函数的四大基本性质
高中数学-函数的定义
定义域问题
指对不等式
主要解决办法:化同底,利用单调性去壳,转化为前面4种不等式。
例7、解不等式:2x2 2x 3 (1)3(x 1) 2
解:不等式等价于:2x2-2x-3 23 3x 利用指数函数的性质得:x2 -2x-3<3-3x 解这个一元二次不等式得:-3<x<2 ∴x∈(-3,2)
解:-5<2x-3<5,解得:-1<x<4 ∴x∈(-1,4)
例6、解不等式:|2x-1|-|2-x|<3 解:(i)当x<12 时, -(2x-1)-(2-x)<3
解得:x>-4 ∴-4<x<1
2 (ii)当 1 ≤x≤2时, (2x-1)-(2-x)<3
2 解得:x<2 ∴ 1 ≤x<2
2 (iii)当x>2时, (2x-1)+(2-x)<3
2
2
解:先画y=2x,再左移2, 解:先画y=log2x,再右移1,解:先画y=2x,再关于 解:先画y=log2x,再关于
下移3,注意定点和
上移2,注意定点和
x轴对称
y轴对称
渐近线
y = 2x + 2 3
y
4
y = 2x
3
2
1 (0,1)
x
–5 –4 –3 –2 –1 O 1 2 3
–1
–2
(-2,-2)
–3
渐近线
4y
y
3
3
2 1
–1 O
–1
(2,2)
2
1
x
1(1,02) 3 4 –4 –3 –2 –1 O –1
x
12
–2
–2
高数红宝书——第一章_函数与极限
同理:在连续,在左连续。 在分界点: 所以为第一类跳跃间断点。
【】
解:
【】 解:
【】 解:
【例12】 求 的反函数。(提示:设) 解
故
【例13】 设 解:令
技巧:利用函数表示法的无关特性。 【例14】 设 (x≠0,1) 求。
解:令
………………① 再令 ………………② 由原式和①、②联立即可得到
1.4 复合函数,一般形式为:,指自变量为函数的函数。
1.4 反函数,存在一一映射的情况下,二者互为反函数,关于反函数 具有下列重要性质:
★ 若为的反函数,则在某些场合,常把的反函数记为或,此时已重新 把视为自变量,在反函数记号的使用中,一定要分清是否需要换变量记
号。
★ 改变记号后,互为反函数的两个函数和的曲线关于直线对称;没有 改变记号,互为反函数的两个函数和的曲线重合。
考试要求
1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。 2. 了解函数的有界性、单调性、周期性和奇偶性。 3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。 5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极
第一篇 高等数学
第一章 函数与极限
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数 和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及 其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有 界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
一元函数有界性的探讨
一元函数有界性的探讨作者:刘金魁张利巧来源:《文存阅刊》2019年第10期摘要:有界性是函数的四大性质之一,是初等数学和高等数学中研究函数性态的重要工具之一。
本文主要研究一元函数的局部有界性和整体有界性,总结相关的结论,加深学生对函数有界性的认识和学习。
关键词:函数;有界性1.引言函数是描述客观世界变化规律的重要工具之一,有界函数又是数学分析和高等数学中非常重要的一类函数。
在函数的若干性质中,有界性是函数的一种最基本的性质之一。
函数极限的存在性、连续性、可微性,以及中值定理、积分等问题,都是与函数的有界性有着一定联系的,特别是闭区间上连续函数的有界性定理又是最值定理和介值定理等重要定理的理论基础. 因此,函数的有界性具有非常重要的研究意义。
2.函数有界性的定义定义1 [1]:设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有f(x)≤M(f(x)≥L),则称f为D上的有上(下)界函数,M(L)称为f在D上的一个上(下)界。
定义2 [1]:设f为定义在D上的函数,若存在正数M,使得对每一个x∈D有|f(x)|≤M,则称f为D上的有界函数.注意:函数f在D上有界,则f在D既有上界又有下界,且值域f(D)是一个有界集。
3.函数有界性的若干结论定理1 [1](局部有界性)若f(x)存在,则f在x0的某空心邻域U°(x0)内有界。
定理2[1](有界性定理)若f在闭区间[a,b]上连续,则f在闭区间[a,b]上有界。
定理3; 若f在(a,b]上连续,且f(x)存在,则在区间(a,b]上有界。
证明:已知f(x),根据单侧极限的定义及定理1可知,存在一个正数δ<b-a,使得f在(a,a+δ)有界;又f在[a+δ,b]连续,根据定理2可知,f在[a+δ,b]有界。
综上所述,函数f 在区间(a,b]上有界,同理可得下面结论:推论1 若f在(a,b)上连续,且f(x)与f(x)存在,则在区间上有界。
2025新高考数学一轮复习函数性质的综合应用教案
∴ -1 ≥ 0, 或 -1 ≤ 0, 解得 1≤x≤3 或-1≤x≤0,
-1 ≤ 2
-1 ≥ -2,
∴满足 xf(x-1)≥0 的 x 的取值范围是[-1,0]∪[1,3],故选 D.
