直线和圆的方程单元测试题含答案解析

合集下载

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

圆与直线的方程单元测试题含答案

圆与直线的方程单元测试题含答案

圆与直线的方程单元测试题含答案本文档为一个圆与直线的方程单元测试题,共包含多道题目及其答案。

问题 1给定圆 $C: (x-2)^2 + (y-3)^2 = 9$ 和直线 $L: 2x+y=6$,判断直线 $L$ 是否与圆 $C$ 相交。

答案:直线 $L$ 与圆 $C$ 交于两个点。

问题 2给定圆 $C: (x-1)^2 + (y+2)^2 = 16$ 和直线 $L: 3x+y=2$,求直线 $L$ 与圆 $C$ 的交点坐标。

答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{10}{13}, -\frac{24}{13})$ 和 $(\frac{29}{13}, -\frac{6}{13})$。

问题 3给定圆 $C: (x+2)^2 + (y-1)^2 = 25$ 和直线 $L: x+y=0$,判断直线 $L$ 是否与圆 $C$ 相切。

答案:直线 $L$ 与圆 $C$ 相切。

问题 4给定圆 $C: (x-3)^2 + (y+4)^2 = 36$ 和直线 $L: 2x-y=10$,求直线 $L$ 与圆 $C$ 的交点坐标。

答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{32}{5},\frac{14}{5})$ 和 $(\frac{2}{5}, -\frac{6}{5})$。

问题 5给定圆 $C: (x+1)^2 + (y-2)^2 = 25$ 和直线 $L: x-y=0$,判断直线 $L$ 是否与圆 $C$ 相离。

答案:直线 $L$ 与圆 $C$ 相离。

问题 6给定圆 $C: (x+5)^2 + (y+3)^2 = 36$ 和直线 $L: x+2y=5$,求直线 $L$ 与圆 $C$ 的交点坐标。

答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(-1, 3)$。

以上为圆与直线的方程单元测试题及其答案。

注:答案均采用四舍五入取整的方式。

新人教版高中数学选修一第二单元《直线和圆的方程》测试题(含答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试题(含答案解析)

一、选择题1.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,22.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( ) A .3,44ππ⎡⎤⎢⎥⎣⎦ B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦4.已知圆M :22(1)(2)5x y -+-=和点(3,5)P ,过点P 做圆M 的切线,切点分别为A 、B ,则下列命题:①4PA PB k k ⋅=-;②PA =;③AB 所在直线方程为:23130x y +-=;④PAB △外接圆的方程为2247130x y x y +--+=.其中真命题的个数为( ) A .1B .2C .3D .45.赵州桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵具古称赵州而得名.赵州桥始建于隋代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是20米,拱顶离水面4米;当水面上涨2米后,桥在水面的跨度为( )A .10米B .米C .米D .6.已知点()1,0A m -,()()1,00B m m +>,若圆C :2288280x y x y +--+=上存在一点P ,使得PA PB ⊥,则实数m 的取值范围是( ) A .3m ≥ B .3m 7≤≤ C .27m -<≤D .46m ≤≤7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条10.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++= D .2430x y ++=12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.已知三条直线的方程分别为0y=0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.15.若实数x ,y 满足关系10x y ++=,则式子S =______.16.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________.17.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.18.已知点A (0,2),O (0,0),若圆()()22:21C x a y a -+-+=上存在点M ,使3MA MO ⋅=,则圆心C 的横坐标a 的取值范围为________________.19.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点(2,0),(0,4)A B ,其“欧拉线”的直线方程为20x y -+=,则ABC 的顶点C 的坐标__________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程. 22.在平面直角坐标系中,已知射线OA :0(0)x y x -=≥,OB :20(0)x y x +=≥.过点(1,0)P 作直线分别交射线,OA OB 于点A ,B .(1)当AB 的中点在直线20x y -=上时,求直线AB 的方程; (2)当AOB 的面积取最小值时,求直线AB 的方程; (3)当||||PA PB ⋅取最小值时,求直线AB 的方程.23.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长.24.(1)已知点(,)a b 在直线3210x y ++=上,则直线20ax by ++=必过定点M ,求定点M 的坐标.(2)已知直线1l 过(1)中的定点M ,且与直线2:4l y x =相交于第一象限内的点A ,与x 正半轴交于点B ,求使△OAB 面积最小时的直线1l 的方程.25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程.26.在①经过直线1:20l x y -=与直线2:210l x y +-=的交点.②圆心在直线20x y -=上.③被y 轴截得弦长AB =;从上面这三个条件中任选一个,补充下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问题:是否存在圆Q ,且点()2,1A --,()1,1B -均在圆上?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a-≤≤-解得3a ≤-或2a ≥.【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.C解析:C 【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围. 【详解】 如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-. 因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 故选:C. 【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.4.D解析:D 【分析】设出斜率k ,得出切线方程,利用相切可得2+2440k k -=,即可得出4PA PB k k ⋅=-,判断①;由22PA PM MA =-②;可得,,,P A B M 四点共圆,圆心为PM 中点,即72,2⎛⎫ ⎪⎝⎭,半径为1322PM =,写出圆的方程可判断④;两圆相减可得直线AB 方【详解】可知切线的斜率存在,设斜率为k ,则切线方程为53y k x ,即350kx y k ,=2+2440k k -=,可得,PA PB k k 是该方程的两个根,故4PA PB k k ⋅=-,故①正确; 又PM ==PA MA ⊥,PA ∴==故②正确;,PA MA PB MB ⊥⊥,,,,P A B M ∴四点共圆,且圆心为PM 中点,即72,2⎛⎫⎪⎝⎭,半径为22PM =, 故PAB △外接圆的方程为22713(2)()24x y -+-=,即2247130x y x y +--+=,故④正确;将两圆方程相减可得23130x y +-=,即直线AB 方程,故③正确. 故选:D. 【点睛】本题考查过圆外一点作圆的切线问题,解题的关键是利用相切关系得出圆心到直线的距离为半径,且,,,P A B M 四点共圆.5.C解析:C 【分析】根据题意,建立圆拱桥模型,设圆O 半径为R , 当水面跨度是20米,拱顶离水面4米,分析可得22100(4)R R =--,求出R ,当水面上涨2米后,可得跨度2CD CN =,计算可得解. 【详解】根据题意,建立圆拱桥模型,如图所示:设圆O 半径为R ,当水面跨度是20米,拱顶离水面4米,此时水面为AB ,M 为AB 中点,即20AB =,4OM R =-,利用勾股定理可知,22222AB AM OA OB ==-,即22100(4)R R =--,解得292R =,当水面上涨2米后,即水面到达CD ,N 为CD 中点,此时2ON R =-, 由勾股定理得2222(2)66CD CN R R ==--=.故选:C 【点睛】关键点睛:本题考查圆的弦长,解题的关键是利用已知条件建立模型,利用数形结合求解,考查学生的转化能力与运算求解能力,属于基础题.6.B解析:B 【分析】根据题意,分析圆C 的圆心坐标以及半径,设AB 的中点为M ,由AB 的坐标分析M 的坐标以及|AB |的值,可得以AB 为直径的圆;进而分析,原问题可以转化为圆C 与圆M 有公共点,结合圆与圆的位置关系,分析可得答案. 【详解】根据题意,圆2288280C x y x y +--+=:,即()()22444x y -+-=;其圆心为()4,4,半径2r =, 设AB 的中点为M ,又由点()()1,0,1,0,A m B m -+则()1,0,2M AB m =, 以AB 为直径的圆为()2221x y m -+=,若圆2288280C x y x y +--+=:上存在一点P ,使得PA ⊥PB ,则圆C 与圆M 有公共点,又由22(14)(04)5MC =-+-=, 即有25m -≤且25m +≥,即37m ≤≤, 又0,37m m >∴≤≤,故选:B. 【点睛】本题考查直线与圆的位置关系,注意将圆问题转化为圆与圆的位置关系,属于基础题.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误.故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.12.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离 解析:(0,3)30,33)(3)- 【分析】先画出图形,求出3),(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得3),(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :3(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组03(1)3xy x =⎧⎪⎨=+⎪⎩得交点为3(0,); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与 解析:(,12)(221,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.15.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的解析:2【分析】=,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】=,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离, 从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离,由点到直线的距离公式,可得2d ==,所以S 的最小值为min 2S d ==故答案为:2. 【点睛】形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.16.【分析】先求得直线过定点分析可知当直线与CM 垂直时直线被圆截得的弦长最短进而利用斜率的关系即可求得m 的值【详解】直线的方程可化为所以直线会经过定点解得定点坐标为圆C 圆心坐标为当直线与CM 垂直时直线被解析:34-【分析】先求得直线过定点()3,1M ,分析可知当直线l 与CM 垂直时,直线被圆截得的弦长最短 ,进而利用斜率的关系即可求得m 的值. 【详解】直线l 的方程可化为()2740x y m x y +-++-=所以直线l 会经过定点27040x y x y +-=⎧⎨+-=⎩,解得定点坐标为()3,1M ,圆C 圆心坐标为()1,2当直线l 与CM 垂直时,直线被圆截得的弦长最短211132CM k -==-- ,211l m k m +=-+ 所以121121CM l m k k m +⎛⎫⎛⎫⨯=-⨯-=- ⎪ ⎪+⎝⎭⎝⎭,解方程得34m =-【点睛】本题考查了直线与圆的位置关系,根据斜率关系求得参数的值,属于基础题.17.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = . 当定点A 为()2,1时,22111m d m +===+ ,符合题意; 当定点A 为()2,3 时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.18.【解析】【分析】设利用可得的轨迹方程以为圆心2为半径的圆利用圆上存在点可得两圆相交或相切建立不等式即可求出实数的取值范围【详解】解:设因为A(02)O(00)所以因为所以化简得:所以点的轨迹是以为圆 解析:[0,3]【解析】 【分析】设(),M x y ,利用 3MA MO ⋅= ,可得M 的轨迹方程以()0,1 为圆心,2为半径的圆,利用圆C 上存在点M ,可得两圆相交或相切,建立不等式,即可求出实数a 的取值范围. 【详解】解:设(),M x y ,因为 A (0,2),O (0,0), 所以(,2)MA x y =-- ,(,)MO x y =-- . 因为3MA MO ⋅= ,所以()()()()23x x y y --+--= ,化简得:22(1)4x y +-= ,所以M 点的轨迹是以()0,1 为圆心,2为半径的圆. 因为M 在()()22:21C x a y a -+-+= 上, 所以两圆必须相交或相切.所以13≤≤ ,解得03a ≤≤.所以圆心C 的横坐标a 的取值范围为: [0,3]. 故答案为:[0,3]. 【点睛】本题主要考查求轨迹方程,考查圆与圆的位置关系,确定M 的轨迹方程是解题的关键,属于中档题.19.【分析】设由题意结合重心的性质可得求得AB 的中垂线方程与欧拉线方程联立可得外心由外心的性质可得解方程即可得解【详解】设由重心坐标公式得的重心为代入欧拉线方程得整理得①因为AB 的中点为所以AB 的中垂线 解析:(4,0)-【分析】设(),C m n ,由题意结合重心的性质可得40m n -+=,求得AB 的中垂线方程,与欧拉=可得解. 【详解】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++⎛⎫⎪⎝⎭,代入欧拉线方程得242033m n++-+=整理得40m n -+=①, 因为AB 的中点为()1,2,40202AB k -==--,所以AB 的中垂线的斜率为12,所以AB 的中垂线方程为()1212y x -=-即230x y -+=, 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,∴ABC 的外心为()1,1-,=,联立①②得4,0m n =-=或0,4m n ==, 当0,4m n ==时,点B 、C 两点重合,舍去; ∴4,0m n =-=即ABC 的顶点C 的坐标为()4,0-. 故答案为:()4,0-. 【点睛】本题考查了直线方程的求解与应用,考查了两点间距离公式的应用,关键是对题意的正确转化,属于中档题.20.【分析】根据AOB 是直角三角形解得圆心O 到直线ax +by =1距离即得ab 关系式再根据两点间距离公式代入消去根据二次函数性质以及的范围求最值【详解】因为是直角三角形且所以O 到直线ax +by =1距离为因1【分析】根据AOB 是直角三角形,解得圆心O ax +by =1距离,即得a ,b 关系式,再根据两点间距离公式,代入消去a ,根据二次函数性质以及b 的范围求最值 【详解】因为AOB 是直角三角形,且||||1AO OB ==,所以O ax +by =1,因此22222a b =+= 设点P (a ,b )与点(0,1)之间的距离为d ,d ====因为22,b b ≤≤≤b =d 取最大值为1=+1 【点睛】本题考查直线与圆位置关系、利用二次函数性质求最值,考查综合分析求解能力,属中档题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭ 【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程. 【详解】(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)7470x y --=(2)440x y --=(3)3)10x y --= 【分析】(1)设11(,)A x x ,22(,2)B x x -,根据AB 的中点在直线20x y -=上求出125x x =,利用斜率公式求出直线AB 的斜率,再由点斜式可求出直线AB 的方程; (2)设直线AB 的方程为1x my =+,求出,A B 的坐标,利用AOBAOPBOPSSS=+求出面积关于m 的解析式,再根据基本不等式求最值可得m 和直线AB 的方程;(3)利用(2)中,A B 的坐标求出||PA 、||PB ,得到||||PA PB 关于m 的函数关系式,再换元利用基本不等式求出||||PA PB 取最小值时的m ,从而可得直线AB 的方程. 【详解】(1)设11(,)A x x ,22(,2)B x x -,则AB 的中点为12122(,)22x x x x +-, 因为AB 的中点在直线20x y -=上,所以121222022x x x x +--⨯=,即125x x =, 所以直线AB 的斜率12212227744x x x k x x x +===-, 所以直线AB 的方程为7(1)4y x =-,即7470x y --=. (2)设直线AB 的方程为1x my =+,联立10x my x y =+⎧⎨-=⎩,得11x y m ==-,所以11(,)11A m m --(1)m <, 联立120x my x y =+⎧⎨+=⎩,得121x m =+,221y m =-+1()2m >-,所以12(,)2121B m m -++, 所以AOB AOP BOP S S S =+112||()2121OP m m =+-+112221m m =+-+,因为220,210m m ->+>,所以112221m m +-+112221()22213m m m m -++=+⨯-+ 12122(11)32221m m m m +-=+++-+14(233≥+=, 当且仅当14m =时,等号成立, 所以AOB S的最小值为43,此时14m =,直线AB 的方程为114x y =+,即440x y --=.(3)由(2)知,||PA ==||PB =21m =+, 所以||||PA PB ⋅=222212121m m m m m +=-+-++222(1)2(1)3m m m +=-+++ 22321m m =+-++, 令53(,4)2m t +=∈,则2231(3)1m t m t +=+-+21106106t t t t t ==-++-≤=,当且仅当=t3m =时,231m m ++取得最大值,||||PA PB ⋅取得最小值,此时直线AB的方程为3)1x y =+,即3)10x y --=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 23.(1)圆心(3,6)C -,半径5R =(2)证明见解析(3)16m =-时,直线l 被圆C 截得的弦最短,弦长为【分析】(1)利用6,12,20D E F =-==可求得结果; (2)利用直线l 经过的定点在圆C 内可证结论成立;(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,根据弦长公式可知d 最大即CM l ⊥时,弦长最短,由此可求得结果. 【详解】(1)因为6,12,20D E F =-==所以6322D --=-=,12622E -=-=-,所以(3,6)C -,所以半径5R ===. (2)由2830mx y m ---=得(28)(3)0x m y --+=,由28030x y -=⎧⎨+=⎩得4,3x y ==-,所以直线l 经过定点M (4,3)-,5=<,所以定点M (4,3)-在圆C 内, 所以无论m 为何值,直线l 总与圆C 有交点.(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,则||AB =d 最大值时,弦长||AB 最小,因为||d CM ≤==,当且仅当CM l ⊥时,d ,||AB取最小值=111236343CMm k =-=-=--+-,所以16m =-.所以16m =-时,直线l 被圆C 截得的弦最短,弦长为 【点睛】关键点点睛:第(2)问的关键是证明直线经过的定点在圆内,第(3)问的关键是推出CM l ⊥时,弦长最短.24.(1)(6,4);(2)10x y +=.【分析】(1)点(,)a b 在直线3210x y ++=上,所以213b a +=-,代入直线20ax by ++=得6(32)0x b y x -+-=可得答案;(2)讨论直线的斜率存在和不存在情况,分别求出三角形的面积比较,并求较小时直线的【详解】(1)因为点(,)a b 在直线3210x y ++=上,所有3210a b ++=,即213b a +=-, 代入直线20ax by ++=得21203b x by +-++=,整理得6(32)0x b y x -+-=, 所以60320x y x -=⎧⎨-=⎩解得64x y =⎧⎨=⎩,定点(6,4)M . (2)设(,)A m n (0,0)m n >>,(,0)(0)B c c >,所以M 、A 、B 三点共线, 当1l 与x 轴垂直时,(4,24)A ,(4,0)B ,112444822OAB SOB AB =⨯⨯=⨯⨯=, 当1l 与x 轴不垂直时,所以AM BM k k =,即44066n m c --=--,644n m c n -=-, 因为在直线2:4l y x =上,所以4n m =,所以64541n m m c n m -==--, 因为0,0m c >>,所以501m c m =>-,所以1m , 2115101101222111OAB A m m S y OB n m m m m ⎛⎫=⨯⨯=⨯⨯==-++ ⎪---⎝⎭()102240≥⨯+=,当且仅当111m m -=-即2m =时等号成立,此时48n m ==,所以(2,8)A ,因为48>40,所以△OAB 面积最小时直线1l 与x 轴不垂直,且1l 的斜率为84126AM k -==--,所以直线1l 的方程为8(2)y x -=--,即为100x y +-=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.25.(1)142x y +=;(2)280x y -+=. 【分析】(1)设出直线的截距式方程1x y a b+=,代入点的坐标,求解出参数的值,从而截距式方程可求;(2)先求解出A 关于直线y x =的对称点A ',然后根据A '在BC 上求解出C 点坐标,再根据高所在直线的斜率与AB 斜率的关系,从而可求解出AB 的高所在直线的一般式方程.(1)设AB 的方程为1x y a b +=,代入点()51,,4,02A B ⎛⎫- ⎪⎝⎭, 所以1512401a b a b-⎧+=⎪⎪⎨⎪+=⎪⎩,所以42a b =⎧⎨=⎩,所以AB 的截距式方程为:142x y +=; (2)设A 关于y x =的对称点为A ',所以5,12A ⎛⎫'- ⎪⎝⎭且A '在直线BC 上, 又因为()4,0B ,所以()()01:04542A B l y x '---=--,即2833y x =-, 又因为C 在y x =上,也在2833y x =-上,所以2833y x y x =⎧⎪⎨=-⎪⎩,所以88x y =-⎧⎨=-⎩,所以()8,8C --, 又因为5012142AB k -==---,设AB 的高所在直线的一般式方程为20x y m -+=,代入点()8,8C --,所以1680m -++=,所以8m =,所以AB 的高所在直线的一般式方程为280x y -+=.【点睛】思路点睛:点关于直线l 的对称点坐标的求解步骤(直线的斜率存在且不为零,已知点()11,A x y ,直线l 的斜率k ):(1)设出对称点的坐标(),A a b ';(2)AA '的中点11,22x a y b ++⎛⎫ ⎪⎝⎭必在l 上,由此得到第一个方程; (3)根据1AA k k '=-得到第二个方程;(4)两个方程联立可求解出(),A a b '.26.答案见解析【分析】由点()2,1A --,()1,1B -均在圆上,可知圆心在直线AB :1y =-的垂直平分线上,即12x =-,设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭,半径为r ,若选①,求出直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选②,由已知得圆心1,12⎛⎫-- ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选③,由弦长AB =,可得半径及圆心,即可求出圆的方程.【详解】因为点()2,1A --,()1,1B -均在圆上,所以圆心在直线AB 的垂直平分线上, 又直线AB 的方程为1y =-,直线AB 垂直平分线所在直线方程为:21122x -+==-,则可设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭;设圆的半径为r , 若选①,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上.由20210x y x y -=⎧⎨+-=⎩解得2515x y ⎧=⎪⎪⎨⎪=⎪⎩,即直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,则圆过点21,55⎛⎫ ⎪⎝⎭, 所以()222221211112552r b b ⎛⎫⎛⎫⎛⎫=--+-=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得1b =-,则294r =, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选②,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 由圆心在直线20x y -=上可得1202b ⎛⎫⨯--= ⎪⎝⎭,则1b =-, 所以()2221911124r ⎛⎫=--+-+= ⎪⎝⎭, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选③,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 若圆被y轴截得弦长AB =,根据圆的性质可得,22219224AB r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 由()222191124r b ⎛⎫=--++= ⎪⎝⎭,解得1b =-, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭;综上,存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭ 【点睛】方法点睛:本题考查求圆的标准方程,常用的方法有:(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法:若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;。

