微分中值定理及其在不等式的应用
部分微分中值定理在证明不等式中的应用
![部分微分中值定理在证明不等式中的应用](https://img.taocdn.com/s3/m/50a1c8fa77eeaeaad1f34693daef5ef7ba0d12d4.png)
部分微分中值定理在证明不等式中的应用几何利用局部分微分中值定理,可以找到更容易证明的不等式。
首先,局部分微分中值定理可以定义为:如果在某个函数的某个区域内有分段连续的双射函数f(x),当a≤x≤b时,则函数f(x)在该区间[a,b]中任意一点c都有f(b)-f(a)=f’(c)(b-a)。
因此,在利用局部分式中值定理证明不等式时,可以避免复杂的微分运算。
1. 先通过复合诸不等式,将要证明的不等式转化为多个分段连续的双射函数;
2. 通过局部分微分中值定理,把多段双射函数转化为二阶微分函数,根据函数的导数及导数的符号,把二阶微分函数的大小关系还原到原不等式中;
3. 利用二阶微分函数的单调性,使用函数积分、极值定理及不动点定理等,得出结论。
以下是一个关于局部分微分中值定理证明不等式的例子:
求证:若f(x)在[a,b]内连续且具有一阶导数,则有f(b)≤f(a)+f'(c)(b-a)。
证明:
设f(x)在[a,b]内连续,由局部分微分中值定理可知,当a<x<b时有
f(b)-f(a)=f'(c)(b-a),其中c为[a,b]内任意一点,即有f(b)-f(a)-
f'(c)(b-a)≤0
根据f'(x)>0的单调性得f'(c)>0,故f(b)-f(a)-f'(c)(b-a)<0
即有f(b)≤f(a)+f'(c)(b-a),即得证。
微分中值定理在不等式证明中的应用
![微分中值定理在不等式证明中的应用](https://img.taocdn.com/s3/m/908a9cd1195f312b3169a59b.png)
微分中值定理在不等式证明中的应用摘要:不等式在初等数学中是最基本的也是最重要的内容之一,微分中值定理也是数学分析中最重要的定理之一.本文采用举例的方式归纳了微分中值定理在不等式证明中的几种常见方法和技巧,总结了微分中值定理在不等式证明中的基本思想和方法。
从这些思想和方法中我们可以解决类似的很多问题,对提高证明题和解决问题的能力有很大帮助。
关键词:微分中值定理;不等式;证明;应用The Application of Mean Value Theorem in ProvingInequalitiesAbstract: Inequalities is one of the most basic contents in Elementary Mathematics. Mean Value Theorem which is widely used in solving mathematical problems, is one of the most important theorem in Mathematical Analysis, and is also the important tool of research math problem. This paper summarized some common kinds of methods and skills of application of Mean Value Theorem in proof of Inequalities by exemplification, and highlighted the elementary thought and method, contributed immensely to improving the capability of certifying.Key words: Mean Value Theorem; Inequalities; Proof; Application0 引言高等数学中, 不等式的证明占有重要的一席之地,与一些计算及应用题相比,不等式的证明对数学研究者来说一直是难点,主要是在证明的思路或者在函数的构造上有难度。
微分中值定理的证明及其应用
![微分中值定理的证明及其应用](https://img.taocdn.com/s3/m/dd4c1e59ff4733687e21af45b307e87101f6f83b.png)
微分中值定理的证明及其应用[摘要摘要] ] ] 微分中值定理是微分学的基本理论微分中值定理是微分学的基本理论微分中值定理是微分学的基本理论,,也是微分学的理论基础。
数学分析中基础。
数学分析中,,介绍了罗尔定理、拉格朗日定理、柯西定理三个中值定理。
本文主要探讨微分中值定理的几何意义及证明过程中辅助函数的构造辅助函数的构造,,结合教学过程中出现的问题结合教学过程中出现的问题,,通过具体实例探讨微分中值定理在函数性态各方面的应用。
微分中值定理在函数性态各方面的应用。