规律方法
综合运用奇偶性与单调性解题的方法技巧
(1)比较大小:先利用奇偶性将不在同一单调区间上的自变量的函数值转化
又因为f(2x+1)是奇函数,所以f(x)的图象关于点(1,0)对称,
于是函数f(x)的周期为T=4×|2-1|=4.
由于f(2x+1)是奇函数,所以f(2×0+1)=f(1)=0,而f(x+2)是偶函数,
所以f(x+2)=f(-x+2),令x=1代入得f(3)=f(1)=0,因此f(-1)=0,故选B.
(2)当函数图象具有对称中心时,在对称中心两侧的单调性相同;当函数图
象具有对称轴时,在图象的对称轴两侧的单调性相反.
2.关于函数奇偶性与周期性的常用结论
(1)若f(a-x)=f(x)且f(x)为偶函数,则f(x)的周期为a;
(2)若f(a-x)=f(x)且f(x)为奇函数,则f(x)的周期为2a;
(3)若f(x+a)与f(x+b)(a≠b)都是偶函数,则f(x)的周期是2|a-b|;
[对点训练1](2024·江西赣州模拟)已知定义在R上的奇函数f(x),满足f(x+1)
因此|x-1|>1,解得x>2或x<0,即解集为(-∞,0)∪(2,+∞),故选B.
(3)(2020·新高考Ⅰ,8)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则
满足xf(x-1)≥0的x的取值范围是( D )
函数的性质专题讲义
函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
高等数学笔记(含数一内容)
隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算
高中数学必修一全册课件人教版(共99张PPT)
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
【15考研公共课-讲义】2015考研数学导学班辅导讲义-汤家凤20131028-16页
2015考研数学导学班辅导讲义高等数学部分第一章极限与连续第一部分函数的初等特性1、函数的奇偶性—设函数)(x f 的定义域关于原点对称,若)()(x f x f =−,称)(x f 为偶函数;若)()(x f x f −=−,称)(x f 为奇函数。
【例1】判断函数)1ln()(2x x x f ++=的奇偶性,并求其反函数。
2、函数的周期性—设)(x f 的定义域为D ,若存在0>T ,使得对任意的D x ∈,有D T x ∈+且)()(x f T x f =+,称)(x f 为周期函数。
【例2】讨论函数][)(x x x f −=的周期性。
3、函数的单调性—设对任意的D x x ∈21,且21x x <,有)()(21x f x f <,称)(x f 在D 上为单调增函数,反之称为单调减函数。
4、函数的有界性—若存在0>M ,对任意的D x ∈,有M x f ≤|)(|,称)(x f 在D 上有界。
第二部分极限一、定义1、极限的定义(1)数列极限(N −ε)—若对任意的0>ε,总存在0>N ,当N n >时,有ε<−||A a n 成立,称数列}{n a 以A 为极限,记为A a n n =∞→lim 。
(2)函数)(x f 当a x →时的极限(δε−)—若对任意的0>ε,总存在0>δ,当δ<−<||0a x 时,有ε<−|)(|A x f 成立,称A 为)(x f 当a x →时的极限,记为A x f ax =→)(lim 。
(3)函数)(x f 当∞→x 时的极限(X −ε)—若对任意的0>ε,存在0>X ,当X x >||时,有ε<−|)(|A x f成立,称A 为)(x f 当∞→x 时的极限,记为A x f x =∞→)(lim 。
【注解】(1)a x →的含义为⎩⎨⎧+→−→≠a x a x ax 和。
高数课本-同济六版
第一章函数与极限〔考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法〕第一节映射与函数〔一般章节〕一、集合〔不用看〕二、映射〔不用看)三、函数(了解〕注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.11、2、3大题均不用做4大题只需做〔3〕〔5〕〔7〕〔8〕5--9 均做10大题只需做〔4〕〔5〕〔6〕11大题只需做〔3〕〔4〕〔5〕12大题只需做〔2〕〔4〕〔6〕13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限〔一般章节本章用极限定义证的题目考纲不作要求,可不看〕一、数列极限的定义〔了解〕二、收敛极限的性质〔了解〕P26--28 例1、2、3均不用证p28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-21大题只需做〔4〕〔6〕〔8〕2--6均不用做第三节〔一般章节〕〔标题不再写了对应同济六版教材标题〕一、〔了解〕二、〔了解〕P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4〞完全不用看p37习题1--31--4 均做5--12 均不用做第四节〔重要〕一、无穷小〔重要〕二、无穷大〔了解〕p40 例2不用做 p41 定理2不用证p42习题1--41做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要〕p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节〔基本必考小题〕p60--64 要重点看第八节基本必出考题p64 习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节〔了解〕p66--67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做〔3〕——〔6〕4大题只做〔4〕——〔6〕5、6均要重点做第十节〔重要,不单独考大题,但考大题会用到〕一、〔重要〕二、〔重要〕p72三、一致连续性〔不用看〕p74习题1--101、2、3、5要做,要会用5的结论。
初等函数
f ( u) 的定义域 D ,
而函数 u g( x ) 的值
域为 Z , 若两集合的交集非空(D∩ Z ≠Ф ), 则称函数 y f [ g ( x )] 为 x 的复合函数.