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

一、选择题1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .52.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±5.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .8 B .4C .24D .167.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .39.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A B C D 10.已知点(1,1)A - 和圆221014700C x y x y +--+=: ,一束光线从点A 出发,经过x 轴反射到圆C 的最短路程是( ) A .6B .7C .8D .911.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-12.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .⎡⎢⎣⎦D .⎡⎢⎣⎦二、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______. 14.直线360x y +-=和圆()2215x y +-=的位置关系为______.15.已知圆C 过点(8,1),且与两坐标轴都相切,则面积较小的圆C 的方程为________. 16.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.17.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 18.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.19.若直线y x b =+与曲线y =b 的范围______________.20.若实数,a b ∈R 且0b ≠,则()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为_______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 经过直线10x y -+=与直线240x y +-=的交点,且()2,3M ,()4,5N -到l 的距离相等,求直线l 的方程.23.已知圆C 过A (1,5)、B (4,2)两点,且圆心在直线2y x =上,直线l 过点()3,2P --且与AB 平行.(1)求直线l 及圆C 的方程;(2)设点M 、N 分别是直线l 和圆C 上的动点,求|MN |的取值范围. 24.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 25.已知直线:10l x y +-=与圆22:430C x y x +-+=相交于,A B 两点. (1)求||AB ;(2)若(,)P x y 为圆C 上的动点,求+1yx 的取值范围. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题5.C【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l 的距离是解题关键.6.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果. 【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAOS =求面积最值问题,转化为定点到线上动点的最值问题,即可求解.7.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.9.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.10.C解析:C 【分析】先将圆221014700C x y x y +--+=:化为标准方程,求出圆心和半径,再找出圆心O 关于x 轴对称的点'O ,最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离. 【详解】解:由题可知,圆221014700C x y x y +--+=:,整理得()()222572C x y -+-=:,圆心()5,7O ,半径2r最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离,所以21028d ==-=.故选:C 【点睛】本题主要考查圆的方程和直线与圆的位置关系,考查两点间的距离公式,属于简单题.11.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D.【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.12.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.二、填空题13.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程. 【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()1411111481688222AOBk S k k k k ⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=. 故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.14.相交【分析】由圆的标准方程求出圆心和半径根据圆心到直线的距离与半径的大小关系确定出直线与圆的位置关系【详解】解:圆的圆心坐标为半径则圆心到直线的距离直线与圆的位置关系是相交故答案为:相交【点睛】方法解析:相交 【分析】由圆的标准方程求出圆心和半径,根据圆心到直线的距离与半径的大小关系,确定出直线与圆的位置关系 【详解】解:圆()2215x y +-=的圆心坐标为(0,1),半径r =则圆心到直线360x y +-=的距离d =< ∴直线360x y +-=与圆()2215x y +-=的位置关系是相交.故答案为:相交. 【点睛】方法点睛:判断直线与圆的位置关系,常用圆心到直线的距离d 与圆半径r 的大小比较:(1)若d r =,则直线与圆相切; (2)若d r <,则直线与圆相交; (3)若dr ,则直线与圆相离.15.【分析】设圆的方程为代入点求得或进而得到圆的方程【详解】由题意圆过点且与两坐标轴都相切设圆的方程为将点代入圆的方程可得整理得解得或当时圆的面积较小所以圆的方程为故答案为:【点睛】求解圆的方程的两种方 解析:()()225525x y -+-=【分析】设圆的方程为222()()(0)x a y a a a -+-=>,代入点(8,1),求得5a =或13a =,进而得到圆的方程. 【详解】由题意,圆C 过点(8,1),且与两坐标轴都相切, 设圆的方程为222()()(0)x a y a a a -+-=>, 将点(8,1)代入圆的方程,可得222(8)(1)a a a -+-=, 整理得218650a a -+=,解得5a =或13a =,当5a =时,圆C 的面积较小,所以圆的方程为()()225525x y -+-=. 故答案为:()()225525x y -+-=. 【点睛】求解圆的方程的两种方法:几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; 待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F 的值,代入标准方程或一般方程.16.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2,所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.17.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.18.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为:【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==, 所以当||PM 最小时,||MN 最小因为2||4PM PC =-∣, 所以当||PC 最小时,||MN 最小. 因为min ||3211PC ==+, 所以2cos 332MCP ∠==, 所以7sin 3MCP ∠=, 由于1in 2s 2MCP MN∠=所以min 47||MN =. 47. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||32PC =.考查化归转化思想和运算能力,是中档题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或22b = 【分析】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<. ②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.2【分析】根据两点间的距离公式的几何意义可知表示点到点的距离点在直线上点在曲线上通过平移法设曲线的切线方程联立切线方程和曲线方程通过求出可求出切线方程最后利用两平行线间的距离公式求出两平行直线与的距【分析】(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离,点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x =-上,通过平移法,设曲线1y x=-的切线方程y x m =+,联立切线方程和曲线方程,通过0∆=求出m ,可求出切线方程,最后利用两平行线间的距离公式,求出两平行直线0x y -=与20x y -+=的距. 【详解】表示点(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离, 而点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x=-上, 将直线y x =平移到与曲线1y x=-相切,设切线为y x m =+,切线方程和曲线方程联立,即1y x my x =+⎧⎪⎨=-⎪⎩,得210x mx ++=,则240m ∆=-=,解得:2m =±,当2m =时,切线方程为:2y x =+,即20x y -+=, 所以两平行直线0x y -=与20x y -+=的距离为:d ==,所以()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为2. 故答案为:2. 【点睛】本题考查利用两点间距离的几何意义求最值,考查两点间的距离公式以及两平行线间的距离公式的应用,还涉及两平行线的斜率关系和一元二次方程根的判别式,考查转化思想和三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.3270x y +-=或460x y +-=. 【分析】根据题意求出交点坐标,由M ,N 到l 的距离相等,可判断直线有两种情况:①直线l 经过线段MN 的中点;②直线//l MN ,分别求解两种情况下的直线方程即可. 【详解】 联立10240x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,所以直线10x y -+=与直线240x y +-=的交点为()1,2P ,由M ,N 到l 的距离相等,知直线l 经过线段MN 的中点,或者直线//l MN ,线段MN 的中点为()3,1Q -,35424MN k +==--, ∴过点P ,Q 的直线l 的方程为3270x y +-=,∴过点P 与直线MN 平行的直线l 的方程为460x y +-=, 综上,直线l 的方程为3270x y +-=或460x y +-=. 【点睛】本题考查直线方程的求法,考查两直线交点等基础知识,两个点到直线的距离相等,可以分为两种情况:①直线l 经过线段MN 的中点;②直线//l MN ;当MN 的中点()3,1Q -在直线l 上时,计算出斜率PQ k ,利用点斜式即可得出直线l 的方程;当//MN l时,计算出斜率MN k ,再根据斜率相等,利用点斜式即可得出直线l 的方程.23.(1)x +y +5=0,(x -1)2+(y -2)2=9;(2))3,⎡+∞⎣. 【分析】(1)求出AB 的斜率,利用点斜式可得直线l 的方程,求出AB 的中垂线的方程,结合圆心在直线2y x =上可得圆心坐标,求出半径后可得所求的圆的方程. (2)求出圆心到直线l 的距离后可得|MN |的取值范围. 【详解】(1)∵1AB k =-, 直线l:y +2=-(x +3),即l:x +y +5=0,AB 的中点为57,22⎛⎫⎪⎝⎭,故AB 的中垂线方程为57122y x x =-+=+,由21y x y x =⎧⎨=+⎩解得12x y =⎧⎨=⎩,∴圆心C (1,2),半径3r CA ===, ∴圆C 的方程为:(x -1)2+(y -2)2=9.(2) ∵圆心C 到直线l 的距离为3d ==>,∴直线l 与圆C 相离,∴|MN |的最小值为3-,无最大值,∴|MN |的取值范围为)3,⎡+∞⎣. 【点睛】 方法点睛:(1)求圆的方程,关键是确定圆心坐标和圆的半径,前者的确定需要利用一些几何性质,如果圆心在弦的中垂线上,也在过切点且垂直于切线的直线上.(2)直线与圆的位置关系中的最值问题,往往转化为圆心到几何对象的距离问题. 24.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-.【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r ⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r ⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.25.(1;(2)⎡⎢⎣⎦. 【分析】(1)求出圆的圆心与半径,利用点到直线的距离公式求出圆心到直线的距离d ,由||AB =.(2)利用+1yx 表示圆上的点与原点构成直线的斜率即可求解. 【详解】(1)()222243021x y x x y +-+=⇒-+=,所以圆心为()2,0,半径1r =,则圆心到直线:10l x y +-=的距离:2d ==,所以||AB ===(2)+1yx 表示圆上的点(),x y 与()1,0-构成直线的斜率,当直线与圆相切时取得最值,设(1),1+1yk y k x x ==-=,,可得2291k k =+,218k =,k =±+1y x的取值范围为44⎡-⎢⎣⎦.【点睛】关键点睛:解题的关键在于利用几何法求弦长以及利用两点求斜率的计算公式得到+1yx 的取值范围26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=. 【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程. (3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程. 【详解】 (1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM === 从而ABC 外接圆的方程为22(2)8x y -+=. (3)设切线方程为(2)y k x =+=,解得1k =或1-.所以切线方程为20x y -+=或20x y ++=.【点睛】思路点睛:(1)确定直线的方程往往需要两个独立的条件,比如直线所过的两个不同点,或直线所过的一个点和直线的斜率;(2)确定圆的方程,关键是圆心坐标和半径的确定;(2)直线与圆的位置关系,往往通过圆心到直线的距离与半径的大小关系来判断.。

直线与圆的方程测试卷(含答案)

直线与圆的方程测试卷(含答案)

直线与圆的方程测试卷(含答案) 单元检测(七) 直线和圆的方程一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分)1.若直线 x+ay-a=0 与直线 ax-(2a-3)y-1=0 垂直,则 a 的值为()A。

2B。

-3 或 1C。

2 或 1D。

解析:当 a=0 时,显然两直线垂直;a≠0 时,则 -1/a=2a-3,解得 a=2.故选 C。

2.集合M={(x,y)|y=1-x^2,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N 等于()A。

{(1,0)}B。

{y|0≤y≤1}C。

{1,0}D。

1/a解析:y=1-x^2 表示单位圆的上半圆,x=1 与之有且仅有一个公共点 (1,0)。

答案:A3.菱形 ABCD 的相对顶点为 A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是…()A。

3x+y+4=0B。

3x+y-4=0C。

3x-y+1=0D。

3x-y-1=0解析:由菱形的几何性质,知直线 BD 为线段 AC 的垂直平分线,AC 中点O(-1/2,-5/2),斜率k=2/3,在BD 上,k=-3,代入点斜式即得所求。

答案:A4.若直线 3x+y=1 经过点M(cosα,sinα),则……()A。

a^2+b^2≤1B。

a^2+b^2≥1C。

a^2+b^2≤1/2D。

a^2+b^2≥1/2解析:直线 3x+y=1 经过点M(cosα,sinα),我们知道点 M在单位圆上,此问题可转化为直线 x/a+y/b=1 和圆 x^2+y^2=1有公共点,圆心坐标为 (0,0),由点到直线的距离公式,有|a/b-cosα/sinα|=|1/b|,即a^2+b^2≤1.答案:A5.当圆 x^2+y^2+2x+ky+k^2=0 的面积最大时,圆心坐标是()A。

(0,-1)B。

(-1,0)C。

(1,-1)D。

(-1,1)解析:将圆的方程化为标准形式(x+1)^2+(y-1)^2=4-k^2/4,由于圆心坐标为 (-1,1),故圆心到直线 y=1 的距离最大,即k=0,此时 r^2=4,面积最大。

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

一、选择题1.一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35 B .32-或23- C .54-或45- D .43-或34- 2.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=4.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .55.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±6.已知0a >,0b >,直线1l :()410x a y +-+=,2l :220bx y +-=,且12l l ⊥,则1112a b++的最小值为( ) A .2B .4C .23D .457.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .49.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1 D .7,1 11.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( )A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=二、填空题13.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.14.若M 是直线cos sin 10x y θθ++=上到原点的距离最近的点,则当θ在实数范围内变化时,动点M 的轨迹方程是______.15.三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形,则a 的取值集合是__________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.若实数x ,y 满足关系10x y ++=,则式子S =______.18.坐标平面内过点(2,1)A -,且在两坐标轴上截距相等的直线l 的方程为___________. 19.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.20.若直线l :y kx =23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.三、解答题21.已知圆C 经过点A (0,2)和B (2,-2),且圆心C 在直线l :x-y +1=0上. (1)求圆C 的方程;(2)若直线m 过点(1,4),且被圆C 截得的弦长为6,求直线m 的方程.22.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 23.已知圆C :22420x y x +-+=. (1)求圆心C 的坐标和半径.(2)已知过点()1,3P 的直线l 交圆C 于,A B 两点,且2AB =,求直线l 的方程. 24.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB的面积为(1)求直线l 的方程; (2)直线:3l y x =-',点P 在l '上,求PA PB +的最小值. 25.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C截得的弦长为l 的方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据光的反射原理知,反射光线的反向延长线必过点()2,3--关于y 轴的对称点()2,3-,设反射光线所在直线方程为()32y k x +=-,利用直线与圆相切的性质即可求得斜率k . 【详解】根据光的反射原理知,反射光线的反向延长线必过点()2,3--关于y 轴的对称点()2,3-, 设反射光线所在直线的斜率为k ,则反射光线所在直线方程为()32y k x +=-,即230kx y k ---=, 又由反射光线与圆()()22321x y ++-=1=,整理得21225120k k ++=,解得43k =-或34k =-.故选:D. 【点睛】过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a -≤≤-解得3a ≤-或2a ≥. 故选:D . 【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.A解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.4.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题6.D解析:D 【分析】根据12l l ⊥得到125a b ++=,再将1112a b++化为积为定值的形式后,利用基本不等式可求得结果. 【详解】因为12l l ⊥,所以240b a +-=,即125a b ++=, 因为0,0a b >>,所以10,20a b +>>, 所以1112a b ++=1112a b ⎛⎫+ ⎪+⎝⎭()1125a b ⨯++1212512b a a b +⎛⎫=++ ⎪+⎝⎭14255⎛≥+= ⎝, 当且仅当35,24a b ==时,等号成立. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方7.D解析:D【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.9.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=, 即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.12.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.二、填空题13.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以OM PO PM ≤+==≤24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.14.【分析】直线上到原点的距离最近的点就是过原点作直线的垂线垂足即为又原点到直线的距离为定值所以可知动点的轨迹【详解】∵原点到直线的距离为∴当在实数范围内变化时动点的轨迹为以原点为圆心半径为1的圆即其轨 解析:221x y +=【分析】直线cos sin 10x y θθ++=上到原点的距离最近的点,就是过原点作直线的垂线,垂足即为M ,又原点到直线的距离为定值,所以可知动点M 的轨迹. 【详解】∵原点()0,0到直线cos sin 10x y θθ++=1=,∴当θ在实数范围内变化时,动点M 的轨迹为以原点()0,0为圆心,半径为1的圆, 即其轨迹方程为221x y +=. 故答案为:221x y += 【点睛】本题主要考查轨迹方程,解决与直线有关的轨迹问题时,要充分考虑到图形的几何性质,属于中档题.15.【分析】由题意可知直线与另外两条直线分别平行或三条直线交于一点由此可求得实数的取值【详解】由于三条直线不能围成三角形则直线与另外两条直线分别平行或三条直线交于一点(1)直线与直线平行则解得;(2)直解析:1,3,63⎧⎫-⎨⎬⎩⎭【分析】由题意可知直线350ax y +-=与另外两条直线分别平行或三条直线交于一点,由此可求得实数a 的取值.【详解】由于三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形, 则直线350ax y +-=与另外两条直线分别平行或三条直线交于一点.(1)直线350ax y +-=与直线10x y ++=平行,则35111a -=≠,解得3a =; (2)直线350ax y +-=与直线280x y -+=平行,则35218a -=≠-,解得6a =-; (3)若三条直线交于一点,联立10280x y x y ++=⎧⎨-+=⎩,解得32x y =-⎧⎨=⎩, 所以直线10x y ++=,280x y -+=交于点()3,2-,由题意可知,点()3,2-在直线350ax y +-=上,可得3650a -+-=,解得13a =. 因此,实数a 的取值集合为1,3,63⎧⎫-⎨⎬⎩⎭. 故答案为:1,3,63⎧⎫-⎨⎬⎩⎭.【点睛】由三线不能确定三角形问题的求解,除了考虑直线平行外,同时也不能忽略三线交于一点这种情况的讨论. 16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆解析:【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2l ==. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离22301152+1d -⨯-+==, 根据图像的对称性可知2232l PC d =-= 所以线段MN 长度的最大值为3故答案为: 3【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的 解析:322【分析】 ()()222222211x y x y x y +--+=-+-,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】()()22222211x y x y x y +--+=-+-,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离,从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离, 由点到直线的距离公式,可得1113222d ++==, 所以S 的最小值为min 322S d ==故答案为:2. 【点睛】 形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.18.或【分析】按照截距是否为0分两种情况讨论可求得结果【详解】当直线在在两坐标轴上截距相等且为0时直线的方程为;当直线在在两坐标轴上截距相等且不为0时设直线的方程为又直线过点则解得所以直线的方程为;所以 解析:12y x =-或1y x =--. 【分析】按照截距是否为0分两种情况讨论,可求得结果.【详解】 当直线l 在在两坐标轴上截距相等且为0时,直线l 的方程为12y x =-; 当直线l 在在两坐标轴上截距相等且不为0时,设直线l 的方程为1x y a a+=, 又直线l 过点(2,1)A -,则211a a -+=,解得1a =-,所以直线l 的方程为1y x =--; 所以直线l 的方程为12y x =-或1y x =--. 故答案为:12y x =-或1y x =--. 【点睛】 易错点睛:本题考查了直线方程的截距式,但要注意:截距式1x y a b+=,只适用于不过原点或不垂直于x 轴、y 轴的直线,表示与x 轴、y 轴相交,且x 轴截距为a ,y 轴截距为b 的直线,考查学生分类讨论思想,属于基础题.19.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3【分析】 利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为L ,则21L PC =-,所以当切线长L 取最小值时,PC 取最小值, 过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3. 此时22(32)(30)10PC =-+-=,此时,213L PC =-= 故答案为:3【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则21L PC =-,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.20.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(033303k -==-,直线l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫ ⎪⎝⎭三、解答题21.(1)()()223225x y +++=;(2)x =1或512430x y -+=【分析】(1)根据圆心C 在直线l :x-y +1=0上,设圆心为:(),1a a +,再根据圆C 经过点A (0,2)和B (2,-2),由()()()2222123a a a a +-=-++求解.(2)当直线m 的斜率不存在时,方程为x =1,验证即可,当直线m 的斜率存在时,设方程为()41y k x -=-4=求解.【详解】(1)因为圆心C 在直线l :x-y +1=0上.设圆心为:(),1a a +又圆C 经过点A (0,2)和B (2,-2),所以()()()2222123a a a a +-=-++,解得3a =-, 所以圆心为 ()3,2--, ()222125r a a =+-=, 所以圆的方程为:()()223225x y +++=;(2)若直线m 的斜率不存在时,方程为x =1,被圆C 截得的弦长为6,符合, 若直线m 的斜率存在时,方程为()41y k x -=-,即 40kx y k -+-=,4=, 解得512k =, 所以直线方程为512430x y -+=,综上:直线m 的方程为x =1或512430x y -+=.【点睛】方法点睛:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.22.(1)()()224225x y -++=;(2)2200x y --=.【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程.【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=. (2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=.【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 23.(1)圆心()2,0C ,半径r =2)1x =或43130x y +-=. 【分析】(1)将圆的一般方程化为标准方程,由此得到圆心和半径;(2)直线l 斜率不存在时,可验证满足题意;当直线l 斜率存在时,假设l 方程,利用垂径定理构造方程可求得斜率k ,从而得到所求方程.【详解】(1)圆C 方程可化为:()2222x y -+=,∴圆心()2,0C ,半径r =(2)①当直线l 斜率不存在时,l 的方程为:1x =,由()22122x x y =⎧⎪⎨-+=⎪⎩得:11x y =⎧⎨=⎩或11x y =⎧⎨=-⎩,()112AB ∴=--=,满足题意; ②当直线l 斜率存在时,设l 方程为:()31y k x -=-,即30kx y k --+=,∴圆心C 到直线l的距离d ==,2AB =,2∴==,解得:43k =-, 413:033l x y ∴--+=,即43130x y +-=; 综上所述:直线l 的方程为:1x =或43130x y +-=.【点睛】易错点睛:本题考查根据直线被圆截得弦长求解直线方程的问题,易错点是忽略直线斜率不存在的情况,造成求解不完整.24.(1)y =+;(2) .【分析】(1)求出直线l 的斜率,设直线l 的方程为:y b =+,求出横纵截距即可表示出AOB 的面积即可求解;(2)求出()4,0A ,(0,B ,求出点()4,0A 关于直线:l y x ='的对称点A ',PA PB PA PB A B '+='+≥,当A ',B ,P 三点共线时取得最小值. 【详解】(1)由题意可得:直线l 的斜率2πtan3k ==,设直线l 的方程为:y b =+.可得直线l 与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b>.123OAB S b b ∴=⨯⨯=△b =,∴直线l的方程为:y =+.(2)由(1)可得:()4,0A ,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则04422n m n m -⎧=⎪-⎪⎨+⎪=⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-.PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】 关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.25.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4xy -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l 被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --= 1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.26.(1)()()22228x y ++-=;(2. 【分析】(1)由已知求得圆心和半径可得所求的圆的方程;(2)由已知得A ,B 两点都在以OP 为直径的圆上.联立两圆的方程得直线AB 的方程为4410x y -+=,再由点到直线的距离公式可求得线段AB 的长度.【详解】(1)∵所求圆的圆心为线段OP 的中点()2,2-,半径为1||2OP ==∴以OP 为直径的圆的方程为()()22228x y ++-=. (2)∵PA 、PB 是圆22:1O x y +=的两条切线,∴OA PA ⊥,OB PB ⊥,∴A ,B 两点都在以OP 为直径的圆上.由2222(2)(2)81x y x y ⎧++-=⎨+=⎩得直线AB 的方程为4410x y -+=,O 点到直线AB 的距离为8d =,线段AB 的长度为4AB ==. 【点睛】方法点睛:在解决直线与圆的位置关系的问题时,注意运用平面几何知识,如圆的切线的性质,以及圆的垂径定理等.。

