=+,将122x x x +=,122x x py =代入得()00x x p y y =+,即为P 点的轨迹方程.推论:若阿基米德三角形的底边(即弦)AB 过抛物线内一定点()0,(0)C m m >,那么:①另一顶点P 的轨迹方程为y m =-;②2AP BP mk k p⋅=-(定值).性质4:抛物线以C 点为中点的弦平行于P 点的轨迹.证明:如图15-5,设(),P x y ,()00,C x y ,()11,A x y ,()22,B x y ,由性质3得P 点轨迹方程为()00x x p y y =+,它的斜率为0x p .由2112222,2,x py x py ⎧=⎪⎨=⎪⎩两式相减得()2212122x x p y y -=-,即1212122x x y y p x x +-=-,有0AB x k p =.因此该弦与P 点的轨迹直线l 平行.性质5:若直线l 与抛物线没有公共点,以l 上点为顶点的阿基米德三角形底边过定点.【证明】:如图15-5,设l 的方程为0ax by c ++=,且()11,A x y ,()22,B x y ,弦AB 过点()00,C x y ,由性质3可知P 点的轨迹方程()00x x p y y =+,该方程与0ax by c ++=表示同一条直线,对照000x x y y p -++=,0a cx y b b++=可得0ap x b =-,0c y b =,即弦AB 过定点,ap c C b b ⎛⎫- ⎪⎝⎭.性质6:底边长为a 的阿基米德三角形的面积的最大值为38a p.【证明】:如图15-6所示,AB a =,设P 到AB 的距离为d ,由性质1知()2221212121212222444x x y y x x x x x x d PM p p p p-++=-=-= .设直线AB 方程为y mx n =+,则21a x =-=,所以()2221x x a - ,24a d p ,即3128a S ad p= .推论:PAB ∆的面积3128PABx x S p∆-=.【证明】:因为1212,22x x x x P p ⎛⎫+ ⎪⎝⎭,1212,22x x y y M ++⎛⎫⎪⎝⎭,所以()222121212121222424x x y y x x x x x x PM p p p p -++=-=-=,所以31212128PAB x x S PM x x p∆-=-=.性质7:(1)若阿基米德三角形的底边过焦点,则顶点P 的轨迹为准线;反之,若阿基米德三角形的顶点P 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形的面积的最小值为2p .【证明】:(2)若底边过焦点,则00x =,02p y =,点P 的轨迹方程为2py =-,即为准线,易验证1PA PB k k ⋅=-,即PA PB ⊥,故阿基米德三角形为直角三角形,且P 为直角顶点,所以221212224y y x x p PM p ++=+=+2122224242x x p p p p p p p +=+= .而()212121122PAB S PM x x PM x x PM p ∆=-=+- .特别地,若阿基米德三角形的弦AB 过抛物线的焦点,那么:①另一顶点P 的轨迹为准线2py =-;②PA PB ⊥;③PF AB ⊥;④PAB ∆的面积的最小值为2p .性质8:在阿基米德三角形ABP 中,若F 为抛物线的焦点,则2||PF AF BF =⋅.【证明】:()21212122224p p p p AF BF y y y y y y ⎛⎫⎛⎫⋅=++=+++⎪⎪⎝⎭⎝⎭22221212244x x x x p p ⎛⎫+=++ ⎪⎝⎭,222222212121212||222244x x x x x x x x p p PF p p ⎛⎫⎛⎫++⎛⎫=+-=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2||PF AF BF =⋅.参考答案解析试题再现1.【解析】(1)设1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,则2112x y =,由于y x '=,所以切线DA 的斜率为1x ,故11112y x x t +=-,整理得112210tx y -+=.设()22,B x y ,同理可得222210tx y -+=.故直线AB 的方程为2210tx y -+=,所以直线AB 过定点10,2⎛⎫⎪⎝⎭.(2)由(1)得直线AB 的方程为12y tx =+.由21,2,2y tx x y ⎧⎪⎪⎨⎪⎪=⎩+=.可得2210x tx --=.于是122,x x t +=()21212121y y t x x t +=++=+,121x x =-,因此()212||21AB x t =-==+.设1d ,2d 分别为点D ,E 到直线AB 的距离,则1d =2d =因此,四边形ADBE的面积21||(32S AB t =+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭,由于EM AB ⊥ ,而()2,2EM t t =- ,AB 与向量(1,)t 平行,所以2(2)0t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =因此,四边形ADBE的面积为3或评注:第(1)问的背景就是阿基米德三角形性质5的应用,设01,2D x ⎛⎫- ⎪⎝⎭,则AB 的方程可写为:012x x y =-,所以必过定点10,2⎛⎫⎪⎝⎭.2.【解析】(1)由题意设211,2x A x p ⎛⎫ ⎪⎝⎭,222,2x B x p ⎛⎫ ⎪⎝⎭,12x x <,)0(,2M x p -.由22x py =得22x y p =,则x y p '=,所以1MA x k p =,2MB x k p =.因此直线MA 的方程为()102x y p x x p +=-,直线MB 的方程为()202xy p x x p +=-.所以()2111022x x p x x p p +=-①,()0222222x p x x px +=-)②,由①②得121202x x x x x -=+-,因此1202x x x +=,即0122x x x =+,所以A ,M ,B 三点的横坐标成等差数列.(2)由(1)知,当02x =时,将其代入①②并整理得2211440x x p --=,2222440x x p --=,所以1x ,2x 是方程22440x x p --=的两根,因此124x x +=,2124x x p =-,又,222112210222AB x x x x p p k x px x P -+===-所以2AB k p =由弦长公式得|AB ==又||AB =,所以1p =或2p =,因此所求抛物线方程为22x y =或24x y=(3)设()33,D x y ,由题意得()1212,C x x y y ++,则CD 的中点坐标为123123,22x x x x x x Q ++++⎛⎫⎝⎭,由阿基米德三角形性质可知直线AB 的方程为0(2)x x p y p =-,由点Q 在直线AB 上,并注意到点1212,22x x y y ++⎛⎫⎪⎝⎭也在直线AB 上,代入得033x y x p =.若()33,D x y 在抛物线上,则2330322x py x x ==,因此30x =或302x x =,即(0,0)D 或20022,x D x p ⎛⎫ ⎪⎝⎭.①当00x =时,12020x x x +==,此时,点(0,2)M p -适合题意.②当00x ≠时,对于(0,0)D ,此时221202,2x x C x p ⎛⎫+ ⎪⎝⎭,2212221200224CDx x x x pk x px ++==,又0AB x k p =,AB CD ⊥,所以22012214AB CD x x x k k p p +⋅=⋅=-,即222124x x p +=-,矛盾.对于20022,x D x p ⎛⎫ ⎪⎝⎭,因为221202,2x x C x p ⎛⎫+ ⎪⎝⎭,此时直线CD 平行于y 轴,又00ABx k p =≠,所以直线AB 与直线CD 不垂直,与题设矛盾.所以当00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点(0,2)M p -适合题意.评注:第(1)问背景就是阿基米德三角形性质1的应用.3.【解析】(1)依题意2d ==,解得1c =(负值舍去),所以抛物线C 的方程为24x y =.(2)设点()11,A x y ,()22,B x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=.所以抛物线C 在点A 处的切线PA 的方程为()1112x y y x x -=-,即2111122x y x y x =+-.因为21114y x =,所以1112x y x y =-.因为点()00,P x y 在切线1l 上,所以10012x y x y =-①.同理,20022xy x y =-②.综合①②得,点()11,A x y ,()22,B x y 的坐标都满足方程002xy x y =-.因为经过()11,A x y ,()22,B x y 两点的直线是唯一的,所以直线AB 的方程为002xy x y =-,即02x x y --020y =.(3)由抛物线的定义可知1||1AF y =+,2||1BF y =+,所以()()121212||||111AF BF y y y y y y ⋅=++=+++,联立2004,220,x y x x y y ⎧⎪⎨⎪=-=⎩-.消去x 得()22200020y y x y y +-+=,所以212002y y x y +=-,2120y y y =.因为0020x y --=,所以()222222000000019||||21221225222AF BF y y x y y y y y y ⎛⎫⋅=-++=-+++=++=++⎪⎝⎭因此当012y =-时,||||AF BF ⋅取得最小值92.评注:第(2)问的背景就是阿基米德三角形性质5的应用,因为()00,P x y 为直线l 上的定点,所以AB 的方程为()002x x y y =+.4.【解析】(1)因为抛物线21:4C x y =上任意一点(,)x y 的切线斜率为2x y '=,且切线MA 的斜率为12-,所以A 点坐标为11,4⎛⎫- ⎪⎝⎭,故切线MA 的方程为11(1)24y x =-++.因为点()01M y -在切线MA 及抛物线2C 上,于是0113(2244y -=-+=-①,20(12)32222y p p-=-=-②.由①②得2p =.(2)设(,)N x y ,211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,12x x ≠.由N 为线段AB 中点知122x x x +=③,22128x x y +=④,切线MA ,MB 的方程为()211124x x y x x =-+⑤,()222224x x y x x =-+⑥.由⑤⑥得MA ,MB 的交点()00,M x y 的坐标为1202x x x +=,1204x x y =.因为点()00,M x y 在2C 上,即2004x y =-,所以2212126x x x x +=-⑦.由③④⑦得243x y =,0x ≠,当12x x =时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足243x y =,因此AB 中点N 的轨迹方程为243x y =.练习巩固1.【解析】(1)设过点C 的直线方程为y kx c =+,所以2(0)x kx c c =+>,即20x kx c --=,设()11,A x y ,()22,B x y ,则有12x x k +=,12x x c =-,()11,OA x y = ,()22,OB x y = .因为2OA OB ⋅=,所以12122x x y y +=,即()()12122x x kx c kx c +++=,)22121212(2x x k x x kc x x c ++++=,所以222c k c kc k c --+⋅+=,即220c c --=,解得2c =(舍去1c =-).(2)设过A 的切线为()111y y k x x -=-,2y x '=,所以112k x =,即2211111222y x x x y x x x =-+=-,它与y c =-的交点为11,22x c M c x ⎛⎫-- ⎪⎝⎭.又21212,,2222x x y y k k P c ⎛⎫++⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以,2k Q c ⎛⎫- ⎪⎝⎭,为12x x c =-,所以21c x x -=.则12,,222x x k M c c ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭,即点M 和点Q 重合,因此QA 为此抛物线的切线.(3)(2)的逆命题成立,因为若QA 为此抛物线的切线,则其方程为()21112y x x x x -=-,2112y x x x =-,与y c =-联立,可得点Q 横坐标为2211121211222x c x x x x x x x x -++===.由于PQ 与x 轴垂直,故点P 的横坐标也是为122x x +,即P 为线段AB 的中点.评注:第(2)问的背景就是设过点A ,B 的切线交于点M ,则ABM △为阿基米德三角形,由性质1可知点M的横坐标为122x x +,又弦AB 过定点(0,)C c ,点M 在直线y c =-上,故点M 的坐标为12,2x x c +⎛⎫- ⎪⎝⎭,所以点M 与点Q 重合,即QA 为此抛物线的切线.2.【解析】(1)设点A ,B 的坐标分别为()11,x y ,()22,x y ,因为1l ,2l 分别是抛物线C 在点A ,B 处的切线,所以直线1l 的斜率111x x x k y p ='==,直线2l 的斜率222x x xk y p='==.因为12l l ⊥,所以121k k =-,得212x x p =-(1).因为A ,B 是抛物线C 上的点,所以2112x y p =,2222x y p =,故直线1l 的方程为()21112x x y x x p p-=-,直线2l 的方程为()22222x x y x x p p -=-.由()()21112222,2,2x x y x x p p x x y x x p p ⎪-=⎧⎪⎪⎨=--⎪⎩-.计算得出12,2,2x x x p y ⎧⎪⎪⎨⎪⎪+=⎩=-.所以点D 的纵坐标为2p -.(2)因为F 为抛物线C 的焦点,所以0,2p F ⎛⎫ ⎪⎝⎭,则直线AF 的斜率为21221111122202AF x p p y x p p k x x px ---===-,直线BF 的斜率为22222222222202BF x p p y x p p k x x px ---===-.因为()()222222222112121212222AF BF x x p x x p x p x p k k px px px x ------=-=()()()()22212121212121212022x x x x p x x p x x p x x px x px x -+---+-===所以AF BF k k =,即A ,B ,F ,(3)不存在,证明如下.假设存在与题意相符的圆,设该圆的圆心为M ,根据题意得MA AD ⊥,MB BD ⊥,且||||MA MB =,由12l l ⊥,得AD BD ⊥,所以四边形MADB 是正方形,有||AD BD =.因为点D 的坐标为3,12⎛⎫- ⎪⎝⎭,所以12p -=-,得2p =,把点3,12D ⎛⎫- ⎪⎝⎭的坐标代入直线1l ,得211131422x x x ⎛⎫--=⨯- ⎪⎝⎭,解得(4,4)或11,4⎛⎫- ⎪⎝⎭.同理可求得点B 的坐标为(4,4)或11,4⎛⎫- ⎪⎝⎭.因为A ,B 是抛物线C 上的不同两点,不妨令11,4A ⎛⎫- ⎪⎝⎭,(4,4)B ,则||AD =||BD =可得||||AD BD ≠,这与||||AD BD =矛盾,所以经过A ,B 两点且与1l ,2l 都相切的圆不存在.3.【解析】(1)依题意,圆心的轨迹是以(0,2)N 为焦点,:2l y =-为准线的抛物线,因为抛物线焦点到准线距离等于4,所以圆心的轨迹是28x y =.(2)由已知(0,2)N ,设()11,A x y ,()22,B x y ,由AN = NB λ,得()()1122,2,2x y x y λ--=-,故()1212 22 x x y y λλ⎧⎪⎨⎪--=-⎩=①②,将①式两边平方并把2118x y =,2228x y =代入得212y y λ=③,解②③式得12y λ=,22y λ=,且有21222816x x x y λλ=-=-=-,抛物线方程为218y x =,求导得14y x '=,所以过抛物线上A ,B 两点的切线方程分别是()11114y x x x y =-+,()22214y x x x y =-+,即2111148y x x x =-,2221148y x x x =-,解出两条切线的交点Q 的坐标为121212,,2282x x x x x x ++⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.所以()()22221221212121111,4,402288x x NQ AB x x y y x x x x +⎛⎫⎛⎫⋅=-⋅--=---= ⎪ ⎪⎝⎭⎝⎭,因此NQ AB ⋅ 为定值,其值为0.评注:第(2)问的背景就是阿基米德三角形性质7的(2)的应用.4.【解析】(1)设椭圆E 的方程为22221x y a b+=,半焦距为c ,由已知条件,(0,1)F ,所以1b =,32c a =,222a b c =+,解得2a =,1b =,所以椭圆E 的方程为2214x y +=.(2)显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不合题意,故可设直线l 的方程为1y kx =+,()11,A x y ,()()2212,B x y x x ≠,与抛物线方程联立,消去y ,并整理得2440x kx --=,所以124x x =-.因为抛物线的方程为214y x =,求导得12y x '=,所以过抛物线上A ,B 两点的切线方程分别是()11112y y x x x -=-,222)1(2y y x x x -=-,即2111124y x x x =-,2221124y x x x =-,解得两条切线的交点M 的坐标为12,12x x +⎛⎫- ⎪⎝⎭.()2221212121,,4x x AB x x y y x x ⎛⎫-=--=- ⎪⎝⎭,21,22x x MF +⎛⎫=- ⎪⎝⎭,22222121022x x x x AB MF --⋅=-+= ,0AB MF ⋅= ,所以AB MF⊥(3)假设存在点M '满足题意,由(2)知点M '必在直线1y =-上,又直线1y =-与椭圆有唯一交点,故M '的坐标为(0,1)-.设过点M '且与抛物线C 相切的直线方程为()00012y y x x x -=-,其中点()00,x y 为切点,令0x =,1y =-,得()2000111042x x x --=-,解得02x =或02x =-,故不妨取(2,1)A '-,(2,1)B ',即直线A B ''过点F .综上所述,椭圆E 上存在一点(0,1)M '-,经过点M '作抛物线C 的两条切线M A '',M B ''(A ',B '为切点),能使直线A B ''过点F ,此时,两切线的方程分别为1y x =--和1y x =-.评注:第(2)问的背景就是阿基米德三角形性质7的(2)的应用.。

圆锥曲线统一性质(动态图示)

圆锥曲线统一性质(动态图示)