说明:复合函数 y f ( g ( x)) 中,
u 称为中间变量。
信心 爱心 耐心 精心
提一个问题:
分 y 成 u, u 1 2x
2
U = 1-2x²是简单 函数,不必分解
( 2) y lgs
x i
n
x i n
可 以 分 成 y lg u, u s
( 3) y e cos x
可 以 分 成 y e u , u cos x
信心 爱心 耐心 精心
(4) y s
可
2 2
2 2
sin 2 x 2sin x cos x
2 2
cos 2 x cos x sin x 1 2sin x 2cos x 1
1 cos 2 x 1 cos 2 x 2 sin x cos x 2 2
2
信心 爱心 耐心 精心
注意:
基本初等函数只包括以上六类,形式 是固定的。 例如:y sin x y x 2 y 10x 都是基本初等函数。 而 x
☞ 重点与难点
1
基本初等函数
2
复合函数 的分解
3
初等函数
信心 爱心 耐心 精心
目标定位
认请六类 基本初等函数
掌握分解复合函 数的方法
了解初等函数
信心 爱心 耐心 精心
回顾重要知识点
邻域:
分类:实心、去心
信心 爱心 耐心 精心
回顾重要知识点
函数的概念
y = 2x – 1 (3 < y < 5) 注意这个函数有人为限制,已知值域反 过来求定义域。 5) s= , 为圆半径。 注意要使实际问题有意义。其图象不 是圆。 2 4)
r
r
例9:
1)
若 f ( x ) ,求f (0), f (1), f (x2).
若f (x+1) = x2 +2x –3 , 求 f (x).
注意:这是一个分段函数, 不要把它误认为是两个函数, 并指出其三要素。
20
X克重
0
20
40
1)y = 2 x + 1
y
6.例5:请同学说出下列函数的三要素。
1,x Q 2 )f ( x ) 0,x Q
3)
2
-1 1
解:对应法则除解析式y = 2x外,也
可以说是过x轴上的每一个点作垂线, 交红线再过交点作y轴的垂线,交y轴于 x 一点,这点的纵坐标就是x的对应值。
2. 重点和难点。
函数的概念、函数的表示法f(x)、函数的图象既是重点 又是难 点。
二. 教学目标:
1. 知识目标
1)掌握函数的三要素。 2)会求简单函数的定义域、对应法则、函数值、值域。 3)理解函数的三种表示方法,会画函数的图象。 4)掌握区间表示法。
2.
能力目标
1)培养学生由概念出发分析解决问题的能力。 2)培养学生数形结合的能力。 3)培养学生用计算机作函数图象的能力
4)
x y
1
1 8
2 7
3 6
4 5
5 4
解:对应法则是:自变量与它对应的函数值之和是9。 也可以是y = 9 - x ,定义域:{1,2,3,4,5} 值域: {4,5,6,7,8}
函数的四大基本性质
函数的四大基本性质函数的四大基本性质知总结基础知识:1【奇偶性】(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:①即定义域关于原点对称。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇1.以下函数:(1);(2);(3);(4);(5),(6);其中奇函数是 ,偶函数是 ,非奇非偶函数是 。
2.已知函数=,那么是( )A.奇函数而非偶函数B. 偶函数而非奇函数C.既是奇函数又是偶函数D.既非奇函数也非偶函数2.【单调性】(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),()f x ()g x 12,D D ⨯⨯⨯)0(1≠=x xy 14+=x y x y 2=x y 2log =)1(log 22++=x x y 221)(2-+-=x x x f )(x f 11++-x x )(x f那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
第一章 实数集与函数
证明 用反证法 .假若结论不成立 , 则根据实数的有序性
有 a > b.令 e a b , 则 e为正数且 a b e , 这与假设 a b e矛盾 .从而必有 a b.