中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。

A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。

直线与圆的方程单元测试题含答案

直线与圆的方程单元测试题含答案
在判断直线与圆的位置关系时,需要注意直线的斜率是否存在以及圆心和半径的取值是否合 理。
掌握直线与圆的位置关系判断是解决直线与圆相关问题的基础,对于提高解题能力和数学思 维能力有很大的帮助。
定义:直线方程的基本形式是y=kx+b,其中k是斜率,b是截距。
斜率:表示直线与x轴的夹角,当k>0时,夹角为锐角;当k<0时,夹角为钝角。 截距:表示直线与y轴的交点,当b>0时,交点在正半轴上;当b<0时,交点在负半轴 上。
圆的一般方程:x^2+y^2+Dx+Ey+F=0,其中D、E、F为常数
圆的参数方程:x=a+r*cosθ,y=b+r*sinθ,其中(a,b)为圆心,r为半径,θ为参数
圆的切线方程:在已知圆x^2+y^2+Dx+Ey+F=0上,切线的方程可表示为:D*x*x0+E*y*y0+F*x+E*y+C=0, 其中(x0,y0)为切点
单击此处添加标题
圆的直径的方程:$(x-\frac{x1+x2}{2})^2+(y\frac{y1+y2}{2})^2=(\frac{\sqrt{(x1-x2)^2+(y1-y2)^2}}{2})^2$,其中 $(x1,y1)$和$(x2,y2)$为直径的两个端点
联立方程法:通过将直线方程与圆方程联立,消元求解交点坐标
添加文档副标题
目录
01.
02.
03.
定义:表示直线上的点与固定点之间的距离始终等于一个常数 形式:Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0 分类:一般式、点斜式、斜截式、两点式和截距式 适用范围:适用于所有直线方程,是直线方程的基本形式

2023-2024学年高二数学单元速记——直线与圆的方程(压轴题专练)(解析版)

2023-2024学年高二数学单元速记——直线与圆的方程(压轴题专练)(解析版)

第二章直线与圆的方程(压轴题专练)一、选择题1.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法错误的是()A .A 点的坐标为()2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为5【答案】D【分析】根据定点判断方法、直线垂直关系、勾股定理、三角函数辅助角求最值即可得解.【详解】因为1:20l x my m -+-=可以转化为(1)20m y x -+-=,故直线恒过定点A ()2,1,故A 选项正确;又因为2l :240mx y m ++-=即()42y m x -=-+恒过定点B ()2,4-,由1:20l x my m -+-=和2:420l mx y m +-+=,满足()110m m ⨯+-⨯=,所以12l l ⊥,可得PA PB ⊥,故B 选项正确;所以()()22222221425PA PB AB +==++-=,故C 选项正确;因为PA PB ⊥,设,PAB ∠θθ=为锐角,则5cos ,5sin PA PB θθ==,所以()()252cos sin 5PA PB θθθϕ+=+=+,所以当()sin 1θϕ+=时,2PA PB +取最大值,故选项D 错误.故选:D.2.设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .6【答案】D【分析】根据动直线方程求出定点,A B 的坐标,并判断两动直线互相垂直,进而可得22||||18PA PB +=,最后由基本不等式222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭即可求解.【详解】解:由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以()()22222||||||120318PA PB AB +==--+-=,因为222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭,所以6P A PB +≤,当且仅当||||3PA PB ==时取等号.故选:D.3.在平面直角坐标系内,设()11,M x y ,()22,N x y 为不同的两点,直线l 的方程为0ax by c ++=,1122ax by c ax by c δ++=++,下面四个命题中的假命题为()A .存在唯一的实数δ,使点N 在直线l 上B .若1δ=,则过M ,N 两点的直线与直线l 平行C .若1δ=-,则直线经过线段M ,N 的中点;D .若1δ>,则点M ,N 在直线l 的同侧,且直线l 与线段M ,N 的延长线相交;【答案】A【分析】根据题意对δ一一分析,逐一验证.【详解】解:对于A ,1122ax by c ax by cδ++=++化为:112222()0(0)ax by c ax by c ax by c δ++-++=++≠,即点2(N x ,2)y 不在直线l 上,因此A 不正确.对于B ,1δ=,则1212()()0a x x b y y -+-=,即过M ,N 两点的直线与直线l 的斜率相等,又点2(N x ,2)y 不在直线l 上,因此两条直线平行,故B 正确;对于C ,1δ=-,则1122()0ax by c ax by c +++++=,化为1212022x x y y a b c ++++=,因此直线l 经过线段MN 的中点,故C 正确;对于D ,1δ>,则2112222()()()0ax by c ax by c ax by c δ++⨯++=++>,则点M ,N 在直线l 的同侧,故D 正确;故选A【点睛】本题考查了直线系方程的应用、平行直线的判定、点与直线的位置关系,考查了推理能力与计算能力,属于难题.4.我国著名数学家华罗庚曾说“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.”事转化为点(),x y 与点(),a b 之间的距离的几何问题.已知点()11,M x y 在直线1:2l y x =+,点()22,N x y 在直线2:l y x =上,且1MN l ⊥)A .2B .2C D .5【答案】D【分析】根据两点距离公式将目标函数转化为点()11,M x y 到点()0,4A 的距离与点()22,N x y 到点()5,0B 的距离和,过点A 作1AC l ⊥,垂足为C ,证明AM CN =,由CN NB CB +≥求目标函数最小值.表示点()11,M x y 到点()0,4A 的距离,表示点()22,N x y 到点()5,0B 的距离,MA NB +=+,过点A 作1AC l ⊥,垂足为C ,因为直线1l 的方程为20x y -+=,()0,4A ,所以AC ==又直线1:2l y x =+与直线2:l y x =平行,1MN l ⊥,所以MN =所以//,MN AC MN AC =,所以四边形AMNC 为平行四边形,所以AM CN =,CN NB +=+,又CN NB CB +≥,当且仅当,,C N B 三点共线时等号成立,所以当点N 为线段CB 与直线2l 的交点时,CB ,因为过点()0,4A 与直线1l 垂直的直线的方程为4y x =-+,联立42y x y x =-+⎧⎨=+⎩,可得13x y =⎧⎨=⎩,所以点C 的坐标为()1,3,所以CB =,5,故选:D.将问题转化为两点之间的距离问题.5.已知圆C 是以点(2,M 和点(6,N -为直径的圆,点P 为圆C 上的动点,若点()2,0A ,点()1,1B ,则2PA PB -的最大值为()A B .4C .8+D【答案】A【分析】由题设可知圆C :22(4)16x y -+=,在坐标系中找到(4,0)D -,应用三角线相似将2PA 转化到||PD ,再利用三角形的三边关系确定目标式的最大值即可.【详解】由题设,知:(4,0)C 且||8MN ==,即圆C 的半径为4,∴圆C :22(4)16x y -+=,如上图,坐标系中(4,0)D -则24OD AC CP OC ====,∴12AC PC CP DC ==,即△APC △PCD ,故12PA PD =,∴2||||PA PB PD PB -=-,在△PBD 中||||||PD PB BD -<,∴要使||||PD PB -最大,,,P B D 共线且最大值为||BD 的长度.∴||BD ==故选:A【点睛】关键点点睛:首先求出圆C 方程,找到定点D 使AC PC CP DC =,进而将2PA 转化到其它线段,结合三角形三边关系求目标式的最值.6.过点()8,4A -作抛物线28y x =的两条切线1l ,2l ,设1l ,2l 与y 轴分别交于点B ,C ,则ABC ∆的外接圆方程为()A .2264160x y x y ++--=B .226160x y x ++-=C .2256120x y x y ++--=D .224160x y y +--=【答案】A【解析】设切线方程为l :()84x t y +=-,与抛物线联立,表示线段AB 的中垂线方程,可求解圆心坐标和半径,表示圆的方程即可.【详解】设过点()8,4A -的抛物线2:8E y x =的切线方程为l :()84x t y +=-,即84x ty t =--(*),代入28y x =得288(48)0y ty t -++=,由0∆=得2240t t --=,(1)所以方程(1)有两个不相等的实数根1t ,2t ,且122t t +=,124t t =-,在(*)中令0x =得180,4B t ⎛⎫+ ⎪⎝⎭,280,4C t ⎛⎫+ ⎪⎝⎭,设ABC ∆的外接圆圆心为点()100,O x y ,则()0122B C y y y =+=,下求0x :线段AB 中点横标04x '=-,纵标0144y t '=+,线段AB 的中垂线方程为1144(4)y t x t --=-+,令2y =得211021424t t x t -++=,由(1)知21124t t +=,故03x =-,设ABC ∆的外接圆半径为R ,则229R =,所以ABC ∆的外接圆方程为22(3)(2)29x y ++-=,即2264160x y x y ++--=.故选:A【点睛】本题考查了直线和抛物线的位置关系,圆的方程,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7.已知平面内两个定点A ,B 及动点P ,若PBPA λ=(0λ>且1λ≠),则点P 的轨迹是圆.后世把这种圆称为阿波罗尼斯圆.已知()0,0O,0,2Q ⎛ ⎝⎭,直线1:230l kx y k -++=,直线2:320l x ky k +++=,若P 为1l ,2l 的交点,则32PO PQ +的最小值为()A .B.6-C.9-D.3【答案】A【分析】由直线方程可得12l l ⊥,则点P 的轨迹是以CD 为直径的圆,除去D 点,得到P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,可得)332PQ y =+≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PQ PA =,结合AQ =()3222PO PQ PA PQ AQ +=+≥,进而求解.【详解】由已知1:230l kx y k -++=过定点()2,3C -,2:320l x ky k +++=过定点()2,3D --,因为1l k k =,21l k k=-,所以121l l k k ⋅=-,即12l l ⊥,所以点P 的轨迹是以CD 为直径的圆,除去D 点,故圆心为()2,0-,半径为3,则P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,易知O 、Q 在该圆内,又32PO =即)332PO y ==≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PO PA =,又2AQ =,所以()3322222PO PQ PO PQ PA PQ AQ ⎛⎫+=+=+≥= ⎪⎝⎭所以32PO PQ +的最小值为故选:A.8.已知点P 为直线l :20x y +-=上的动点,过点P 作圆C :2220x x y ++=的切线PA ,PB ,切点为,A B ,当PC AB ⋅最小时,直线AB 的方程为()A .3310x y ++=B .3310x y +-=C .2210x y ++=D .2210x y +-=【答案】A【分析】先利用圆切线的性质推得,,,A P B C 四点共圆,AB CP ⊥,从而将PC AB ⋅转化为2PA ,进而确定PC l ⊥时PC AB ⋅取得最小值,再求得以PC 为直径的圆的方程,由此利用两圆相交弦方程的求法即可得解.【详解】因为圆C :2220x x y ++=可化为()2211x y ++=,所以圆心()1,0C -,半径为1r =,因为PA ,PB 是圆C 的两条切线,则,PA AC PB BC ⊥⊥,由圆的知识可知,,,,A P B C 四点共圆,且AB CP ⊥,PA PB =,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⨯= ,又PA =所以当PC 最小,即PC l ⊥时,PC AB ⋅取得最小值,此时PC 的方程为1y x =+,联立120y x x y =+⎧⎨+-=⎩,解得13,22x y ==,即13,22P ⎛⎫ ⎪⎝⎭,故以PC 为直径的圆的方程为13(1)022x x y y ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,即,221031222x x y y +-+=-,又圆22:20C x x y ++=,两圆的方程相减即为直线AB 的方程:3310x y ++=.故选:A.【点睛】关键点睛:本题解决的关键是将PC AB ⋅转化为2PA ,从而确定PC AB ⋅最小时P 的坐标,从而利用两圆相减可得相交弦方程的技巧得解.9.(多选)已知O 为坐标原点,()3,1A ,P 为x 轴上一动点,Q 为直线l :y x =上一动点,则()A .APQ △周长的最小值为B .AP AQ +的最小值为1C .AP PQ +的最小值为D OP +的最小值为4【答案】BCD【分析】设A 关于直线l :y x =的对称点为()11,3A ,A 关于x 轴的对称点为()23,1A -,对于A :根据对称性可得1212PQ QA PA PQ QA PA A A ++=++≥,进而可得结果;对于B :根据点到直线的距离分析判断;对于C :因为2AP PQ A P PQ +=+,结合点到直线的距离分析判断;对于D :根据题意分析可得)2OP A P CP+=+,结合点到直线的距离分析判断.【详解】设()3,1A关于直线l:y x=的对称点为()11,3A,()3,1A关于x轴的对称点为()23,1A-,可知12,QA QA PA PA==,对于选项A:可得APQ△周长1212PQ QA PA PQ QA PA A A++=++≥=当且仅当12,,,A P Q A四点共线时,等号成立,所以APQ△周长的最小值为A错误;对于选项B:设()3,1A到x轴,直线l:0x y-=的距离分别为12,d d,则121,d d==,可得121AP AQ d d+≥+=,所以AP AQ+的最小值为1B正确;对于选项C:因为2AP PQ A P PQ+=+,设()23,1A-到直线l:0x y-=的距离为3d=可得23A P PQ d +≥=所以AP PQ +的最小值为C 正确;对于选项D :作PC l ⊥,垂足为C ,因为直线l 的斜率1k =,则45COP ∠=︒,可得CP =,则23AP CP A P CP d +=+≥=,)2234OP A P OP A P CP d ⎫++=⎪⎪⎭,OP +的最小值为4,故D 正确;故选:BCD.二、填空题10.设R m ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值.【答案】9【分析】根据直线方程求出定点,然后根据直线垂直,结合基本不等式求解即可;【详解】由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以22222||||||(12)(03)18PA PB AB +==--+-=,因为2218||2PA PB PA PB =+≥⋅,所以9PA PB ⋅≤,当且仅当||||3PA PB ==时取等号.【点睛】根据直线方程求定点,判断直线垂直,将问题转化为基本不等式是本题的难点和突破点.11.若恰有三组不全为0的实数对(a ,)b满足关系式|1||431|a b a b t ++=-+=t 的所有可能的值为.【答案】52或75t ==,然后对t 进行分类讨论即可求解.【详解】由已知得0t >t ==,看成有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,又5AB ==,(1)当||522AB t ==,此时易得符合题意的直线l 为线段AB 的垂直平分线68230x y --=以及与直线AB 平行的两条直线86110x y ++=和86390x y +-=;(2)当||522AB t <=时,有4条直线l 会使得点(1,1)A 和(4,3)B -到它们的距离相等,注意到l 不过原点,所以当其中一条直线过原点时,会作为增根被舍去.设点A 到l 的距离为d ,①作为增根被舍去的直线l ,过原点和A ,B 的中点5(,1)2M -,其方程为250x y +=,此时52t d ==,符合;②作为增根被舍去的直线l ,过原点且与AB 平行,其方程为430x y +=,此时7552t d ==<,符合;综上,满足题意的实数t 为52或75故答案为:52或75t ==,将问题转化为有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,然后分类讨论即得.12.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为.【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l PQ =()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l B '点,有()3,1B ',连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而AB '==,所以AP PQ QB ++的最小值为AB PQ '+【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程.(2)转化与划归思想是解决距离最值问题中一种有效的途径.(3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.13.在平面直角坐标互中,给定()()1,2,3,4M N 两点,点P 在x 轴的正半轴上移动,当MPN ∠最大值时,点P 的横坐标为【答案】3【分析】根据条件结合圆的性质,转化为求圆的半径最小,利用数形结合,即可求解.【详解】过点,,M N P 三点的圆的圆心在线段MN 的中垂线5y x =-上,其中MPN ∠为弦MN 所对的圆周角,所以当圆的半径最小时,MPN ∠最大,设圆心坐标为(,5)E a a -,又由点P 在x 轴上移动,当圆和x 轴相切时,MPN ∠取得最大值,设切点为(,0)P a ,圆的半径为5a -,所以圆的方程为222()(5)(5)x a y a a -++-=-,代入点(1,2)M 代入圆的方程,可得222(1)(25)(5)a a a -++-=-,整理得2250a a +-=,解得3a =或5a =-(舍去),所以点P 的横坐标的为3.故答案为:3.14.在平面直角坐标系xOy 中,已知圆()()221:2C x a y a -+-+=,点(0,2)A ,若圆C 上的点M 均满足2210MA MO +>,则实数a 的取值范围是.【答案】a<0或3a >【分析】将条件2210MA MO +>坐标化,先转化为22(1)4x y +->恒成立,即圆C 上所有动点到定点(0,1)B 距离的最小值大于2,再转化为(0,1)B 与圆心C 距离的不等关系求解可得.【详解】设(,)M x y ,由点(0,2)A ,2210MA MO +> 222222(2)2(22)10x y x y x y y ∴+-++=+-+>即点M 满足22(1)4x y +->2,设点(0,1)B ,即2MB >恒成立则min 2MB >,圆上所有点到定点(0,1)B 最小值大于2,又圆(,2)C a a -,半径为1,圆上所有点到定点(0,1)B 最小值即为:1BC -.12BC ∴->.