目录一、几个统一定义1.椭圆、双曲线、抛物线的统一定义一2.椭圆、双曲线、抛物线的统一定义二圆锥曲线动态结构135例众所周知圆锥曲线来源于圆锥,其定义简洁而明快,然而却有非常丰富的几何、代数性质,更让世人折服的是还有这么多统一的性质,本人通过几何画板的探索与归纳初步整理了135条性质,归类为四十六个统一性质,并附上相应的动画课件,列举如下:二、与焦半径相关的问题3.椭圆、双曲线、抛物线的切线与焦半径的性质(准线作法)4.椭圆、双曲线、抛物线的焦点在切线上射影的性质5.椭圆、双曲线、抛物线的焦半径圆性质6.椭圆、双曲线、抛物线的焦点弦直径圆性质7.椭圆、双曲线、抛物线焦点三角形内切圆性质三、与焦点弦相关的问题8.椭圆、双曲线、抛物线的焦点弦性质(定值1)9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2)10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3)11.椭圆、双曲线、抛物线的焦点弦性质1(中点共线)12.椭圆、双曲线、抛物线的焦点弦性质2(三点共线)13.椭圆、双曲线、抛物线的焦点弦性质3(对焦点直张角)14.椭圆、双曲线、抛物线的相交焦点弦与准线关系15.椭圆、双曲线、抛物线的相交焦点弦与准线关系(角平分线)16.椭圆、双曲线、抛物线的相交弦与准线关系推广17.椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值18.椭圆、双曲线、抛物线的焦半径向量模的比之和为定值四、相交弦的蝴蝶特征19.椭圆、双曲线、抛物线的相交弦蝴蝶定理一20.椭圆、双曲线、抛物线的相交弦蝴蝶定理二五、切点弦的相关问题21.椭圆、双曲线、抛物线的切点弦性质1(等比中项)22.椭圆、双曲线、抛物线的切点弦性质2(倒数和2倍)23.椭圆、双曲线、抛物线的切点弦性质3(外项积定值)24.椭圆、双曲线、抛物线的切点弦性质4(平行线族)25.椭圆、双曲线、抛物线的切点弦性质5(切点弦过定点)六、等角问题26.椭圆、双曲线、抛物线的等角定理一27.椭圆、双曲线、抛物线的等角定理二28.椭圆、双曲线、抛物线的对称点共线29.椭圆、双曲线、抛物线的焦点对切线张角性质30.椭圆、双曲线、抛物线的共轭弦性质七、与动弦中点相关的问题31.圆、椭圆、双曲线中点弦与中心性质32.圆、椭圆、双曲线切线与半径的斜率积为定值(中点弦的极限状态)33.椭圆、双曲线、抛物线的动弦中垂线性质34.椭圆、双曲线、抛物线的定向弦中点轨迹35.椭圆、双曲线、抛物线的定点弦中点轨迹八、数量积定值问题36.椭圆、双曲线、抛物线的焦点弦张角向量点积为定值37.椭圆、双曲线、抛物线的定点弦张角向量点积为定值九、其他重要性质38.圆锥曲面光线反射路径的性质39.椭圆、双曲线、抛物线的切线与割线性质40.椭圆、双曲线、抛物线的直周角性质41.椭圆、双曲线的90度的中心角性质42.圆、椭圆、双曲线上动点对直径端点的斜率积为定值43.椭圆、双曲线、抛物线的顶点对垂直弦连线交点轨迹对偶44.椭圆、双曲线、抛物线准线上点对焦点弦端点及焦点斜率成等差45.椭圆、双曲线、抛物线的焦点与切线的距离性质46.椭圆、双曲线、抛物线的中心与共轭点距离等积问题探究1动点P 在圆A :22()4x y λ++=上运动,定点(,0)B λ,则 (1)线段QB 的垂直平分线与直线QA 的交点P 的轨迹是什么?(2)若BM tMQ =u u u u r u u u u r,直线l 过点M ,与直线QA 的交于点P ,则点P 轨迹又是什么?实验成果动态课件定圆上一动点与圆内一定点的垂直平分线与其半径的交点的轨迹是椭圆 备用课件定圆上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是双曲线 备用课件定直线(无穷大定圆)上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是抛物线 备用课件问题探究2已知定点(1,0)A -,定直线1l :3x =-,动点N 在直线1l 上,过点N 且与1l 垂直的直线2l 上有一动点P ,满足PAPNλ=,请讨论点P 的轨迹类型. 实验成果动态课件动点到一定点与到一定直线的距离之比为小于1的常数,则动点的轨迹是椭圆备用课件动点到一定点与到一定直线的距离之比为大于1的常数,则动点的轨迹是双曲线备用课件动点到一定点与到一定直线的距离之比为等于1的常数,则动点的轨迹是抛物线备用课件3.椭圆、双曲线、抛物线的切线与焦半径的性质(准线作法)问题探究3已知两定点(1,0),(1,0)A B -,动点P 满足条件8PA PB +=,另一动点Q满足0,()0PA PB QB PB QP PA PB•=•+=u u u r u u u ru u u r u u u r u u u r u u u r u u u r ,求动点Q 的轨迹方程.实验成果动态课件椭圆上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为椭圆相应之准线备用课件双曲线上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为双曲线相应之准线备用课件抛物线上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为抛物线之准线备用课件4.椭圆、双曲线、抛物线的焦点在切线上射影的性质问题探究4已知两定点(2,0),(2,0)A B -,动点P 满足条件2PA PB -=,动点Q 满足()0PA PBQB PA PB•+=u u u r u u u r u u u r u u u r u u u r ,()0PA PB QP PA PBλ++=u u u r u u u ru u u r u u u r u u u r ,求动点Q 的轨迹方程.实验成果动态课件焦点在椭圆切线上的射影轨迹是以长轴为直径的圆备用课件焦点在双曲线切线上的射影轨迹是以实轴为直径的圆备用课件焦点在抛物线切线上的射影轨迹是切抛物线于顶点处的直线(无穷大圆) 备用课件5.椭圆、双曲线、抛物线的焦半径圆性质问题探究51.已知动点P在椭圆22143x y+=上,F为椭圆之焦点,0PM FM+=u u u u r u u u u r,探究2OM PF+u u u u r u u u r是否为定值2.已知点P在双曲线22143x y-=上,F为双曲线之焦点,0PM FM+=u u u u r u u u u r,探究2OM PF-u u u u r u u u r是否为定值实验成果动态课件椭圆中以焦半径为直径的圆必与长轴为直径的圆相切(此圆与椭圆内切)备用课件双曲线中以焦半径为直径的圆必与实轴为直径的圆相切(此圆与双曲线外切)备用课件抛物线中以焦半径为直径的圆必与切于抛物线顶点处的直线相切(此圆无穷大与曲线外切)备用课件6.椭圆、双曲线、抛物线的焦点弦直径圆性质问题探究6过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅PB PA(1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅FP FB FA λ?若存在,求出λ的值,若不存在,请说明理由.实验成果动态课件椭圆中以焦点弦为直径的圆必与准线相离备用课件双曲线中以焦点弦为直径的圆必与准线相交备用课件抛物线中以焦点弦为直径的圆必与准线相切备用课件7.椭圆、双曲线、抛物线焦点三角形内切圆性质问题探究71.已知动点P在椭圆22143x y+=上,12,F F为椭圆之左右焦点,点G为△12F PF的内心,试求点G的轨迹方程.2.已知动点P在双曲线22143x y-=上,12,F F为双曲线之左右焦点,圆G是△12F PF的内切圆,探究圆G是否过定点,并证明之.实验成果动态课件椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆备用课件双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)备用课件抛物线中焦点三角形(另一焦点在无穷远处)的内切圆圆心轨迹是以原焦点为顶点的抛物线备用课件8.椭圆、双曲线、抛物线的焦点弦性质(定值1)问题探究8已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=•u u u r u u u r u u u r恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式)实验成果动态课件椭圆的焦点弦的两个焦半径倒数之和为常数11112||||AF BF ep+= 备用课件双曲线的焦点弦的两个焦半径倒数之和为常数AB 在同支11112||||AF BF ep += AB 在异支11112||||||AF BF ep-= 备用课件抛物线的焦点弦的两个焦半径倒数之和为常数112||||AF BF ep+=备用课件9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2)问题探究9已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=•u u u r u u u r u u u r u u u r恒成立.并由此求四边形ABCD 面积的最小值和最大值.实验成果动态课件椭圆互相垂直的焦点弦倒数之和为常数epe CD AB 22||1||12-=+ 备用课件双曲线互相垂直的焦点弦倒数之和为常数epe CD AB 2|2|||1||12-=+备用课件抛物线互相垂直的焦点弦倒数之和为常数epe CD AB 22||1||12-=+备用课件10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3)问题探究10已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=u u u r u u u u r恒成立?实验成果动态课件设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点)备用课件设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点)备用课件设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点)备用课件问题探究11已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线1l 交椭圆于A ,B 两点,直线2l :4x =-交x 轴于点G ,点,A B 在直线2l 上的射影分别是,N M ,设直线,AM BN 的交点为D ,是否存在实常数λ,使1GD DF λ=u u u r u u u u r恒成立.实验成果动态课件椭圆的焦点弦的端点在相应准线上的投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件双曲线的焦点弦的端点在相应准线上投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件抛物线的焦点弦的端点在相应准线上投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件问题探究12已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线1l 交椭圆于A ,B 两点, ,C D 分别为椭圆的左、右顶点,动点P 满足,,PA AD PC CB λμ==u u u r u u u r u u u r u u u r试探究点P 的轨迹.实验成果动态课件椭圆焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线备用课件 双曲线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线备用课件抛物线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线(抛物线的D 点在无穷远处).备用课件13.椭圆、双曲线、抛物线的焦点弦性质3(对焦点直张角)问题探究13已知双曲线22131x y -=,1F 为双曲线之左焦点,过点1F 的直线1l 交双曲线于A ,B 两点, ,C D 分别为双曲线的左、右顶点,动点P 满足11,,PA AD PC CB λμ==u u u r u u u r u u u r u u u r 动点Q 满足22,,QA AC QB BD λμ==u u u r u u u r u u u r u u u r试探究1PF Q ∠是否为定值.实验成果动态课件椭圆焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则11NF MF ⊥备用课件双曲线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则11NF MF ⊥备用课件抛物线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则NF MF ⊥(抛物线的D 点在无穷远处)备用课件14.椭圆、双曲线、抛物线的相交焦点弦与准线关系问题探究14已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,直线2l :4x =-,直线AD 交直线2l 于点P ,试判断点P 、C 、B 是否三点共线,并证明之.实验成果动态课件椭圆的任意两焦点弦端点所在直线交点的轨迹是准线备用课件本性质还可解释圆也有准线(在无穷远处), 因为当焦点逐步向中心靠拢时准线逐步外移双曲线的任意两焦点弦端点所在直线交点的轨迹是准线备用课件抛物线的任意两焦点弦端点所在直线交点的轨迹是准线备用课件15.椭圆、双曲线、抛物线的相交焦点弦与准线关系(角平分线)问题探究15已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,直线3l :4x =-,直线AD 交直线3l 于点P ,试证明11PF A PF D ∠=∠.实验成果动态课件椭圆的任意两焦点弦端点所在直线交点必在准线上且交点与焦点的连线平分2AF C ∠备用课件双曲线的任意两焦点弦端点所在直线交点必在准线上且交点和焦点的连线平分1AF C ∠备用课件抛物线的任意两焦点弦端点所在直线交点必在准线上且交点和焦点的连线平分AF D ∠备用课件16.椭圆、双曲线、抛物线的相交弦与准线关系推广问题探究16已知椭圆22184x y +=,过点(2,0)N 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,设直线AD 与直线CB 交于点P ,试证明点P 的轨迹为直线4x =.实验成果动态课件过椭圆长轴上任意一点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线ta x 2=备用课件过双曲线实轴上任意一点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线ta x 2=备用课件过抛物线对称轴上任意一定点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线t x -=备用课件17.椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值问题探究17已知椭圆22184x y +=,点1F 为椭圆之左焦点,过点1F 的直线1l 分别交椭圆于A ,B 两点,设直线AB 与y 轴于点M ,11,,MA AF MB BF λμ==u u u r u u u r u u u r u u u r试求λμ+的值.实验成果动态课件椭圆的焦点弦所在直线被曲线及短轴直线所分比之和为定值.备用课件双曲线的焦点弦所在直线被曲线及虚轴直线所分比之和为定值.备用课件过抛物线的焦点弦所在直线被曲线及顶点处的切线所分比之和为定值. 备用课件18.椭圆、双曲线、抛物线的焦半径向量模的比之和为定值问题探究18已知方向向量为(1,3)e =r 的直线l 过点(0,23)A -和椭圆2222:1x y C a b+=(0)a b >>的焦点,且椭圆C 的中心O 和椭圆的右准线上的点B 满足:0,OB e AB AO •==u u u r r u u u r u u u r.⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点12,F F 的弦分别为,ES ET ,设111,EF FS λ=u u u r u u u r 222EF F T λ=u u u u r u u u r,求12λλ+的值.实验成果动态课件过椭圆上任点A 作两焦点的焦点弦AC ,AB ,其共线向量比之和为定值.即1112222122121AF m F B AF m F B e m m e →→→→==++==-定值备用课件过双曲线上任点A 作两焦点的焦点弦AC ,AB ,其共线向量比之和为定值.即1112222122121AF m F B AF m F B e m m e→→→→==++==-定值备用课件(注:图中测算不是向量,故中间一式用的是差)由于抛物线的开放性,焦点只有一个,故准线相应地替换了焦点,即PA=m 1AF PB=m 2BF备用课件m 1+m 2=019.椭圆、双曲线、抛物线的相交弦蝴蝶定理一问题探究19已知椭圆22184x y +=,过点T(1,0)的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,设直线3l 过点T 且3l x ⊥轴,交12,l l 于点N ,M ,试证明∣TN ∣=∣TM ∣.实验成果动态课件过椭圆长轴所在直线上任意一点 T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件过双曲线实轴所在直线上任意一点T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件过抛物线对称轴上任意一点T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件20.椭圆、双曲线、抛物线的相交弦蝴蝶定理二问题探究20已知椭圆22184x y +=,过点(0,1)T 的直线12,l l 分别交椭圆于1122(,),(,)A x y B x y 两点和3344(,),(,)C x y D x y 两点,设直线3l 过点T 且3l x ⊥轴,交12,l l 于点N ,M ,试证明1324y y y y -=-.实验成果动态课件过椭圆短轴上任意一点M 的两条弦端点作两条直线,一定截过M 点与对称轴垂直的直线为相等的线段PM =MQ备用课件过双曲线虚轴上任意一点N (0,t )的两条弦端点作两条直线,一定截过N 点与对称轴垂直的直线为相等的线段PM =MQ备用课件过抛物线对称轴上任意一点M (0,t )的两条弦端点作两条直线,一定截过M 点与对称轴垂直的直线为相等的线段PM =MQ备用课件21.椭圆、双曲线、抛物线的切点弦性质1(等比中项)问题探究21已知椭圆22184x y +=,过原点(0,0)O ,点(2,1)T 的直线l 交椭圆于点N ,过点T 的中点弦为AB ,过A ,B 分别作切线12,l l 且交于点P ,求证:2||||||OT OP ON =.实验成果动态课件椭圆中心O 与点00(,)P x y 的连线交椭圆于N ,交切点弦于点Q ,则2||||||OQ OP ON =.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线001Ax x By y +=沿直线PO 作反向运动.备用课件双曲线中心O 与点00(,)P x y 的连线交双曲线于N ,交切点弦于点Q ,则2||||||OQ OP ON =.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线001Ax x By y +=沿直线PO 作反向运动(直线保持平行).备用课件设过点P 与抛物线对称轴平行(中心在对称轴方向的无穷远处)的直线交抛物线于N ,交切点弦于点Q ,则2||||||O Q O P O N ∞∞∞=.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线00()y y p x x =+作反向运动(直线保持平行).备用课件22.椭圆、双曲线、抛物线的切点弦性质2(倒数和2倍)问题探究22过抛物线2y x =外一点(2,0)P 作抛物线的两条切线PA ,PB ,切点分别为A ,B ,另一直线l 过点P 与抛物线交于两点C 、D ,与直线AB 交于点Q ,试探求||PQ PQPC PD +的值是否为定值.实验成果动态课件椭圆221Ax By +=外一点P 的任一直线与椭圆的两个交点为C 、D ,与椭圆切点弦001Ax x By y +=的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件双曲线221Ax By +=外一点P 的任一直线与双曲线的两个交点为C 、D ,与双曲线切点弦001Ax x By y +=的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件 过抛物线外一点P 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件23.椭圆、双曲线、抛物线的切点弦性质3(外项积定值)问题探究23已知椭圆22184x y +=,过点T (1,0)的直线1l ,2l 分别交椭圆于两点C 、D ,点Q 在直线l 上,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,试探求点Q 的轨迹.实验成果动态课件过椭圆221Ax By +=外一点P 的任一直线与椭圆的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦001Ax x By y +=,反之亦然. 备用课件过双曲线221Ax By +=外一点P 的任一直线与双曲线的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦001Ax x By y +=,反之亦然. 备用课件过抛物线外一点P 的任一直线与抛物线的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦,反之亦然. 备用课件24.椭圆、双曲线、抛物线的切点弦性质4(平行线族)问题探究24过抛物线2y x =外一点(2,0)P 作抛物线的两条切线PA ,PB ,切点分别为A ,B ,另一直线l :2x =与抛物线交于点N ,与直线AB 交于点Q ,求证:(1)N 点处的切线与直线AB 平行.(2)AQ QB =u u u r u u u r.实验成果动态课件椭圆221Ax By +=中心与椭圆外一点的直线与椭圆的交点处的切线平行于椭圆的切点弦001Ax x By y +=.备用课件双曲线221Ax By +=中心与双曲线外一点的直线与双曲线的交点处的切线平行于双曲线的切点弦001Ax x By y +=. 备用课件过抛物线中心(这中心在无穷远处)与抛物线外一点的直线与抛物线的交点处的切线平行于抛物线的切点弦. 备用课件25.椭圆、双曲线、抛物线的切点弦性质5(弦过定点)问题探究25过抛物线2y x =外一点(1,2)Q 作抛物线的中点弦AB (Q 为AB 中点),两条切线PA ,PB 交于点P ,过点P 作直线l ,且l ∥AB ,点G 是直线l 上的动点,过G 作抛物线的两条切线GC 、GD ,求证:直线CD 过定点.实验成果动态课件点T 是与椭圆221Ax By +=外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .备用课件点T 是与双曲线221Ax By +=外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .备用课件点T 是与抛物线22y px =外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .(PQ 平行对称轴)备用课件26.椭圆、双曲线、抛物线的等角定理一问题探究26已知椭圆22184x y +=,点1F 为椭圆之左焦点,过点1F 的直线1l 分别交椭圆于A ,B 两点,问是否在x 轴上存在一点P ,使得斜率0PA PB k k +=.实验成果动态课件椭圆准线与长轴的交点与焦半径端点连线所成角被长轴平分 备用课件双曲线准线与实轴的交点与焦半径端点连线所成角被实轴平分 备用课件抛物线准线与对称轴的交点与焦半径端点连线所成角被对称轴平分 备用课件27.椭圆、双曲线、抛物线的等角定理二问题探究27已知双曲线22131x y -=,过(,0)N t 点的直线1l 交双曲线于A ,B 两点,问是否在x 轴上存在一点P ,使得斜率0PA PB k k +=.实验成果动态课件过椭圆长轴上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被焦点所在直线平分. 备用课件过双曲线实轴所在直线上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被焦点所在直线平分.备用课件过抛物线对称轴上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被对称轴平分 备用课件28.椭圆、双曲线、抛物线的对称点共线问题探究28抛物线24y x =,直线l 过点(,0)F t 并交抛物线于M 、N ,若)0(>=λλFN MF ,直线x t =-与x 轴交于点E ,试探究:EN EM EF λ-与的夹角是否为定值.实验成果动态课件过点Q (T ,0)的任一直线交椭圆于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B ,2(,0)a P t三点共线.备用课件过点Q (T ,0)的任一直线交双曲线于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B , 2(,0)a P t三点共线.备用课件过点P (T ,0)的任一直线交椭圆于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B ,P ’(-t ,0)三点共线.备用课件29.椭圆、双曲线、抛物线的焦点对切线张角性质问题探究29过点(2,0)P 作抛物线24x y 的切线P A (斜率不为0),F 为焦点,研究斜率PF PA k k 与的关系.实验成果动态课件过椭圆外一点作椭圆的两切线与焦点连线所成的角相等.备用课件过双曲线外一点作双曲线的两切线与焦点连线所成的角相等.备用课件过抛物线外一点作抛物线的两切线与焦点(另一焦点在无穷远处)连线所成的角相等. 备用课件30.椭圆、双曲线、抛物线的共轭弦性质问题探究30过点(1,2)P 作抛物线24y x =的直线P A 、PB ,且斜率0PB PA k k =+. (1)探究直线AB 的斜率是否为定值.(2)试研究三角形P AB 的面积是否有最大值.实验成果动态课件过椭圆上一定点作倾角互补的两直线与椭圆的另两交点的连线的倾角为定值备用课件过双曲线上一定点作倾角互补的两直线与双曲线的另两交点的连线的倾角为定值 备用课件过抛物线上一定点作倾角互补的两直线与抛物线的另两交点的连线的倾角为定值 备用课件31.圆、椭圆、双曲线弦中点与中心性质问题探究31已知椭圆22184x y+=的动弦AB的中点为M,试研究斜率AB OMk k是否为定值(O为原点).实验成果动态课件圆的弦的斜率与其中点和圆中心连线的斜率积为定值1PA PBK K⋅=-备用课件椭圆的弦的斜率与其中点和椭圆中心连线的斜率积为定值22PA PBbK Ka⋅=-备用课件双曲线的弦的斜率与其中点和双曲线中心连线的斜率积为定值22PA PBbK Ka⋅=备用课件32.圆、椭圆、双曲线切线与半径的斜率积为定值(中点弦的极限状态)问题探究32已知点P为椭圆22184x y+=上的动点,设点P的切线斜率为k,试研究斜率OPk k是否为定值(O为原点).实验成果动态课件圆切线与半径的斜率积为定值1PO LK K⋅=-备用课件椭圆切线与切点和中心连线的斜率积为定值22PO LbK Ka⋅=-备用课件双曲线切线与切点和中心连线的斜率积为定值22PO LbK Ka⋅=备用课件。