二. 绝对值与不等式
绝对值定义:
|
a
|
a a
, ,
a0 a0
从数轴上看的绝对值就是到原点的距离:
有严格不等式 (1 x)n > 1 nx. 证 由 1 x > 0且
1 x 0, (1 x)n n 1 (1 x)n 11L1 >
> n n (1 x) n n (1 x).
(1 x)n > 1 nx.
⑷ 利用二项展开式得到的不等式:
规定 空集为任何集合的子集.
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
{x a x b} 称为开区间, 记作 (a,b)
例1 设x, y为实数,证明: 存在有理数r满足 : x r y.
证明
由于 x
y, 故存在非负整数n,使得 x n
yn.令r
1 2
(xn
yn )
则r为有理数,且有x xn r yn y,即得x r y.
例2 设a,b R,证明: 若对任何正数e有a b e ,则a b.
数,再在无限小数前加负号.如: -8=-7.999
2.两个实数的大小关系
1)定义1
给定两个非负实数
x a0 .a1a2 L an L, y b0 .b1b2 Lbn L, 其中 a0 , b0为非负整数 , ak , bk (k 1,2,L)为整数 ,0 ak 9,0 bk 9. 若有ak bk , k 1,2,L, 则称x与y相等,记为x y;
关于函数的奇偶性
。
2. 3 积函数的奇偶性 ( 1 ) 设在定义域 D 中 , 函数 f ( x ) 和 g ( x ) 均为
图 1 y = sin| x| Fig. 1 y= sin| x |
奇函数 , 则它们的积函数是偶函数, 证明如下: 令 F( x ) = f ( x ) g( x ) , 因为 F(- x ) = f (- x ) g(- x ) = [ - f ( x ) ] [ - g( x ) ] = f ( x ) g ( x ) = F( x ) 所以 F( x ) = f ( x ) g( x ) 为偶函数。 例如: y = x 3 sin x 是偶函数。 ( 2 ) 设在定义域 D 中 , 函数 f ( x ) 和 g ( x ) 均为 偶函数 , 则它们的积函数是偶函数, 证明如下: 令 F( x ) = f ( x ) g( x ) , 因为 F(- x ) = f (- x ) g(- x ) = f ( x ) g( x ) = F( x ) 所以, F( x ) = f ( x ) g( x ) 为偶函数。 例如: y = x 2 cos x 是偶函数。 ( 3 ) 设在定义域 D 中 , 函数 f ( x ) 和 g ( x ) 分别 为奇函数和偶函数 , 则它们的积函数是奇函数, 证明 如下: 令 F( x ) = f ( x ) g( x ) , 因为 F(- x ) = f (- x ) g (- x ) = - f ( x ) g( x ) = - F( x ) 所以 F( x ) = f ( x ) g( x ) 为奇函数。 例如: y = x 3 cos x 是奇函数。 2. 4 复合函数的奇偶性 设在定义域 D 中, 函数 y = f ( x ) 是奇函数 , y = g( x ) 是偶函数 , 则 ( 1) F( x ) = f [ f ( x) ] 是奇函数, 因为 ( 2) F( x ) = g[ g( x ) ] 是偶函数, 因为 g[ g( - x ) ] = g[ g( x ) ] = F( x ) 。 ( 3 ) F( x ) = g[ f ( x) ] 是偶函数, 因为 ( 4 ) F( x ) = f [ g( x) ] 是偶函数, 因为 f [ g( - x ) ] = f [ g ( x ) ] = F( x ) 。 2. 5 函数导数的奇偶性 ( 1 ) 设在定义域 D 中 , 函数 y = f ( x ) 是奇函数, 则奇函数的导数为偶函数。证明如下 : 令 F( x ) = f ( x ) , F( - x ) = F( - x ) = g[ f ( - x ) ] = g[ - f ( x ) ] = g [ f ( x ) ] = F( x ) 。 F( - x ) = F( - x ) = f [ f ( - x ) ] = f [ - f ( x ) ] = - f [ f ( x ) ] = - F( x ) 。
函数四大基本性质
函数的基本性质一、函数的单调性作用:比较大小,解不等式,求最值。
定义:略定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法 2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅: (1)当()f x 和()g x 具有相同的增减性时, ①1()()()F x f x g x =+的增减性与()f x 相同, ②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么: ①1()()()F x f x g x =+的增减性不能确定;②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F x g x g x =≠为增函数,5()()(()0)()g x F x f x f x =≠为减函数。
二次函数初中
二次函数知识点总结及典型例题知识点一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
【例1】、已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。
然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0知识点二、二次函数的解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
基本初等函数
正增负减,
0 1
指大图高;
1
0
奇偶一致,
负双正抛.