[关键词关键词] ] ] 中值定理中值定理中值定理 辅助函数辅助函数 根的存在性根的存在性 待定系数法待定系数法 数学分析中数学分析中,,一般在证明罗尔定理的基础上一般在证明罗尔定理的基础上,,通过构造辅助函数通过构造辅助函数,,然后验证辅助函数满足罗尔定理的假设条件然后验证辅助函数满足罗尔定理的假设条件,,最后利用罗尔定理的结论得出拉格朗日定理的证明。
其关键是如何构造辅助函数结论得出拉格朗日定理的证明。
其关键是如何构造辅助函数,,一旦辅助函数构造出来辅助函数构造出来,,余下的问题便容易解决了。
余下的问题便容易解决了。
首先介绍微分中值定理的几何意义和辅助函数的构造及定理的证明。
证明。
一、微分中值定理证明中辅助函数的探讨一、微分中值定理证明中辅助函数的探讨若函数在闭区间上连续若函数在闭区间上连续,,其图形是一段连续的曲线弧。
当在区间两个端点的函数值相等两个端点的函数值相等((即)时,线段ab 平行于轴平行于轴,,其斜率为零。
若函数在内每一点都可导函数在内每一点都可导,,对应曲线弧上每一点都有切线对应曲线弧上每一点都有切线,,此时此时,,从图可以看出可以看出,,在曲线弧上在曲线弧上,,至少可以找到一点m,m,弧在此点的切线与线弧在此点的切线与线段ab 平行平行,,即切线的斜率为零。
若记m,m,则切线则切线mt 的斜率为的斜率为,,且。
且。
上述的几何直观进行归纳上述的几何直观进行归纳,,得到如下定理得到如下定理: :定理1:(1:(罗尔定理罗尔定理罗尔定理) )若函数满足下列三个条件若函数满足下列三个条件: :(1)(1)在闭区间上连续在闭区间上连续在闭区间上连续;(2);(2);(2)在开区间内可导在开区间内可导在开区间内可导;(3);(3);(3)。
(整理)微分中值定理的证明与应用
![(整理)微分中值定理的证明与应用](https://img.taocdn.com/s3/m/99b5e5aad5bbfd0a795673d9.png)
微分中值定理的证明与应用B09030124 孙吉斌一 中值定理及证明:1. 极值的概念和可微极值点的必要条件:定理 ( Fermat ) 设函数f 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为f 的极值点,则必有 0)(0='x f 罗尔中值定理:若函数f 满足如下条件:(i )f 在闭区间[a ,b]上连续;(ii )f 在开区间(a ,b )内可导;(iii ))()(b f a f =,则在(a ,b )内至少存在一点ξ,使得f '(ξ)=0。
证明:因为f 在[a,b ]上连续,所以有最大值与最小值,分别用M 与m 表示,现分两种情况讨论:(i)若M = m , 则 f 在[a,b ]上必为常数,从而结论显然成立。
(ii)若m < M ,则因 f (a)=f (b),使得最大值M 与最小值m 至少有一个在(a,b)内某点ξ处取得,从而ξ是f 的极值点,由条件(ii) f 在点ξ处可导,故由费马定理推知)(ξf '=0.注1:罗尔定理的几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线。
注2:习惯上把结论中的ξ称为中值,罗尔定理的三个条件是充分而非必要的,但缺少其中任何一个条件,定理的结论将不一定成立。
例如: ⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-<=2x 1,11x 2,01|x |,x F(x)x易见,F 在x=-1不连续,在x=±1不可导,F(-2)≠F (2), 即罗尔定理的三个条件均不成立,但是在(-2,2)内存在点 ξ, 满足 0)(='ξF注3:罗尔定理结论中的ξ值不一定唯一,可能有一个,几个甚至无限多个,例如:⎪⎩⎪⎨⎧=≠=0x 0,0x ,sin x f(x)x 142在 [-1,1] 上满足罗尔定理的条件,显然⎪⎩⎪⎨⎧=-='0x 0,cos sin 2x sin 4x (x)f x 1x 1x 1232在(-1,1)内存在无限多个 n c =)(21z n n ∈π使得)(n c f '=0。
第六章 微分中值定理及其应用
![第六章 微分中值定理及其应用](https://img.taocdn.com/s3/m/1d4eb38ba0116c175f0e489f.png)
由此可得
.
例2 设轴为镜面,光线由点处入射至上点R,经反射后过点Q(图6-2).试用光线沿最省时间的路径传播原理,验证光线反射规律:入射角等反射角.
图6-2
解 设光线由点P出发在平面镜上点R处反射后通过点Q,上述三点分别有坐标为,于是
,
,
光线走过总的路径为
.
因为光线是沿最省时间的路线传播,而光速是常数,所以通过求的极小值,便可确定点R的位置.为此令
由图6-2可见是入射角的余弦,而是反射角的余弦,于是有
即入射角等于反射角.