圆锥曲线的弦对顶点张直角的一个定值性质

圆锥曲线的弦对顶点张直角的一个定值性质

圆锥曲线的弦对顶点张直角的一个定值性质刘才华(山东省泰安市宁阳第一中学ꎬ山东泰安271400)摘㊀要:文章通过对一道模拟试题的探究ꎬ得到一个圆锥曲线的弦对顶点张直角的一个定值性质.关键词:抛物线ꎻ椭圆ꎻ双曲线ꎻ直角ꎻ定值中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0095-03收稿日期:2023-04-05作者简介:刘才华ꎬ山东省泰安人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀已知抛物线C的方程为y2=2px(p>0)ꎬ焦点为F.已知点P在C上ꎬ且点P到点F的距离比它到y轴的距离大1.(1)试求出抛物线C的方程ꎻ(2)若抛物线C上存在两动点MꎬN(MꎬN在对称轴两侧)ꎬ满足OMʅON(O为坐标原点).过点F作直线交C于AꎬB两点ꎬ若ABʊMNꎬ线段MN上是否存在定点Eꎬ使得|EM| |EN||AB|=4恒成立?若存在ꎬ请求出点E的坐标ꎻ若不存在ꎬ请说明理由.这是一道高三年级模拟试题ꎬ我们通过探究ꎬ对试题作进一步的推广ꎬ得到圆锥曲线的弦对顶点张直角的一个定值性质ꎬ性质的证明需用到如下引理:引理1㊀设直线l与抛物线y2=2px(p>0)相交于AꎬB两点ꎬ则OMʅON(O为坐标原点)的充要条件是直线l过定点(2pꎬ0)[1].引理2㊀设椭圆C:x2a2+y2b2=1(a>b>0)的右顶点为Aꎬ直线l与椭圆交于CꎬD两点ꎬ则ACʅAD的充要条件是直线l过定点E(a(a2-b2)a2+b2ꎬ0)[2].引理3㊀设双曲线C:x2a2-y2b2=1(aꎬb>0)的右顶点为Aꎬ直线l与双曲线交于CꎬD两点ꎬ双曲线离心率eʂ2ꎬ则ACʅAD的充要条件是直线l过定点E(a(a2-b2)a2+b2ꎬ0).对于抛物线ꎬ我们有如下命题:命题1㊀在抛物线C:y2=2px(p>0)中ꎬ直线l与抛物线C交于两点MꎬN(MꎬN在对称轴两侧)ꎬ交x轴于点Eꎬ且OMʅON(O为坐标原点).过焦点F作直线l的平行线交抛物线C于AꎬB两点ꎬ则|EM| |EN||AB|=2p.证明㊀由题意及引理1知直线MN过定点E(2pꎬ0)ꎬ设过点E的直线方程为x=my+2pꎬ交抛物线于M(x1ꎬy1)ꎬN(x2ꎬy2).由x=my+2pꎬy2=2pxꎬ{得59y2-2pmy-4p2=0.则y1y2=-4p2.从而|EM| |EN|=1+m2|y1| 1+m2|y2|=(1+m2)|y1y2|=4(1+m2)p2.过F(p2ꎬ0)的直线方程为x=my+p2ꎬ交抛物线于A(x3ꎬy3)ꎬB(x4ꎬy4).由x=my+p2ꎬy2=2pxꎬìîíïïï得y2-2pmy-p2=0.则y3+y4=2pmꎬy3y4=-p2.进而|AB|=1+m2|y4-y3|=(1+m2)[(y3+y4)2-4y3y4]=2p(1+m2).所以|EM| |EN||AB|=4(1+m2)p22p(1+m2)=2p.命题1得证.对于椭圆ꎬ我们有如下命题:命题2㊀在椭圆C:x2a2+y2b2=1(a>b>0)中ꎬ直线l交椭圆C于两点MꎬN(MꎬN在对称轴两侧)ꎬ交x轴于点Eꎬ满足OMʅON(O为坐标原点).过右焦点F作直线l的平行线交C于AꎬB两点ꎬ椭圆的离心率为eꎬ椭圆的焦点到相应准线的距离为pꎬ则|EM| |EN||AB|=2ep(2-e2)2.证明㊀由题意及引理2知直线MN过定点E(a(a2-b2)a2+b2ꎬ0)ꎬ设过点E的直线方程为x=my+a(a2-b2)a2+b2ꎬ交椭圆于M(x1ꎬy1)ꎬN(x2ꎬy2)[3].由x=my+a(a2-b2)a2+b2ꎬx2a2+y2b2=1ꎬìîíïïïï消去xꎬ得(a2+b2)2(b2m2+a2)y2+2mab2(a4-b4)y-4a4b4=0.则y1y2=-4a4b4(b2m2+a2)(a2+b2)2ꎬ|EM| |EN|=1+m2|y1| 1+m2|y2|=4a4b4(1+m2)(b2m2+a2)(a2+b2)2.过点F(cꎬ0)的直线方程为x=my+cꎬ交椭圆于A(x3ꎬy3)ꎬB(x4ꎬy4).由x=my+cꎬx2a2+y2b2=1ꎬìîíïïï消去xꎬ得(b2m2+a2)y2+2cmb2y-b4=0.则y3+y4=-2cmb2b2m2+a2ꎬy3y4=-b4b2m2+a2.进而|AB|=1+m2|y4-y3|=(1+m2)[(y3+y4)2-4y3y4]=2ab2(1+m2)b2m2+a2.所以|EM| |EN||AB|=4a4b4(1+m2)(b2m2+a2)(a2+b2)2b2m2+a22ab2(1+m2)=2a3b2(a2+b2)2.由p=b2cꎬe=caꎬìîíïïïï得a=ep1-e2ꎬb2=e2p21-e2.ìîíïïïï69于是|EM| |EN||AB|=2ep(2-e2)2ꎬ命题2得证.对于双曲线ꎬ我们有如下命题:命题3㊀在双曲线C:x2a2-y2b2=1(aꎬb>0)中ꎬ直线l交双曲线C于两点MꎬN(MꎬN在对称轴两侧)ꎬ交x轴于点Eꎬ满足OMʅON(O为坐标原点).过右焦点F作直线l的平行线交C于AꎬB两点ꎬ双曲线的离心率为e且eʂ2ꎬ双曲线的焦点到相应准线的距离为pꎬ则|EM| |EN||AB|=2ep(2-e2)2.证明㊀由题意及引理3知直线MN过定点E(a(a2-b2)a2+b2ꎬ0)ꎬ设过点E的直线方程为x=my+a(a2-b2)a2+b2ꎬ交双曲线于M(x1ꎬy1)ꎬN(x2ꎬy2)[4].由x=my+a(a2-b2)a2+b2ꎬx2a2-y2b2=1ꎬìîíïïïï消去xꎬ得(a2+b2)2(b2m2-a2)y2+2mab2(a4-b4)y-4a4b4=0.则y1y2=-4a4b4(b2m2-a2)(a2+b2)2ꎬ|EM| |EN|=(1+m2|y1|) (1+m2|y2|)=4a4b4(1+m2)|b2m2-a2|(a2+b2)2.过点F(cꎬ0)的直线方程为x=my+cꎬ交双曲线于A(x3ꎬy3)ꎬB(x4ꎬy4).由x=my+cꎬx2a2-y2b2=1ꎬìîíïïï消去xꎬ得(b2m2-a2)y2+2cmb2y+b4=0.则y3+y4=-2cmb2b2m2-a2ꎬy3y4=b4b2m2-a2.进而|AB|=1+m2|y4-y3|=(1+m2)[(y3+y4)2-4y3y4]=2ab2(1+m2)|b2m2-a2|.所以|EM| |EN||AB|=4a4b4(1+m2)|b2m2-a2|(a2+b2)2.|b2m2-a2|2ab2(1+m2)=2a3b2(a2+b2)2.由p=b2cꎬe=caꎬìîíïïïï得a=epe2-1ꎬb2=e2p2e2-1.ìîíïïïï于是|EM| |EN||AB|=2ep(2-e2)2ꎬ命题3得证.注㊀注意到抛物线的离心率e=1ꎬ对于命题1也具有|EM| |EN||AB|=2ep(2-e2)2的形式ꎬ所以上述三个命题是圆锥曲线的一个统一的定值性质.参考文献:[1]张必平.弦对定点张直角的性质及其应用[J].中学数学月刊ꎬ2005(01):24-25.[2]解永良.圆锥曲线的弦对顶点张直角的一个性质[J].中学数学月刊ꎬ2005(12):28-29.[3]潘神龙.圆锥曲线对定点张直角弦的几何性质再探[J].数学通报ꎬ2016ꎬ55(11):59-63.[4]张青山.用圆锥曲线的光学性质来探究圆曲线对定点张直角的弦问题[J].数学通报ꎬ2016ꎬ55(01):57-58.[责任编辑:李㊀璟]79。

高考数学复习 圆锥曲线常用结论整理

高考数学复习   圆锥曲线常用结论整理

圆 锥 曲 线 常 用 结 论 整 理椭圆问题小结论:1.与椭圆22221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++ 2.与椭圆22221x y a b +=有相同的离心率的椭圆可设为()2222,0x y a b λλ+=>或()2222,0x y b aλλ+=> 3.(中点弦结论)直线l 与椭圆22221x y a b+=相交与()()1122,y ,,A x B x y 两点,其中点(),P x y 为线段AB的中点,则有:22AB OPb K K a⋅=-;若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+ 若椭圆方程为22221y x a b +=时,22AB OP a K K b⋅=-;4.(切线结论)若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.以000(,)P x y 为切点的切线斜率为2020b x k a y =-; 5.(切点弦结论)若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=.6. 椭圆的方程为22221x y a b+=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B 两点的任一点,则有22PA PB b K K a=-7.(焦点弦结论)设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122||=tan 2PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处12F PF θ∠=最大。