0
1
x
知识梳理
7.几类函数模型及其增长差异
几类函数模型
函数模型
函数解析式
一次函数模型 反比例函数模型
二次函数模型
f(x)=ax+b (a、b 为常数,a≠0) f(x)=k+b (k,b 为常数且 k≠0)
x f(x)=ax2+bx+c
点击进入相应模块
题型一 函数性质综合考察
例3.求下列函数的单调递增 区间
(1) y 2x2 , x2 (2)y ( 1 )x2 x2 2
( 3 ) 三个数60.7,0.76,log0.76的大小顺序是 ()
A. 0.76< log0.76 < 60.7 B. 0.76 < 60.7< log0.76
质
0<a<1时,x<0,y>1;x>0,0<y<1 0<a<1时,0<x<1,y>0; x>1,y<0
(5) a>1时, 在R上是增函数; (5) a>1时,在(0,+∞)是增函数;
0<a<1时,在R上是减函数
0<a<1时,在(0,+∞)是减函数
知识梳理
5.指数函数与对数函数对比
y 0.5x
y 10x
x
1.定义域:(,)
性 2. 值域: (0,)
质 3.过点 (0,1) ,即x=0时,y=1
4.在R上是 函数 在R上是 函数
知识梳理
(4)指数函数y=ax(a>0,且a≠1)图像规律
高中函数四大性质及函数图像变换
单调性一,知识点1.函数的单调性:(1)增函数:一般地,设函数()y f x =的定义域为I ,如果定义域I 内某个区间上任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(2)减函数:一般地,设函数()y f x =的定义域为I ,如果定义域I 内某个区间上任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(3)单调性(单调区间)如y=f(x)在某个区间上是增函数或减函数,那么就说函数f(x)在这区间上具有单调性,这一区间叫做函数y=f(x)的单调区间.二、疑难知识导析1. 对函数单调性的理解, 函数的单调性一般在函数的定义域内的某个子区间上来讨论,其本质是某个区间的割线斜率。
函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.函数的单调性是对某个区间而言的,对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区间上也就单调.因此,在考虑它的单调区间时,包括不包括端点都可以,写单调区间时,一般写成闭区间.但必须注意,对于在某些点上不连续的函数,单调区间不包括不连续点.2.若f(x)的定义域为D ,A ⊆D ,B ⊆D ,f(x)在A 和B 上都单调递减,未必有f(x)在A ∪B 上单调递减,单调区间用逗号或区间联立。
三、函数的单调性常见公式应用(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.(3)在公共定义域内增+增=增 减+减=减 增-减=增 减-增=减 如果f(x)为增函数,则-f(x),1/f(x)为减函数, )(x f 为增函数 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是增函数,则复合函数)]([x g f y =是增函数;如果函数)(u f y =和 )(x g u =在其对应的定义域上一个是减函数而另一个是增函数,则复合函数)]([x g f y =是减函数(概括就是同增异减)奇偶性一、 知识点(1)一般地,如果对于函数f(x)的定义域内的任意一个x ,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数.(2)一般地,如果对于函数f(x)的定义域内的任意一个x ,都有f(-x) =f(x),那么函数f(x)就叫做偶函数.偶函数特有性质f(x)=f(-x)=f(/x/)(3)如果函数f(x)是奇函数或偶函数,那么就说f(x)具有奇偶性.二、疑难知识导析对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x ,都有f(-x)=f(x),f(-x)=-f(x)的实质:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图像关于直线x=a 对称的充要条件是对定义域内的任意x ,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图像的特殊的对称性的反映.三、奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数四、常见结论1、若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.若函数)(x f y =是奇函数,则f(x+a)=-f(-x-a);若函数)(a x f y +=是奇函数,则 f(x+a)=-f(-x+a)2、多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.3、函数根据奇偶性可分为四类:偶函数,奇函数,既是奇函数又是偶函数,非奇非偶函数.既是奇函数又是偶函数的函数f(x)一定是常数函数f(x)=0,但f(x)=0不一定既是奇函数也是偶函数,须特别注意定义域是否关于原点对称这一限制条件.4、奇函数y =f(x)若在x =0处有定义,则一定有f(0)=0.5、奇函数在整个定义域上单调性一致,偶函数在整个定义域上单调性相反6、常见的奇偶函数为奇函数为奇函数为奇函数为偶函数)12^(log )(11log )(^/1^)(^/1^)(++=-+=-=+=x x x f xx x f x a x a x f x a x a x f a a 7、设f(x)是定义域内关于原点对称的任意一个函数,则G(x)=f(x)+f(-x)为偶函数 H(x)=f(x)-f(-x) 为奇函数周期性1、周期函数定义域必须为R2、几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)若)()(a x f x f +-=,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6)f(x+a)f(x+b)=c 则f(x)的周期T=2|a-b|(7))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.(8)在三角函数Y=sin (wx+a )中,相邻的对称中心是半个周期,相邻的对称轴是半个周期,对称中心和相邻的对称轴是四分之一个周期。