说明 由于本例是要证明,而不要求具体算出点R的坐标和的最小值,因此当由极值的必要条件推出了结果后,解题过程便告结束.这与通常求极值或最大(小)值的问题稍有不同.
于是解得唯一的极值点为
.
易见时,时,即为极小值点.由于唯一的极值点为最值点,因此当力F与水平方向夹角,力F最小.
注 力学中称为摩擦角.
例4 设函数
(n为正整数).
其中函数当时连续,且.试问点是否为的极值点?当它是极值点时,讨论它是何种极值点?
解 ,
不妨设,由连续函数的局部保号性,在某领域中.
证 因为为方程的n重根,于是该方程有2n个实根,现要证明有n个相异的实根。
=
方程以x=0为单根,重根,因为,由罗尔定理,使得于是有两个单根;又因
其中为二次多项式,故方程还有两个n-2重根。
由此可推测当导数增高一次,相异单根增加一个,但重根各下降一次,现用归纳法证明相应结论。
. பைடு நூலகம்
不妨设,于是有
.
在上对应用达布定理,使得
,
这样就证得
微分中值定理及其应用
![微分中值定理及其应用](https://img.taocdn.com/s3/m/22ace80d4a7302768e99395e.png)
第2章 微分和微分法·导数的简单应用90 §2-4 微分中值定理及其应用读者知道,常数(作为区间上的常值函数)的导数恒等于零,那么相反的结论也是正确的吗?又当函数)(x f 在区间),(b a 内单调增大时,由于0(0)()()0(0)x f x x f x x ≥∆>⎧+∆-⎨≤∆<⎩, 从而0)()(≥∆-∆+x x f x x f , 所以它的导数(若存在的话)()()()lim0∆→+∆-'=≥∆x f x x f x f x x那么反过来,若)(0)(b x a x f <<≥'时,函数)(x f 在区间),(b a 内一定是单调增大的吗?要回答这样的问题,就要用到微分学中最重要的一个定理,即微分中值定理(或称拉格朗日中值定理).1.微分中值定理 为了证明微分中值定理,通常都是先证明罗尔定理作为引理. 罗尔定理 若函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内有导数,且0)()(==b f a f ,则至少有一点),(b a c ∈,使()0f c '=(图2-14)(*).证 因为函数)(x f 在闭区间],[b a 上连续,所以它在区间],[b a 上有最大值M 和最小值m .若=m M ,则()0()≡≤≤f x a x b ,结论显然成立;若<m M ,则)(x f 在区间),(b a 内某点c 取到最大值或最小值(即不可能同时在两个端点上取到最大值和最小值).根据定理2-1,有()0f c '=.【注】下面的结论有时也称为罗尔定理: 设函数()f x 在闭区间[,]a b 上连续且()()f a f b =.若()f x 在开区间(,)a b 内有导数,则至少有一点(,)c a b ∈,使()0f c '=.(图2-15)只要作辅助函数()()()F x f x f a =-,则()()0F a F b ==.根据已证的罗尔定理,就会有点),(b a c ∈,使()()0F c f c ''==.微分中值定理 若函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内有导数,则至少有一点),(b a c ∈使)()()()(b c a ab a f b fc f <<--=' (2-6)(*)罗尔一生从未接受微积分.他是一个代数学家.他可能是在研究代数方程的根时得出类似的结论.后来人们习惯上称它为罗尔定理(他的结论不可能是这种形式).)图2-14)§2-4 微分中值定理及其应用 91特别,当)()(b f a f =时,它就是罗尔定理(见罗尔定理后的注).因此,微分中值定理是罗尔定理的推广.[分析] 如图2-16,曲线)(x f y =上必有一点(,())C c f c ,它在该点处切线的斜率等于弦AB 的斜率(切线与弦平行),即式(2-6).证 考虑函数(曲线与弦的差))]()()()([)()(a x ab a f b f a f x f x ---+-=δ(图2-17)显然,函数)(x δ在闭区间],[b a 上连续,在开区间),(b a 内有导数,且0)()(==b a δδ(在区间两端等于零).根据罗尔定理,必有点),(b a c ∈,使0)(='c δ,即)()()()(b c a ab a f b fc f <<--='【注】微分中值定理的上述证明方法的优点是直观, 而下面的证明方法容易推广(用于证明§2-9中的泰勒公式).设待定常数C 满足条件()()()f b f a C b a =+- (※)再作辅助函数()()[()()]()F t f t f a C t a a t b =-+-≤≤, 则函数()F t 在区间[,]a b 上满足罗尔定理的条件,因此有中值(,)c a b ∈, 使()0F c '=, 即()()0()F c f c C C f c '''=-=⇔=.