即3BC =,化简得230a a ->,解得a<0或3a >.故答案为:a<0或3a >.15.已知P 为直线60x y ++=上一动点,过点P 作圆22:66140C x y x y +--+=的切线,切点分别为A ,B ,则当四边形PACB 面积最小时,直线AB 的方程为.【答案】6=0x y +【分析】求得四边形PACB 面积最小时P 点的坐标,再根据圆与圆的位置关系求得直线AB 的方程.【详解】圆22:66140C x y x y +--+=,即()()22233=2x y -+-,所以圆心为()3,3C ,半径2r =,1=2=22PACB S PA r PA ⎛⎫⨯⨯ ⎪⎝⎭所以当CP 最小,也即CP 垂直60x y ++=时,四边形PACB 面积最小,直线60x y ++=的斜率为1-,则此时直线CP 的斜率为1,则直线CP 的方程为y x =,由60y xx y =⎧⎪⎨++=⎪⎩,解得3x y ==-即(3P --,对应PC ,=PA PB以P 为圆心,半径为((2233=12x y -++-+,即()()226622x y x y ++++-,由()()2222661406622x y x yx y x y ⎧+--+=⎪⎨++++-⎪⎩,两式相减并化简得26=0x y ++-,也即直线AB 的方程为26=0x y ++-.故答案为:26=0x y ++-【点睛】研究直线和圆的位置关系问题,主要思路是数形结合的数学思想方法,直线和圆有关的相切问题,连接圆心和切点的直线,与切线相互垂直.与四边形面积的最值有关问题,可先求得面积的表达式,再根据表达式来求最值.16.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,则直线l 的方程为;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,则△OMN 的面积取最小值时,直线l 对应的方程为.【答案】x -y =0或x +y -2=0x +y -2=0【详解】(1)①当直线l 经过坐标原点时,可得a +2=0,解得a =-2.所以直线l 的方程为-x +y =0,即x -y =0;②当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由条件得221a a a +=++,解得a =0,所以直线l 的方程为x +y -2=0.综上可得直线l 的方程为x -y =0或x +y -2=0.(2)在(a +1)x +y -2-a =0(a >-1)中,令0x =,得2y a =+;令0y =,得21a x a +=+.所以2(,0),(0,2)1a M N a a +++.由于1a >-,得210a a +>+>.所以22121(2)1(1)2(1)1(2)212121OMNa a a a S a a a a ∆++++++=⋅⋅+=⋅=⋅+++111[(1)2][22]2212a a =+++≥=+.当且仅当111a a +=+,即a =0时等号成立.此时直线l 的方程为x +y -2=0.答案:(1)x -y =0或x +y -2=0(2)x +y -2=0【点睛】用基本不等式求最值时,首先要判断是否满足了使用基本不等式的条件,若满足则可直接利用基本不等式求出最值;若不满足,则需要对代数式进行适当的变形,此时要特别注意“拆”、“拼”、“凑”等变形的技巧,通过变形使得代数式满足基本不等式中“正”、“定”、“等”的条件.三、解答题17.现有一组互不相同且从小到大排列的数据:012345,,,,,a a a a a a ,其中00a =.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记()015011,,5n n n n T a a a x y a a a T=+++==+++ ,作函数()y f x =,使其图像为逐点依次连接点(),(0,1,2,,5)n n n P x y n = 的折线.(1)求(0)f 和(1)f 的值;(2)设1n n P P -的斜率为(1,2,3,4,5)n k n =,判断12345,,,,k k k k k 的大小关系;(3)证明:当(0,1)x ∈时,()f x x <;(4)求由函数y x =与()y f x =的图像所围成图形的面积.(用12345,,,,a a a a a 表示)【答案】(1)(0)0f =,(1)1f =(2)12345k k k k k <<<<(3)见解析(4)124512345225()a a a a a a a a a --++++++【分析】(1)运用代入法进行求解即可;(2)根据斜率公式,结合已知进行判断即可;(3)要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=,根据已知定义,结合放缩法进行证明即可.(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积,求出1S ,再由112S S =-求解即可.【详解】(1)0015(0)0a f a a a ==+++ ,015015(1)1a a a f a a a +++==+++ ;(2)[]01011111()()5155n n n n n n n n a a a a a a y y T k a n n x x T ---+++-+++-===--- (1,2,,5)n = ,因为12345a a a a a <<<<,所以12345k k k k k <<<<;(3)由于()f x 的图像是连接各点(),(0,1,2,,5)n n n P x y n = 的折线要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=事实上,当1(,)n n x x x -∈时,1111()()()()()n n n n n n f x f x f x x x f x x x -----=-+-11111111()()n n n n n n n n n n n n n n n n x x x x x x x x f x f x x x xx x x x x x x x ------------=+<+=----下面证明(),(1,2,3,4)n n f x x n <=对任何n (1,2,3,4)n =,15()n a a ++ 1[(5)]()n n n a a =+-++ 11()(5)()n n n a a n a a =+++-++ 1()(5)n n n a a n na ≤+++- []1()(5)n n n a a n a =+++-< 115()n n n a a a a nT++++++= 所以1()5n n n a a nf x x T ++=<= ,综上,(),(1,2,3,4)n n f x x n <=(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积则1011012212332111()()()()()()222S y y x x y y x x y y x x =+-++-++-3443455411()()()()22y y x x y y x x ++-++-123451(2222)10y y y y y =++++[]112123123411()()()510a a a a a a a a a a T =++++++++++123411(432)105a a a a T=++++直线y x =与()y f x =的图像所围成图形的面积为1245112345221.25()a a a a S S a a a a a --++=-=++++【点睛】关键点睛:在证明()f x x <,(0,1)x ∈时,关键在于将其转化为证明(),(1,2,3,4)n n f x x n <=,结合题设定义进行证明.18.已知曲线():,0T F x y =,对坐标平面上任意一点(),P x y ,定义[](),=F P F x y ,若两点P ,Q ,满足[][]0F P F Q ⋅>,称点P ,Q 在曲线T 同侧;[][]0F P F Q ⋅<,称点P ,Q 在曲线T 两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中()1,1A -,()2,3B ,求直线l 的倾斜角的取值范围;(2)已知曲线()(,3450F x y x y =+-=,O 为坐标原点,求点集[][]{}0S P F P F O =⋅>的面积;(3)记到点()0,1与到x 轴距离和为5的点的轨迹为曲线C ,曲线()22:,0=+--=T F x y x y y a ,若曲线C 上总存在两点M ,N 在曲线T 两侧,求曲线C 的方程与实数a 的取值范围.【答案】(1)33[0,arctan (,)24ππ ;(2)83S π=(3)()()222480:24120y x x C y x x ⎧=-≥⎪⎨=+<⎪⎩,52⎡⎢⎣⎦.【分析】(1)由题意设出直线方程为y kx =,通过新定义,得到[][](1)(23)0⋅=--->F A F B k k ,求出斜率范围,进而可求出倾斜角范围;(2)先由题意得到点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,求出23AOB π∠=,进而可求出结果;(3)先设曲线C 上的动点为(,)x y5=y ,化简整理,即可得出轨迹方程;再由新定义,将[][]0⋅<F M F N 化为(6)(24)0--<a a ,进而可得出结果.【详解】(1)由题意,显然直线l 斜率存在,设方程为y kx =,则(),0=-=F x y kx y ,因为()1,1A -,()2,3B ,线段AB 上所有点都在直线l 同侧,则[][](1)(23)0⋅=--->F A F B k k ,解得312-<<k ;故倾斜角的范围是33[0,arctan (,)24ππ ;(2)因为[]0<F O ,所以[](345)0=+-F P x y ,故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,则O 到AB 的距离为1,故23AOB π∠=,因此,所求面积为:2214182223223ππ=⋅⋅+⋅=S(3)设曲线C 上的动点为(,)x y 5=y ,化简得曲线C 的方程为:228(3),0312(2),20x y y x y y ⎧=-≤≤⎨=+-≤≤⎩,其轨迹为两段抛物线弧;当03≤≤y 时,[]2(,)9246,24=-+-∈--F x y y y a a a ;当20-≤≤y 时,[]2(,)11246,24=++-∈--F x y y y a a a ,故若有[][]0⋅<F M F N ,则(6)(24)0--<a a ,解得624<<a .【点睛】本题主要考查新定义下直线与圆的综合,熟记直线与圆位置关系,以及直线斜率与倾斜角的概念等即可,属于常考题型.19.如图,已知A ,(0,0)B,(12,0)C ,直线:(20l k x y k --=.(1)证明直线l 经过某一定点,并求此定点坐标;(2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程.【答案】(1)证明见解析,定点坐标为(2,;170y +-=;(3)2100x +-=.【分析】(1)整理得到(2))0k x y -+-=,从而得到方程组,求出定点坐标;(2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S = 得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到123P P k =,由对称性得3PK k =-,写成直线方程.【详解】(1)直线:(20l k x y k --=可化为(2))0k x y -+-=,令200xy -=⎧⎪-=,解得2x y =⎧⎪⎨=⎪⎩l 经过的定点坐标为(2,;(2)因为A ,(0,0)B ,(12,0)C ,所以||||||12AB AC BC ===,由题意得直线AB 方程为y =,故直线l 经过的定点M 在直线AB 上,所以||8AM =,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =⨯⨯,所以3||||94AD AC ==,设00(,)D x y ,所以34AD AC =,即003(6,(6,4x y --=-,所以0212x =,0y =21(2D ,将D 点坐标代入直线l的方程,解得k =所以直线l170y +-=;(3)设P 关于BC的对称点1(2,P -,关于AC 的对称点2(,)P m n ,直线AC12612x -=-,即)12y x =-,直线AC的方程为12)y x =-,所以(1221222n m n m ⎧-⋅=-⎪-⎪⎨++⎫⎪=-⎪⎪⎭⎩,解得14,m n ==2P ,由题意得12,,,P K I P四点共线,123P P k =,由对称性得3PK k =-,所以入射光线PK的直线方程为2)y x ---,即2100x -=.20.在平面直角坐标系xOy 中,已知圆M 过坐标原点O 且圆心在曲线y x =上.(1)设直线l :43y x =+与圆M 交于C ,D 两点,且OC OD =,求圆M 的方程;(2)设直线y =与(1)中所求圆M 交于E ,F 两点,点P 为直线5x =上的动点,直线PE ,PF 与圆M 的另一个交点分别为G ,H ,且G ,H 在直线EF 两侧,求证:直线GH 过定点,并求出定点坐标.【答案】(1)22(1)(4x y -+=(2)证明见解析【分析】(1)由||||OC OD =,知OM l ⊥,运用两直线垂直的条件:斜率之积为1-,解方程可得t ,讨论t 的取值,求得圆心到直线的距离,即可得到所求圆的方程;(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,求得E ,F 的坐标,PE 和PF 的方程,联立圆的方程,运用韦达定理,3PE PF k k =.设PE k m =,则3PF k m =.设直线GH 的方程为y kx b =+,代入圆的方程,运用韦达定理,可得k ,b 的关系,即可得到所求定点.(1)圆M 过坐标原点O 且圆心在曲线y x =上,设M t ⎛ ⎝⎭由||||OC OD =,知OM l ⊥.所以2OM k t =1t =±.当1t =时,圆心M 到直线:4l y =+的距离1)d =小于半径,符合题意;当1t =-时,圆心(1,M -到直线:4l y =+的距离1)d =大于半径,不符合题意.所以,所求圆M 的方程为22(1)(4x y -+-=.(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,又知(E -,F ,所以06PE y k =,02PF y k =.显然3PE PF k k =,设PE k m =,则3PF k m =.从而直线PE 方程为:(1)y m x +,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(1)(22)30m x m x m ++-+-=,所以212311m x m --⨯=+,即21231m x m -=+;同理直线PF 方程为:3(3)y m x -,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(19)(542)8130m x m x m +-++-=,所以222813319m x m -⨯=+,即22227119m x m -=+.所以22212224232713221199101m m m x x m m m m --+=+=+++++;222122242327111231199101m m m x x m m m m --=⋅=-+++⋅++.消去参数m 整理得121227()200x x x x -++=.①设直线GH 的方程为y kx b =+,代入22(1)(4x y -+=,整理得222(1)(22)0k x kb x b ++--+-=.所以122221kb x x k --+=-+,21221b x x k -⋅=+.代入①式,并整理得22(71030b k b k +-+-+=,即(250b k b k ++-=,解得2b k =或5b k -.当2b k =时,直线GH 的方程为(2)y k x =-;当5b k =时,直线GH 的方程为(5)y k x =-,过定点第二种情况不合题意(因为G ,H 在直径EF 的异侧),舍去.所以,直线GH 过定点.21.如图所示,已知圆222:()0O x y r r +=>上点(1,)a 处切线的斜率为圆O 与y 轴的交点分别为A B 、,与x 轴正半轴的交点为D ,P 为圆O 的第一象限内的任意一点,直线BD 与AP 相交于点M ,直线DP 与y 轴相交于点N .(1)求圆O 的方程;(2)试问:直线MN 是否经过定点?若经过定点,求出此定点坐标;若不经过,请说明理由.【答案】(1)224x y +=;(2)(2,2).【分析】(1)根据切线斜率得切点与圆心连线斜率,解得a,再代入圆方程得r,即得结果,(2)先设直线AP 方程,分别解得P 坐标,M 坐标,以及N 坐标,再求出直线MN 方程,最后根据方程求定点.【详解】(1)由题意得2211413a a r ⋅=-∴==+=∴22:4O x y += (2)设:2(10)AP y kx k =+-<<()222221404y kx k x kx x y =+⎧⇒++=⎨+=⎩222422,11k k P k k ⎛⎫-+⇒- ⎪++⎝⎭()()0,2,2,0B D - ∴直线:2BD y x =-2422,211y x k M y kx k k =-⎧---⎛⎫⇒⎨ ⎪=+--⎝⎭⎩由,,D P N 三点共线得:2222222002222140221121N N k y k k k y k k k k k -+---+-++=⇒==--+++-+∴21MN kk k =+直线MN 为:22211k k y x k k -+=+++即:()()2220y x k y -++-=由2022202y x y x y -==⎧⎧⇒⎨⎨-+==⎩⎩∴直线MN 过定点()2,2.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.22.已知圆C 经过()0,1A ,()()4,0B a a >两点.(1)如果AB 是圆C 的直径,证明:无论a 取何正实数,圆C 恒经过除A 外的另一个定点,求出这个定点坐标.(2)已知点A 关于直线3y x =-的对称点A '也在圆C 上,且过点B 的直线l 与两坐标轴分别交于不同两点M 和N ,当圆C 的面积最小时,试求BM BN ⋅的最小值.【答案】(1)证明见解析,定点为()4,1(2)min 8BM BN ⋅=【分析】(1)设点(),P x y 是圆C 上任意一点,由AB 是圆C 的直径,得0AP BP ⋅= ,从而可求出圆C 的方程,即可得出结论;(2)根据题意可得点C 在直线3y x =-上,要使圆C 的面积最小,则圆C 是以AA '为直径的圆,从而可求出圆C 的方程,进而可求得B 点的坐标,设出直线l 的方程,分别求出,M N 的坐标,再根据两点间距离公式结合基本不等式即可得解.【详解】(1)设点(),P x y 是圆C 上任意一点,因为AB 是圆C 的直径,所以0AP BP ⋅= ,即()()()()(),14,410x y x y a x x y y a -⋅--=-+--=,所以圆C 的方程为:()()()410x x y y a -+--=,则4x =,1y =时等式恒成立,故定点为()4,1,所以无论a 取何正实数,圆C 恒经过除A 外的另一个定点,定点坐标为()4,1;(2)因点A 关于直线3y x =-的对称点A '也在圆C 上,所以点C 在直线3y x =-上,又圆C 的面积最小,所以圆C 是以AA '直径的圆,设过点A 与直线3y x =-垂直的直线方程为1y x =-+,由方程组31y x y x =-⎧⎨=-+⎩得()2,1C -,则AC =所以圆C 的方程为()()22218x y -++=,当4x =时,1a =或3a =-,又0a >,所以1a =,即()4,1B ,由题意知直线l 斜率存在且不为零,设直线l 的方程为()14y k x -=-,当0x =时14y k =-,当0y =,时14x k =-,所以||||448BM BN ⋅=,(当且仅当221k k =,即1k =±时取等号)则当1k =±时,min 8BM BN ⋅=。