高中数学重要二级结论及典型例题

高中数学重要二级结论及典型例题

高中数学16个---------------二级结论结论一 奇函数的最值性质已知函数f(x)是定义在集合D 上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max +f(x)min =0,且若0∈D,则f(0)=0.例1 设函数22(1)sin ()1x xf x x ++=+的最大值为M,最小值为m,则M+m= .跟踪集训1.(1)已知函数2()ln(193)1f x x x =++,则1(lg 2)(lg )2f f + =( ) A.-1B.0C.1D.2(2)对于函数f(x)=asin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c 的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是......( )A.4和6 B.3和1C.2和4D.1和2结论二 函数周期性问题已知定义在R 上的函数f(x),若对任意的x∈R,总存在非零常数T,使得f(x+T)=f(x),则称f(x)是周期函数,T 为其一个周期.常见的与周期函数有关的结论如下:(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(2)如果f(x+a)=1()f x (a≠0),那么f(x)是周期函数,其中的一个周期T=2a. (3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a. (4)如果f(x)=f(x+a)+f(x-a)(a≠0),那么f(x)是周期函数,其中的一个周期T=6a. 例2 已知定义在R 上的函数f(x)满足f 3()2x + =-f(x),且f(-2)=f(-1)=-1, f(0)=2,则f(1)+f(2)+f(3)+…+f(2 014)+f(2 015)=( )A.-2B.-1C.0D.1跟踪集训2.(1)奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A.-2B.-1C.0D.1(2)定义在R 上的函数f(x)满足f(x)= 2log (1),0,(1)(2),0,x x f x f x x -≤⎧⎨--->⎩则f(2 014)=( )A.-1B.0C.1D.2结论三 函数的对称性已知函数f(x)是定义在R 上的函数.(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 2a b+对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a 对称.(2)若f(a+x)+f(b-x)=c,则y=f(x)的图象关于点(,)22a b c+中心对称.特别地,若f(a+x)+f(a-x)=2b 恒成立,则y=f(x)的图象关于点(a,b)中心对称.例3 已知定义在R 上的函数f(x)满足f(x+1)=f(1-x),且在[1,+∞)上是增函数,不等式f(ax+2)≤f(x -1)对任意的x∈1[,1]2恒成立,则实数a 的取值范围是( )A.[-3,-1] B.[-2,0] C.[-5,-1]D.[-2,1]跟踪集训3.(1)若偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)= .(2)函数y=f(x)对任意x∈R 都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2 016)+f(2 017)+f(2 018)的值为 . 结论四 反函数的图象与性质若函数y=f(x)是定义在非空数集D 上的单调函数,则存在反函数y=f -1(x).特别地,y=a x与y=log a x(a>0且a≠1)互为反函数,两函数图象在同一直角坐标系内关于直线y=x 对称,即(x 0, f(x 0))与(f(x 0),x 0)分别在函数y=f(x)与反函数y=f -1(x)的图象上.例4 设点P 在曲线y=12e x上,点Q 在曲线y=ln(2x)上,则|PQ|的最小值为( ) A.1-ln 2B.2(1-ln 2)C.1+ln 2D.2(1+ln 2)跟踪集训4.若x 1满足2x+2x=5,x 2满足2x+2log 2(x-1)=5,则x 1+x 2=( )A.52 B.3 C. 72D.4 结论五 两个对数、指数经典不等式 1.对数形式:1-11x +≤ln(x+1)≤x(x>-1),当且仅当x=0时,等号成立. 2.指数形式:e x≥x+1(x∈R),当且仅当x=0时,等号成立.例5 设函数f(x)=1-e -x.证明:当x>-1时, f(x)≥1x x +. 跟踪集训5.(1)已知函数f(x)=1ln(1)x x+-,则y=f(x)的图象大致为( )(2)已知函数f(x)=e x,x∈R.证明:曲线y=f(x)与曲线y=12x 2+x+1有唯一公共点.结论六 三点共线的充要条件设平面上三点O,A,B 不共线,则平面上任意一点P 与A,B 共线的充要条件是存在实数λ与μ,使得OP OA OB λμ=+,且1λμ+=.特别地,当P 为线段AB 的中点时, 1122OP OA OB =+.例6 已知A,B,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式20x OA xOB BC ++=成立的实数x 的取值集合为( )A.{-1} B. ∅ C.{0} D.{0,-1}跟踪集训6.在梯形ABCD 中,已知AB∥CD,AB=2CD,M、N 分别为CD 、BC 的中点.若AB AM AN λμ=+,则λμ+= .结论七 三角形“四心”的向量形式设O 为△ABC 所在平面上一点,角A,B,C 所对的边长分别为a,b,c,则 (1)O 为△ABC 的外心⇔ ||||||2sin aOA OB OC A===.(2)O 为△ABC 的重心⇔ 0OA OB OC ++=.(3)O 为△ABC 的垂心⇔ OA OB OB OC OC OA ⋅=⋅=⋅.(4)O 为△ABC 的内心⇔ 0aOA bOB cOC ++=. 例7 已知A,B,C 是平面上不共线的三点,动点P 满足1[(1)(1)(12)],3OP OA OB OC R λλλλ=-+-++∈,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点跟踪集训7.(1)P 是△ABC 所在平面内一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的( ) A.外心 B.内心 C.重心 D.垂心(2)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足,(0,)2OB OCOP AP λλ+=+∈+∞,则P 点的轨迹一定通过△ABC 的( )A.外心 B.内心 C.重心 D.垂心 (3)O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足(),[0,)||||AB ACOP OA AB AC λλ=++∈+∞,则P 的轨迹一定通过△ABC 的( )A.外心 B.内心 C.重心D.垂心结论八 等差数列1.若S m ,S 2m ,S 3m 分别为等差数列{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.2.若等差数列{a n }的项数为2m,公差为d,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m(a m +a m+1),S 偶-S 奇=md,1m m S a S a +=奇偶. 3.若等差数列{a n }的项数为2m-1,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m-1=(2m-1)a m ,S 奇=ma m ,S 偶=(m-1)a m ,S 奇-S 偶=a m ,1S mS m =-奇偶. 例8 (1)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m=( ) A.3 B.4 C.5D.6(2)等差数列{a n }的前n 项和为S n ,已知a m-1+a m+1- 2m a =0,S 2m-1=38,则m 等于 . 跟踪集训8.(1)等差数列{a n }的前n 项和为S n ,若S 10=20,S 20=50,则S 30= .(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d= .结论九 等比数列已知等比数列{a n },其公比为q,前n 项和为S n .(1)数列1{}n a 也为等比数列,其公比为1q. (2)若q=1,则S n =na 1,且{a n }同时为等差数列.(3)若q≠1,则S n =11111(1)()11111n n n n a a q a q a a aq q q q q q qλλλ--==-=-=-----. (4)S n ,S 2n -S n ,S 3n -S 2n ,…仍为等比数列(q≠-1或q=-1且n 为奇数),其公比为q n.(5)S n ,2n n S S , 32nnS S ,…仍为等比数列,公比为2n q .例9 (1)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列1{}na 的前5项和为( )A.158或5 B.3116或5 C.3116D.158(2)设等比数列{a n }的前n 项和为S n ,若63S S =3,则96SS =( )A.2 B.73C.83D.3跟踪集训9.在等比数列{a n }中,公比为q,其前n 项和为S n .已知S 5=3116,a 3= 14,则1234511111a a a a a ++++= . 结论十 多面体的外接球和内切球1.长方体的体对角线长d 与共点三条棱长a,b,c 之间的关系为d 2=a 2+b 2+c 2;若长方体外接球的半径为R,则有(2R)2=a 2+b 2+c 2.2.棱长为a 的正四面体内切球半径r=612a ,外接球半径R= 64a . 例10 已知一个平放的各棱长为4的三棱锥内有一个小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的78时,小球与该三棱锥的各侧面均相切(与水面也相切),则小球的表面积等于( )A. 76π B. 43π C. 23π D. 2π跟踪集训10.(1)已知直三棱柱的底面是等腰直角三角形,直角边长是1,且其外接球的表面积是16π,则该三棱柱的侧棱长为( )A. 14 B. 23 C. 46D.3(2)已知正三角形ABC 的三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A.74π B.2π C. 94πD.3π 结论十一 焦点三角形的面积公式1.在椭圆22221x y a b+= (a>b>0),F 1,F 2分别为左、右焦点,P 为椭圆上一点,则△PF 1F 2的面积122tan2PF F Sb θ=,其中θ=∠F 1PF 2.2.在双曲线22221x y a b -=1(a>0,b>0)中,F 1,F 2分别为左、右焦点,P 为双曲线上一点,则△PF 1F 2的面积122tan2PF F b Sθ=,其中θ=∠F 1PF 2.例11 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=3π,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B. 233C.3D.2跟踪集训11.(1)如图,F 1,F 2是椭圆C 1: 2214x y +=与双曲线C 2的公共焦点,A,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D. 62(2)已知F 1,F 2是椭圆C: 22221x y a b+= (a>b>0)的两个焦点,P 为椭圆C 一上点,且12PF PF ⊥.若△PF 1F 2的面积为9,则b= . 结论十二 圆锥曲线的切线问题1.过圆C:(x-a)2+(y-b)2=R 2上一点P(x 0,y 0)的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)=R 2.2.过椭圆22221x y a b +=上一点P(x 0,y 0)的切线方程为00221x x y y a b+=.3.已知点M(x 0,y 0),抛物线C:y 2=2px(p≠0)和直线l:y 0y=p(x+x 0).(1)当点M 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点M在抛物线C外时,直线l与抛物线C相交,其中两交点与点M的连线分别是抛物线的切线,即直线l为切点弦所在的直线.(3)当点M在抛物线C内时,直线l与抛物线C相离.例12 已知抛物线C:x2=4y,直线l:x-y-2=0,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,当点P(x0,y0)为直线l上的定点时,求直线AB的方程.跟踪集训12.(1)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( ) A.2x+y-3=0 B.2x-y-3=0 C.4x-y-3=0 D.4x+y-3=0(2)设椭圆C:22143x y+=,点P3(1,)2,则椭圆C在点P处的切线方程为.结论十三圆锥曲线的中点弦问题1.在椭圆E:22221x ya b+= (a>b>0)中:(1)如图①所示,若直线y=kx(k≠0)与椭圆E交于A,B两点,过A,B两点作椭圆的切线l,l',有l∥l',设其斜率为k0,则k0·k=22ba -.(2)如图②所示,若直线y=kx与椭圆E交于A,B两点,P为椭圆上异于A,B的点,若直线PA,PB的斜率存在,且分别为k1,k2,则k1·k2=22ba -.(3)如图③所示,若直线y=kx+m(k≠0且m≠0)与椭圆E交于A,B两点,P为弦AB的中点,设直线PO的斜率为k0,则k0·k=22ba -.[提醒]该结论常变形为:以椭圆22221x y a b +=内任意一点(x 0,y 0)为中点的弦AB 的斜率k=2020x b a y -⋅.2.在双曲线E: 22221x y a b -= (a>0,b>0)中,类比上述结论有:(1)k 0·k=22b a .(2)k 1·k 2=22b a .(3)k 0·k=22b a. 例13 已知椭圆E: 22221x y a b+= (a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB的中点坐标为(1,-1),则椭圆E 的方程为( )A.2214536x y += B.2213627x y += C. 2212718x y += D.221189x y += 跟踪集训13.(1)椭圆C: 22143x y +=的左,右顶点分别为A 1,A 2,点P 在椭圆上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是 .(2)如图,在平面直角坐标系xOy 中,过坐标原点的直线交椭圆22142x y +=于P,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA 的斜率为k.对任意k>0,求证:PA⊥PB.结论十四圆锥曲线中的一类定值问题在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P(非顶点)与曲线上的两动点A,B满足直线PA 与PB的斜率互为相反数(倾斜角互补),则直线AB的斜率为定值.图示条件结论已知椭圆22221x ya b+= (a>b>0),定点P(x0,y0)(x0y0≠0)在椭圆上,A,B是椭圆上的两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0 直线AB的斜率k AB为定值22b xa y已知双曲线22221x ya b-= (a,b>0),定点P(x0,y0)(x0y0≠0)在双曲线上,A,B是双曲线上的两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0 直线AB的斜率k AB为定值22b xa y-已知抛物线y2=2px(p>0),定点P(x0,y0)(x0y0≠0)在抛物线上,A,B是抛物线上两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0 直线AB的斜率k AB为定值py-例14 已知抛物线C:y2=2x,定点P(8,4)在抛物线上,设A,B是抛物线上的两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0.证明:直线AB的斜率k AB为定值,并求出该定值.跟踪集训14.已知椭圆C:22143x y+=,A为椭圆上的定点且坐标为31,2(),E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数.证明:直线EF的斜率为定值,并求出这个定值.结论十五圆锥曲线中的一类定点问题若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x ya b+= (a>b>0)上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点(a,0),则直线l AB过定点2222(,0)a baa b-⋅+.同理,当以AB为直径的圆过左顶点(-a,0)时,直线l AB过定点2222(,0)a baa b--⋅+.(2)对于双曲线22221x ya b-= (a>0,b>0)上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点(a,0),则直线l AB过定点2222(,0)a baa b+⋅-.同理,对于左顶点(-a,0),则定点为2222(,0)a baa b+-⋅-.(3)对于抛物线y 2=2px(p>0)上异于顶点的两动点A,B,若0OA OB ⋅=,则弦AB 所在直线过点(2p,0).同理,抛物线x 2=2py(p>0)上异于顶点的两动点A,B,若OA OB ⊥,则直线AB 过定点(0,2p).例15 已知抛物线y 2=2px(p>0)上异于顶点的两动点A,B 满足以AB 为直径的圆过顶点.求证:AB 所在的直线过定点,并求出该定点的坐标.跟踪集训15.已知椭圆22143x y +=,直线l:y=kx+m 与椭圆交于A,B 两点(A,B 不是左、右顶点),且以AB 为直径的圆过椭圆的右顶点.求证:直线l 过定点,并求该定点的坐标.结论十六 抛物线中的三类直线与圆相切问题AB 是过抛物线y 2=2px(p>0)焦点F 的弦(焦点弦),过A,B 分别作准线l:2p-的垂线,垂足分别为A 1,B 1,E 为A 1B 1的中点.(1)如图①所示,以AB 为直径的圆与准线l 相切于点E.(2)如图②所示,以A 1B 1为直径的圆与弦AB 相切于点F,且|EF|2=|A 1A|·|BB 1|.(3)如图③所示,以AF 为直径的圆与y 轴相切.例16 过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M,N 两点,自M,N 向直线l:x=-a 作垂线,垂足分别为M 1,N 1.当a=2p时,求证:AM 1⊥AN 1.跟踪集训16.已知抛物线C:y 2=8x 与点M(-2,2),过C 的焦点且斜率为k 的直线与C 交于A,B 两点,若0MA MB ⋅=,则k= .答案全解全析结论一 奇函数的最值性质跟踪集训1.(1)D 令g(x)=ln(-3x),x∈R,则g(-x)=ln(+3x),因为g(x)+g(-x)=ln(-3x)+ln(+3x)=ln(1+9x 2-9x 2)=ln 1=0,所以g(x)是定义在R 上的奇函数.又lg =-lg 2,所以g(lg2)+g=0,所以f(lg 2)+f=g(lg 2)+1+g+1=2.故选D.(2)D 令g(x)=f(x)-c=asin x+bx, 易证g(x)是奇函数.又g(-1)+g(1)=f(-1)-c+f(1)-c=f(-1)+f(1)-2c, 而g(-1)+g(1)=0,c 为整数, ∴f(-1)+f(1)=2c 为偶数. 1+2=3是奇数,故不可能,选D.结论二 函数周期性问题跟踪集训2.(1)D 由f(x+2)是偶函数可得f(-x+2)=f(x+2),又由f(x)是奇函数得f(-x+2)=-f(x-2),所以f(x+2)=-f(x-2), f(x+4)=-f(x), f(x+8)=f(x),故f(x)是以8为周期的周期函数,所以f(9)=f(8+1)=f(1)=1,又f(x)是定义在R上的奇函数,所以f(0)=0,所以f(8)=f(0)=0,故f(8)+f(9)=1,故选D.(2)C 当x>0时,有f(x)=f(x-1)-f(x-2),①同理有f(x+1)=f(x)-f(x-1),②①+②得f(x+1)=-f(x+2),即f(x+3)=-f(x).所以f(x+6)=-f(x+3)=f(x),T=6.故f(2 014)=f(4)=-f(1)=f(-1)-f(0)=log22-0=1,故选C.结论三函数的对称性跟踪集训3.(1)答案 3解析因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.(2)答案 4解析因为函数y=f(x-1)的图象关于点(1,0)对称,所以f(x)是R上的奇函数. f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)的周期为4.所以f(2 017)=f(504×4+1)=f(1)=4,所以f(2 016)+f(2 018)=-f(2 014)+f(2 014+4)=-f(2 014)+f (2 014)=0,所以f(2 016)+f(2 017)+f(2 018)=4.结论四反函数的图象与性质跟踪集训4.C 因为2x+2x=5,所以x+2x-1=,同理x+log2(x-1)=,令t=x-1,则x=t+1,即t1是t+2t=的解,t2是t+log2t=的解,且t1=x1-1,t2=x2-1.如图所示,t1为函数y=2t与y=-t的图象交点P的横坐标,t2为函数y=log2t与y=-t的图象交点Q的横坐标,所以P(t1,),Q(t2,log2t2),所以P,Q为对称点,且t1+t2=t1+=t1+=.所以x1+x2=t1+1+t2+1= +2=.故选C.结论五两个对数、指数经典不等式跟踪集训5.(1)B 由题意得f(x)的定义域为{x|x>-1且x≠0},所以排除选项D.令g(x)=ln(x+1)-x,则由经典不等式ln(x+1)≤x知,g(x)≤0恒成立,故f(x)=<0恒成立,所以排除A,C,故选B.(2)证明令g(x)=f(x)-=e x-x2-x-1,x∈R.g'(x)=e x-x-1,由经典不等式e x≥x+1恒成立可知,g'(x)≥0恒成立,所以g(x)在R上为单调递增函数,且g(0)=0,所以函数g(x)有唯一零点,即两曲线有唯一公共点.结论六三点共线的充要条件跟踪集训6.答案解析解法一:由=λ+μ及题意得=λ·(+)+μ·(+),则++ =0,得++=0,得λ+μ-1+=0.又因为,不共线,所以由平面向量基本定理得解得所以λ+μ=.解法二:如图,连接MN并延长交AB的延长线于T.由已知易得AB=AT,∴==λ+μ.∴=λ+μ,∵T、M、N三点共线,∴λ+μ=1,则λ+μ=.结论七三角形“四心”的向量形式跟踪集训7.(1)D 由·=·,可得·(-)=0,即·=0,∴⊥,同理可证⊥,⊥,∴P是△ABC的垂心.(2)C 设BC的中点为M,则=,则有=+λ,即=λ,∴P点的轨迹所在直线一定通过△ABC的重心.(3)B 解法一:为上的单位向量,为上的单位向量,则+的方向为∠BAC的平分线的方向.又λ∈[0,+∞),∴λ的方向与+的方向相同.=+λ,∴点P在上移动.∴P的轨迹一定通过△ABC的内心.故选B.解法二:由于P点轨迹通过△ABC内一定点且该定点与O点位置和△ABC的形状无关,故取O点与A点重合,由平行四边形法则很容易看出P点在∠BAC的平分线上,故选B.结论八等差数列跟踪集训8.(1)答案90解析(S20-S10)-S10=(S30-S20)-(S20-S10),S30=3S20-3S10=3×50-3×20=90.(2)答案 5解析设等差数列的前12项中奇数项的和为S奇,偶数项的和为S偶,由已知条件,得解得又S偶-S奇=6d,所以d==5.结论九等比数列跟踪集训9.答案31解析由等比数列的性质知,a1a5=a2a4=,则++++=++====31.结论十多面体的外接球和内切球跟踪集训10.(1)A 因为该三棱柱外接球的表面积是16π,所以外接球的半径R=2.又直三棱柱底面是等腰直角三角形,直角边长是1,故该三棱柱的侧棱长是=,故选A.(2)C 由题意知,正三角形ABC的外接圆半径为=,则AB=3,过点E的截面面积最小时,截面是以AB为直径的圆面,截面面积S=π×=.结论十一焦点三角形的面积公式跟踪集训11.(1)D 设双曲线C2的方程为-=1,则有+===4-1=3.又四边形AF1BF2为矩形,所以焦点三角形AF1F2的面积为tan 45°=,即==1.所以=-=3-1=2.故双曲线的离心率e==== .故选D.(2)答案 3解析在焦点三角形PF1F2中,⊥,故=|PF1||PF2|,又|PF1|2+|PF2|2=|F1F2|2,|PF1|+|PF2|=2a,则(|PF1|+|PF2|)2-2|PF1||PF2|=|F1F2|2,4a2-2|PF1|·|PF2|=4c2,所以|PF1||PF2|=2b2,则=b2=9,故b=3.结论十二圆锥曲线的切线问题跟踪集训12.(1)A 如图,圆心坐标为C(1,0),易知A(1,1).又k AB·k PC=-1,且k PC==,∴k AB=-2.故直线AB的方程为y-1=-2(x-1),即2x+y-3=0,故选A.(2)答案x+2y-4=0解析由于点P在椭圆+=1上,故所求的切线方程为+=1,即x+2y-4=0.结论十三圆锥曲线的中点弦问题跟踪集训13.(1)答案解析设PA2的斜率为k2,PA1的斜率为k1,则k1·k2=-=-,又k2∈[-2,-1],所以k1∈.(2)证明设P(x0,y0),则A(-x0,-y0),C(x0,0),k AC==,又k PA==k,所以k AC=,由k BA·k BP =-知,k BP·k BA=k BP·k AC=·k PB=-,所以k PB·k=-1,即PA⊥PB.结论十四圆锥曲线中的一类定值问题跟踪集训14.解析设直线AE的方程为y=k(x-1)+,联立得消去y,整理得(4k2+3)x2+(12k-8k2)x+4-12=0,则x E==.①同理,可得x F=.②所以k EF===,将①②代入上式,化简得k EF=.所以直线EF的斜率为定值,这个定值为.结论十五圆锥曲线中的一类定点问题跟踪集训15.解析设A(x1,y1),B(x2,y2),联立得消y,得(4k2+3)x2+8kmx+4m2-12=0,则有Δ=(8km)2-4(4k2+3)·(4m2-12)>0,即m2<4k2+3,即m2<4k2+3,①因为以AB为直径的圆过椭圆的右顶点(2,0),所以(x1-2,y1)·(x2-2,y2)=0,即x1x2-2(x1+x2)+4+y1y2=0, 即x1x2-2(x1+x2)+4+(kx1+m)(kx2+m)=0.把①代入化简得7m2+16km+4k2=0,得m=-2k或m=-.当m=-2k时,直线l:y=kx-2k过右顶点(2,0),与题意不符,故舍去;当m=-时,直线l:y=kx-过定点,且满足m2<4k2+3,符合题意.所以l:y=kx+m过定点.结论十六抛物线中的三类直线与圆相切问题跟踪集训16.答案 2解析如图所示,因为·=0,所以MA⊥MB,故点M在以AB为直径的圆上,又准线为x=-2,直线AB经过焦点F(2,0),所以有MF⊥AB,又k MF==-,所以k AB=2.。

圆锥曲线的弦对顶点张直角的一个性质

圆锥曲线的弦对顶点张直角的一个性质
( x - 2) 2 2 + y = 1 ,过 4
图4 椭圆
=
4a b m 2 ab m ( m 2 b2 - a2 ) ( a2 - b2 ) 2 ( a2 - b2 ) 2
2 2 2 2 4 2 ab m ( a + b ) 4a b ・ + 2 2 2 ( a2 - b2 ) 2 m b - a
2 ab m ( a + b ) . ( m 2 b2 - a2 ) ( a2 - b2 )
2
2
2
2
2 3 2 2 2 ab k 2 a b (1 - k ) , 2 2 ) , M1 D = ( 2 2 2 2 ( a - b ) ( b k - a2 ) a k - b
因为 ( x 1 - a) ( x 2 - a)
4
4
所以 k A C ・ kA D =
A C ⊥A D .
y1
x1 - a x2 - a

y2
= - 1 ,即
定理 2 设双曲线
> 0) 的左 、 右顶点为 A 1 , A , 设离心率 e ≠ 2
再证必要性 : 显然直线 A C 的斜率存在 且不等于 0 ,故设直线 A C 的方程为 y = k ( x
y = k ( x - a) . b a
点 M(
4 ,0 ) 的直线 l 交椭圆于点 A , B , 求 5

y = k ( x - a) , b x - a y = a b ,
2 2 2 2 2 2 2 2 2 2 2 2 2
∠A OB 的大小范围 . 解 因为椭圆中心为 N ( 2 ,0 ) , 在此椭 圆中 a = 2 , b = 1 ,所以点 O 就是左顶点 , 而 | MN| = 2 2

圆锥曲线重要结论

圆锥曲线重要结论

双曲线的焦点弦的两个焦半径倒数之和为常数圆锥曲线中的重要性质经典精讲上性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆 双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b )2 21已知动点P 在椭圆—L 4 3 1上,F i , F 2为椭圆之左右焦点,点 G F 1PF 2内心,试求点G 的轨迹方程 x 2 2 •已知动点P 在双曲线一 4 3 仝 1上,F 1, F 2为双曲线之左右焦点,圆G 是厶F 1PF 2的内切圆,探究圆G 是否过定点,并证明之• 性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。