把它代入上面的等式(※), 则得()()()()()f b f a f c b a a c b '=+-<< 或 ()()()()f b f a f c a c b b a-'=<<-等式(2-6)又称为拉格朗日中值公式或微分中值公式.它有很多变形,例如,若令)10(<<--=θθab a c则拉格朗日中值公式为()()[()]()(01)f b f a f a b a b a θθ'-=+--<< (2-7)它对b a >也成立.又如,若函数)(x f 在开区间),(b a 内有导数,则对任意),(b a x ∈和()(,)x x a b +∆∈,都有)10()()()(<<∆∆+'=-∆+θθx x x f x f x x f (2-8) 通常称它为有限增量公式(其中x ∆为有限增量....),以便区别于无穷小量形式(或极限形式)的公式图2-17图2-16第2章 微分和微分法·导数的简单应用92 ()()()()f x x f x f x x o x '+∆-=∆+∆其中x x d =∆为无穷小量.请读者注意两者的区别........... 微分中值定理和罗尔定理,只断定那个中值)(b c a c <<的存在性,而没有指出它在区间),(b a 内的具体位置.尽管如此,仍不失它在微积分中的重要性,因为在几乎所有的应用中,并不需要知道它在区间),(b a 内的具体位置.微分中值定理使我们能够根据函数的导数..................)(x f '所提供的信息,反过来去推断函数本身所具有的某些特性或变化状态............................... 推论 若函数)(x f 在区间),(b a 内处处有导数,且0)(≡'x f )(b x a <<,则()≡f x 常数()<<a x b证 设),(0b a x ∈为任意固定一点.根据拉格朗日中值公式,对于任意),(b a x ∈,都有)10(0))](([)()(0000<<=--+'=-θθx x x x x f x f x f即))(()(0b x a x f x f <<≡.对于定义在区间,a b 上的函数)(x f ,若另有定义在区间,a b 上的可微函数()F x 使d ()()d F x f x x = 或 ()()F x f x '=则称函数()F x 为)(x f 的一个原函数.函数)(x f 在区间,a b 上的原函数不是唯一的,若函数()G x 也是它在区间,a b 上的原函数,因为[]()()()()()()0F x G x F x G x f x f x '''-=-=-=根据上述推论,所以()()F x G x c -≡(常数)或()()F x G x c ≡+.因此,若函数()f x 在区间,a b 上有原函数,则它在该区间上就会有无穷多个原函数,而且每两个原函数之间只能相差一个常数.2.函数单调性的判别法 下面的结论实际上也是微分中值定理的推论.它指出了用导数判别函数单调性的方法.定理2-2 设函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内处处有导数. ⑴ 若()0()f x a x b '><<,则)(x f 在区间],[b a 上是增函数; ⑵ 若()0()f x a x b '<<<,则)(x f 在区间],[b a 上是减函数. (在有限个点上有0)(='x f 时,结论仍成立)证 设1x 和2x 为区间],[b a 上任意两点且21x x <,根据拉格朗日公式,则有2112121()()[()]()f x f x f x x x x x θ'-=+--若()0()f x a x b '><<,则21()()0f x f x ->,即)()(21x f x f <,因此()f x 是增函数;若()0()f x a x b '<<<,则21()()0f x f x -<,即12()()f x f x >,因此()f x 是减函数. 例18 设13)(23-+=x x x f ,则)2(363)(2+=+='x x x x x f 于是,方程0)(='x f 有根12x =-和20x =. 用这两个根把函数)(x f 的定义域),(+∞-∞分§2-4 微分中值定理及其应用 93成三个小区间 (图2-18):]0)([),0(],0)([)0,2(],0)([)2,(>'+∞<'->'--∞x f x f x f可见,函数)(x f 在区间)2,(--∞和),0(+∞内增大,而在区间)0,2(-内减小.3.证不等式的方法情形Ⅰ 设函数)(x f 和)(x g 在区间),[b a 上连续且在),(b a 内有导数.若满足条件:()i )()(a g a f = 和 ()ii ()()()f x g x a x b ''><<则))(()(b x a x g x f <<>.(见图2-19)情形Ⅱ 设函数)(x f 和)(x g 在区间],(b a 上连续且在),(b a 内有导数.若满足条件:()i )()(b g b f = 和 ()ii ()()()f x g x a x b ''><<则))(()(b x a x g x f <<<.