最新人教版高中数学选修一第二单元《直线和圆的方程》检测卷(含答案解析)

最新人教版高中数学选修一第二单元《直线和圆的方程》检测卷(含答案解析)

一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D2.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-3.我国东南沿海一台风中心从A 地以每小时10km 的速度向东北方向移动,离台风中心15km 内的地区为危险地区,若城市B 在A 地正北20km 处,则B 城市处于危险区内的时间为( )小时. A .0.5 B .1 C .1.5 D .24.若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .CD .5.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .46.已知圆221:4420C x y x y +---=,圆222:2880C x y x y +++-=,则圆1C 与圆2C 的位置关系是( )A .内切B .外切C .相交D .相离7.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( )A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=08.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±9.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1 D .7,1 10.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知直线1 : =-1l x ,2:10l x y -+=,点P 为抛物线24y x =上的任一点,则P 到直线l 1,l 2的距离之和的最小值为A .2BC .1D 12.若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( ) A .230x y +-= B .210x y -+= C .230x y +-=D .210x y --=二、填空题13.直线:20l mx y m --+=与圆22:6O x y +=交于A 、B 两点,O 为坐标原点,则AOB 面积的最大值为__________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.已知点()2,0M -,()2,0N ,直线l :340x y m +-=上存在点P ,满足PM PN ⊥,则实数m 的取值范围是________.18.过点(3,5)A 作圆2248800x y x y +---=的最短弦,则这条弦所在直线的方程是__. 19.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点(2,0),(0,4)A B ,其“欧拉线”的直线方程为20x y -+=,则ABC 的顶点C 的坐标__________.20.ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知直线l 经过点(2,5)P -,l 的一个方向向量为(4,3)d =-. (1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.22.已知圆1C :222280x y x y +++-=与圆2C :22210240x y x y +-+-=相交于A 、B 两点.(1)求圆心在直线AB 上且经过A ,B 两点的圆P 的方程及弦AB 所在的直线方程;(2)直线l 经过点()2,3M 且被圆1C 所截得的弦长为l 的方程. 23.已知在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-.圆C 的半径为1,圆心C 在直线l 上.(1)若直线34120x y +-=与圆C 相切,求圆C 的标准方程;(2)已知动点(),M x y ,满足2=MA MO ,说明M 的轨迹是什么?若点M 同时在圆C 上,求圆心C 的横坐标a 的取值范围.24.已知ABC 的顶点(5,1)A ,直线BC 的方程为6590x y AB --=,边上的中线CM所在直线方程为250x y --=. (1)求顶点C 的坐标;(2)求AC 边上的高所在直线方程.25.已知点A ,B 关于坐标原点O 对称,AB 4=,M 过点A ,B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M 的半径;(2)求M 的圆心M 点的轨迹方程.26.已知圆心为C 的圆经过(0,2)A -和(1,5)B .且圆心在直线x +y +1=0上. (1)求圆C 的标准方程;(2)设直线l :(m +2)x +(m +1)y +1=0,求直线l 被(1)中圆C 截得的弦长最短时的直线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.B解析:B 【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线31x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解. 【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+,整理可得()2214x a y -++=,则直线31x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线31x =与圆()2214x a y -++=相切,101213a -+-=+,解得2a =-或6.故选:B. 【点睛】关键点睛:解决本题的关键是将题转化为直线31x +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解.3.B解析:B【分析】建立直角坐标系,过点B 作BC AF ⊥,交AF 于点C ,以点B 为圆心,15为半径的圆交AF 于点E ,F ,连接BE ,BF ,利用勾股定理求出BC 的值,进而求出EF 的值,再结合台风中心的运动速度即可求出B 城市处于危险区内的时间.【详解】以A 为原点,正北方向为纵轴正方向,正东方向为横轴正方向,建立如图所示直角坐标系,因为台风中心从A 地以每小时10km 的速度向东北方向移动, 所以运动轨迹所在直线AF 与坐标轴成45角,设以点B 为圆心,15为半径的圆交AF 于点E ,F ,连接BE ,BF 过点B 作BC AF ⊥,交AF 于点C , 在等腰Rt ABC △中,20AB =,220102BC =⨯=, 在Rt BCE 中,102BC =,15BE =,225CE BE BC ∴=-=,210EF CE ∴==,台风中心从A 地以每小时10km 的速度向东北方向移动,且当台风中心在线段EF 上时B 城市处于危险区内,B ∴城市处于危险区内的时间为110EF=小时, 故选:B .【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.4.B解析:B 【分析】画出图象,根据对称性可得四边形PACB 面积2PACS S=,利用勾股定理可得22PA PC AC =-,当PC 最小时,PA 最小,面积最小,根据点到直线距离公式,即可求得答案. 【详解】圆C :22(2)4x y ++=,圆心为(-2,0)半径2AC r ==,画出图象,如图所示:因为直线与圆相切,所以90PAC PBC ∠=∠=︒,且PAC PBC ≌ 所以四边形PACB 面积12222PACS S AC PA PA ==⨯⨯⨯=,又2224PA PC AC PC =-=-所以当PC 最小时,PA 最小,四边形PACB 面积的最小值, 由图象可得,PC 最小值即为点C 到直线3490x y +-=的距离, 所以min 223(2)9334PC ⨯--==+,所以min 945PA =-所以四边形PACB 面积的最小值225S PA == 故选:B 【点睛】解题的关键是画出图象,根据几何关系,得到PC 最小时,面积最小,再求解,将动点问题转化为点到直线距离问题,考查分析理解,计算求值的能力,属中档题.5.B解析:B 【分析】根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B. 【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.6.C解析:C 【分析】把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距,大于半径之差,而小于半径之和,可得两个圆位置关系. 【详解】解:圆221:4420C x y x y +---=,22(2)(2)10-+-=x y ,()12,2C ,1r =, 圆222:2880C x y x y +++-=,22(1)(4)25x y +++=,()21,4C --,25r =,125r r +=,215r r -=12C C ==55-<<+,∴两圆相交.故选:C. 【点睛】方法点睛:先把圆的一般方程化为标准方程,求出圆心和半径,再求出两圆的圆心距、半径之和、半径之差,根据三者之间的大小关系即可得到两圆的位置关系.7.D解析:D 【分析】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程. 【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立; 当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=, ∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =-.:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-=故选:D 【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.8.A解析:A 【分析】先根据半径和周长计算弦长AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.9.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=, 即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.10.C解析:C 【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫- ⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C11.B解析:B 【分析】1l 是抛物线的准线,利用抛物线的定义可把P 到准线的距离转化为P 到焦点的距离,故可得P 到两条直线的距离之和的最小值就是焦点到直线2l 的距离. 【详解】抛物线24y x =,其焦点坐标()1,0F ,准线为1x =-也就是直线1l ,故P 到直线1l 的距离就是P 到F 的距离.如图所示,设P 到直线2l 的距离为d ,则10122d PF -++≥=,,P E F 三点共线时等号成立,故选B. 【点睛】抛物线上的动点满足到焦点的距离等于它到准线的距离,我们常常利用这个性质实现两类距离的转换.12.D解析:D 【分析】求得圆心坐标为(3,0)C ,根据斜率公式求得PC k ,再由根据圆的弦的性质,得到2MN k =,结合直线点斜式方程,即可求解.【详解】由题意,圆2260x y x +-=,可得22(3)9x y -+=,所以圆心坐标为(3,0)C ,半径为3, 又由斜率公式,可得011312PC k -==--, 根据圆的弦的性质,可得1PC MN k k ⋅=-,所以2MN k =, 所以弦MN 所在直线方程为12(1)y x -=-,即210x y --=, 所以弦MN 所在直线方程为210x y --=. 故选:D. 【点睛】本题主要考查了直线方程的求解,以及圆的弦的性质,其中解答中熟练应用圆的弦的性质是解答的关键,着重考查推理与运算能力.二、填空题13.3【分析】设出圆心到直线的距离为利用几何法求出表示出面积再利用二次函数的性质即可求出【详解】可得直线的定点在圆内则设圆心到直线的距离为则当即即时取得最大值为3故答案为:3【点睛】关键点睛:本题考查圆解析:3【分析】设出圆心O 到直线的距离为d ,利用几何法求出AB ,表示出面积,再利用二次函数的性质即可求出. 【详解】可得直线:20l mx y m --+=的定点()1,2在圆内,则m R ∈ 设圆心O 到直线的距离为d ,则221m d m -=+,226AB d =-,∴()22422166392AOBSAB d d d d d d =⨯⨯=-⋅=-+=--+, 当23d=,即()22231m m -=+,即26m -±=时,AOBS 取得最大值为3.故答案为:3. 【点睛】关键点睛:本题考查圆内三角形面积的最值问题,解题的关键是利用几何法求出AB ,表示出三角形面积,利用二次函数性质求解.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2 【分析】根据切线的性质可将面积转化为21PACB S PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,1222PACB PACS SPA AC PA ==⨯⨯⨯==则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,min PC ∴==()min 2PACB S ∴==.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为PACB S =PC 的最小值即可.15.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与解析:(,11,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r=>=,解得:1m>或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆 解析:23【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2232lPC d =-=,进一步求出答案. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离22301152+1d -⨯-+==,根据图像的对称性可知2232lPC d =-= 所以线段MN 长度的最大值为3 故答案为: 3 【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.【分析】由可知点在以为直径的圆上可求出该圆的方程又点在直线上只需圆与直线有公共点即可即可列出关系式求出的取值范围【详解】因为所以点在以为直径的圆上该圆的圆心为半径为2圆的方程为又因为点在直线上所以点 解析:[]10,10-【分析】由PM PN ⊥,可知点P 在以MN 为直径的圆上,可求出该圆的方程,又点P 在直线l 上,只需圆与直线l 有公共点即可,即可列出关系式,求出m 的取值范围. 【详解】因为PM PN ⊥,所以点P 在以MN 为直径的圆上,该圆的圆心为()0,0O ,半径为2,圆的方程为224x y +=, 又因为点P 在直线l 上,所以点P 在直线l 和圆224x y +=的交点处, 若点P2≤,即10m ≤,解得1010m -≤≤.故答案为:[]10,10-. 【点睛】关键点点睛:本题考查直线与圆位置关系的应用,解题关键是根据PM PN ⊥,得出点P 在以MN 为直径的圆上,结合点P 在直线l 上,只需圆与直线l 有公共点即可.考查学生的逻辑推理能力,计算求解能力,属于中档题.18.【分析】利用配方法将圆化成标准方程得其圆心为当垂直这条弦时所得到的弦长最短求出直线的斜率后再根据两条直线垂直的条件和点斜式即可得解【详解】解:将圆化成标准形式为圆心为则点A 在圆内当垂直这条弦时所得到 解析:80x y +-=【分析】利用配方法将圆化成标准方程,得其圆心为M ,当AM 垂直这条弦时,所得到的弦长最短,求出直线AM 的斜率AM k 后,再根据两条直线垂直的条件和点斜式即可得解. 【详解】解:将圆2248800x y x y +---=化成标准形式为22(2)(4)100x y -+-=,圆心为(2,4)M ,则点A 在圆内,当AM 垂直这条弦时,所得到的弦长最短,54132AM k -==-, ∴这条弦所在直线的斜率为1-,其方程为5(3)y x -=--,即80x y +-=.故答案为:80x y +-=. 【点睛】本题考查直线截圆的弦长问题,熟练掌握圆的一般方程与标准方程互化、两条直线垂直的条件等基础知识点是解题的关键,考查学生的数形结合思想、逻辑推理能力和运算能力,属于中档题.19.【分析】设由题意结合重心的性质可得求得AB 的中垂线方程与欧拉线方程联立可得外心由外心的性质可得解方程即可得解【详解】设由重心坐标公式得的重心为代入欧拉线方程得整理得①因为AB 的中点为所以AB 的中垂线 解析:(4,0)-【分析】设(),C m n ,由题意结合重心的性质可得40m n -+=,求得AB 的中垂线方程,与欧拉=可得解. 【详解】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++⎛⎫⎪⎝⎭,代入欧拉线方程得242033m n++-+=整理得40m n -+=①, 因为AB 的中点为()1,2,40202AB k -==--,所以AB 的中垂线的斜率为12,所以AB 的中垂线方程为()1212y x -=-即230x y -+=, 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,∴ABC 的外心为()1,1-,=,联立①②得4,0m n =-=或0,4m n ==, 当0,4m n ==时,点B 、C 两点重合,舍去; ∴4,0m n =-=即ABC 的顶点C 的坐标为()4,0-. 故答案为:()4,0-. 【点睛】本题考查了直线方程的求解与应用,考查了两点间距离公式的应用,关键是对题意的正确转化,属于中档题.20.【分析】根据AOB 是直角三角形解得圆心O 到直线ax +by =1距离即得ab 关系式再根据两点间距离公式代入消去根据二次函数性质以及的范围求最值【详解】因为是直角三角形且所以O 到直线ax +by =1距离为因1【分析】根据AOB 是直角三角形,解得圆心O ax +by =1距离,即得a ,b 关系式,再根据两点间距离公式,代入消去a ,根据二次函数性质以及b 的范围求最值 【详解】因为AOB 是直角三角形,且||||1AO OB ==,所以O ax +by =1距离为2,2222a b =+= 设点P (a ,b )与点(0,1)之间的距离为d ,d ====因为22,b b ≤≤≤b =d 取最大值为1=+1 【点睛】本题考查直线与圆位置关系、利用二次函数性质求最值,考查综合分析求解能力,属中档题.三、解答题21.(1)34140x y +-=;(2)3410x y ++=或34290x y +-=. 【分析】(1)利用l 的方向向量,求出直线l 的斜率,代入点斜式方程求出直线l 的方程; (2)根据(1)设直线m 的方程为340x y c ++=,将点到直线的距离转化为平行线间的距离求c ,从而求出直线m 的方程. 【详解】(1)由l 的一个方向向量为(4,3)d =-,即直线l 的斜率34k =- 由点斜式方程得:35(2)4y x -=-+,即34140x y +-=. 所以直线l 的方程为:34140x y +-=(2)因为直线m 与l 平行,则可设m 的方程为340x y c ++=,由平行线间的距离公式得,|14|35c +=,解得:1c =或29-. 所以直线m 的方程为:3410x y ++=或34290x y +-=.【点睛】结论点睛:本题主要考查两直线的位置关系与斜率的关系,常用结论:在斜率存时, (1)1212//l l k k ⇔= (121221//0l l A B A B ⇔-=);(2)12121l l k k ⊥⇔⋅=-(1212120l l A A B B ⊥⇔⋅+⋅=),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心. 22.(1)240x y -+=;()()22215x y ++-=;(2)240x y -+=或112160x y --=.【分析】(1)由已知两圆方程,可得相交弦AB 所在直线的方程,再与其中一圆的方程联立求交点A 、B 坐标,由题意圆P 是以AB 为直径,其中点为圆心的圆,写出圆P 的方程即可.(2)由直线l 过点()2,3M 且被圆1C 所截得的弦长为1C 到直线l 的距离,再讨论直线l 斜率,判断定点1C 到直线l 的距离是否符合要求,进而求直线的方程. 【详解】(1)由22222280210240x y x y x y x y ⎧+++-=⎨+-+-=⎩, ()2222228210240x y x y x y x y +++--+-+-=,即弦AB 所在的直线方程240x y -+=.∴24x y =-,代入圆的方程式,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩. ∴A ,B 两点的坐标分别为()4,-0,()0,2,中点坐标为()2,1P -,则圆P 的半径r PB ===∴圆的方程为()()22215x y ++-=.(2)圆1C :222280x y x y +++-=方程化为:()()221110x y +++=∴()11,1C --,半径r =,直线被圆所截得的弦长l =∴弦心距d == 若直线l 的斜率不存在,圆心()11,1C --到直线l :2x =的距离为3,不合题意. ∴直线l 的斜率存在,设为()32y k x -=-,即320kx y k -+-=圆心()11,1C --到直线l =,即2424110k k -+=,解得12k =或112k =,即有()1322y x -=-或()11322y x -=-,故直线l 的方程为240x y -+=或112160x y --=.【点睛】 关键点点睛:(1)由已知两圆的方程求相交弦直线方程,只需将两圆方程左右两边同时相减即可得到,再由直线与圆的关系求交点坐标,写出圆的方程.(2)由直线过定点,且已知与圆的相交弦长,即可得弦心距,讨论直线存在与否,保证弦心距符合要求,确定直线方程. 23.(1) 22(3)(2)1x y -+-=或22232()()11111x y -+-=(2)120,5⎡⎤⎢⎥⎣⎦【分析】(1)设圆心C 为(a ,2a -4),利用直线与圆相切,求解a ,得到圆心坐标,求出圆的方程.(2)由2=MA MO ,求出动点M 的轨迹方程,说明轨迹,通过点M 同时在圆C 上,说明圆C 与圆D 有公共点,利用两个圆的位置关系,转化求解圆心C 的横坐标a 的取值范围即可. 【详解】(1)因为圆心C 在直线l 上,所以圆心C 可设为(a ,2a -4),|1128|15a -==,即|1128|5a -=, 所以11285a -=±, 解得3a =或2311a =, 所以圆心C 的坐标为(3,2)或232,1111⎛⎫⎪⎝⎭, 所以圆C 的标准方程为22(3)(2)1x y -+-=或22232()()11111x y -+-=(2) 由2=MA MO ,= 化简得:22230x y y ++-=, 即22(1)4x y ++=,所以动点M 的轨迹是以D (0,-1)为圆心,半径是2的圆, 若点M 同时在圆C 上,则圆C 与圆D 有公共点, 则21||21CD -≤≤+,即1 3.≤≤整理得:2251280,5120a a a a ⎧-+≥⎨-≤⎩解得1205a ≤≤, 所以圆心C 的横坐标a 的取值范围为[0,125]. 【点睛】关键点点睛:判断两圆位置关系式,只需求出两圆圆心的距离,比较与两圆半径的关系即可,本题根据两圆有公共点可得21||21CD -≤≤+,解不等式即可求解,属于中档题. 24.(1)(4,3)C ;(2)250x y --=. 【分析】(1)联立直线方程可解得结果;(2)设出()00,B x y ,利用AB 的中点M 在直线CM 上以及点()00,B x y 在直线BC 上,解方程组可得B 的坐标,利用垂直可得斜率,根据点斜式可得所求直线方程. 【详解】(1)联立6590250x y x y --=⎧⎨--=⎩,解得43x y =⎧⎨=⎩,可得(4,3)C ;(2)设()00,B x y ,则AB 的中点0051,22x y M ++⎛⎫⎪⎝⎭, 则0000659015502x y y x --=⎧⎪⎨++--=⎪⎩,解得(1,3)B --, 又23145AC k -==--,所以AC 边上的高所在直线的斜率12k =,所以AC 边上的高所在直线方程为13(1)2y x +=+,即250x y --=. 【点睛】关键点点睛:求出点B 的坐标是求出AC 边上的高所在直线方程的关键,设()00,B x y ,利用直线BC 的方程和AB 的中点坐标满足CM 的方程可解得点B 的坐标. 25.(1)2r 或6r =;(2)24y x =.【分析】 (1)M 过点A ,B ,所以圆心M 在AB 的垂直平分线上,设(),M a a ,根据AOM为直角三角形,由勾股定理即可求解.(2)设(), M x y ,由于MO AO ⊥,根据AOM 为直角三角形,由勾股定理即可求解. 【详解】 解:(1)因为M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线0x y +=上,且A ,B 关于坐标原点O 对称, 所以M 在直线y x =上,故可设(),M a a . 因为M 与直线20x +=相切,所以M 的半径为2r a =+.由已知得2AO =,(),M a a 点到0x y +==又MO AO ⊥,故可得()22242a a +=+,解得0a =或4a =. 故M 的半径2r 或6r =.(2)设(), M x y ,由已知得M 的半径为2r x =+,2AO =,MO =由于MO AO ⊥,所以222MO OA r +=,故可得()22242x y x ++=+,化简得M 的轨迹方程为24y x =.【点睛】思路点睛:直线和圆相交时,通常用半径、半弦、弦心距组成的直角三角形建立等量关系. 26.(1)22(3)(2)25x y ++-=(2)23y x =+【分析】(1)由,A B 的坐标求出线段AB 的中垂线所在方程,与直线x +y +1=0联立求出圆心坐标,再求半径,即可得出圆C 的标准方程;(2)求出直线l 过定点(1,1)D -,当圆心C 到直线l 的距离最远时,直线l 被圆C 截得的弦长最短,求出直线CD 的斜率,进而得出直线l 的方程. 【详解】 (1)5271AB K +==,线段AB 的中点为13,22M ⎛⎫⎪⎝⎭则线段AB 的中垂线所在方程为311272y x ⎛⎫-=-- ⎪⎝⎭,即11177y x =-+ 由1117710y x x y ⎧=-+⎪⎨⎪++=⎩,解得3,2x y =-=,即圆心的坐标为C (3,2)-5r ==即该圆的方程为22(3)(2)25x y ++-=(2)直线l :(m +2)x +(m +1)y +1=0可化为21(1)1m y x m +-=-++,即直线l 过定点(1,1)D - 当圆心C 到直线l 的距离最远时,直线l 被圆C 截得的弦长最短由圆的对称性可知,当CD 与直线l 垂直时,圆心C 到直线l 的距离最远 因为211312CD k -==--+,所以直线l 的方程为12(1)y x -=+,即23y x =+ 【点睛】在处理问题(2)时,关键是由直线l 的方程得出直线l 过定点(1,1)D -,结合圆的对称性得出当CD 垂直与直线l 时,直线l 被圆C 截得的弦长最短.。

龙岩市选修一第二单元《直线和圆的方程》检测(有答案解析)

龙岩市选修一第二单元《直线和圆的方程》检测(有答案解析)

一、选择题1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .52.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关3.直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是( ) A .点在圆外B .点在圆内C .点在圆上D .不能确定4.若过直线3420x y +-=上一点M 向圆C :()()22234x y +++=作一条切线切于点T ,则MT 的最小值为( )A B .4C .D .5.若实数x 、y 满足222210x y x y +--+=,则32y x --的取值范围为( ) A .30,4⎡⎤⎢⎥⎣⎦B .3,4⎛⎤-∞- ⎥⎝⎦C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,04⎡-⎫⎪⎢⎣⎭6.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-7.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条 B .2条 C .3条 D .4条 8.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( )A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案9.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=10.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫ ⎪⎝⎭D .()1,111.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+ B .72y x =+C .4y x =-D .2y x =-12.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B .)1- C .()1-D .()1二、填空题13.已知直线():22l y k x -=-与两点1,0A ,点()4,3B ,若直线l 与线段AB 有公共点,则实数k 的取值范围是______.14.长为AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,线段AB 的中点M 的轨迹为曲线C ,已知过定点()2,0P 的直线l 与曲线C 相交与E ,F 两点,O 为坐标原点,当EOF △的面积取到最大值时,直线l 的斜率为______.15.已知圆221:210240C x y x y +-+-=和圆222:2280C x y x y +++-=相交于A 、B 两点,则线段AB 的长度为__________.16.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab≠0,则2211a b +的最小值为___________19.若直线y x b =+与曲线y =b 的范围______________.20.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____.参考答案三、解答题21.已知圆C :()()22344x y +++=,直线l 过定点()1,0A -.(1)若l 与圆相切,求l 的方程;(2)若l 与圆相交于PQ 两点,PQ 线段中点为M ,又l 与0l :220x y +-=交点为N ,求证:AM AN ⋅为定值.22.已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.23.已知圆心为C 的圆经过点()1,1A 和()2,2B -,且圆心C 在直线l :10x y -+=上. (1)求圆C 的方程;(2)已知直线m :y x n =+圆C 截得的弦与圆心构成CDE △,若CDE △的面积有最大值,求出直线m :y x n =+的方程;若CDE △的面积没有最大值,请说明理由. 24.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长. 25.已知圆C :224x y +=.(1)求过点A 且与圆C 相切的直线方程; (2)若(),P x y 圆C 上的任意一点,求x y +的最大值.参考答案26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.3.A解析:A 【分析】直线1ax by +=与圆221x y +=||1<,即为1>,由此可得点与圆的位置关系. 【详解】因为直线1ax by +=与圆221x y +=有两个公共点,||1<,1>,因为点(,)b a 与221x y += 圆224x y +=的半径为1,所以点P 在圆外. 故选:A. 【点睛】关键点点睛:本题的关键是将直线与圆的位置关系的判断式和点与圆的关系的判断式联系起来.4.D解析:D 【分析】根据题意,求出圆的圆心与半径,由切线长公式可得||MT =||MC 取得最小值时,||MT 的值最小,由点到直线的距离分析||MC 的最小值,进而计算可得答案. 【详解】根据题意,圆22:(2)(3)4C x y +++=,其圆心为(2,3)--,半径2r m =,过点M 向圆C 作一条切线切于点T ,则||MT ==当||MC 取得最小值时,||MT 的值最小,而||MC 的最小值为点C 到直线3420x y +-=的距离,则||4min MC ==,则||MT= 故选:D 【点睛】方法点睛:解析几何中的最值问题,常用的方法有:(1)函数单调性法;(2)导数法;(3)数形结合法;(4)基本不等式法.要结合已知条件灵活选择合适的方法求解.本题利用的是数形结合的方法求最值的.5.C解析:C 【分析】 令32y k x -=-,可得出320kx y k -+-=,问题转化为直线320kx y k -+-=与圆222210x y x y +--+=有公共点,可得出关于实数k 的不等式,进而可解得实数k 的取值范围. 【详解】 令32y k x -=-,可得出320kx y k -+-=, 将圆的方程化为标准方程得()()22111x y -+-=,圆心坐标为()1,1,半径为1, 则直线320kx y k -+-=与圆()()22111x y -+-=1≤,整理可得340k -≤,解得34k ≥. 因此,32y x --的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:C. 【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)z =(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C++=倍.6.D解析:D 【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.7.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.8.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C.【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.9.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.10.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.11.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-; 当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D. 【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点,原点到直线20x y --=的距离为d∴两条平行线中与圆心O 距离较远的一条到原点的距离为1d '=,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>,即1r ,实数r 的取值范围是)1,+∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】写出线段的方程联立求得交点坐标由可求得的范围【详解】由条件得有解解得由得或故答案为:【点睛】方法点睛:本题考查直线与线段有公共点问题解题方法是直线(线段)方程求出交点坐标利用交点坐标的范围求解析:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦【分析】写出线段AB 的方程,联立求得交点坐标,由14x ≤≤可求得k 的范围. 【详解】由条件得()()22114y k x y x x ⎧-=-⎪⎨=-≤≤⎪⎩有解,解得23121k x k k y k -⎧=⎪⎪-⎨-⎪=⎪-⎩,由23141k k -≤≤-,得12k ≤或2k ≥.故答案为:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.【点睛】方法点睛:本题考查直线与线段有公共点问题.解题方法是直线(线段)方程求出交点坐标,利用交点坐标的范围求出参数k 的范围,可是也可利用数形结合思想求解,即求出,PA PB 的斜率,由图形观察出k 的范围.14.【分析】求出的轨迹得到再利用正弦定理求得倾斜角得解【详解】设由题得:所以所以当时的面积取到最大值此时设直线倾斜角为在三角形中利用正弦定理得:或故答案为:【点睛】线段的中点的轨迹及利用正弦定理求得倾斜解析:33±【分析】求出M 的轨迹222x y +=得到2OE OF ==,再利用正弦定理求得倾斜角得解.【详解】设(,)M x y 由题得:122OM AB ==,所以222x y +=,2OE OF == 所以1sin sin 2EOF S OE OF EOF EOF =∠=∠△ 当EOF 90∠=时,EOF △的面积取到最大值此时45OEF ∠=,设直线倾斜角为α 在三角形EOP 中 ,利用正弦定理得:22sin 12sin sin sin 22OP OE OE OEFOEF OPαα∠=⇒===∠ 0απ≤<, 6πα∴=或56π 3k ∴=故答案为: 33± 【点睛】线段AB 的中点M 的轨迹及利用正弦定理求得倾斜角是解题关键.15.【分析】由两圆方程相减可得公共弦的方程再由直线和圆相交的弦长公式计算可得所求值【详解】解:由圆和圆相减可得公共弦的方程为又圆的圆心为半径为可得到直线的距离为则故答案为:【点睛】关键点点睛:两圆相交相 解析:5【分析】由两圆方程相减可得公共弦AB 的方程,再由直线和圆相交的弦长公式,计算可得所求值. 【详解】解:由圆221:210240C x y x y +-+-=和圆222:2280C x y x y +++-=相减可得,公共弦的方程为240x y -+=,又圆221:210240C x y x y +-+-=的圆心为(1,5)-,半径为52,可得1C 到直线240x y -+=的距离为3514d ==+,则22||2(52)(35)25AB =-=, 故答案为:25. 【点睛】关键点点睛:两圆相交,相交弦所在直线的方程可有两圆方程相减而得到,处理圆的弦长选择垂径定理为好.16.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。