椭圆的焦点弦的两个焦半径倒数之和为常数 IAF 1 | |BF 1 |ep|AF | |BF | epAB 在同支时I AR | | BF 1 | ep—AB 在异支时ep性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数此求四边形ABCD 面积的最小值•性质四:椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值X 2 y 25.已知椭圆-冷1,点F 1为椭圆之左焦点,过点F 1的直线11分别交椭圆于A , B 两点,II设直线AB 与 y 轴于点M , MA AFtMB BF 1,试求性质五:椭圆、双曲线的焦半径向量模的比之和为定值过椭圆或双曲线上任点 A 作两焦点的焦点弦AB AC 其共线向量比之和为定值. 即AF 1 F 1 B AF 2 F 2C12 1F A?FB 恒成立•并由此求I ABI 的最小值•椭圆互相垂直的焦点弦倒数之和为常数2 e 2双曲线互相垂直的焦点弦倒数之和为常数抛物线互相垂直的焦点弦倒数之和为常数|AB||CD|2ep|AB||CD ||2 e 2|2ep2 e 2|AB||CD|2ep24.已知椭圆—4 2红 1 , F 1为椭圆之左焦点,过点 F 1的直线11,12分别交椭圆于 A, B 两3点和C, D 两点,且 I 112 ,是否存在实常数,使的值.实常数 ,恒成立•并由⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点 F i , F 2的弦分别为ES, ET ,设圆锥曲线中的重要性质经典精讲中2性质一:过圆锥曲线焦点所在轴上任意一点N( t,0 )的一条弦端点与对应点Y ,0的连线所成角被对称轴平分。

圆锥曲线中的一类定点问题

圆锥曲线中的一类定点问题

C.(0,2B x y,(22,2)参考答案点__________;6.已知抛物线2:2(0)E x py p =>的焦点为F ,0(2,)A y 是E 上一点,且2AF =,设点B 是E 上异于点A 的一点,直线AB 与直线3y x =-交于点P ,过点P 作x 轴的垂线交E 于点M 则直线BM 过定点,定点坐标为__________.7.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,短轴长为4.(1)求椭圆C 的方程;(2)过点()0,2N 作两条直线,分别交椭圆C 于,A B 两点(异于N ),当直线NA ,NB 的斜率之和为4时,直线AB 恒过定点,求出定点的坐标.8.双曲线Γ:221143x y -=的左右顶点分别为1A ,2A ,动直线l 垂直Γ的实轴,且交Γ于不同的两点,M N ,直线1A N 与直线2A M 的交点为P . (1)求点P 的轨迹C 的方程;(2)过点(1,0)H 作C 的两条互相垂直的弦DE ,FG ,证明:过两弦DE ,FG 中点的直线恒过定点. 9.已知抛物线C :22y px =(0p >)上横坐标为4的点到焦点的距离为5. (1)求抛物线C 的方程;(2)设直线l 与抛物线C 交于不同两点,A B ,若满足OA OB ⊥,证明直线l 恒过定点,并求出定点P 的坐标.() 0,2,所以=,即24-b b b=(舍)所以直线由题意知的方程即可求出所过的定点.B x y设直线AB的方程为,(22,2)2A B y y =-.联立2,,y x x ky m ⎧=⎨=+⎩得220,40y ky m k m --==+>,所以2A B y y m =-=-,即2m =,所以直线AB 的方程为2x ky =+,所以直线AB 一定过点(2,0).4.已知直线l 过抛物线28y x =的焦点F ,且与抛物线相交于A ,B 两点,点B 关于x 轴的对称点为1B ,直线1AB 与x 轴相交于C 点,则点C 的坐标为( ) A .()4,0- B .()3,0- C .()2,0- D .()1,0-【答案】C【详解】由题意()2,0F ,如图所示,设直线:2l x ty =+,()11,A x y ,()22,B x y ,()122,B x y -,联立228x ty y x=+⎧⎨=⎩,得28160y ty --=,>0∆,∴128y y t +=,1216y y =-,()()1121212128822AB y y t k x x ty ty y y +===-+-+-,∴直线1AB 的方程为()22128y y x x y y +=--, 设直线1AB 与x 轴相交于(),0C m 点,∴()221280y m x y y +=--,得()21228y y y m x -=+.点()22,B x y 在抛物线上,∴2228y x =,即22280x y -=,∴()()222122222282816228888y y y x y ty y m ty -----=++====-,∴点()2,0C -5.已知双曲线2212y x -=,点()1,0A -,在双曲线上任取两点P 、Q 满足AP AQ ⊥,则直线PQ 恒过定()()2212121m y y mb y y b =++++()()222214440m b m b b b b =+-++=-+=, 0b ≠,∴4b =,符合>0∆,∴直线l :4x my =+,则直线l 恒过定点()4,0, ∴直线l 恒过定点,定点坐标为()4,0P .。

圆锥曲线精讲

圆锥曲线精讲

圆锥曲线圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

b5E2RGbCAP圆锥曲线分类圆锥曲线包括椭圆,双曲线,抛物线p1EanqFDPw椭圆:到两个定点的距离之和等于定长<定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|>}。

DXDiTa9E3d双曲线:到两个定点的距离的差的绝对值为定值<定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|>}。

RTCrpUDGiT 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。

早在两千多年前,古希腊数学家对它们已经很熟悉了。

古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。

用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。

阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

5PCzVD7HxA1)椭圆参数方程:X=acosθ Y=bsinθ (θ为参数 >直角坐标<中心为原点):x^2/a^2 + y^2/b^2 = 12)双曲线参数方程:x=asecθ y=btanθ (θ为参数 >直角坐标<中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2 /a^2 - x^2/b^2 = 1 (开口方向为y轴) jLBHrnAILg3)抛物线参数方程x=2pt^2 y=2pt (t为参数> t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0xHAQX74J0X直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c <开口方向为x轴, a<>0 > LDAYtRyKfE圆锥曲线<二次非圆曲线)的统一极坐标方程为 Zzz6ZB2Ltkρ=ep/(1-e×co sθ>其中e表示离心率,p为焦点到准线的距离。

圆锥曲线经典性质总结及证明

圆锥曲线经典性质总结及证明

圆锥曲线的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质)2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.(中位线)3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.(第二定义)4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b+=.(求导)5. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.(结合4)6. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.(余弦定理+面积公式+半角公式)7. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义)8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上根据第8条,证毕10. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB-=。