(见图2-20)证 譬如证情形Ⅰ(图2-19).令)()()()(b x a x g x f x h <≤-=.根据条件()i ,则0)(=a h ;根据条件()ii ,()0()h x a x b '><<.因此,)(x h 是增函数.于是,)()()(0b x a x h a h <<<=所以有))(()(b x a x g x f <<>.例19 证明:⑴ 当0>x 时,x x <+)1ln(; ⑵ 当1->x 且0≠x 时,xx x +>+1)1ln(.因此,当0>x 时,有x x xx <+<+)1ln(1.证 ⑴令)1ln()(,)(x x g x x f +==,则0)0()0(==g f 且)0(11)(1)(>+='>='x xx g x f [属于情形Ⅰ]因此,有)0()1ln(>+>x x x .图2-19图2-20图2-18•2-·0x第2章 微分和微分法·导数的简单应用94 ⑵ 令)1ln()(,1)(x x g xx x f +=+=. 在区间]0,1(-上,0)0()0(==g f 且 )(11)1(1)(2x g xx x f '=+>+=' [属于情形Ⅱ]因此,有)1ln(1x xx +<+)01(<<-x .其次,在区间),0[+∞上,0)0()0(==g f 且 )(11)1(1)(2x g xx x f '=+<+=' [属于情形Ⅰ]因此,有)1ln(1x xx +<+)0(+∞<<x .习 题1.不求导数,而根据罗尔定理证明:函数22)(23+--=x xx x f在区间)1,1(-内必有点c ,使0)(='c f .2.证明:不论m 为何值,多项式m x x x P +-=3)(3在区间]1,1[-上不会有两个实根.3.设多项式nn x a x a x a a x P ++++= 2210)(的系数满足等式01321210=+++++n a aa a n 证明:多项式)(x P 在区间)1,0(内必有实根. 提示:考虑函数1210121)(+++++=n n x n a x a x a x f .4.设函数)(x f 在有限开区间),(b a 内有导数,且A x f x f bx ax ==-+→→)(lim )(lim (有限值)证明:在),(b a 内至少有一点c ,使0)(='c f .提示:将函数()f x 连续延拓到闭区间[,]a b 上.5.设函数()f x 在闭区间[,]a b 上连续,在开区间),(b a 内可微分,且()()0f a f b ==.证明:对任意实数λ,必存在点(,)a b ξ∈,使()()f f ξλξ'=提示:令()e()xF x f x λ-=.6.对于下列函数,在所示区间上应用拉格朗日中值公式,求出中值c :⑴)51()(2≤≤=x x x f ; ⑵)42(1)(≤≤=x xx f ;⑶)94()(≤≤=x x x f ; ⑷)e 1(ln )(≤≤=x x x f .答案:⑴3=c ;⑵22=c ;⑶4/25=c ;⑷1e -=c .7.证明:对于0≥x ,则有)(x θθ=使§2-4 微分中值定理及其应用 95θ+=-+x x x 211而且)(x θθ=满足01111;lim ;lim 4242x x θθθ+→+∞→≤≤==8.设函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内有导数.证明:必有点),(b a c ∈,使)()()()(c f c c f ab a af b bf '+=-- [ 提示:考虑函数)()(x xf x g =]9.设函数()f x 在点a 连续且有极限lim ()x af x →'.证明:必有导数()f a '且()lim ()x af a f x →''= [点a 的导数等于近旁导数的极限]同样,若函数()f x 在点a 左连续[右连续]且有左极限lim ()x af x -→'[右极限lim ()x af x +→'],则必有左导数()f a -'[右导数()f a +']且()lim ()x a f a f x --→''= ()lim ()x a f a f x ++→⎡⎤''=⎢⎥⎣⎦提示:()()()f a x f a f a x x θ'+∆-=+∆∆(01)θ<<.【注1】根据这个结论, 函数1,()0,x a f x x a=⎧=⎨≠⎩在含点a 的区间内没有原函数(用反证法证)。
微分中值定理的不等式形式及其应用
![微分中值定理的不等式形式及其应用](https://img.taocdn.com/s3/m/907fed21773231126edb6f1aff00bed5b9f3738a.png)
微分中值定理是非常重要的数学定理,它可以应用于广泛的科学和技术领域。
它的不
等式形式表达了在函数值及其导数之间的关系。
它的不等式形式可以用两个方程表示,即:f(x)≤f(c)+f'(c)(x-c);f(x)≥f (c)+f'(c)(x-c)。