《直线和圆的方程》测试卷与答案

《直线和圆的方程》测试卷与答案

《直线和圆的方程》测试卷与答案(时间:120分钟满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分)1.直线x +y =0的倾斜角为()A .45°B .60°C .90°D .135°答案D解析因为直线的斜率为-1,所以tan α=-1,即倾斜角为135°.2.过点(0,-2)且与直线x +2y -3=0垂直的直线方程为()A .2x -y +2=0B .x +2y +2=0C .2x -y -2=0D .2x +y -2=0答案C解析设该直线方程为2x -y +m =0,由于点(0,-2)在该直线上,则2×0+2+m =0,即m =-2,即该直线方程为2x -y -2=0.3.直线3x -4y +5=0关于x 轴对称的直线方程为()A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=0答案A解析设所求直线上任意一点(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于()A.2B .2C .22D .4答案B 解析由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2.5.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为()A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0答案D解析由题意,知圆的标准方程为(x -3)2+y 2=9,圆心A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.6.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n 等于()A .0B .1C .-1D .2答案A解析由题意,所给两条直线平行,所以n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),则m +n =0.7.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为()A .23B .33C .32D .42答案C解析由题意,知M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,所以M 到原点的距离的最小值为d =62=3 2.8.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为()A .52-4 B.17-1C .6-22 D.17答案A解析由题意知,圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9的圆心分别为C 1(2,3),C 2(3,4),且|PM |+|PN |≥|PC 1|+|PC 2|-4,点C 1(2,3)关于x 轴的对称点为C (2,-3),所以|PC 1|+|PC 2|=|PC |+|PC 2|≥|CC 2|=52,即|PM |+|PN |≥|PC 1|+|PC 2|-4≥52-4.二、多项选择题(本大题共4小题,每小题5分,共20分,全部选对的得5分,部分选对的得2分,有选错的得0分)9.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是()A .(2,0)B .(6,4)C .(4,6)D .(0,2)答案AC解析设B 点坐标为(x ,y ),AC ·k BC =-1,|=|AC |,=(0-3)2+(4-3)2,=2,=0=4,=6.10.由点A (-3,3)发出的光线l 经x 轴反射,反射光线与圆x 2+y 2-4x -4y +7=0相切,则l 的方程为()A .4x -3y -3=0B .4x +3y +3=0C .3x +4y -3=0D .3x -4y +3=0答案BC 解析已知圆的标准方程是(x -2)2+(y -2)2=1,它关于x 轴对称的圆的方程是(x -2)2+(y +2)2=1,设光线l 所在直线的方程是y -3=k (x +3)(其中斜率k 待定),即kx -y +3k +3=0,由题设知对称圆的圆心C ′(2,-2)到这条直线的距离等于1,即d =|5k +5|1+k 2=1.整理得12k 2+25k +12=0,解得k =-34或k =-43.故所求的直线方程是y -3=-34(x +3)或y -3=-43(x +3),即3x +4y -3=0或4x +3y +3=0.11.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为()A .(x -4)2+(y -6)2=6B .(x +4)2+(y -6)2=6C .(x -4)2+(y -6)2=36D .(x +4)2+(y -6)2=36答案CD 解析∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.12.已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则()A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=32D .当∠PBA 最大时,|PB |=32答案ACD 解析∵A (4,0),B (0,2),∴过A ,B 的直线方程为x 4+y 2=1,即x +2y -4=0,圆(x -5)2+(y -5)2=16的圆心坐标为(5,5),圆心到直线x +2y -4=0的距离d =|1×5+2×5-4|12+22=115=1155>4,∴点P 到直线AB 的距离的范围为1155-4,1155+4,∵1155<5,∴1155-4<1,1155+4<10,∴点P 到直线AB 的距离小于10,但不一定大于2,故A 正确,B 错误;如图,当过B 的直线与圆相切时,满足∠PBA 最小或最大(P 点位于P 1时∠PBA 最小,位于P 2时∠PBA 最大),此时|BC |=(5-0)2+(5-2)2=25+9=34,∴|PB |=|BC |2-42=18=32,故C ,D 正确.三、填空题(本大题共4小题,每小题5分,共20分)13.已知A (0,-1),点B 在直线x -y +2=0上,若直线AB 平行于直线x +2y -3=0,则B 点坐标为________.答案(-2,0)解析因为直线AB平行于直线x+2y-3=0(m≠-3),所以设直线AB的方程为x+2y+m=0(m≠-3),又点A(0,-1)在直线AB上,所以0+2×(-1)+m=0,解得m=2,所以直线AB的方程为x+2y+2=0,-y+2=0,+2y+2=0,=-2,=0,故B点坐标为(-2,0).14.过点(1,2)可作圆x2+y2+2x-4y+k-2=0的两条切线,则实数k的取值范围是________.答案(3,7)解析把圆的方程化为标准方程得(x+1)2+(y-2)2=7-k,∴圆心坐标为(-1,2),半径r=7-k,则点(1,2)到圆心的距离d=2.由题意,可知点(1,2)在圆外,∴d>r,即7-k<2,且7-k>0,解得3<k<7,则实数k的取值范围是(3,7).15.已知P(a,b)为圆C:x2+y2-2x-4y+4=0上任意一点,则b-1a+1的最大值为__________.答案43解析圆的方程即(x-1)2+(y-2)2=1,圆心坐标为(1,2),半径为1,代数式b-1a+1表示圆上的点(a,b)与定点(-1,1)连线的斜率,设过点(-1,1)的直线方程为y-1=k(x+1),与圆的方程联立,可得(k2+1)x2+(2k2-2k-2)x+(k-1)2=0,考虑临界条件,令Δ=(2k2-2k-2)2-4(k2+1)(k-1)2=0,可得k1=0,k2=43,则b-1a+1的最大值为43.16.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是__________.答案3或7解析∵A∩B中有且仅有一个元素,∴圆x2+y2=4与圆(x-3)2+(y-4)2=r2相切.当两圆内切时,由32+42=|2-r|,解得r=7(负值舍去);当两圆外切时,由32+42=2+r,解得r=3.∴r =3或r =7.四、解答题(本大题共6小题,共70分)17.(10分)已知圆C 的圆心为(2,1),若圆C 与圆O :x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2,即x 2+y 2-4x -2y +5=r 2,圆C 与圆O 的方程相减得公共弦所在直线的方程为x +2y -5+r 2=0,因为该直线过点(5,-2),所以r 2=4,则圆C 的方程为(x -2)2+(y -1)2=4.18.(12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解设点P 的坐标为(a ,0)(a >0),点P 到直线AB 的距离为d ,由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =25.由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去),所以点P 的坐标为(7,0).19.(12分)已知直线l 经过点P (-2,5),且斜率为-34.(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.解(1)由直线方程的点斜式,得y -5=-34(x +2),整理得所求直线方程为3x +4y -14=0.(2)由直线m 与直线l 平行,可设直线m 的方程为3x +4y +C =0(C ≠-14),由点到直线的距离公式得|3×(-2)+4×5+C |32+42=3,即|14+C |5=3,解得C =1或C =-29,故所求直线方程为3x +4y +1=0或3x +4y -29=0.20.(12分)红谷隧道是江西南昌穿越赣江的一条过江行车通道,总长2997m ,在南昌大桥和新八一大桥之间,也是国内最大的水下立交系统.如图,已知隧道截面是一圆拱形(圆拱形是取某一圆周的一部分构成巷道拱部的形状),路面宽为45m ,高4m .车辆只能在道路中心线一侧行驶,一辆宽为2.5m ,高为3.5m 的货车能否驶入这个隧道?请说明理由.(参考数据:14≈3.74)解如图,建立平面直角坐标系,设圆心M (0,m ),A (25,0),B (0,4),由|MA |=|MB |得,m =-12,则圆的方程为x 2,所以当x =2.5时,y =14-12≈3.24<3.5(y 的负值舍去).即一辆宽为2.5m ,高为3.5m 的货车不能驶入这个隧道.21.(12分)已知圆M 过C (1,-1),D (-1,1)两点,且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),-a )2+(-1-b )2=r 2,1-a )2+(1-b )2=r 2,+b -2=0,=1,=1,=2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)如图,四边形PAMB 的面积为S =S △P AM +S △PBM ,即S =12(|AM ||PA |+|BM ||PB |),又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |,而|PA |=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可,|PM |的最小值即为点M 到直线3x +4y +8=0的距离,所以|PM |min =3+4+85=3,四边形PAMB 面积的最小值为2|PM |2-4=2 5.22.(12分)在直角坐标系Oxy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)解不能出现AC ⊥BC 的情况.理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12≠-1,所以不能出现AC ⊥BC 的情况.(2)证明BCBC 的中垂线方程为y -12=x由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.=-m 2,-12=x又x 22+mx 2-2=0,=-m 2,=-12.所以过A ,B ,C -m2,-r =m 2+92.故圆在y轴上截得的弦长为3,即过A,B,C三点的圆在y轴上截得的弦长为定值.。

人教版高中数学选修一第二单元《直线和圆的方程》测试题(有答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试题(有答案解析)

一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.过点)引直线l 与曲线y =A ,B 两点,O 为坐标原点,当AOB 的面积取最大值时,直线l 的斜率等于( )A .B .3±C .D3.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-4.已知(1,1)P ,(2,3)Q --,点P ,Q 到直线l 的距离分别为2和4,则满足条件的直线l的条数是( ) A .1 B .2C .3D .45.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( ) A .9B .4C .12D .146.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 7.已知直线l :(3)(2)20m x m y m ++---=,点()21A --,,(22)B -,,若直线l 与线段AB 相交,则m 的取值范围为( )A .(4][4)-∞-⋃+∞,, B .(22)-, C .3[8]2-,D .(4)+∞,8.在平面直角坐标系xOy 中,直线240x y +-=与两坐标轴分别交于点A 、B ,圆C 经过A 、B ,且圆心在y 轴上,则圆C 的方程为( ) A .226160x y y ++-= B .226160x y y +--= C .22890x y y ++-=D .22890x y y +--=9.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点(4,3)A -处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .8B .7C .6D .510.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .22⎡-⎢⎣⎦D .2⎡⎢⎣⎦12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( )A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.直线360x y +-=和圆()2215x y +-=的位置关系为______.14.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为,则m =______.15.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 16.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.19.直线l 过点()2,3P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的方程为_________.20.已知直线3y ax =+与圆22280x y x ++-=相交于A ,B 两点,点()00,P x y 在直线2y x =上,且PA PB =,则0x 的取值范围为______.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程.22.如图,已知圆22:414450C x y x y +--+=及点(2,3)Q -.(1)若点(,1)P m m +在圆C 上,求直线PQ 的斜率以及直线PQ 与圆C 的相交弦PE 的长度;(2)若(,)N x y 是直线10x y ++=上任意一点,过N 作圆C 的切线,切点为A ,当切线长NA 最小时,求N 点的坐标,并求出这个最小值; (3)若(,)M x y 是圆上任意一点,求32y x -+的最大值和最小值. 23.已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P . (1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.24.已知ABC 的顶点(5,1)A ,直线BC 的方程为6590x y AB --=,边上的中线CM 所在直线方程为250x y --=. (1)求顶点C 的坐标;(2)求AC 边上的高所在直线方程.25.已知圆心为C 的圆经过A (1,1)和B (2,-2),且圆心C 在直线l :10x y -+=上.(1)求圆心为C 的圆的一般式...方程; (2)是否存在过原点的直线l ′与⊙C 交于E 、F 两点且使EF 为直径的圆过点M (230),若存在,求出直线l ′方程,若不存在说明理由.26.已知圆C :(x +3)2+(y -4)2=16,直线l :(2m +1)x +(m -2)y -3m -4=0(m ∈R ). (1)若圆C 截直线l 所得弦AB 的长为211m 的值;(2)若圆C 与直线l 相离,设MN 为圆C 的动直径,作MP ⊥l ,NQ ⊥l ,垂足分别为P ,Q ,当m 变化时,求四边形MPQN 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.A解析:A 【分析】由y =221x y +=()0y ≥,由题知直线斜率存在,设直线l 的斜率为k ,10k -<<,设直线l 为0(y k x -=,然后根据圆的弦长公式||AB =以及圆心O 到直线l 的距离d =12AOBSd AB =,进而化简求解即可 【详解】由y =221x y +=()0y ≥,∴曲线y =x 轴上方的部分(含与x 轴的交点),由题知,直线斜率存在,设直线l 的斜率为k 若直线与曲线有两个交点,且直线不与x 轴重合,则10k -<<,∴直线l 的方程为:0(y k x -=-,即0kx y --=则圆心O 到直线l 的距离d ==直线l被半圆所截得的弦长为||AB===12AOBS d AB====令211tk=+则AOBS=,当3t4=,即21314k=+时,AOBS有最大值为12此时,21314k=+3k∴=±又10k-<<,k∴=综上所述,直线l的斜率是故答案为:A【点睛】关键点睛:通过圆的弦长公式||AB=和圆心O到直线l的距离d=得出12AOBS d AB==211tk=+,可得AOBS=,进而利用二次函数的性质求解即可,属于中档题3.B解析:B【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解. 【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+,整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6.故选:B. 【点睛】关键点睛:解决本题的关键是将题转化为直线1x +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解.4.B解析:B 【分析】以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q ,利用圆P 与圆Q 相交,两圆有两条公切线,可得结果.【详解】||5PQ ==,以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q , 因为42-<524<+,所以圆P 与圆Q 相交,所以两圆有两条公切线, 所以满足条件的直线l 的条数是2. 故选:B 【点睛】关键点点睛:转化为判断两个圆的公切线的条数是解题关键.5.D解析:D 【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值. 【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3. 因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D. 【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.6.C解析:C 【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果. 【详解】圆C :()()22232++-=x y ,圆心为()2,3C -,由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -,且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C. 【点睛】 关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心; (2)入(反)射光线关于反射面的对称直线即为反(入)射光线.7.C解析:C 【分析】根据题意得直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,进而得直线l 的斜率k 的取值范围为:116k ≤-或37k ≥,再根据32m k m +=--,解不等式即可得答案. 【详解】直线l 方程变形得:(1)(322)0x y m x y +-+--=.由103220x yx y+-=⎧⎨--=⎩得4515xy⎧=⎪⎪⎨⎪=⎪⎩,∴直线l恒过点4155C⎛⎫⎪⎝⎭,,11354725ACk+==+,121154625BCk+==--,由图可知直线l的斜率k的取值范围为:116k≤-或37k≥,又32mkm+=--,∴11263mm≤--+-或3273mm-≥+-,即28m<≤或322m-≤<,又2m=时直线的方程为45x=,仍与线段AB相交,∴m的取值范围为382⎡⎤-⎢⎥⎣⎦,.故选:C.【点睛】本题解题的关键在于根据直线系方程(1)(322)0x y m x y+-+--=得直线l恒过点4155C⎛⎫⎪⎝⎭,.考查数形结合思想,运算求解能力,是中档题.8.A解析:A【分析】求出点A、B的坐标,设圆心坐标为()0,b,由AC BC=可求出圆心C的坐标,并求出圆的半径,由此可求得圆C的方程.【详解】易知,直线240x y +-=交x 轴于点()4,0A ,交y 轴于点()0,2B ,设圆心C 的坐标为()0,b ,由AC BC =2b =-,解得3b =-, 所以,圆C 的半径为325BC =--=,因此,圆C 的方程为()22325x y ++=,即为226160x y y ++-=.故选:A. 【点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.9.C解析:C 【分析】求出A 关于y 4x +=的对称点A ',根据题意,1A C '-为最短距离,求出即可. 【详解】设点A 关于4x y +=的对称点(,)A a b ',设军营所在区域为的圆心为C ,根据题意,1A C '-为最短距离,∴AA '的中点为43,22a b +-⎛⎫⎪⎝⎭,,直线'AA 的斜率为1, ∴434,22,31,4a b b a +-⎧+=⎪⎪⎨+⎪=⎪-⎩解得:7,0a b ==, ∴1716A C '-=-=,故选: C. 【点睛】本题考查点关于直线对称,点与圆心的距离,考查运算求解能力,求解时注意对称性的应用.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.12.D解析:D 【分析】易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径, 23221k k -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.相交【分析】由圆的标准方程求出圆心和半径根据圆心到直线的距离与半径的大小关系确定出直线与圆的位置关系【详解】解:圆的圆心坐标为半径则圆心到直线的距离直线与圆的位置关系是相交故答案为:相交【点睛】方法解析:相交 【分析】由圆的标准方程求出圆心和半径,根据圆心到直线的距离与半径的大小关系,确定出直线与圆的位置关系 【详解】解:圆()2215x y +-=的圆心坐标为(0,1),半径r =则圆心到直线360x y +-=的距离d =< ∴直线360x y +-=与圆()2215x y +-=的位置关系是相交.故答案为:相交. 【点睛】方法点睛:判断直线与圆的位置关系,常用圆心到直线的距离d 与圆半径r 的大小比较: (1)若d r =,则直线与圆相切; (2)若d r <,则直线与圆相交; (3)若dr ,则直线与圆相离.14.1【分析】根据题意求出圆的圆心与半径由直线与圆的位置关系可得圆心到直线l 的距离d 利用点到直线的距离公式可得解可得m 的值即可得答案【详解】根据题意圆即其圆心C 为半径若圆C 被直线截得的弦长为则圆心到直线解析:1 【分析】根据题意,求出圆的圆心与半径,由直线与圆的位置关系可得圆心到直线l 的距离d ,利用点到直线的距离公式可得d ==m 的值,即可得答案.【详解】根据题意,圆()222:2400C x y mx y m m +--+=>,即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l 的距离d ==圆心到直线l 的距离d ==,则有=1m =或-3(舍),故1m =, 故答案为:1. 【点睛】思路点睛:涉及直线与圆相交的弦长问题,主要是利用垂径定理,即圆心到直线的距离、弦长的一半以及圆的半径构成直角三角形来解.15.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直 解析:)1,2⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线2x 1y =--有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12=,求得2b =,或2b =-(舍去),故要求的实数b 的范围为12b <, 故答案为:)1,2⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.16.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B -- 联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:222222331(0)(1)11k k k PA k k --++=-+-++, 222222331(0)(1)11k k k PB k k--++=-+-++ 2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.17.【解析】试题分析:由题意得圆心到直线的距离即为半径此题只要求出半径即可试题解析:22256(1)(3)25x y -+-=【解析】试题分析:由题意得,圆心到直线的距离即为半径,此题只要求出半径即可. 试题 因为点到直线的距离由题意得圆的半径则所求的圆的方程为考点:1.直线与圆的相切的应用;2.圆的方程;18.【分析】设点的坐标为根据可得点的轨迹方程为然后将问题转化为两圆有公共点的问题解决根据圆心距和半径的关系可得结果【详解】由题意得圆的圆心为半径为1设点的坐标为∵∴整理得故点的轨迹是以为圆心2为半径的圆 解析:[0,3]【分析】设点M 的坐标为(),x y ,根据2MA MO =可得点M 的轨迹方程为()2214x y +-=,然后将问题转化为两圆有公共点的问题解决,根据圆心距和半径的关系可得结果. 【详解】由题意得圆()()22:21C x a y a -+-+=的圆心为(),2a a -,半径为1.设点M 的坐标为(),x y , ∵2MA MO =,∴=整理得()2214x y +-=,故点M 的轨迹是以()0,1为圆心,2为半径的圆. 由题意得圆C 和点M 的轨迹有公共点,∴13≤≤,解得03a ≤≤.∴实数a 的取值范围是[]0,3. 【点睛】本题考查两圆位置关系的判断和利用,解题的关键是根据题意得到点M 的轨迹方程,然后将问题转化为两圆有公共点的问题出处理,再利用代数法求解可得所求的结果.19.3x ﹣2y+12=0【详解】设A (x0)B (0y )由中点坐标公式得:解得:x=﹣4y=6由直线过点(﹣23)(﹣40)∴直线的方程为:即3x ﹣2y+12=0故答案为3x ﹣2y+12=0解析:3x ﹣2y+12=0 【详解】设A (x ,0)、B (0,y ),由中点坐标公式得:002322x y++=-=, 解得:x=﹣4,y=6,由直线l 过点(﹣2,3)、(﹣4,0),∴直线l 的方程为:320342y x -+=--+, 即3x ﹣2y+12=0. 故答案为3x ﹣2y+12=020.(﹣10)∪(02)【分析】由题意可得CP 垂直平分AB 且y0=2x0由•a =﹣1解得x0把直线y =ax+3代入圆x2+y2+2x ﹣8=0化为关于x 的一元二次方程由△>0求得a 的范围从而可得x0的取值解析:(﹣1,0)∪(0,2) 【分析】由题意可得CP 垂直平分AB ,且 y 0=2x 0.由00201x x -+•a =﹣1,解得x 0121a -=+,把直线y =ax +3代入圆x 2+y 2+2x ﹣8=0化为关于x 的一元二次方程,由△>0,求得a 的范围,从而可得x 0的取值范围. 【详解】解:圆x 2+y 2+2x ﹣8=0 即 (x +1)2+y 2=9,表示以C (﹣1,0)为圆心,半径等于3的圆.∵|PA |=|PB |,∴CP 垂直平分AB , ∵P (x 0,y 0)在直线y =2x 上,∴y 0=2x 0.又CP 的斜率等于00201x x -+,∴00201x x -+•a =﹣1,解得x 0121a -=+.把直线y =ax +3代入圆x 2+y 2+2x ﹣8=0可得,(a 2+1)x 2+(6a +2)x +1=0. 由△=(6a +2)2﹣4(a 2+1)>0,求得 a >0,或a 34-<. ∴﹣1121a -+<<0,或 0121a -+<<2. 故x 0的取值范围为 (﹣1,0)∪(0,2), 故答案为:(﹣1,0)∪(0,2). 【点睛】本题主要考查直线和圆相交的性质,不等式的性质应用,属于中档题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程. 【详解】(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)13k =;5PE =;(2)()3,2N -,3)最大值为2+,最小值为2. 【分析】(1)通过点(,1)P m m +在圆C 上,求出4m =,推出P 的坐标,求出直线PQ 的斜率,得到直线PQ 的方程,利用圆心(2,7)到直线的距离d ,求解即可;(2)判断当NC 最小时,NA 最小,结合当NC l ⊥时,NC 最小,求出NC 的最小值,然后求解直线方程;(3)利用32MQ y k x -=+,题目所求即为直线MQ 的斜率k 的最值,且当直线MQ 为圆的切线时,斜率取最值.设直线MQ 的方程为3(2)y k x -=+,利用圆心到直线的距离求解即可.【详解】 (1)点(,1)P m m +在圆C 上,代入圆C 的方程,解得4m =,(4,5)P ∴,故直线PQ 的斜率5314(2)3k -==--.因此直线PQ 的方程为15(4)3y x -=-.即3110x y -+=,而圆心(2,7)到直线的距离5d ===所以||55PE ====.(2)NA ==∴当NC 最小时,NA 最小,又知当NC l ⊥时,NC 最小,∴NC d ==由题得过C 且与直线10x y ++=垂直的直线方程为50x y -+=,(3,2)N ∴-(3)32MQ y k x -=+, ∴题目所求即为直线MQ 的斜率k 的最值,且当直线MQ 为圆的切线时,斜率取最值.设直线MQ 的方程为3(2)y k x -=+,即230kx y k -++=.当直线与圆相切时,圆心到直线的距离d r ===两边平方,即22(44)8(1)k k -=+,解得2k=2k =+所以32y x -+的最大值和最小值分别为2+2. 【点睛】方法点睛:求最值常用的方法有:(1)函数法(利用函数的单调性求解最值);(2)导数法(利用导数求函数的单调性即得最值);(3)数形结合法(通过“数”和“形”的有机结合求解最值);(4)基本不等式法(利用基本不等式求解最值).要根据数学情景灵活选择方法解答.本题的最值就利用了数形结合的方法. 23.(1)22(4)4x y -+=;(2)y x=或4x y +=± 【分析】(1)设(),P x y ,()00,M x y ,用,x y 表示出00,x y ,把00(,)x y 代入已知圆方程化简后可得P 点轨迹方程;(2)截距均为0时,设切线y kx =,截距相等且不为0时,设切线(0)x y a a +=≠,由圆心到切线的距离等于半径求出参数即得切线方程. 【详解】解:(1)设(),P x y ,()00,M x y ,根据中点公式得008202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得00282x x y y =-⎧⎨=⎩.由220016x y +=,得22(28)(2)16x y -+=∴点P 的轨迹方程是22(4)4x y -+=.(2)当切线在两坐标轴上截距均为0时,设切线y kx =2=∴3k =±,所以切线方程为3y x =±,当切线在两坐标轴上截距相等且不为0时,设切线(0)x y a a +=≠2=,∴4a =±4x y +=±综上:切线方程为3y x =±或4x y +=± 【点睛】关键点点睛:求动点轨迹方程的方法:直接法:设曲线上动点坐标为(,)x y 后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