二级结论专题11 解析几何2

二级结论专题11  解析几何2

二级结论专题11解析几何2二级结论1:圆锥曲线中的定值问题【结论阐述】1.在椭圆中:已知椭圆22221(0)x y a b a b+=>>,定点00(,)P x y (000x y ≠)在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率2020=AB b x k a y .2.在双曲线C :22221(0,0)x y a b a b-=>>中,定点00(,)P x y (000x y ≠)在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y -.3.在抛物线C :22(0)y px p =>,定点00(,)P x y (000x y ≠)在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率0=AB p k y -.【应用场景】在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P (非顶点)与曲线上的两动点A ,B 满足直线PA 与PB 的斜率互为相反数(倾斜角互补),则直线AB 的斜率为定值.【典例指引1】1.已知点P 在抛物线2:4C y x =上,过点P 作两条斜率互为相反数的直线交抛物线C 于A 、B 两点,若直线AB 的斜率为1-,则点P 坐标为()A .()1,2B .()1,2-C .(2,D .(2,-【典例指引2】2.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点为12,F F ,椭圆的离心率为12,点2⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)点T 为椭圆C 上的点,若点T 在第一象限,且2TF 与x 轴垂直,过T 作两条斜率互为相反数的直线分别与椭圆C 交于点M ,N ,探究直线MN 的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由.【针对训练】3.已知抛物线2:4C y x =,点Q 在x 轴上,直线:(2)240l m x y m ---+=与抛物线C 交于M ,N 两点,若直线QM 与直线QN 的斜率互为相反数,则点Q 的坐标是_____.(2022·山西晋中·高二期末)4.已知点()2,1P -是椭圆2222:1(0)x y C a b a b +=>>上的一点,且椭圆C 的离心率2e =.(1)求椭圆C 的标准方程;(2)两动点,A B 在椭圆C 上,总满足直线PA 与PB 的斜率互为相反数,求证:直线AB 的斜率为定值.5.已知椭圆2222:1(0)x y C a b a b+=>>过点31,2A ⎛⎫ ⎪⎝⎭,且离心率e 为12(1)求椭圆C 的方程;(2)E 、F 是椭圆上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.6.已知动点M 到直线+2=0x 的距离比到点(1,0)F 的距离大1.(1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;7.如图,已知9(,3)4M 是抛物线()2:20C y px p =>上一点,直线AM ,BM 的斜率互为相反数,与抛物线C 分别交于A ,B 两点,且均在M 点的下方.证明:直线AB 的斜率为定值.8.已知()1,2A 为抛物线22(0)y px p =>上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE 的斜率与直线AF 的斜率互为相反数.求直线EF 的斜率.9.已知点)Q,点P 是圆C :22(x y 12+=上的任意一点,线段PQ 的垂直平分线与直线CP 交于点M .()1求点M 的轨迹方程;()2过点()A 作直线与点M 的轨迹交于点E ,过点()B 0,1作直线与点M 的轨迹交于点F(E,F 不重合),且直线AE 和直线BF 的斜率互为相反数,直线EF 的斜率是否为定值,若为定值,求出直线EF 的斜率;若不是定值,请说明理由.10.已知,椭圆C 过点35A ,22⎛⎫⎪⎝⎭,两个焦点为()0,2,()0,2-,,E F 是椭圆C 上的两个动点,直线AE 的斜率与AF 的斜率互为相反数.()1求椭圆C 的方程;()2求证:直线EF 的斜率为定值.(2022沙坪坝·重庆八中)11.在平面直角坐标系xOy 中,设点()00,M x y 是椭圆22:1205x y C +=上一点,以M 为圆心的一个半径2r =的圆,过原点作此圆的两条切线分别与椭圆C 交于点P 、Q .(1)若点M 在第一象限且直线,OP OQ 互相垂直,求圆M 的方程;(2)若直线,OP OQ 的斜率都存在,且分别记为12,k k .求证:12k k 为定值;(3)探究22OP OQ +是否为定值,若是,则求出OP OQ ⋅的最大值;若不是,请说明理由.(2022沙坪坝·重庆南开中学)12.已知椭圆2222:1(0)x y E a b a b +=>>的左右焦点为1F 、2F ,离心率2e =,过圆2221:C x y b +=上一点Q (Q 在y 轴左侧)作该圆的切线,分别交椭圆E 于A 、B 两点,交圆2222:C x y a +=于C 、D 两点(如图所示).当切线AB 与x 轴垂直时,2CDF V 的面积为3.(1)求椭圆E 的标准方程;(2)(ⅰ)求ABO 的面积的最大值;(ⅱ)求证:2AC AF +为定值,并求出这个定值.13.已知双曲线()222210,0x y a b a b-=>>过点()3,2A -,且离心率e =(1)求该双曲线的标准方程:(2)如果B ,C 为双曲线上的动点,直线AB 与直线AC 的斜率互为相反数,证明直线BC 的斜率为定值,并求出该定值.(2021全国高考真题)14.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.二级结论2:圆锥曲线中的定点问题【结论阐述】若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x y a b+=(0a b >>)上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222()(+a b aa b -.同理,当以AB 为直径的圆过左顶点(,0)a -时,直线AB l 过定点2222()(+a b a a b --.(2)对于双曲线22221(0,0)x y a b a b-=>>上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222(+)(,0)a b aa b-.同理,对于左顶点(,0)a -,则定点为2222(+)(,0)a b aa b --.(3)对于抛物线22(0)y px p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则弦AB所在直线过点(2,0)p .同理,抛物线22(0)x py p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则直线AB 过定点(0,2)p .【应用场景】一般情况下,若方程(),0f x y =中含有一个或者多个参数,当x 取某个常数0x 时,求得的y 也是一个与参数无关的常数0y ,这样就可以说方程(),=0f x y 对应的曲线经过定点()00,x y .有时圆锥曲线中的定点问题,可以充分考虑几何性质,从特殊情况出发,对可能的定点有初步的判断,争取确定出定点,这样可以转化为有方向、有目标的一般性证明题,从而找到解决问题的突破口.【典例指引1】(2022·安徽蚌埠·高二期末)15.已知直线l 与抛物线24y x =交于不同的两点A ,B ,O 为坐标原点,若直线,OA OB 的斜率之积为1-,则直线l 恒过定点()A .(4,0)B .(0,4)C .(0,4)-D .(4,0)-【典例指引2】16.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上.(Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【反思】在分析直线方程时,要考虑直线的特殊情况,注意分类讨论.要想整理得出k 和m 的关系,需要借助韦达定理建立关于k 和m 方程,注意化简运算的技巧.【针对训练】17.已知双曲线2212y x -=,点()1,0A -,在双曲线上任取两点P 、Q 满足AP AQ ⊥,则直线PQ 恒过定点__________;(2022·四川巴中·一模)18.已知椭圆C :22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,点31,2M ⎛⎫ ⎪⎝⎭满足122MF MF a +=,且12MF F △的面积为32.(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为P ,不过点P 的直线l 交C 于A ,B 两点,若PA PB ⊥,证明直线l 恒过定点.19.已知椭圆22132x y E +=:的左右顶点分别为A ,B ,点P 为椭圆上异于A ,B 的任意一点.(1)证明:直线PA 与直线PB 的斜率乘积为定值;(2)设()(0Q t t ≠,,过点Q 作与x 轴不重合的任意直线交椭圆E 于M ,N 两点.问:是否存在实数t ,使得以MN 为直径的圆恒过定点B ?若存在,求出t 的值;若不存在,请说明理由.(2022届黑龙江省哈尔滨市高三上学期检测)20.已知抛物线的顶点为原点,焦点F 在x 轴的正半轴,F 到直线20x y -+=的距离点()()000,0N x y y >为此抛物线上的一点,52NF =.直线l 与抛物线交于异于N的两点A ,B ,且2NA NB k k ⋅=-.(1)求抛物线方程和N 点坐标;(2)求证:直线AB 过定点,并求该定点坐标.(2022届河南省焦作市高三上学期开学考试)21.在PAB 中,已知()2,0A -、()2,0B ,直线PA 与PB 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 为曲线C 上一点,直线AP 与BQ 交点的横坐标为4,求证:直线PQ 过定点.(2022届陕西省西安市高三上学期模拟)22.已知与圆22:(1)3C x y ++=相切的直线l ,过抛物线2:2(0)E x py p =>的焦点F ,且直线l 的倾斜角为23π.(1)求抛物线E 的方程;(2)直线1l 与抛物线E 交于点A ,B 两点,且A ,B 关于直线y x =+对称,在12y x=-上是否存在点N ,使得以AB 为直径的圆恰好过点N ,若存在,求出点N 的坐标;否则,请说明理由.(2022届河南省名校联盟高三上学期阶段性测试)23.已知椭圆22:143x y C +=的右焦点为F ,直线l 与椭圆C 交于A ,B 两点.(1)若AM MB =,且直线l 的斜率为4,求直线OM (点O 为坐标原点)的斜率.(2)若直线FA ,FB 的斜率互为相反数,且直线l 不与x 轴垂直,探究:直线l 是否过定点?若是,求出该定点坐标;若不是,请说明理由.24.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-.(1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.(2022届上海市进才中学高三上学期12月联考)25.在平面直角坐标系xOy 中,动点M 到直线4x =的距离等于点M 到点(1,0)D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知斜率为12的直线l 与曲线C 交于A 、B 两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为PA PB k k 、,求PA PB k k +的值;(3)设点Q 为曲线C 的上顶点,点E 、F 是C 上异于点Q 的任意两点,以EF 为直径的圆恰过Q 点,试判断直线EF 是否经过定点?若经过定点,请求出定点坐标;若不经过定点,请说明理由.(2022届广东省茂名市五校联盟高三上学期联考)26.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F .离心率等于3,点P 在y 轴正半轴上,12PF F △为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由.二级结论3:圆锥曲线中的定直线问题【结论阐述】1.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y ya b+=上;2.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y ya b+=上;3.已知抛物线22y px =(>0)p ,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||=.||||AP AQ PB QB则点Q 在定直线00()y y p x x =+上.【应用场景】定直线问题是指因图形变化或点的移动而产生的动点在定直线上的问题.证明动点在定直线上是圆锥曲线的常规题型,解决这类问题的核心在于确定定点的轨迹,主要方法有:(1)设点法:设点的轨迹,通过已知点轨迹,消去参数,从而得到轨迹方程;(2)待定系数法:设出含参数的直线方程、待定系数法求解出系数;(3)验证法:通过特殊点位置求出直线方程,对一般位置再进行验证.【典例指引1】27.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:30l x -=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.【反思】解决直线与圆锥曲线相交的相关问题时,关键在于将目标条件转化为交点的坐标间的关系,交点坐标的韦达定理上去可得以解决.【典例指引2】(2022江苏南通·高二开学考试)28.已知双曲线C :22221x y a b-=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l '与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.【针对训练】29.已知椭圆()2222:10x y E a b a b+=>>过点),且离心率为2.(1)求椭圆E 的方程;(2)过右焦点F 且不与x 轴重合的直线与椭圆交于M ,N 两点,已知()3,0D ,过M 且与y 轴垂直的直线与直线DN 交于点P ,求证:点P 在一定直线上,并求出此直线的方程.30.已知点P 是离心率为12的椭圆C :22221x y a b+=(0a b >>)上位于第一象限内的点,过点P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N 两点,交直线by x a=-于Q ,R 两点,记OMQ 与ONR 的面积分别为1S ,2S ,且12S S +=(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆C 的上、下顶点分别为1B ,2B ,过点()0,1D 的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.【反思】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.31.已知椭圆()2222:10x y C a b a b+=>>的右焦点1F 与抛物线24y x =的焦点重合,原点到过点()(),0,0,A a B b -的直线距离是7(1)求椭圆C 的方程(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,过1F 作1PF 的垂线与直线l 交于点Q ,求证:点Q 在定直线上,并求出定直线的方程32.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()0,1.如图所示,斜率为()0k k >且过点()1,0-的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,若F 在射线OE 上,且2OG OE OF =⋅.(1)求椭圆C 的标准方程;(2)求证:点F 在定直线上.【反思】求定线问题常见的方法有两种:(1)从特殊入手,求出定直线,再证明这条线与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.33.已知椭圆22:142x y C +=,点()4,1P 为椭圆外一点.(1)过原点作直线交椭圆C 于M 、N 两点,求直线PM 与直线PN 的斜率之积的范围;(2)当过点P 的动直线l 与椭圆C 相交于两个不同点A 、B 时,线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅ ,证明:点Q 总在某定直线上.【反思】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.参考答案:1.A【分析】设点()00,P x y 、()11,A x y 、()22,B x y ,求得直线AB 的斜率为1241AB k y y ==-+,可得124y y +=-,再由直线PA 和PB 的斜率互为相反数可求得0y 的值,进而可求得0x 的值,由此可求得点P 的坐标.【详解】设点()00,P x y 、()11,A x y 、()22,B x y ,则直线AB 的斜率为12221212414AB y y k y y y y -===--+,可得124y y +=-,同理可得直线PA 的斜率为014PA k y y =+,直线PB 的斜率为024PB k y y =+,PAPB k k =- ,所以,()()01020y y y y +++=,则12022y y y +=-=,20014y x ∴==,因此,点P 的坐标为()1,2.故选:A.【点睛】本题考查利用抛物线中直线的斜率关系求点的坐标,考查点差法的应用,属于中等题.2.(1)22143x y +=;(2)直线MN 的斜率为定值,且定值为12.【分析】(1)根据椭圆的离心率及所过的点求出椭圆参数a 、b ,即可得椭圆标准方程.(2)由题设得31,2T ⎛⎫⎪⎝⎭,法一:设TM 为3(1)2y k x -=-,联立椭圆方程应用韦达定理求M的坐标,根据TM 与TN 斜率关系求N 的坐标,应用两点式求斜率;法二:设MN 为y kx m =+,()()1122,,,M x y N x y ,联立椭圆方程,应用韦达定理及0TM TN k k +=得到关于参数m 、k 的方程,即可判断是否为定值.(1)由题意,12c a =则2a c =,又===b ,所以椭圆C 的方程为2222143x y c c +=,代入⎛ ⎝⎭有22331412+=c c ,解得1c =,所以2b a ==,故椭圆的标准方程为22143x y +=;(2)由题设易知:31,2T ⎛⎫⎪⎝⎭,法一:设直线TM 为3(1)2y k x -=-,由221433(1)2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩,消去y ,整理得()2223348412302k x k k x k k ⎛⎫++-+--= ⎪⎝⎭,因为方程有一个根为1x =,所以M 的横坐标为22412334M k k x k --=+,纵坐标()223121291286M M k k y k x k --+=-+=+,故M 为2222412312129,3486k k k k k k ⎛⎫----+ ⎪++⎝⎭,用k -代替k ,得N 为2222412312129,3486k k k k k k ⎛⎫+--++ ⎪++⎝⎭,所以12M N MN M N y y k x x -==-,故直线MN 的斜率为定值12.法二:由已知直线MN 的斜率存在,可设直线MN 为y kx m =+,()()1122,,,M x y N x y ,由22143x y y kx m⎧+=⎪⎨⎪=+⎩,消去y ,整理得()2223484120k x kmx m +++-=,所以21212228412,3434km m x x x x k k -+=-=++,而12123322011TM TN y y k k x x --+=+=--,又1122,kx m y kx m y =+=+,代入整理得()()1212123322022kx x m x x k x x m ⎛⎫⎛⎫+-+-+--= ⎪ ⎪⎝⎭⎝⎭,所以()24832(21)0-++-=k k m k ,即(21)(232)0--+=k k m ,若2320k m -+=,则直线MN 过点T ,不合题意,所以210k -=.即12k =,故直线MN 的斜率为定值12.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及0TM TN k k +=得到关于直线斜率的方M 、N 程,或求出的坐标,应用两点式求斜率.3.(2,0)-【分析】将直线l 方程代入抛物线C 中,得到关于y 的一元二次方程,设出M ,N 两点坐标,利用韦达定理写出12y y +,12y y 的关系,利用斜率坐标公式结合已知条件,得到 0+=QM QN k k ,即可求解Q 的坐标.【详解】易知2m ≠,由(2)240m x y m ---+=得22y x m =+-,代入抛物线方程得24802y y m --=-,设()11,M x y ,()22,N x y ,则1242y y m +=-①,128y y =-②.设(,0)Q a ,则11QM y k x a =-,22QN y k x a=-,依题意有1 1QM QN yk k x a +=+-220yx a =-,所以()()12210y x a y x a -+-=,即211222022y y y a y a m m ⎛⎫⎛⎫+-+⋅+-= ⎪ ⎪--⎝⎭⎝⎭,整理并把①②代入可得2a =-,故Q 点的坐标为(2,0)-.故答案为:(2,0)-.4.(1)22182x y +=(2)证明见解析【分析】(1)根据已知条件列方程组,解方程组求得22,a b ,从而求得椭圆C 的标准方程.(2)设出直线PA 的方程并与椭圆方程联立,由此求得A x ,同理求得B x ,从而化简求得直线AB 的斜率A BAB A By y k x x -=-为定值.(1)由题可知22222411c a a b c a b⎧=⎪⎪⎪-=⎨⎪⎪+=⎪⎩,解得2282a b ⎧=⎨=⎩,从而粚圆方程为22182x y +=.(2)证明设直线PA 的斜率为k ,则():12PA y k x +=-,21y kx k =--,联立直线与椭圆的方程,得()221248y k x x y ⎧+=-⎨+=⎩,整理得()(2221416k x k +-+()28)161640k x k k ++-=,从而2216164214A k k x k +-=+,于是2288214A k k x k+-=+,由题意得直线PB 的斜率为k -,则():12PB y k x +=--,21y kx k =-+-,同理可求得2288214B k k x k --=+,于是A BAB A B y y k x x -=-()2121A B A Bkx k kx k x x ----+-=-()4A B A Bk x x kx x +-=-2221644114.16214k k k k k k-⋅-+==-+即直线AB 的斜率为定值.5.(1)22143x y +=;(2)证明见解析,12.【分析】(1)根据椭圆离心率的公式,结合代入法、椭圆中,,a b c 的关系进行求解即可;(2)设出直线方程与椭圆方程联立,求出E 、F 两点坐标,最后根据直线斜率的公式进行求解即可.(1)根据题意,22222914112a bc e a a b c ⎧⎪+=⎪⎪⎪==⎨⎪=+⎪⎪⎪⎩,解得2,1a b c ===,∴椭圆C 的方程为:22143x y +=;(2)证明:设直线AE 的方程为:()312y k x -=-,由()22312143y k x x y ⎧-=-⎪⎪⎨⎪+=⎪⎩,得()()2223442341230k x k k x k k +--+--=,显然1是该方程的根,因此有22224123412313434x x k k k k E E k k ----⋅=⇒=++,()2222412312129,34234k k k k E k k ⎛⎫----+ ⎪∴ ⎪++⎝⎭,由题可知直线AF 的方程为()312y k x -=--,同理可得()2222412312129,34234k k k k F k k ⎛⎫+--++ ⎪ ⎪++⎝⎭,()()222222221212912129234234121412341232423434EF k k k k k k k k k k k k k k k -++--+-++∴===+----++,∴直线EF 的斜率为定值,且这个定值为12.【点睛】关键点睛:利用一元二次方程根与系数关系求出两点坐标是解题的关键.6.(1)24y x =(2)证明见解析,1-.【分析】(1)由抛物线的定义即可求解;(2)分别设出直线,PA PB 的方程,与抛物线方程联立,求出点A B 、坐标,再求直线AB 的斜率即可.【详解】(1)已知动点M 到直线+2=0x 的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得:动点M 的轨迹是以(1,0)F 为焦点,以直线1x =-为准线的抛物线,可得=2p ,抛物线开口向右,∴曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,∵直线PA 的斜率与直线PB 的斜率互为相反数,∴直线PB 的斜率为k -,则:2(1)PA l y k x -=-,:2(1)PB l y k x -=--,联立方程组22=(1)=4y k x y x--⎧⎨⎩,整理得2-4-4+8=0ky y k ,即[](24)(2)0ky k y +--=,42ky k-=或=2y (舍)可得22(2)42(,)k kA k k--联立方程组22=(1)=4y k x y x---⎧⎨⎩,整理得24480ky y k +--=,即[](24)(2)0ky k y ++-=,42ky k--=或=2y (舍)可得22(2)42(,)k kB k k+--则222242421(2)(2)ABk kk k k k k k k ----==-+--即直线AB 的斜率为定值1-.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.7.证明见解析.【分析】设出直线MA 和MB 的方程,与抛物线方程联立求出点A B ,的坐标,再求直线AB 的斜率即可.【详解】证明:∵9(,3)4M 是抛物线()2:20C y px p =>上一点,∴9924p =⨯,得=2p ,∴抛物线方程为24y x =,设直线MA 的方程为93()4y k x -=-,由293=()4=4y k x y x--⎧⎪⎨⎪⎩,得241290y y k k -+-=,即4[(3)](3)0y y k +--=,解得43A y k=-或3A y =(舍)∵直线AM ,BM 的斜率互为相反数,∴直线BM 的方程为93(4y k x -=--,同理可得43B y k=--,∴224424433344B A B A AB B A B A B A y y y y k y y x x y y k k =====------+--+,∴直线AB 的斜率为定值23-,8.1-【分析】先利用已知条件求出抛物线得方程,然后利用直线斜率公式求直线,AE AF 的斜率,在由直线AE 的斜率与直线AF 的斜率互为相反数,求出124y y +=-,在根据2121214==+EF y y k x x y y --即可求出答案.【详解】设()11,E x y ,()22,F x y ,∵点()1,2A 为抛物线()220y px p =>上的一点,∴42p =,解得=2p ,∴24y x =,同时,有211=4y x ,222=4y x ,()()()()()()11111111112+22444====11+21+2+2AE y y y x k x x y x y y ------,同理,22224==1+2AF y k x y --,∵直线AE 的斜率与直线AF 的斜率互为相反数,∴1244=+2+2y y -,即124y y +=-,()22222121212121212144===44=1+EF y y y y y y k x x y y y y y y ------∴=-,故直线EF 的斜率为1-.9.(1)22x y 13+=;(2)定值【分析】(1)根据中垂线的性质得出MQ MP =,然后计算出MC MQ +=,结合椭圆的定义得知点M 的轨迹为椭圆,可得出a 和c 的值,进而求得b 的值,于是可得出点M 的轨迹方程;(2)设直线AE的方程为(y k x =+,则直线BF 的方程为1y kx =-+,将直线AE 、BF 的方程分别与曲线E 的方程联立,利用韦达定理求出的点,E F 的坐标,然后利用两点间的斜率公式求出直线EF 的斜率,从而证明结论.【详解】(1)如下图所示,连接MQ,则MC MQ MC MP CP +=+==又CQ =M 的轨迹是以,C Q 为焦点的椭圆,因为22a c ==1a c b ===.故点M 的轨迹方程是2213x y +=;(2)设直线AE的方程为(y k x =+,则直线BF 的方程为1y kx =-+,由(2233y k x x y ⎧=⎪⎨+=⎪⎩,消去y 整理得()222231930k x x k +++-=.设交点()11,E x y 、()22,F x y ,则1x()1111x y k x ==+=.由22133y kx x y =-+⎧⎨+=⎩,消去y 整理得()223160k x kx +-=,则222222613,11313k k x y kx k k-==-+=++.所以,1212EFy y k x x -===-故直线EF的斜率为定值,其斜率为3-.【点睛】(1)求动点的轨迹方程,一般有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.(2)当直线与椭圆的两个交点中有一个是定点时,我们常用动直线的斜率表示另一个动交点的坐标,进而讨论与动交点相关的数学问题(常称为知点求点法).10.(1)22y x 1106+=;(2)见解析【分析】()1由焦点坐标求得2c =,可设椭圆方程为22221y xa b +=,可得22222591444a b a b ⎧+=⎪⎨⎪=+⎩,解方程即可;()2设()11,E x y ,()22,F x y ,设直线AE 的方程为3522y k x ⎛⎫=-+ ⎪⎝⎭,代入221106y x +=,求出点E 的坐标,再将k 换为k -,求出F 的坐标,即可求出直线的斜率,再化简即可得结果.【详解】()1由题意c 2=,可设椭圆方程为22221y x a b +=,22222591444a b a b ⎧+=⎪⎨⎪=+⎩,解得210a =,26b =,∴椭圆的方程为221106y x +=.()2设()11E x ,y ,()22F x ,y ,设直线AE 的方程为3522y k x ⎛⎫=-+ ⎪⎝⎭,代入221106y x +=得()()22233353533()30022k x k k x k ++-+-+-=,()123353352k k x k -∴=-+,113522y kx k ∴=-+,又直线AE 的斜率与AF 的斜率互为相反数,再上式中以k -代k ,可得()223353352k k x k ---=-+,2235y kx k 22∴=-++,∴直线EF 的斜率()()()()()2212212121223353353333523523133533533352352k k k k k k k k k x x k y y k k k k k x x x x k k ----⎛⎫-+-+ ⎪++-++-⎝⎭====--------+++.【点睛】本题考查了椭圆的方程,直线与椭圆的关系,考查了运算求解能力,化归与转化思想的应用,属于难题.求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.11.(1)()()22224x y -+-=;(2)证明见解析;(3)是,252.【分析】(1)由切线性质得OM =,由此可求得M 点坐标,从而得圆方程.(2)设切线方程为y kx =,由直线与圆相切得出k 的方程,结合韦达定理得12k k ,并结合M 在椭圆上可得.(3)当直线OP OQ ,不落在坐标轴上时,设()()1122,,P x y Q x y ,,利用1214k k =-可得22221212116y y x x =,利用,P Q 在椭圆上可求得2212x x +及2212y y +,从而得22OP OQ +,当直线OP OQ ,有一条落在坐标轴上求出22OP OQ +,从而得定值,再由基本不等式得最大值.【详解】(1)OM ==则22008x y +=,又2200220012058x y x y ⎧+=⎪⎨⎪+=⎩,又000,0x y >>,故解得0022x y =⎧⎨=⎩,所以()2,2M ,所以圆M 的方程为()()22224x y -+-=(2)因为直线12::OP y k x OQ y k x ==,与圆M 相切,所以直线1:OP y x k =与圆()()2200:4M x x y y -+-=联立,可得()()222210100012240k x x k y x x y +-+++-=同理()()222222000012240k x x k y x x y +-+++-=,由判别式为0,可得12k k ,是方程()2220004240xk x y k y --+-=的两个不相等的实数根,∴20122044y k k x -=-因为点00(,)M x y 在椭圆C 上,所以220054x y =-,所以1214k k =-;(3)(i )当直线OP OQ ,不落在坐标轴上时,设()()1122,,P x y Q x y ,,因为12410k k +=,所以22221212116y y x x =,因为()()1122,,,P x y Q x y 在椭圆C 上.所以2222221212121554416x x y y x x ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭整理得221220x x +=,所以22125y y +=所以2225OP OQ +=.(ii )当直线落在坐标轴上时,圆M 方程为22(2)(2)4x y -+-=,易求得2225OP OQ +=,综上:2225OP OQ +=,所以|()2212522OP OQ OP OQ ⋅≤+=所以OP OQ ⋅的最大值为252.【点睛】本题考查直线与圆相切,直线与椭圆相交问题,考查学生的运算求解能力,逻辑思维能力,对斜率积为定值问题,解题关键是设出切线方程y kx =,利用直线与圆相切得出关于k 的二次方程,由韦达定理得出结论;设()()1122,,P x y Q x y ,,由斜率积为定值求得坐标的关系,并结合点M 在椭圆上求得22OP OQ +的值,注意分类讨论.12.(1)2214x y +=;(2)(ⅰ)1;(ⅱ2.【分析】(1)由三角形面积得()3c b c +=+222a c b -=求得,,a b c 后得椭圆方程;(2)(ⅰ)直线AB 的斜率不会为零,设其方程为x ty m =+,由直线与圆相切求得,t m 的关系,设()()1122,,,A x y B x y ,直线方程与椭圆方程联立,消元后求出判别式的值(利用,t m 关系),应用韦达定理,得弦长AB ,计算OAB 面积,应用基本不等式得最大值;(ⅱ)CQ c ==,AC CQ AQ AQ =-=,用A 点坐标表示出2,AQ AF ,计算可得.【详解】(1)2CD c ==,于是有2()3CDF S c b c =+=+ 又222,2c a b c a =-=,解得2,1c a b ===,所以椭圆E 的标准方程为2214x y +=.(2)(ⅰ)因Q 在y 轴左侧,故直线AB 的斜率不会为零,设其方程为x ty m =+,由直线AB 与圆1C 2211m t =⇒=+,由2244x ty m x y =+⎧⎨+=⎩消去x 得()2224240t y tmy m +++-=,()()()222222444416448t m t m t m ∆=-+-=+-=,设()()1122,,,A x y B x y ,则12||AB y y =-=所以()2231212||124OABt S AB b t ++⋅=⋅⋅=≤=+ ,当且仅当213t+=,即t =时取等号.故ABO 的面积的最大值为1.(ⅱ)因点()11,A x y 在椭圆E 上,且在y 轴左侧,故10x <,221114x y +=,由(1)CQ c ==故12AC CQ AQ x =-====,2122AF x ====-,故2112222AC AF x +=+-=为定值.【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.求椭圆标准方程的关键是列出关于,,a b c 的方程组,解得,,a b c ,直线与椭圆相交一般是设交点坐标,设直线方程,直线方程与椭圆方程联立,消元后应用韦达定理,由韦达定理的结果求弦长等等.13.(1)221832x y -=(2)证明见解析,6【分析】(1)根据双曲线的离心率及双曲线过点A 可得方程;(2)设点B 与点C 的坐标,根据直线AB 与直线AC 的斜率互为相反数,可得直线BC 的斜率.【详解】(1)由题意22941a b c a ⎧-=⎪⎪⎨⎪=⎪⎩,解得28a =,232b =,故双曲线方程为221832x y -=(2)设点()11,B x y ,()22,C x y ,设直线AB 的方程为()23y k x -=+,代入双曲线方程,得()()()222423232320kxk k x k --+-+-=,2126434k k x k +∴-+=-,21234124k k x k ++=-,21222484k k y k ++=-,222234122248,44k k k k B k k ⎛⎫++++∴ ⎪--⎝⎭同理222234122248,44k k k k C k k ⎛⎫-+-+ ⎪--⎝⎭,4868BC kk k∴==.14.(1)()221116y x x -=≥;(2)0.【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值.【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一]【最优解】:直线方程与双曲线方程联立如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB =-=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21(2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-.因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二]:参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=,故直线AB 的斜率与直线PQ 的斜率之和为0.[方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=.又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.15.A【分析】设出直线方程x my t =+,联立抛物线方程,得到12124,4y y m y y t +==-,进而得到。