高一数学人教必修1--集合与函数基础知识讲解
U A CU A
Venn 图表示: (阴影部分即为 A 在全集 U 中的补集) 说明:补集的概念必须要有全集的限制 讨论:集合 A 与 CU A 之间有什么关系?→借助 Venn 图分析
A CU A ,
A CU A U ,
CU (CU A) A
CUU ,
CU U
函数的概念 ¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用 集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数 的定义域和值域. ¤知识要点: 1. 设 A、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有 唯一确定的数 y 和它对应, 那么就称 f : A→B 为从集合 A 到集合 B 的一个函数 (function) , 记作 y = f ( x) ,x A . 其 中, x 叫自变量, x 的取值范围 A 叫作定义域 (domain) , 与 x 的值对应的 y 值叫函数值, 函数值的集合 { f ( x) | x A} 叫值域(range). 2. 设 a、b 是两个实数,且 a<b,则:{x|a≤x≤b}=[a,b] 叫闭区间; {x|a<x<b}=(a,b) 叫开区间; {x|a≤x<b}= [a, b) , {x|a<x≤b}= (a, b] ,都叫半开半闭区间. 符号: “∞”读“无穷大” ; “-∞”读“负无穷大” ; “+∞”读“正无穷大”. 则 {x | x a} (a, ) , {x | x a} [a, ) , {x | x b} (, b) , {x | x b} (, b] , R (, ) . 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是 同一函数. ¤例题精讲: 【例 1】求下列函数的定义域: (1) y
数学解题方法(抽象函数)
数学解题方法(抽象函数)。
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数,它是中学数学函数部分的难点.因为抽象,学生难以理解,接受困难;因为抽象,教师对教材难以处理,何时讲授,如何讲授,讲授哪些内容,采用什么方式等等,深感茫然无序.其实,大量的抽象函数都是以中学阶段所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“背景”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,常可觅得解题思路,本文就上述问题作一些探讨.1. 正比例函数型的抽象函数例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2求f(x)在区间[-2,1]上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.2. 幂函数型的抽象函数例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞]上的单调性,并给出证明;(3)若a≥0且f(a+1)≤,求a的取值范围.分析:(1)令y=-1;(2)利用f(x1)=f(·x2)=f()f(x2);(3)0≤a≤2.3. 指数函数型的抽象函数例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:(1) f(0);(2)对任意值x,判断f(x)值的符号.分析:(1)令y=0;(2)令y=x≠0.例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)=2x;再用数学归纳法证明4. 对数函数型的抽象函数例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:(1) f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围.分析:(1)利用3=1×3;(2)利用函数的单调性和已知关系式.例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g (b)是否正确,试说明理由.分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….5. 三角函数型的抽象函数例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:① x1、x2是定义域中的数时,有f(x1-x2)=;② f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0. 试问:(1) f(x)的奇偶性如何?说明理由;(2)在(0,4a)上,f(x)的单调性如何?说明理由. 分析:(1)利用f [-(x1-x2)]=-f [(x1-x2)],判定f(x)是奇函数;(3)先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数. 