(完整版)直线和圆的方程单元测试题含答案解析.docx

(完整版)直线和圆的方程单元测试题含答案解析.docx

完美 WORD 格式 .整理《直线与圆的方程》练习题1一、选择题1.方程 x2+y2+2ax-by+c=0 表示圆心为 C( 2, 2),半径为 2 的圆,则 a、 b、c 的值依次为( B )( A)2、 4、 4;( B)-2 、 4、4;( C) 2、 -4 、 4;( D) 2、-4 、 -42.点 (1,1) 在圆 ( x a ) 2( y a ) 2 4 的内部,则a的取值范围是(A)(A)1a1(B)0a1(C)a1或 a 1 (D) a 13.自点A(1,4 ) 作圆 (x 2 ) 2( y 3 ) 21的切线,则切线长为(B)(A)5(B) 3(C)10(D) 54.已知 M (-2,0), N (2,0),则以 MN为斜边的直角三角形直角顶点P 的轨迹方程是 ( D )(A)x 2y 22(B)x 2y 24(C)x 2y 22(x 2 )(D)x 2y 24( x2)5.若圆 x2y 2(1)x2y0 的圆心在直线x 1 左边区域,则的取值范围是2(C)A. (0,+)B.1,+1(1,∞ )D. R C. (0, )56. . 对于圆x2y121上任意一点P( x, y),不等式x y m0 恒成立,则m的取值范围是BA .( 2 1,+ )B .2,C.( 1,+ )D.1,+ 1 +7. 如下图,在同一直角坐标系中表示直线y =ax与=+,正确的是 (C)y x a完美 WORD 格式 .整理8. 一束光线从点A( 1,1)出发,经x轴反射到圆 C : ( x 2)2( y 3) 2 1 上的最短路径是( A)A. 4B. 5C.32 1D.269.直线 3 x y 230 截圆x2+y2=4得的劣弧所对的圆心角是( C )A、B、C、D、643210. 如图,在平面直角坐标系中,Ω是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点C、 D的定圆所围成的区域( 含边界 ) ,、、、是该圆的四等分点.若点 (, ) 、点′( ′,y′)A B C D P x yP x满足 x≤ x′且 y≥ y′,则称 P优于 P′.如果Ω中的点 Q满足:不存在Ω中的其它点优于Q,那么所有这样的点组成的集合是劣弧()QA. ABB. BCC. CDD. DA[ 答案 ]D[ 解析 ]首先若点M 是Ω 中位于直线右侧的点,则过,作与BD平行的直线交于AC M ADC一点 N,则 N 优于 M,从而点 Q必不在直线 AC右侧半圆内;其次,设 E 为直线 AC左侧或直线 AC 上任一点,过 E 作与 AC平行的直线交AD于 F.则 F 优于 E,从而在 AC左侧半圆内及 AC上( A 除外 ) 的所有点都不可能为Q,故 Q点只能在 DA上.二、填空题11. 在平面直角坐标系xoy中,已知圆x2y2 4 上有且仅有四个点到直线12x 5 y c 0 的距离完美 WORD 格式 .整理为 1,则实数 c 的取值范围是( 13,13).12. 圆:x2y 24x 6 y0和圆: x 2y26x 0 交于 A, B 两点,则AB的垂直平分线的方程是3x y9013. 已知点 A(4,1) , B(0,4) ,在直线L: y=3x-1 上找一点P,求使 |PA|-|PB|最大时P的坐标是( 2,5 )14. 过点A( - 2,0)22→→的直线交圆 x + y =1交于 P、Q两点,则 AP· AQ的值为________.[ 答案 ]3[ 解析 ]设 PQ的中点为 M,|OM|= d,则| PM|=| QM|= 1-d2AM|2→=2,|= 4-d .∴|AP|4-d-2→221-d, | AQ|= 4-d+ 1-d,∴→·→= |→||→|cos0 °= ( 4-2- 1-2)(4-2+1-2) = (4 -2) - (1 -d2) = 3.AP AQ AP AQ d d d d d15. 如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.[ 答案 ]210[ 解析 ]点P关于直线AB的对称点是 (4,2),关于直线的对称点是 ( - 2,0) ,从而所求路OB程为(4 + 2) 2+ 22= 2 10.三.解答题16. 设圆 C满足:①截y 轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3: 1;③圆心到直线 l : x 2 y 0 的距离为5,求圆 C的方程.5解.设圆心为(a,b) ,半径为r ,由条件①:r 2a2 1 ,由条件②:r 22b2,从而有:2b2a21 .由条件③:| a2b | 5 | a 2b |2b 2 a 2 1 a 1 1 ,解方程组 2b | 可得:b 155| a 1或a1, 所 以 r 22b 22 . 故 所 求 圆 的 方 程 是 (x1)2 ( y 1)22 或b1(x 1)2 ( y1)2 2 .17. 已知ABC 的顶点 A 为( 3,- 1),AB 边上的中线所在直线方程为 6x 10 y 59 0 ,B的平分线所在直线方程为x 4y 10 0 ,求 BC 边所在直线的方程.解:设 B(4 y 1 10, y 1) ,由 AB 中点在 6x 10 y59 0 上,可得: 6 4y 17 10 y 1 159 0 , y 1 = 5 ,所以 B(10,5) .22设 A 点关于 x4 y 10 0 的对称点为 A'( x ', y') ,x3 4 y 4 10A (1,7) . 故 BC : 2x 9 y 650 .则有2 1 1 2y1x3 418. 已知过点 M3, 3 的直线 l 与圆 x 2y 2 4 y 21 0 相交于 A, B 两点,( 1)若弦 AB 的长为 2 15 ,求直线 l 的方程;( 2)设弦 AB 的中点为 P ,求动点 P 的轨迹方程.解 : ( 1 ) 若 直 线 l 的 斜 率 不 存 在 , 则 l 的 方 程 为 x3 , 此 时 有 y 24 y 12 0 , 弦| AB | | y A y B | 268 ,所以不合题意.故设直线 l 的方程为 y3 k x 3 ,即 kx y 3k3 0 .x 2y 220, 2 ,半径 r 5 .将圆的方程写成标准式得25,所以圆心圆心 0, 2 到直线 l 的距离 d| 3k 1|,因为弦心距、半径、弦长的一半构成直角三角形,k 213k2所以 152120 ,所以 k3 .k 225,即 k31所求直线 l 的方程为 3xy 12 0 .( 2 )设 P x, y ,圆心 O 1 0, 2 ,连接 O 1 P ,则 O 1 PAB .当 x 0 且 x3 时,kO PkAB1,又kABkMPy( 3),x( 3)1则有y2 y3 22x1,化简得x3 y 55......( 1)0 x 3222当 x0 或 x 3时, P 点的坐标为0, 2 , 0, 3 , 3, 2 , 3, 3 都是方程(1)的解,22所以弦 AB 中点 P 的轨迹方程为 x3 y5 5 .22219. 已知圆 O 的方程为 x 2+y 2= 1,直线 l 1 过点 A (3,0) ,且与圆 O 相切.(1) 求直线 l 1 的方程;(2) 设圆 O 与 x 轴交于 P ,Q 两点, M 是圆 O 上异于 P , Q 的任意一点,过点A 且与 x 轴垂直的直线为 l 2,直线 PM 交直线 l 2 于点 P ′,直线 QM 交直线 l 2 于点 Q ′. 求证:以 P ′Q ′为直径的圆 C 总过定点,并求出定点坐标[ 解析 ](1) ∵直线 l 1 过点(3,0) ,∴设直线 l 1 的方程为 y = ( x - 3) ,即 kx - -3 = 0,Aky k则圆心 O (0,0) 到直线 l 1 的距离为 d = |3 k | = 1,2k + 12解得 k =± 4 .∴直线 l 1 的方程为 y =±2 ( x - 3) .4(2) 在圆 O 的方程 x 2+ y 2= 1 中,令 y = 0 得, x =± 1,即 P ( - 1,0) , Q (1,0).又直线 l 2 过点tA 与 x 轴垂直,∴直线 l 2 的方程为 x = 3,设 M ( s , t ) ,则直线 PM 的方程为 y = s + 1( x + 1) .x = 3 4t解方程组y = t ( x + 1)得, P ′ 3, s + 1 .s + 12 t同理可得 Q ′ 3, s -1 .4t 2t∴以 P ′ Q ′为直径的圆 C 的方程为 ( x -3)( x - 3) + y - s +1 y - s -1 = 0,.专业资料分享.又 s 2+ t 2= 1,∴整理得 ( x 2+ y 2- 6x +1) +6s -2y =0, t2若圆 C 经过定点,则 y = 0,从而有 x - 6x + 1= 0,∴圆 C 总经过的定点坐标为 (3 ±22 ,0) .20. 已知直线 l :y=k (x+2 2 ) 与圆 O: x 2 y 2 4 相交于 A 、B 两点, O 是坐标原点,三角形 ABO 的面积为 S. ( 1)试将 S 表示成的函数 S ( k ),并求出它的定义域; ( 2)求 S 的最大值,并求取得最大值时k 的值 .【解】: : 如图 ,(1) 直线 l 议程 kx y2 2k 0( k 0),原点 O 到 l 的距离为 oc2 2 k 1 k2弦长 AB2 228K 2 OAOC2 421 K( 2) ABO 面积S1AB OC4 2 K 2 (1 K 2 )AB 0,1 K1( K0),1K 22S(k ) 4 2 k 2 (1 k 2 )( 1 k 1且K1 k 2(2)令11 t1,1 k 2t,2S(k )4 2 k 2 (1 k 2 )422t 2 3t 14 22(t3) 2 1 .1 k 248当 t=3时 ,13 , k 2 1 , k 3时,Smax241 k2 4 3321. 已知定点A( 0, 1),B( 0, -1 ),C(1, 0).动点P满足:AP BP k | PC |2.(1)求动点P的轨迹方程,并说明方程表示的曲线类型;(2)当kuuur uuur2 时,求| 2AP BP | 的最大、最小值.uuur( x, yuuur uuur(1x, y) .因为解:( 1)设动点坐标为P(x, y),则AP1) , BP ( x, y1) , PC AP BP k | PC |2,所以x2y2 1 k[( x 1)2y 2 ] . (1k) x2(1k ) y22kx k 1 0 .若 k1,则方程为 x 1 ,表示过点(1, 0)且平行于 y 轴的直线.若 k1,则方程化为 (x k )2y2(1)2.表示以 (k,0) 为圆心,以1为1k1k k1|1 k |半径的圆.( 2)当k 2 时,方程化为(x2) 2y21,uuur uuur uuur uuur9x29 y2 6 y 1 .因为 2AP BP(3x,3 y 1) ,所以| 2 AP BP |又 x2y24xuuur uuur6y26 .3 ,所以| 2 AP BP | 36x因为 ( x 2) 2y 21,所以令 x2cos, y sin,则 36x6y26 6 37 cos()46[46637, 46637] .uuur uuur46637337 ,所以 | 2AP BP |的最大值为最小值为4663737 3 .。

《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)

《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)