高三数学一轮复习圆锥曲线(1-4讲)学生用

高三数学一轮复习圆锥曲线(1-4讲)学生用

第1讲:椭圆1. 椭圆的概念在平面内与两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2. 椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1 (a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性 质范围 -a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性 对称轴:坐标轴 对称中心:原点顶点 A 1(-a,0),A 2(a,0) B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴 长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距 |F 1F 2|=2c离心率e =ca ∈(0,1) a ,b ,c 的关系c 2=a 2-b 2题型一 求椭圆的标准方程例1 (1)若椭圆短轴的一个端点与两焦点组成一个正三角形;且焦点到同侧顶点的距离为3,则椭圆的标准方程为____________;(2)(2011·课标全国)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为__________.已知F 1,F 2是椭圆x 2a 2+y 2b2=1 (a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是____________.题型二 椭圆的几何性质例2 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.(2012·安徽)如图,F 1、F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.题型三 直线与椭圆的位置关系例3 (2011·北京)已知椭圆G :x 24+y 2=1.过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.设F 1、F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求|AB |;(2)若直线l 的斜率为1,求b 的值.第2讲:双曲线1. 双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0: (1)当a <c 时,P 点的轨迹是双曲线; (2)当a =c 时,P 点的轨迹是两条射线; (3)当a >c 时,P 点不存在. 2. 双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线 y =±b axy =±a bx离心率e =ca ,e ∈(1,+∞),其中c =a 2+b 2 实虚轴 线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2 (c >a >0,c >b >0)题型一 双曲线的定义及标准方程例1 (1)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2)的双曲线方程为__________.(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.(1)(2012·湖南)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1 B.x 2132-y 252=1 C.x 232-y 242=1D.x 2132-y 2122=1题型二 双曲线的几何性质例2 (1)(2013·浙江)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若 四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62(2)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)(1)(2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB→=2FA →,则此双曲线的离心率为( )A. 2B. 3C .2 D. 5题型三 直线与双曲线的位置关系例3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2 3.(1)求双曲线C的方程;(2)若直线l:y=kx+2与双曲线C左支交于A、B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围.第3讲:抛物线1. 抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2. 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p>0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎪⎫p 2,0F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线方程 x =-p2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下题型一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时点P 的坐标.(2011·辽宁)已知F 是抛物线y 2=x 的焦点,A 、B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB的中点到y 轴的距离为( )A.34B .1C.54D.74题型二 抛物线的标准方程和几何性质例2 抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.题型三 直线与抛物线的位置关系例3 (2011·江西)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程.(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线l 与C 相交于A 、B 两点.(1)设l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.第4讲:曲线与方程1. 曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都在曲线上.那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线.2. 求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系.(2)设点——设轨迹上的任一点P (x ,y ).(3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程.3. 两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点. (2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.题型一 定义法求轨迹方程例1 已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线题型二 相关点法求轨迹方程例2 设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N的轨迹方程.题型三 直接法求轨迹方程例3 (2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.如图所示,过点P (2,4)作互相垂直的直线l 1,l 2,若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M的轨迹方程.。

高中数学_圆锥曲线的方程与性质教学课件设计

高中数学_圆锥曲线的方程与性质教学课件设计
因为 cos 2θ=1-2sin2θ,所以13=1-21a2,得 a2=3. 又 c2=1,所以 b2=a2-c2=2,椭圆 C 的方程为x32+y22=1,故选 B.
2.(2018·全国Ⅱ,文,11)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2, 且∠PF2F1=60°,则C的离心率为
值范围是
√A.[ 5, 6]
C.54,32
B.
25,
6
2
D.52,3
x+y=1, 解析 联立ax22+by22=1, 得(a2+b2)x2-2a2x+a2-a2b2=0, 设P(x1,y1),Q(x2,y2), Δ=4a4-4(a2+b2)(a2-a2b2)>0,化为a2+b2>1. x1+x2=a22+a2b2,x1x2=aa2-2+ab2b2 2. ∵OP⊥OQ, ∴O→P·O→Q=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1=0,
∴椭圆长轴的取值范围是[ 5, 6].
跟踪演练 3 (1)(2019·合肥质检)已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,右顶点为 A,上顶点为 B,以线段 F1A 为直径的圆交线段 F1B 的延长线于点 P,
若 F2B∥AP,则该椭圆的离心率是
3 A. 3
2 B. 3
当直线AB的斜率不存在时,2t1+2t2=0,此时t1=-t2, 则 AB 的方程为 x=2,焦点 F 到直线 AB 的距离为 2-12=32, ∵kAB=22tt112--22tt222=t1+1 t2,得直线 AB 的方程为 y-2t1=t1+1 t2(x-2t21). 即x-(t1+t2)y-2=0. 令y=0,解得x=2. ∴直线AB恒过定点D(2,0). ∴抛物线的焦点 F 到直线 AB 的距离小于32, 综上,焦点 F 到直线 AB 距离的最大值为32.

圆锥曲线(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

圆锥曲线(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

圆锥曲线(文科)解答题20题1.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y+=,2C : 28y x =.【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可; 【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中22c a b -不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x ya b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2b a-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±, 所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,3b c =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,3)c ,(0,3)c ,2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =. 所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.2.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,进而可得20025910y x +=,再由斜率公式及基本不等式即可得解. 【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++, 当00y =时,0OQ k =; 当00y ≠时,0010925OQ k y y =+, 当00y >时,因为0092530y y +≥, 此时103OQk <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.【点睛】关键点点睛:解决本题的关键是利用平面向量的知识求得点Q 坐标的关系,在求斜率的最值时要注意对0y 取值范围的讨论.3.(2021年全国高考甲卷数学(理)试题)抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析 【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ⊥∴⋅=-=-=∴=,所以抛物线C 的方程为2y x =,(0,2),M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -,又131********A A y y k y x x y y -====∴=-+, 330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切; 若直线121323,,A A A A A A 斜率均存在, 则121323121323111,,A A A A A A k k k y y y y y y ===+++, 所以直线12A A 方程为()11121y y x x y y -=-+, 整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=, 直线23A A 的方程为2323()0x y y y y y -++=, 12A A 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-⋅=--,M 到直线23A A 的距离为:21223122123213|2|21()1()1y y y y y -+=+++--22112222111111(1)4y y y y +===+-+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示.4.(2019年全国统一高考数学试卷(理科)(新课标Ⅲ))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或2【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则21221,1d t d t =+=+.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-=+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭,由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0=t 或1t =±.当0=t 时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点. (1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1) 31e =;(2)4b =,a 的取值范围为[42,)+∞. 【分析】(1)先连结1PF ,由2POF 为等边三角形,得到1290F PF ∠=,2PF c =,13PF c =;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点(,)P x y 存在,当且仅当12162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,根据三个式子联立,结合题中条件,即可求出结果. 【详解】(1)连结1PF ,由2POF 为等边三角形可知:在12F PF △中,1290F PF ∠=,2PF c =,13PF c ,于是1223a PF PF c c =+=, 故椭圆C 的离心率为3113c e a ===+; (2)由题意可知,满足条件的点(,)P x y 存在,当且仅当12162y c ⋅=,1y y x c x c⋅=-+-,22221x y a b +=, 即16c y = ① 222x y c += ②22221x y a b += ③ 由②③以及222a b c =+得422b y c =,又由①知22216y c=,故4b =;由②③得22222()a x c b c=-,所以22c b ≥,从而2222232a b c b =+≥=,故42a ≥当4b =,42a ≥P . 故4b =,a 的取值范围为[42,)+∞. 【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.【答案】(1)2或6; (2)见解析. 【分析】(1)设(),A t t -,(),B t t -,根据AB 4=,可知t =M 必在直线y x =上,可设圆心(),M a a ;利用圆心到20x +=的距离为半径和MA MB r ==构造方程,从而解出r ;(2)当直线AB 斜率存在时,设AB 方程为:y kx =,由圆的性质可知圆心M 必在直线1=-y x k 上;假设圆心坐标,利用圆心到20x +=的距离为半径和r MA =构造方程,解出M 坐标,可知M 轨迹为抛物线;利用抛物线定义可知()1,0P 为抛物线焦点,且定值为1;当直线AB 斜率不存在时,求解出M 坐标,验证此时()1,0P 依然满足定值,从而可得到结论. 【详解】 (1)A 在直线0x y +=上 ∴设(),A t t -,则(),B t t -又AB 4= 2816t ∴=,解得:t =M 过点A ,B ∴圆心M 必在直线y x =上设(),M a a ,圆的半径为rM 与20x +=相切 2r a ∴=+又MA MB r ==,即((222a a r +=((()2222a a a ∴+=+,解得:0a =或4a =当0a =时,2r ;当4a =时,6r =M ∴的半径为:2或6(2)存在定点()1,0P ,使得1MA MP -= 说明如下:A ,B 关于原点对称且AB 4=∴直线AB 必为过原点O 的直线,且2OA =①当直线AB 斜率存在时,设AB 方程为:y kx = 则M 的圆心M 必在直线1=-y x k上设(),M km m -,M 的半径为rM 与20x +=相切 2r km ∴=-+又222224r MA OA OMk m m ==+++22224km k m m ∴-+++,整理可得:24m km =-即M 点轨迹方程为:24y x =,准线方程为:1x =-,焦点()1,0FMA r =,即抛物线上点到2x =-的距离 ∴1MA MF =+ 1MA MF ∴-=∴当P 与F 重合,即P 点坐标为()1,0时,1MA MP -=②当直线AB 斜率不存在时,则直线AB 方程为:0x =M ∴在x 轴上,设(),0M n224n n ∴++0n =,即()0,0M 若()1,0P ,则211MA MP -=-=综上所述,存在定点()1,0P ,使得MA MP -为定值. 【点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决本定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,进而验证定值符合所有情况,使得问题得解.7.(2019年北京市高考数学试卷(文科))已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析. 【分析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程;(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点. 【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225; 因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=. (Ⅱ)设1122(,),(,)P x y Q x y联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k-=+++=+. 直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0). 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭ 当203y ≠时,∴直线CD 的方程为:0022*******22000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020年北京市高考数学试卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 【答案】(Ⅰ)22182x y +=;(Ⅱ)1.【分析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值. 【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦ 2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.(2020年天津市高考数学试卷)已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【分析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解. 【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=, 所以,椭圆的方程为221189x y +=; (Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥, 根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程. 11.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知椭圆C :22221(0)x y a b a b+=>>2()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【详解】(1)由题意可得:2222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2) 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k 4260x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为2,1A ()不在直线MN 上,所以210k m +-≠, 故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =, 故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.【点睛】关键点点睛:本题的关键点是利用AM AN ⊥得 ·0AM AN =,转化为坐标运算,需要设直线MN 的方程,点()()1122,,,M x y N x y ,因此需要讨论斜率存在与不存在两种情况,当直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,与椭圆方程联立消去y 可12x x +,12x x 代入·0AM AN =即可,当直线MN 的斜率不存在时,可得()11,N x y -,利用坐标运算以及三角形的性质即可证明,本题易忽略斜率不存在的情况,属于难题. 12.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1) y =x –1,(2)()()223216x y -+-=或()()22116144x y -++=. 【详解】分析:(1)根据抛物线定义得12AB x x p =++,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线l 的方程;(2)先求AB 中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由()214y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=.所以()()21224411k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为()23y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则()()002200051116.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为()()223216x y -+-=或()()22116144x y -++=.点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程依据已知条件列出关于,,a b r 的方程组,从而求出,,a b r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.13.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠. 【答案】(1)112y x =+或112y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点()20A ,,求得直线l 的方程为2x =,代入抛物线方程求得点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立. 【详解】(1)当l 与x 轴垂直时,l 的方程为2x =,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--; (2)设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由222x ty y x =+⎧⎨=⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠.综上,ABM ABN ∠=∠. 【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.14.(2018年全国卷Ⅲ文数高考试题文档版)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+. 【答案】(1)证明见解析 (2)证明见解析 【详解】分析:(1)设而不求,利用点差法,或假设直线方程,联立方程组,由判别式和韦达定理进行证明.(2)先求出点P 的坐标,解出m ,得到直线l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()11A x y ,,()22B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得211,043m m +<>∴302m <<,故12k <-. (2)由题意得F (1,0).设()33P x y ,,则()()()()33112211100x y x y x y -+-+-=,,,,. 由(1)及题设得()31231x x x =-+=,()31220y y y m =-+=-<. 又点P 在C 上,所以34m =,从而312P ⎛⎫- ⎪⎝⎭,,3||=2FP . 于是()()222211111||1131242x xFA x y x ⎛⎫=-+-+-- ⎪⎝⎭.同理2||=22x FB -. 所以()121|43|||2FA FB x x +=-+=. 故2||=||+||FP FA FB .点睛:本题主要考查直线与椭圆的位置关系,第一问利用点差法,设而不求可减小计算量,第二问由已知得求出m ,得到FP ,再有两点间距离公式表示出,FA FB ,考查了学生的计算能力,难度较大.15.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版))设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析. 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得00x x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=. 因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0.所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,21运用推理,到最后必定参数统消,定点、定值显现.16.(2017年全国1卷(文数))设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2)y =x +7. 【分析】(1)设A (x 1,y 1),B (x 2,y 2),直线AB 的斜率k =1212y y x x --=124x x+,代入即可求得斜率;(2)由(1)中直线AB 的斜率,根据导数的几何意义求得M 点坐标,设直线AB 的方程为y =x +m ,与抛物线联立,求得根,结合弦长公式求得AB ,由AM BM ⊥知,|AB |=2|MN |,从而求得参数m . 【详解】解:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=214x ,y 2=224x ,x 1+x 2=4,于是直线AB 的斜率k =1212y y x x --=124x x+=1.(2)由y =24x ,得y ′=2x .设M (x 3,y 3),由题设知32x =1,解得x 3=2,于是M (2,1). 设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =24x 得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±1m + 从而|AB |2x 1-x 2|=()421m +由题设知|AB |=2|MN |,即()421m +2(m +1), 解得m =7.所以直线AB 的方程为y =x +7.17.(2016年全国2卷(文数))已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.试卷第22页,共26页(Ⅰ)当AM AN =时,求AMN 的面积 (Ⅱ) 当2AM AN =时,证明:32k <<. 【答案】(Ⅰ)14449;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示AM ,同理用k 表示AN ,再由2AM AN =求k 的取值范围. 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又(2,0)A -,因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故22121212134k AM x k k+=++=+. 由题设,直线AN 的方程为,故同理可得2121k k AN +=. 由2AM AN =得222343+4kk k =+,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t +=-'=-≥,所以()f t 在(0,)+∞单调递增.又(3)153260,(2)60f f ==,因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)32k <. 【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.2318.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【答案】(1)2;(2)没有. 【分析】(Ⅰ)先确定2,,t N t ON p ⎛⎫ ⎪⎝⎭的方程为py x t =,代入22y px =整理得2220px t x -=,解得21220,t x x p ==,因此22(,2)t H t p ,所以N 为OH 的中点,即||2||OH ON =. (Ⅱ)直线MH 的方程为2py t x t-=,与22y px =联立得22440y ty t -+=,解得122y y t ==,即直线MH 与C 只有一个公共点,即可得出结论.【详解】(Ⅰ)由已知得()20,,,2t M t P t p ⎛⎫⎪⎝⎭. 又N 为M 关于点P 的对称点,故2,,t N t ON p ⎛⎫ ⎪⎝⎭的方程为py x t =,代入22y px =整理得2220px t x -=, 解得21220,t x x p ==,因此22(,2)t H t p, 所以N 为OH 的中点,即||2||OH ON =. (Ⅱ)直线MH 与C 除H 以外没有其它公共点. 理由如下: 直线MH 的方程为2py t x t-=,即2()t x y t p =-,代入22y px =,得22440y ty t -+=,解得122y y t ==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点. 【点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系试卷第24页,共26页是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.19.(2021·新疆昌吉·高三阶段练习(文))已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分別为12,A A ,右焦点为F (1,0),且椭圆C 的离心率为12,M ,N 为椭圆C 上任意两点,点P 的坐标为(4,t )(t ≠0),且满足1122,AM MP A N NP λλ==. (1)求椭圆C 的方程; (2)证明:M ,F ,N 三点共线. 【答案】(1)22143x y +=; (2)证明见解析. 【分析】(1)根据椭圆的焦点坐标及离心率求椭圆参数,写出椭圆方程即可.(2)设()()1122,,,M x y N x y ,由题设易知1,,A M P 共线,2,,A N P 共线,利用向量共线的坐标表示有()()22112222292x y y x +=-,再由M ,N 在椭圆上可得()12122580x x x x -++=,最后由11(1,)FM x y =-,22(1,)FN x y =-结合分析法证明结论. (1)椭圆C 的右焦点为(1,0)F ,且离心率为12,∴a =2,c =1,则b 2=a 2-c 2=3, ∴椭圆C 的方程为22143x y +=.(2)由(1)知,12,A A 的坐标分别为(2,0),(2,0)-,设()()1122,,,M x y N x y , ∴111(2,)AM x y =+,1(6,)A P t =,222(2,)A N x y =-,2(2,)A P t =, ∵11AM MP λ=,22A N NP λ=,25∴1,,A M P 三点共线,2,,A N P 三点共线,即()()11226222y t x y t x ⎧=+⎪⎨=-⎪⎩,整理得1122322y x y x +=-,两边平方得()()22112222292x y y x +=-,① 又M ,N 在椭圆上,则22112222334334y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,代入①并化简得()12122580x x x x -++=,又11(1,)FM x y =-,22(1,)FN x y =-,∴要证M ,F ,N 三点共线,只需证()()211211y x y x -=-,即112211y x y x -=-,只需证()112221321x x x x +-=--,整理得()12122580x x x x -++=,∴M ,F ,N 三点共线. 【点睛】关键点点睛:第二问,设()()1122,,,M x y N x y ,由向量共线得1122322y x y x +=-,利用分析法结合向量共线的坐标表示只需证112211y x y x -=-,最后由M ,N 在椭圆上求证即可.20.(2021·宁夏·石嘴山市第三中学高三阶段练习(文))已知椭圆C :()222210x y a b a b +=>>的左焦点为F ,离心率为12,过点F 且垂直于x 轴的直线交C 于,A B 两点,3AB =(1)求椭圆的标准方程;(2)若直线l 过点()4,0M -且与椭圆相交于A ,B 两点,求ABF 面积最大值及此时直线l 的斜率. 【答案】 (1)22143x y += (2332114± 【分析】(1)根据题意得22221223c a ba abc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,再解方程即可得答案; (2)设直线l 的方程为4x my =-,设()11,A x y ,()22,B x y ,进而将直线l 的方程与椭圆试卷第26页,共26页方程联立,并结合韦达定理得ABFS =,再令)0t t =>,结合基本不等式求解即可. (1)解:由题知:2222122231c a a bb ac a b c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩ 所以椭圆22:143x y C +=.(2)设直线l 的方程为4x my =-,设()11,A x y 、()22,B x y ,与椭圆方程联立得224143x my x y =-⎧⎪⎨+=⎪⎩,消去x 得()223424360m y my +-+=.则()()2225764363414440m m m ∆=-⨯+=->,所以24m >.由根与系数的关系知1222434m y y m +=+,1223634y y m =+,所以1232ABFSy y =-=①令)0t t =>,则①式可化为21818163163ABFt St t t ==++当且仅当163t t =,即t =.此时3m =±l的斜率为14±.27。