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),(1)求证:f(1)=f(-1)=0;(2)求证:f(x)为偶函数;(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.分析:函数模型为:f(x)=loga|x|(a>0)(1)先令x=y=1,再令x=y=-1;(2)令y=-1;(3)由f(x)为偶函数,则f(x)=f(|x|). 例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:(1)当x>0时,0<f(x)<1;(2) f(x)在x ∈R上是减函数.分析:(1)先令x=y=0得f(0)=1,再令y=-x;(3)受指数函数单调性的启发:由f(x+y)=f(x)f(y)可得f(x-y)=,进而由x1<x2,有=f(x1-x2)>1.高一数学抽象函数的经典题定义域(0,+∞)上的增函数f(x)满足:f(x/y)=f(x)-f(y),(1)求证:f(x^n)=nf(x)(2)求证:f(xy)=f(x)+f(y)分析:做这题的时候,先要证明(2)再证(1)(2)证明:因为y∈(0,+∞)所以1/y∈(0,+∞)f(xy)-f(y)=f(x/(1/y))-f(y)因为f(x/y)=f(x)-f(y)所以f(x/(1/y))-f(y)=f{[x/(1/y)]/y}=f(x)也就是f(xy)-f(y)=f(x)所以 f(xy)=f(x)+f(y) (证毕)(1)证明:由上述证明结论可知,f(xy)=f(x)+f(y)则f(x^2)=f(x*x)=f(x)+f(x)=2f(x)f(x^3)=f(x^2*x)=f(x^2)+f(x)=2f(x)+f(x)=3f(x)f(x^4)=f(x^3*x)=f(x^3)+f(x)=3f(x)+f(x)=4f(x)…….同理可求得f[(x^(n-1)]=f[x^(x-2)*x]=f[x^(x-2)]+f(x)=(n-2)f(x)+f(x)=(n-1)f(x)f(x^n)=f[x^(n-1)*x]=f[x^(x-1)]+f(x)=(n-1)f(x)+f(x)=nf(x)综上所述得:f(x^n)=nf(x) (证毕)希望对你有帮助补充:(1)证明时,第一步应包括n=1的情况,即则f(x^1)=1*f(x)f(x^2)=f(x*x)=f(x)+f(x)=2f(x)f(x^3)=f(x^2*x)=f(x^2)+f(x)=2f(x)+f(x)=3f(x)以下同,另结论时补上:对于n∈N+时,f(x^n)=nf(x) 恒成立,对于n∈N-的情况,有兴趣的可以讨论一下高一函数解题思路,首先把握定义和题目的叙述2,记住一次函数与坐标轴的交点坐标,必须很熟3,掌握问题的叙述,通法通则是连立方程(当然是有交点的情况)如果你是中学生的话,就参考一下我的回答吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的四大基本性质知总结基础知识:1【奇偶性】(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:①即定义域关于原点对称。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇1. 以下函数:(1))0(1≠=x xy ;(2)14+=x y ;(3)x y 2=; (4)x y 2log =;(5))1(log 22++=x x y ,(6)221)(2-+-=x x x f ; 其中奇函数是 ,偶函数是 ,非奇非偶函数是 。
2.已知函数)(x f =11++-x x ,那么)(x f 是( )A.奇函数而非偶函数B. 偶函数而非奇函数C.既是奇函数又是偶函数D.既非奇函数也非偶函数2.【单调性】(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
(2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
(3)复合函数单调性符合同增异减.(但要注意内外层函数要都照顾到函数的定义域)例如:求下列函数的单调性①2282x x y --= ②22log 28y x x =--③y =(4)判断函数单调性的方法I 、利用定义判断或证明函数f (x )在给定的区间D 上的单调性的一般步骤:①任取x 1,x 2∈D ,且x 1<x 2; ②作差f (x 1)-f (x 2); ③变形(通常是因式分解和配方);④定号(即判断差f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性)。
II 、利用奇偶性判断① 函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反;III 、利用单调函数的加、减、乘、除运算增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。
IV 、利用函数的图像判断例题:1.判断下列函数的单调性, ①{22log (0)log ()(0)x x x x y >-<=,②12+-=x y 1.判断并证明12)(+=x x f 在),0(+∞上的单调性 2.函数xx x f 1)(+=的一个单调递增区间是( )A.()∞+,0B.()0,∞-C.(]1,0 D.[)+∞,13.【函数的周期性】 如果函数y =f(x)对于定义域内任意的x ,存在一个不等于0的常数T ,使得f(x +T)=f(x)恒成立,则称函数f(x)是周期函数,T 是它的一个周期.性质:①如果T 是函数f(x)的周期,则kT(k ∈N +)也是f(x)的周期.②若周期函数f (x )的周期为T ,则)(x f ω(0≠ω)是周期函数,且周期为||ωT 。