《第二章 直线和圆的方程》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .12.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-13.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .3277.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2-8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______. 14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为____.四、解答题(17题10分,其余12分,共70分) 17.已知圆C 的方程为()()22215x y -+-=. (1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R. (1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程.19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点; (2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P (,x y )在圆C 上,求22x y +的最大值.20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1). (1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围; (3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程; (2)若过点P 的直线2l 与圆O 交于不同的两点A ,B . ①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .1 【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-1 【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B.4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件, 【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =, 由图可知, ()3401422k -<≤=--,故选:A 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .327【答案】C【解析】因为()2222x y t tt R +=-∈表示圆,所以220->t t ,解得02t <<,因为直线x y t +=与圆()2222x y t tt R +=-∈有公共点,所以圆心到直线的距离d r ≤,即≤403t ≤≤,此时403t ≤≤, 因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增,所以()4t t -的最大值34329⎛⎫= ⎪⎝⎭f . 故选:C7.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2- 【答案】A【解析】由直线20,(0)x y m m ++=>与30x ny --=平行可得2n -=即2n =-, 则直线20,(0)x y m m ++=>与230x y +-=,=2m =或8m =-(舍去),所以()220m n +=+-=.故选:A.8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90° 【答案】C【解析】如图所示,过圆心C 作CP 垂直直线y x =于点P ,直线,PA PB 分别与圆:C 22(5)(1)2x y -+-=相切,切点分别为,A B ,根据几何知识可知,直线12,l l 也关于直线CP对称,所以直线12,l l 的夹角为APB ∠(或其补角).在Rt CBP 中,BC =CP ==所以1sin 2BPC ∠=,而BPC ∠为锐角,即有30BPC ∠=,60APB ∠=. 故选:C .二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 【答案】ABD【解析】对于A ,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B ,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确; 对于C ,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==C 不正确;对于D ,P 为圆1O 上一动点,圆心1O ()1,0到0x y-=的距离为2d =,半径1r =,即P到直线AB 1+,故D 正确.故选:ABD10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 【答案】BD【解析】直线12l l //,则3(2)0m m --=,解得3m =或1m =-,但1m =-时,两直线方程分别为10x y --=,3330x y -++=即30x y --=,两直线重合,只有3m =时两直线平行,A 错,B 正确;12l l ⊥,则230m m -+=,12m =,C 错,D 正确. 故选:BD .11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 【答案】AB【解析】圆C 的标准方程为:()()22125x y a ++-=-,故5a <.又因为弦AB 的中点为()0,1M ,故M 点在圆内,所以()()2201125a ++-<-即3a <. 综上,3a <. 故选:AB.12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y += 【答案】ABD【解析】32()y ax a a R =-+∈可化为()23y a x -=-,则直线32()y ax a a R =-+∈必过定点(3,2),故A 正确;令0x =,则2y =-,即直线32y x =-在y 轴上的截距为2-,故B 正确;10y ++=可化为1y =-,则该直线的斜率为,即倾斜角为120︒,故C 错误;设过点(1,2)-且垂直于直线230x y -+=的直线的斜率为k 因为直线230x y -+=的斜率为12,所以112k ⋅=-,解得2k =- 则过点(1,2)-且垂直于直线230x y -+=的直线的方程为22(1)y x -=-+,即20x y +=,故D 正确; 故选:ABD第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______.【答案】22(2)(1)1x y -++=【解析】圆C 的圆心为(2,1)-,与直线:3450l x y --=相切, 圆心到直线的距离等于半径,即1r d ===,∴圆C 的方程为22(2)(1)1x y -++=.故答案为:22(2)(1)1x y -++=.14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____. 【答案】x+2y ﹣4=0;【解析】由题意可知,直线的斜率一定存在,故设直线方程y ﹣1=k (x ﹣2),k <0, 令x =0可得,y =1﹣2k ,令y =0可得x =2﹣1k, 则11121222AOBSOA OB k k =⋅=⨯--=()1114444422k k ⎛⎫--+≥+= ⎪⎝⎭, 当且仅当﹣4k =﹣1k即k =﹣12时取等号,此时直线方程y ﹣1=﹣12(x ﹣2),即x+2y ﹣4=0. 故答案为:x+2y ﹣4=0.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;【答案】【解析】圆22420x y x y +-+=化简得:()()22215x y -++=,点M 在圆内部,记圆心为()2,1C -,根据几何性质知过M 且与OM 垂直的弦最短,CM =由垂径定理得弦长为==故答案为:16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为______.【答案】2-或1-【解析】圆1C 的圆心为(),2m -,半径为13r =,圆2C 的圆心为()1,m -,半径为22r =,所以两圆的圆心距d =,1=,解得2m =-或1m =-.故答案为:2-或1-.四、解答题(17题10分,其余12分,共70分)17.已知圆C 的方程为()()22215x y -+-=.(1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.【答案】(1)圆心C 的坐标为()2,1,半径长r =(2)相交,理由见解析.【解析】(1)圆心C 的坐标为()2,1,半径长r =(2)当直线l 垂直于x 轴时,直线方程为0x =,与圆有2个交点;当直线l 不垂直于x 轴时,设直线l 的方程为1y kx =+,将1y kx =+代入()()22215x y -+-=整理,得()221410kx x +--=, 因为210k +≠,且()216410k∆=++>恒成立,所以直线l 与圆C 相交.综上所述,直线l 与圆C 相交.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R.(1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程. 【答案】(1)相交,理由见解析;(2)()2211224x y ⎛⎫++-= ⎪⎝⎭ 【解析】(1)直线l :120mx y m -++=,也即()12y m x -=+,故直线恒过定点()2,1-,又()222215-++<,故点()2,1-在圆C 内,此时直线l 一定与圆C 相交.(2)设点(),M x y ,当直线AB 斜率存在时,12AB y k x -=+, 又2MC y k x =+,1AB MC k k ⨯=-, 即1122y y x x -⨯=-++, 化简可得:()()22112,224x y x ⎛⎫++-=≠- ⎪⎝⎭; 当直线AB 斜率不存在时,显然中点M 的坐标为()2,1-也满足上述方程.故M 点的轨迹方程为:()2211224x y ⎛⎫++-= ⎪⎝⎭. 19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=. (1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P ( ,x y )在圆C 上,求22x y +的最大值.【答案】(1)证明见解析;(2)250x y --=;(3)30+【解析】(1)因为()():211740l m x m y m +++--=所以()()2740x y m x y +-++-=令27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩ 所以直线l 过定点()3,1.而()()22311225-+-<,即点()3,1在圆内部. 所以直线l 与恒交于两点.(2).过圆心()1,2与点()3,1的直线1l 的方程为1522y x =-+, 被圆 C 截得的弦长最小时,直线l 必与直线1l 垂直,所以直线l 的斜率2k =,所以直线l 的方程为()123y x -=-,即250x y --=.(3)因为2222(0)(0)x y x y +-+-=,表示圆上的点(),x y 到()0,0的距离的平方,因为圆心到原点的距离d ==所以2a 2m x 2)(530(+==+x y 20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1).(1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围;(3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.【答案】(1)22()(11)9x y -++=;(2)30,4⎛⎫ ⎪⎝⎭;(3)1m =-±【解析】(1)∵直线0x y ++=与圆C 相切,且圆心C 的坐标为(1,1)-,∴圆C的半径3r ==, 则圆C 的方程为22()(11)9x y -++=;(2)∵直线y =kx+2与圆C 没有公共点,∴点(1,1)C -3>,解得304k <<, ∴k 的取值范围为30,4⎛⎫ ⎪⎝⎭; (3)联立22(1)(1)9y x m x y =+⎧⎨-++=⎩,得2222270x mx m m +++-=, 由()2248270m m m ∆=-+->,解得22m --<<-+设()()1122,,,M x y N x y , 则2121227,2m m x x m x x +-+=-=, ∵OM ON ⊥,∴12120OM ON x x y y ⋅=+=,即()()()21212121220x x x m x m x x m x x m +++=+++=,∴2270m m +-=,解得1m =-±∴1m =-±21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.【答案】(1)()()22121x y -++=;(2)存在,34y x =-或1y x =--±【解析】(1)将圆C 化为标准方程,得222216()()224m n m n x y +-+++= ∴ 圆心C (,22m n --),半径r =由已知得10222412m n m n ⎧--+=⎪=-⎧⎪⇒⎨=⎩=⎩或42m n =⎧⎨=-⎩ 又C 在第四象限, ∴()1,2C -∴圆C 的标准方程为22(1)(2)1x y -++=(2)当直线过原点时,l 斜率存在,则设:l y kx =314k =⇒=- 此时直线方程为34y x =-; 当直线不过原点时,设:0l x y t +-=1= 解得1t =-10x y +++=或10x y ++= 综上,所求直线的方程为:34y x =-或1y x =--±22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由.【答案】(1)2x =和34100x y -+=;(2)①2 ②是定值,1-.【解析】(1)圆22:4O x y +=的圆心为()0,0,半径为2, 若过点()2,4P 直线1l 垂直于x 轴,则方程为2x =,与圆相切,符合题意;若过点()2,4P 直线1l 不垂直于x 轴,设直线1l 的斜率与k ,则直线1l 方程为()42y k x -=-,即240kx y k --+=,因为直线1l 与圆22:4O x y +=相切,所以圆心到直线1l的距离2d ==,解得34k =, 所以切线方程为34100x y -+=;综上得:切线1l 的方程为2x =和34100x y -+=;(2)①设点(),M x y ,因为M 为弦AB 中点,所以MO MP ⊥,又因为(),OM x y =,()2,4PM x y =--,所以由OM PM ⊥得(2)(4)0x x y y -+-=化简得22240x y x y +--=.联立22224240x y x y x y ⎧+=⎨+--=⎩得20x y =⎧⎨=⎩或6585x y ⎧=-⎪⎪⎨⎪=⎪⎩; 又因为点M 在圆22:4O x y +=内部,所以点M 的轨迹是圆22240x y x y +--=中以点68,55⎛⎫- ⎪⎝⎭和()2,0为端点的一段劣弧(不包括端点),由22240x y x y +--=即()()22125x y -+-=,令1x =得2y =±根据点(1,2在22:4O x y +=内部,所以点M纵坐标的最小值是2-; ②由题意点()2,0Q ,联立224(2)4y k x x y -=-⎧⎨+=⎩得()22214(2)(24)40k x k k x k +--+--=, 设()()1122,,,A x y B x y ,则12221224(2)1(24)410k k x x k k x x k -⎧+=⎪+⎪--⎪=⎨+⎪∆>⎪⎪⎩, 所以()()121212121224242222k x k x y k k x x x y x -+-++=+=+---- ()()121212214444222224x x k k x x x x x x +-=++=+---++ 22224(2)444(84)1221(24)44(2)162411k k k k k k k k k k k -⎡⎤⋅-⎢⎥++⎣⎦=+=-=-----⋅+++. 所以12k k +是定值,定值为1-.《第二章 直线和圆的方程》单元检测试卷(二)一、单选题1.直线:的倾斜角为( )A .B .C .D .2.圆心为,且过原点的圆的方程是( )A .B .C .D .3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-24.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定5.从点向圆引切线,则切线长的最小值( )A ..5 C.6.已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或17.若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .8.过点且倾斜角为的直线被圆所截得的弦长为( ) A.1 C.9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B . x y +-0=30︒45︒60︒135︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=22(1)5x y +-=120mx y m -+-=(,3)P m 22(2)(2)1x y +++=420ax y a +-+=(a =)1-2-(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=()1,030()2221x y -+=20kx y -+=()3,2M -()2,5N 32k ≤32k ≥C .D .或 10.已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A . BC .二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是( ) A . B . C .D . 12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .三、填空题14.直线过定点______;若与直线平行,则______.15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 16.圆关于直线的对称圆的标准方程为__________.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________. 4332k -≤≤43k ≤-32k ≥()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+42y ax a =+222()x a y a ++=A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()4,3C -22:1O x y +=22230x y y ++-=10x y +-=a b 10x y ++=()()224x a y b -+-=ab四、解答题18.求圆上与直线的距离最小的点的坐标. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.224x y +=43120x y +-=l (2,1)P -O l 2l O l l ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC 22:(2)1C x y -+=P :4l x =P C ,AB AB Q ,PA PB y ,M N QMN22.已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.答案解析一、单选题1.直线:的倾斜角为( )A .B .C .D .【答案】D【解析】直线的斜率,设直线的倾斜角为, 则,所以.故选:D.2.圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A【解析】根据题意. (4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a (2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++x y +-0=30︒45︒60︒135︒0x y +-=1k =-0x y +-=1(080)a a ︒≤<︒tan 1α=-135α=︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=故选:.3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C【解析】(2a +5)(2-a)+(a -2)(a +3)=0,所以a =2或a =-2.4.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】C【解析】 直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.从点向圆引切线,则切线长的最小值( )A ..5 C.【答案】A【解析】设切线长为,则,故选:A.6.已知直线在两坐标轴上的截距相等,则实数 )A .1B .C .或1D .2或1【答案】D【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意; A 22(1)5x y +-=120mx y m -+-=120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4d 2222(2)51(2)24d m m =++-=++min d ∴=20ax y a +-+=(a =1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得; 综上所述,实数或.故选:D .7.若点为圆的弦的中点,则弦所在直线的方程为( ) A . B .C .D .【答案】B【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.过点且倾斜角为的直线被圆所截得的弦长为( )A .B .1 C.【答案】C【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,2a 0-+≠a 2≠ax y 2a 0+-+=122x y a a a+=--2a 2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030()2221x y -+=2()1,030l ()tan301y x =-)13y x =-10x -=()2221x y -+=()2,01r =设直线与圆交于点,圆心到直线的距离, 则C. 9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B .C .D .或 【答案】C【解析】 因为直线恒过定点,又因为,,所以直线的斜率k 的范围为. 故选:C . 10.已知圆,圆,、分别是圆、l AB 12d ==2AB ==20kx y -+=()3,2M -()2,5N 32k ≤32k ≥4332k -≤≤43k ≤-32k ≥20kx y -+=()0,2A 43AM k =-32AN k =4332k -≤≤()()221:231C x y -+-=()()222:349C x y -+-=M N 1C上动点,是轴上动点,则的最大值是( )A . BC .【答案】D【解析】如下图所示:圆的圆心,半径为,圆的圆心,半径为, ,由圆的几何性质可得,, ,当且仅当、、三点共线时,.故选:D.二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D . 2C P x PN PM -4+41C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC ≤+=+1111PM PC r PC ≥-=-2112444PN PM PC PC C C -≤-+≤+=1C P 2C PN PM -42y ax a =+222()x a y a ++=【答案】ABD【解析】直线经过圆的圆心,且斜率为. 故选项满足题意.故选:.12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 【答案】AC【解析】如下图所示:原点到直线的距离为,则直线与圆相切, 由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,, 则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或. 故选:AC. 2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1l 1d ==l 221x y +=AP AQ 221x y +=PAQ ∠OP OQ PAQ ∠9090APO AQO ∠=∠=1OP OQ ==APOQ OA ==OA ==220t -=0t =A ()13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .【答案】AD【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为, 代入欧拉线方程,得,②由 ①②可得或 .故选:AD三、填空题14.直线过定点______;若与直线平行,则______.【答案】【解析】(1),故. 即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故. ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-(,),C x y AB y x =-ABC ∆20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y ∴==∴++-=()4,0A -()0,4B ABC ∆44(,)33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=⇒-+-=101202x x x y y -==⎧⎧⇒⎨⎨-==⎩⎩()1,21l 2:310l x my --=()()()()()2310130m m m m +---=⇒-+=1m =3m =-1m =1l 2l 3m =-故答案为:(1) ; (2)15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 【答案】(x -4)2+(y +3)2=36.【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.圆关于直线的对称圆的标准方程为________.【答案】【解析】 ,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】 【解析】因为直线截圆所得的弦长为,且圆的半径为2. 故圆心到直线的距离()1,23-()4,3C -22:1O x y +=5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=2222230(41)x y y x y ++-=⇒+=+∴(0,1)-210x y +-=(,)x y ∴1(1)1,2,1.110,22y x x y x y +⎧⨯-=-⎪=⎧⎪⇒⎨⎨=-⎩⎪+-=⎪⎩∴22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=()()224x a y b -+-=(),a b d ==,因为、为正实数,故,所以. 当且仅当时取等号. 故答案为: 四、解答题18.求圆上与直线的距离最小的点的坐标. 【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,, 又因为与直线的距离最小,所以. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)=a b 1a b +=2124a b ab +⎛⎫≤= ⎪⎝⎭12a b ==14224x y +=43120x y +-=86,55P ⎛⎫ ⎪⎝⎭43120x y +-=340x y -=224340x y x y ⎧+=⎨-=⎩86,55⎛⎫ ⎪⎝⎭86,55⎛⎫-- ⎪⎝⎭43120x y +-=86,55P ⎛⎫ ⎪⎝⎭l (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=【解析】(1)①当直线的斜率不存在时,方程符合题意;②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为 故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率 所以其方程为,即20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2) 【解析】(1)边上的高为,故的斜率为, 所以的方程为, 即,因为的方程为 l 2x =l k ()12y k x +=-210.kx y k ---=2=34k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ⊥011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=解得 所以. (2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为 即的方程为.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程:21154047180x y x y -+=⎧⎨-+=⎩,,66x y =⎧⎨=⎩()66C ,()00,B x y M AB M 0012,22x y -+⎛⎫ ⎪⎝⎭0000122115402274460x y x y -+⎧-+=⎪⎨⎪+-=⎩0028x y =⎧⎨=⎩()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A B AB Q ,PA PB y ,M N QMN 5,02Q ⎛⎫⎪⎝⎭(4,)P t CP, 与圆,两式相减得:,所以直线恒过定点. (2)设直线与的斜率分别为,与圆,即.所以,,所以面积的最小值为22.已知点,,直线:,设圆的半径为,圆心在直线上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)或.【解析】()22232t x y ⎛⎫-+-= ⎪⎝⎭⎪⎝⎭22:(2)1C x y -+=:2(2)1AB l x ty -+=5,02Q ⎛⎫ ⎪⎝⎭AP BP 12,k k (4)y t kx -=-C1=223410k tk t -+-=2121241,33-+=⋅=t t k k k k 14M y t k =-24N y t k =-12||44=-==≥MN k k ()min 152323MNQ S ∆=⨯⨯=3(4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a 4x =3440x y -+=22a -≤≤-22a ≤≤(1)由得:,所以圆C :..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足 所以切线方程为:或. (2)由圆心在直线l :上,设设点,由化简得:,所以点M 在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:或. 23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72. 【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为所以圆心到直线的,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.137y x y x =-⎧⎨=-⎩()3,2C 22(3)(2)1x y -+-=4(4)y k x -=-1d ==34k =4x =4x =3440x y -+=C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ≤≤13≤22a -≤≤-22a ≤≤(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y =+-+=-因为,所以,即的最大值为88,最小值为72.《第二章 直线和圆的方程》单元检测试卷(三)一、选择题1.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 ( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0 3.平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x+y+5=0或2x+y ﹣5=0 B .2x+y+=0或2x+y ﹣=0C .2x ﹣y+5=0或2x ﹣y ﹣5=0D .2x ﹣y+=0或2x ﹣y ﹣=04.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不必要条件 5.(多选题)下列说法中正确的是( ) A .若两条直线互相平行,那么它们的斜率相等B .方程()()()()211211x x y y y y x x --=--能表示平面内的任何直线C .圆22240x y x y ++-=的圆心为()1,2-D .若直线()2320t x y t -++=不经过第二象限,则t 的取值范围是30,2⎡⎤⎢⎥⎣⎦6.(多选题)已知圆O :224x y +=和圆M :224240x y x y +-++=相交于A 、B 两22y -≤≤7280488y ≤-≤222||||||PA PB PC ++点,下列说法正确的是( ) A .两圆有两条公切线B .直线AB 的方程为24y x =+C .线段ABD .所有过点A 、B 的圆系的方程可以记为()()()222244240,1xy x y x y R λλλ+-++-++=∈≠-二、填空题7.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a = . 8.如图,已知圆C 与x 轴相切于点,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.9.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .10.已知,AC BD 为圆O :224x y +=的两条互相垂直的弦,且垂足为M ,则四边形ABCD 的面积的最大值为______. 三、解答题11.在平面直角坐标系中,曲线与162+-=x x y 坐标轴的交点都在圆C 上, (1)求圆C 的方程;(2)如果圆C 与直线0=+-a y x 交于A,B 两点,且OB OA ⊥,求a 的值。

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与圆的方程》练习题1一、 选择题1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B )(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a 3.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( B )(A) 5 (B) 3 (C) 10 (D) 54.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x 5. 若圆22(1)20x y x y λλλ++-++=的圆心在直线12x =左边区域,则λ的取值范围是( C ) A.(0+)∞,B.()1+∞, C.1(0)(1)5⋃+,,∞D.R6. .对于圆()2211x y +-=上任意一点(,)P x y ,不等式0x y m ++≥恒成立,则m 的取值范围是BA .(21+)-∞,B .)21+⎡-∞⎣, C .(1+)-∞, D .[)1+-∞,7.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是(C )8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( A )A .4B .5C .321-D .269.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C )A 、6π B 、4π C 、3π D 、2π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( )A.ABB.BCC.CDD.DA[答案] D[解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上.二、填空题11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- .12.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --=13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5)14.过点A (-2,0)的直线交圆x 2+y 2=1交于P 、Q 两点,则AP →·AQ →的值为________.[答案] 3[解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d2-1-d 2,|AQ →|=4-d 2+1-d 2,∴AP →·AQ →=|AP →||AQ →|cos0°=(4-d 2-1-d 2)(4-d 2+1-d 2)=(4-d 2)-(1-d 2)=3.15.如图所示,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是________.[答案] 210[解析] 点P 关于直线AB 的对称点是(4,2),关于直线OB 的对称点是(-2,0),从而所求路程为(4+2)2+22=210.三.解答题16.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=的距离为55,求圆C 的方程. 解.设圆心为(,)a b ,半径为r ,由条件①:221r a =+,由条件②:222r b =,从而有:2221b a -=.由条件③:|2|5|2|155a b a b -=⇒-=,解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.17. 已知ABC ∆的顶点A 为(3,-1),AB 边上的中线所在直线方程为610590x y +-=,B∠的平分线所在直线方程为4100x y -+=,求BC 边所在直线的方程. 解:设11(410,)B y y -,由AB 中点在610590x y +-=上,可得:0592110274611=--⋅+-⋅y y ,y 1 = 5,所以(10,5)B . 设A 点关于4100x y -+=的对称点为'(',')A x y ,则有)7,1(14131********A x y y x '⇒⎪⎪⎩⎪⎪⎨⎧-=⋅-'+'=+-'⋅-+'.故:29650BC x y +-=.18.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)若弦AB 的长为215,求直线l 的方程; (2)设弦AB 的中点为P ,求动点P 的轨迹方程.解:(1)若直线l 的斜率不存在,则l 的方程为3x =-,此时有24120y y +-=,弦()||||268A B AB y y =-=--=,所以不合题意. 故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,所以圆心()0,2-,半径5r =.圆心()0,2-到直线l 的距离2|31|1k d k -=+,因为弦心距、半径、弦长的一半构成直角三角形,所以()()2223115251k k -+=+,即()230k +=,所以3k =-.所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,则1O P ⊥AB .当0x ≠且3x ≠-时,11O P A B k k ⋅=-,又(3)(3)AB MP y k k x --==--,则有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1)当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,所以弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.19.已知圆O 的方程为x 2+y 2=1,直线l 1过点A (3,0),且与圆O 相切. (1)求直线l 1的方程;(2)设圆O 与x 轴交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C 总过定点,并求出定点坐标[解析] (1)∵直线l 1过点A (3,0),∴设直线l 1的方程为y =k (x -3),即kx -y -3k =0,则圆心O (0,0)到直线l 1的距离为d =|3k |k 2+1=1,解得k =±24. ∴直线l 1的方程为y =±24(x -3). (2)在圆O 的方程x 2+y 2=1中,令y =0得,x =±1,即P (-1,0),Q (1,0).又直线l 2过点A 与x 轴垂直,∴直线l 2的方程为x =3,设M (s ,t ),则直线PM 的方程为y =ts +1(x +1).解方程组⎩⎪⎨⎪⎧x =3y =ts +1(x +1)得,P ′⎝⎛⎭⎪⎫3,4t s +1. 同理可得Q ′⎝⎛⎭⎪⎫3,2t s -1. ∴以P ′Q ′为直径的圆C 的方程为(x -3)(x -3)+⎝⎛⎭⎪⎫y -4t s +1⎝ ⎛⎭⎪⎫y -2t s -1=0, 又s 2+t 2=1,∴整理得(x 2+y 2-6x +1)+6s -2ty =0,若圆C 经过定点,则y =0,从而有x 2-6x +1=0, 解得x =3±22,∴圆C 总经过的定点坐标为(3±22,0).20.已知直线l :y=k (x+22)与圆O:4y x 22=+相交于A 、B两点,O 是坐标原点,三角形ABO 的面积为S.(1)试将S 表示成的函数S (k ),并求出它的定义域; (2)求S 的最大值,并求取得最大值时k 的值.【解】::如图,(1)直线l 议程 ),0(022≠=+-k k y kx 原点O 到l 的距离为2122kk oc +=弦长222218422KK OC OA AB +-=-= (2)ABO 面积2221)1(2421K K K OC AB S +-==),0(11,0≠<<-∴>K K AB )011(1)1(24)(222≠<<-+-=∴K k kk k k S 且(2) 令.81)43(224132241)1(24)(22222+--=-+-=+-=∴t t t k k k k S∴当t=43时, 33,31,431122±===+k k k时, 2max =S21.已知定点A (0,1),B (0,-1),C (1,0).动点P 满足:2||PC k BP AP =⋅.(1)求动点P 的轨迹方程,并说明方程表示的曲线类型; (2)当2k =时,求|2|AP BP +的最大、最小值.解:(1)设动点坐标为(,)P x y ,则(,1)AP x y =-,(,1)BP x y =+,(1,)PC x y =-.因为2||PC k BP AP =⋅,所以22221[(1)]x y k x y +-=-+.22(1)(1)210k x k y kx k -+-+--=.若1k =,则方程为1x =,表示过点(1,0)且平行于y 轴的直线. 若1k ≠,则方程化为2221()()11k x y k k ++=--.表示以(,0)1kk -为圆心,以1|1|k - 为半径的圆.,121,112<<=+t t k(2)当2k =时,方程化为22(2)1x y -+=,因为2(3,31)AP BP x y +=-,所以22|2|9961AP BP x y y +=+-+. 又2243x y x +=-,所以|2|36626AP BP x y +=--. 因为22(2)1x y -+=,所以令2cos ,sin x y θθ=+=,则36626637cos()46[46637,46637]x y θϕ--=++∈-+. 所以|2|AP BP +的最大值为46637337+=+,最小值为46637373-=-.。

相关文档
最新文档