专题01 圆锥曲线的常用结论-2020届高三突破满分数学之圆锥曲线(文理通用)

专题01 圆锥曲线的常用结论-2020届高三突破满分数学之圆锥曲线(文理通用)

专题01 圆锥曲线的常用结论一.椭圆焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<e 越小,椭圆越圆;e 越大,椭圆越扁1.(1)与椭圆22221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++. (2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()2222,0x y b aλλ+=>.2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立: (1)122PF PF a +=; (2)1a c PF a c -≤≤+; (3)2212b PF PF a ≤⋅≤;(4)焦半径公式10|PF a ex =+,20||PF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).3.椭圆的方程为22221x y a b+=(a >b >0), 左、右焦点分别为12,F F ,()00,P x y 是椭圆上任意一点,则有:(1)()()22222222000022,b a y a x x b y a b =-=-; (2)参数方程()00cos sin x a y b θθθ=⎧⎨=⎩为参数; 4.设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)焦点三角形的面积: 122||=tan 2PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处时, θ最大,此时12PF F S ∆也最大;(4) .21cos 2e -≥θ(5)点M 是21F PF ∆内心,PM 交21F F 于点N ,则caMN PM =||||.5.有关22b a-的经典结论(1).AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-.(2).椭圆的方程为22221x y a b+=(a >b >0),,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a=-(3). 椭圆的方程为22221x y a b+=(a >b >0),,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a=-(4). 椭圆的方程为22221x y a b+=(a >b >0)P 点是椭圆上异于,A B 两点的任一点,则有22PA PBb K K a=-6. 若000(,)P x y 在椭圆22221x y a b+=上,则(1)以000(,)P x y 为切点的切线斜率为2020b x k a y =-;(2)过0P 的椭圆的切线方程是00221x x y ya b+=. 7.若000(,)P x y 在椭圆22221x y a b+=外 ,则过000(,)P x y 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 8.椭圆的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=. 9.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 10. 若P 为椭圆上异于长轴端点的任一点,F 1, F2是焦点, 12PF F α∠=, 21PF F β∠=,则()sin sin sin c e a αβαβ+==+ . 11. P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.12.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+. 13. 已知A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.14. 离心率e=a c =21)(ab -、e 2=1-2)(ab 15. 过焦点且垂直于长轴的弦叫通经,其长度为ab 2216. 从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.17. 过椭圆22221(0)x y a b a b+=>>左焦点的焦点弦为AB ,则)(221x x e a AB ++=过右焦点的弦)(221x x e a AB +-=.18. 内接矩形最大面积:2ab .19. 若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设(1).过1F 的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有①2211,cos cos b b AF BF a c a c αα==-+ ;②2cos ab AB a c α=-2222(2).若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设过F 2的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有:①22,cos cos b b AF BF a c a c αα==22+- ;②22cos ab AB a c α=-222结论:椭圆过焦点弦长公式:()()222cos 2sin ab x a c AB ab y a c αα⎧⎪⎪-=⎨⎪⎪-⎩222222焦点在轴上焦点在轴上 20.若AB 是过焦点F 的弦,设,AF m BF n ==,则2112a mnb+=二.双曲线焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>,e 越大,双曲线的开口越阔渐近线方程by x a=±a y x b=±1.(1)与22221x y a b -=共轭的双曲线方程为22221x y a b-=-,①它们有公共的渐近线;②四个焦点都在以原点为圆心,C 为半径的圆上;③2212111e e +=。

高考微专题之圆锥曲线定点问题第一讲

高考微专题之圆锥曲线定点问题第一讲

x2 y 2 + = 1 (a > b > 0) 上一点 M ( x0 , y0 ) 作弦 MA , MB 交椭圆 C 于 A 、 B 两点, a 2 b2
k MA , kMB 分别是直线 MA , MB 的斜率. 若 kMA ⋅ kMB = λ ( λ 为常数),则直线 AB 过定点,定点
坐标为 (
命题模板 一 ~ 变式 2 过圆锥曲线上一点 M 做弦 MA, MB 分别交圆锥曲线于 A, B 两点,若 k MA + kMB = λ ( λ 为常 数),则直线 AB 过定点. 模型示例 椭圆:
x2 y 2 过椭圆 C : 2 + 2 = 1 (a > b > 0) 上一点 M ( x0 , y0 ) 作弦 MA , MB 交椭圆 C 于 A 、 B 两点, a b
k MA , kMB 分别是直线 MA , MB 的斜率. 若 k MA + kMB = λ ( λ 为常数),则直线 AB 过定点,定点
坐标为 ( x0 −
2
λ
y0 , −
2 b2 ⋅ x −y ). λ a2 0 0
抛物线: 过抛物线 y 2 = 2 px ( p > 0) 上一点 M ( x0 , y0 ) 作弦 MA , MB 交抛物线 C 于 A 、 B 两点,
定点问题 知识储备 曲线过定点问题,要对曲线方程关于参变量进行整理,即 f1 ( x, y ) + λ f 2 ( x ( x, y ) = 0 变量.若 有解,则曲线过定点,否则不过定点. f 2 ( x, y ) = 0
※若方程有两个参数,须在题中寻找两参数之间关系,消去其中一个. 直线 l : y = kx + m 在以下情况中过定点: (Ⅰ)若 m 为常数,则直线 l 过定点 (0 , m) ; (Ⅱ)若 m = nk (其中 n 是常数) ,则直线 l 过定点 (−n , 0) ; (Ⅱ)若 m = nk + b (其中 n, b 是常数) ,则直线 l 过定点 (−n , b) ; 直线 l : x = ty + m 在以下情况中过定点: (Ⅰ)若 m 为常数,则直线 l 过定点 (m , 0) ; (Ⅱ)若 m = nt (其中 n 是常数) ,则直线 l 过定点 (0 , − n) ; (Ⅱ)若 m = nt + b (其中 n, b 是常数) ,则直线 l 过定点 (b , − n) . 命题模板 一 圆锥曲线中的内接直角三角形,斜边所在的直线过定点.

圆锥曲线部分常见结论

圆锥曲线部分常见结论

沈阳市第三十一中学 李曙光编辑整理,希望对大家有帮助,疏漏之处请指正 椭圆常见结论1.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立: (1)122PF PF a +=; (2)1a c PF a c -≤≤+; (3)2212b PF PF a ≤⋅≤;2. 椭圆的方程为22221x y a b+=(a >b >0), 左、右焦点分别为12,F F ,()00,P x y 是椭圆上任意一点,则有:(1)()()22222222000022,b a y a x x b y a b=-=-;(2)10||PF a ex =+,20||PF a ex =-; (3)()b OP a O ≤≤为原点;(3)()00cos sin x a y b θθθ=⎧⎨=⎩为参数; 3.设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122||=tan 2PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处时, θ最大,此时12PF F S ∆也最大;(4) .21cos 2e -≥θ(5)点M 是21F PF ∆内心,PM交21F F 于点N ,则caMN PM =||||.4.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22O M A B b k k a ⋅=-,即0202y a x b K AB -=。

5. 椭圆的方程为22221x y a b+=(a >b >0),12,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a=-6. 椭圆的方程为22221x y a b+=(a >b >0),12,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a=-7. 椭圆的方程为22221x y a b+=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B 两点的任一点,则有22PA PB b K K a=-8. 若000(,)P x y 在椭圆22221x y a b+=上,则(1)以000(,)P x y 为切点的切线斜率为2020b x k a y =-;(2)过0P 的椭圆的切线方程是00221x x y y a b +=. 9.若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.10.椭圆的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.11.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC有定向且2020BCb x k a y =(常数).12. 若P 为椭圆上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则()sin sin sin c e a αβαβ+==+ . 13. P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.14.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+. 15. 已知A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.16. 离心率e=a c =21)(ab -、e 2=1-2)(a b 17. 过焦点且垂直于长轴的弦叫通经,其长度为ab 22 18.如图所示,△ABF 2的周长为4a,19. 从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.20. 过椭圆22221(0)x y a b a b+=>>左焦点的焦点弦为AB ,则)(221x x e a AB ++=;过右焦点的弦)(221x x e a AB +-=.21. 内接矩形最大面积:2ab .22. 若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设过1F 的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有:①2211,cos cos b b AF BF a c a c αα==-+ ;②2cos ab AB a c α=-2222若椭圆方程为22221(0)x y a b a b+=>>,半焦距为c ,焦点()()12,0,,0F c F c -,设过F 2的直线l 的倾斜角为α,交椭圆于A 、B 两点,则有:①22,cos cos b b AF BF a c a c αα==22+- ;②22cos ab AB a c α=-222 同理可求得焦点在y 轴上的过焦点弦长为22sin ab AB a c α=-222(a 为长半轴,b 为短半轴,c 为半焦距)结论:椭圆过焦点弦长公式:()()222cos 2sin ab x a c AB ab y a c αα⎧⎪⎪-=⎨⎪⎪-⎩222222焦点在轴上焦点在轴上 23.若AB 是过焦点F 的弦,设,AF m BF n ==,则2112a mnb+=1.双曲线的两焦点分别为12,F F ,P 是双曲线上任意一点,则有以下结论成立: (1)122PF PF a -=; (2)()12min min,PF a c PF c a P =+=-在右支上;()21min min ,PF a c PF c a P =+=-在左支上2. 双曲线的方程为22221x y a b -=(a >0,b >0), ,()00,P x y 是双曲线上任意一点,则有:()()22222222000022,b a y x a x b y a b=-=+;3.设P 点是双曲线上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122||=cot 2PF F P S c y b θ∆=.4.AB 是双曲线22221x y a b -=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=,即2020AB b x K a y =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
38
中学数学
2000 年第 5 期
分析 所证不等式左边是三次式 , 右边 是一次式 . ∵ abc = 1 , ∴ a + b + c = ( a + b + c) ( abc) 3 , 从而所证不等式可化为齐三次不等式 a2 b + b2c + c2a ≥
3 2
短 论 荟 萃
QUA N L UN HUI CUI
( 收稿 日期 :2000201210)
436200 湖北省浠水师范学校 魏爱卿 1999 年全国高中数学联赛加试 第一题 : 在四边形 ABCD 中 , 对角线 AC 平分 ∠ BAD , 在 CD 上取一点 E ,BE 与 AC 交于 F ,延长 DF 交 BC 于 G. 求证 : ∠G AC = ∠EAC. 证明 如图 1 , 连接 BD 交 AC 于 O 点 , 在 △ BCD 中运用塞瓦定理 B G CE DO = 1, GC ED OB OB = B G CE . ∴ DO GC ED 又 ∵ AO 是 △ ABD 中 ∠ A 的平分线 ,
数形 结合
构造几何模型证明 两个三角不等式
408500 重庆市武隆县中学 李来敏
题 1 若α、 β、 γ均为锐角 , 且满足 cos 2α + co s 2β + c o s 2γ = 1 . 求证 : ct g 2α + c t g2β + c tg 2γ ≥
3 . 2
证明 如图 1 , 设以 a 、 b、 c 为三度的长方 体 ABCD2A1B 1 C1D1 的对角 线 AC1 与 三条 棱 β、 γ,则 AD 、 AB、 A A 1 所成角分别为α、 c tg α =
AD = DC1 a b
2c2a + c2 a + b2 c ≥ 3 a2 b2c5 , 上述三式相加 ,可得结论 . 例 4 已知 x 、 y、 z 是一个三角形的三条 边长 ,且 x + y + z = 1 . 求证 : 1 x2 + y2 + z2 + 4 xyz < . 2 分析 所证不等式为非齐次不等式 , 且 左边次数不统一 , 因 此需通过代 换手法使其 次数统一 . 令 x = b + c, y = c + a, z = a + b, (a 、 b、 c 均大于零) 1 ∵ x + y + z = 1 , ∴ a + b + c = . 2
39
下面就椭圆
情形给出证明 . 证明 如图 1 , 设直线 AB : y = k (x + a) , 则直线 AC = 图1
1 ( x + a) , k y = k (x + a) ,
2
图 1 图 2
两方程联立求解 x2
y2 = 1, a b2 得 ( x + a ) [ b2 ( x - a) + a2 k2 ( x + a ) ] = 0 , + ab - k a 2ab k ) , , a2 k2 + b2 a2 k2 + b2 2 2 3 2 ab k - a - 2ab k 同理 点 C ( 2 , ). a + k2 b2 a2 + k2 b2 由对称性知若存在这样的点 , 则必为 BC 与 x 轴的交点 ,设为 M , 令 k = 1 得 a ( b2 - a 2) x M = xB = xC = . a 2 + b2 故只需证明 B 、 C、 M 三点共线 , 而这是不
2 2 3 2
∴ 可得点 B (
难证明的 .
a (b2 - a2 ) ,0 ) . a2 + b2 对于其它各种情形可作出类似的证明 . (收稿日期 :1999212215)
从而 BC 经过定点 M (
赛题 研究
一道竞赛题的三角 简证及空间推广
设 ∠GAC = α , ∠EAC = β ,则 A α A β ∠ BA G = - , ∠ DAE = - , 2 2 由相似三角形比的性质有 AB s in ( A - α ) BG 2 = , GC AC si n α CE AC si n β = , ED A ) AD si n ( 2 - β 代入上式得到 A α ) si n β = si n α si n ( A - β ). si n ( 2 2 按三角函数的差角公式展开即得 π α- β ) = 0 ,其中α、 β ∈( 0 , ) , si n ( 2 α β ∴ = ,即是 ∠GAC = ∠ EAC. 它的空 间形 式如 图 2 : 在 四面 体 ABCD 中, ∠ BAC = ∠ DAC ,AO 是 △ ABD 中 ∠ A的 平分线 , E 是 CD 边上任一点 , 连结 B E 交 CO 于 F , 延长 DF 交 BC 于 G, 则有 ∠GAC = ∠EAC. 其证明过程与上述证明类似 .
2ab ,是齐二次不等式 , a + b + c ≥ 3
3
abc 是齐
一次不等式 , 对某些非齐次不等式的证明 , 若 能结合题设条件 , 将低次项的次数适当升高 , 从而将原不等式转化为 齐次不等式 来处理 , 往往会产生出奇制胜的解题效果 . 例 1 已知 a 、 b、 c ∈ R , 且 a + b + c = 1. 求证 :ab + bc + ca ≤
( b + c) 2 + ( a + c ) 2 + ( a + b) 2 + 1 4 ( a + b) ( b + c) (c + a) < , 2 2 2 2 即 (b + c) + (a + c) + (a + b) + 4 (a + b) (b + c) (c + a) < 2 (a + b + c) 2 , 即 (a + b) (b + c) (c + a) 1 < (ab + bc + ac) 2 = ( a + b + c) ( ab + bc + ac ) , 此为齐三次不等式 . 运用比较法 (a + b) (b + c) (c + a) (a + b + c) (ab + bc + ac) = - abc < 0 , 故原不等式成立 . ( 收稿 日期 :2000201204)
解题 谈法
巧化齐次式 妙证不等式
a 5b2 c2 +
2 2 2 2
3
a2 b5c 2 +
2 2
3
a 2 b2c5 .
3 3
∵ a b + a b + c a ≥3
b c + b c + a b ≥3
a5 b2c2 , a bc ,
2 5 2
417700 湖南省双峰县第一中学 聂维新
若不等式两 边各项的次数相等 , 不妨称 之为齐次不等式 . 如均值不等式中 ,a2 + b2 ≥
A、 B 是抛物线 y2 = 2p x (p > 0 ) 上的两 点 , 满足 OA ⊥OB (O 为坐标原点 ) . 求证 : 直
这与 p + q = 2 矛盾 , ∴ p + q ≥0 , ∴ 3 (p + q) (p - q) 2 ≥ 0 . 故 原不等式成立 . 例 3 已知 a 、、 b c ∈ R + ,且 a b c = 1 . 2 2 求证 : a b + b c + c2 a ≥ a + b + c .
即 a2 + b2 + c 2 而 左边 - 右边
1 2 2 2 = 2 [ ( a - b) + ( b - c ) + ( c - a ) ] ≥0 , ∴ 原不等式成立 . 例 2 已知 p3 + q3 = 2 . 求证 :p + q ≤2. 分析 所证不等式左边为一次式 , 右边
为零次式 , 考虑到已知等式是一个三次式 , 从 而将所证不等式两边立方 , 得 (p + q) 3 ≤8 , ∵ p3 + q3 = 2 , ∴ 8 = 4 ( p3 + q3) , ∴ 所证不等式可化为齐三次不等式 (p + q) 3 ≤ 4 (p3 + q3) . ∵ 4 ( p3 + q3) - (p + q) 3
3
分析 所证不等式左边是二次式 , 右边 是一个常数 , 即零次式 . 由已知 a + b+ c = 1, ∴ (a + b + c) 2 = 1 , 从而所证不等式可化为齐二次不等式
ab + bc + ca ≤ 1 ( a + b + c) 2 , 3 ≥ ab + bc + ca .
从而所证不等式转化为
= 3 (p + q) (p - q) 2 , 若 p + q < 0 ,则 p < - q, ∴ p3 < - q3 , 即 p 3 + q3 < 0 ,
教学 参考
圆锥曲 线内接顶点直 角三角 形的一个性质
222003 江苏省新海中学 茹双林
现行 高三 数学 复习 资料 都有 这样 一道 题:
3
3
线 A B 经过一个定点 .
2000 年第 5 期
笔者发现该命题可推广如下 : 命题 直角顶点在圆锥曲线顶点且内接 于圆锥曲线的直角三角形的斜边恒过定点 .
x2 y2 = 1 (a > b > 0 ) , 2 + a b2 且直角顶点在A ( - a ,0) 的
相关文档
最新文档