③ 若()()f x a f x a +=-,则()f x 的周期为2a若()()f x a f x +=-,则()f x 的周期为2a若1()()f x a f x +=,则()f x 的周期为2a 若1()()f x a f x +=-,则()f x 的周期为2a 1.奇函数)(x f 以3为最小正周期,3)1(=f ,则)47(f 为( )A.3B.6C.-3D.-62.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递增,且y=f (x )的图象关于直线x =3对称,则下面正确的结论是( )A.f (1.5)<f (3.5)<f (6.5)B.f (3.5)<f (1.5)<f (6.5)C.f (6.5)<f (3.5)<f (1.5)D.f (3.5)<f (6.5)<f (1.5)3.已知()x f 为偶函数,且()()x f x f -=+22,当02≤≤-x 时,()x x f 2=,则()2006f =( )A .2006B .4C .4-D . 41 4.设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.47(f 等于_____4.【函数的对称性】若()()f a x f a x +=-,则()f x 的对称轴有直线xa = 若(2)()f a x f x +=-,则()f x 的对称轴有直线x a = 例:①已知函数(1)(1)f x f x +=-+,则函数()f x 的对称轴是 ②已知函数(4)()f x f x +=-,则函数()f x 的对称轴是 ②已知函数(4)()f x f x +=-,则函数()f x 的对称轴是 ③已知函数(4)(2)f x f x +=-+,则函数()f x 的对称轴是函数的四大性质训练题: 1.11x y x -=+的递减区间是 ;)23(log 221-+-=x x y 的单调递增区间是 。
2.函数)112lg()(-+=xx f 的图象( ) A.关于x 轴对称 B. 关于y 轴对称 C. 关于原点对称 D. 关于直线x y =对称3.设)(x f 是定义在R 上的奇函数,若当0≥x 时,)1(log )(3x x f +=,则=-)2(f 。
4.定义在R 上的偶函数)(x f 满足)2()2(-=+x f x f ,若)(x f 在]0,2[-上递增,则( )A.)5.5()1(f f > B .)5.5()1(f f < C .)5.5()1(f f = D .以上都不对5.讨论函数xx x f 1)(+=的单调性。
6.已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。
7.已知函数)(x f 的定义域为N ,且对任意正整数x ,都有)1()1()(++-=x f x f x f 。
若2004)0(=f ,求)2004(f 。
题型二:奇偶性的应用1.已知偶函数)(x f 和奇函数)(x g 的定义域都是(-4,4),它们在(]0,4-上的图像分别如 图(2-3)所示,则关于x 的不等式0)()(<⋅x g x f 的解集是_____________________。
图(2-3)2.已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若7)7(-=-f ,则=)7(f ____3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A.()sin f x x =B.()1f x x =-+C.()1()2x x f x a a -=+D.2()ln 2x f x x-=+ 4.已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为 。
5.若()f x 是偶函数,且当[)0,x ∈+∞时, ()1f x x =-,则()10f x -<的解集是( )A.{}10x x -<<B. {}012x x x <<<或C. {}02x x <<D. {}12x x << 题型三:判断证明函数的单调性4.下列函数中,在(0,2)上为增函数的是( ) A.y=-3x+1 B.y=|x+2| C.y=x 4 D.y=x 2-4x+3 5.函数y=245x x --的递增区间是( )A.(-∞,-2)B.[-5,-2]C.[-2,1]D.[1,+∞)题型五:单调性的应用1.函数f(x)=x 2+2(a-1)x+2在区间(-∞,4)上是减函数,那么实数a 的取值范围是( )A.[3,+∞ )B.(-∞,-3]C.{-3}D.(-∞,5]2.已知函数f(x)=2x 2-mx+3,当x∈(-2,+∞)时是增函数,当x∈(-∞,-2)时是减函数,则f(1)等于( )A.-3B.13C.7D.由m 而决定的常数.3.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( )A .032<-b a B.032>-b a C .032=-b a D .132<-b a 4.函数1)(],1,1[,223)(≥-∈--+=x f x a b ax x f 若恒成立,则b 的最小值为 。
5.已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0。
题型六:周期问题5.已知函数f(x)对任意实数x,都有f(x +m)=-f(x),求证:2m 是f(x)的一个周期.6、已知函数f(x)对任意实数x,都有f(m +x)=f(m -x),且f(x)是偶函数,求证:2m 是f(x)的一个周期.7、函数f(x)是定义在R 上的奇函数,且f(-1)=3,对任意的x ∈R ,均有f(x +4)=f(x)+f ⑵,求f(2001)的值.。