从这两个方程中可以看出,任何函数f(x)在某个定点c处的值都不会比函数f(c)+f'(c)(x-c)大,也不会比它小。
微分中值定理的应用也很广泛,可以用来解决很多数学问题,比如求函数的最大值、
最小值、极值点等。
它也被用于优化问题的求解,比如求解线性规划问题、最小二乘法问题、增广拉格朗日乘子法等,可以使这些问题的求解更加精确。
此外,微分中值定理还可以用于证明某些函数的单调性,比如可以证明函数f(x)在定点c处是凸函数或者凹函数。
总之,微分中值定理是一个非常重要的数学定理,它的不等式形式以及应用可以大大
提高数学计算的准确性和效率,为我们解决数学问题提供了有效的支持。
数学分析简明教程答案数分5_微分中值定理及其应用
![数学分析简明教程答案数分5_微分中值定理及其应用](https://img.taocdn.com/s3/m/bfa13ef6afaad1f34693daef5ef7ba0d4a736ddb.png)
壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。
证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。
那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。
因此有:方程为常数在区间内不可能有两个不同的实根。
当时,方程至多只可能有两个实根,满足所证。
当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。
那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。
当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。
用微分中值定理求不等式
![用微分中值定理求不等式](https://img.taocdn.com/s3/m/7df023e4db38376baf1ffc4ffe4733687e21fce8.png)
用微分中值定理求不等式
微分中值定理是一个有用的数学定理,其可以用来求解不等式问题。
它的主要思想是:如果一个函数在某一区间内是连续的并且具有某种特定的微分性质,那么在该区间的任意一点上,这个函数的值都等于它的微分值乘以某个常数。
微分中值定理是一个有用的数学定理,它可以用来求解不等式问题。
它的基本思想是:如果一个函数在某一区间内是连续的并且具有某种特定的微分性质,那么在该区间的任意一点上,这个函数的值都等于它的微分值乘以某个常数。
这就是微分中值定理。
举例来说,如果有一个不等式f (x) ≤
0,它的解可以用微分中值定理来求解。
首先,要求函数
f (x) 在某一区间上的微分值,即求出 f'(x),然后求出 f (x) 在
该区间内的最小值,用它乘以 f'(x),得到 f (x) 的值,再比较 f (x) 的值与 0 的大小,便可知道函数 f (x) 在该区间内是否满足
不等式f (x) ≤
0。
另外,微分中值定理还可以用来求解一元多次不等式的解,例如求解一元多项式的根。
首先,要求多项式的微分值,即求出多项式的导数,然后求出多项式在某一区间内的最小值,用
它乘以多项式的导数,得到多项式的值,再比较多项式的值与0 的大小,便可知道多项式在该区间内是否满足不等式。
从上面可以看出,微分中值定理是一个有用的数学定理,它可以用来求解不等式问题,也可以用来求解一元多次不等式的解。
它的优点在于它简单易懂,它可以用来求解不同种类的不等式问题。
如果我们有这样的问题需要解决,可以考虑使用微分中值定理来解决。
用微分中值定理证明不等式
![用微分中值定理证明不等式](https://img.taocdn.com/s3/m/efc6d9dd240c844769eaeeb7.png)
用微分中值定理证明不等式微分中值定理是高等数学中非常重要的内容,是研究函数在某个区间的整体性质的有力工具,它在不等式的证明中起着重要的作用.1.用罗尔定理证明不等式例1 设()f x 在[,]a b 上连续,在(,)a b 内具有二阶导数,()()0f a f b ==,且存在(,)c a b ∈,使得()0f c =,求证:存在0(,)x a b ∈,使得0()0f x ''≤.证明 假设对任意(,)x a b ∈,有()0f x ''>,则()f x '严格增加.已知函数()f x 在[,]a b 上连续,在(,)a b 可导,且()()0f a f b ==,由罗尔定理知,存在(,)a b ξ∈,使得()0f ξ'=.在(,)a ξ上,有()()0f x f ξ''<=,知函数()f x 严格减少;在(,)b ξ上,有()()0f x f ξ''>=,知()f x 严格增加.若(,)c a ξ∈,则()()0f c f a <=,若(,)c b ξ∈,则()()0f c f b <=.总之,当(,)c a b ∈时,有()0f c ≠,这与已知条件矛盾,因此假设不成立,所以存在0(,)x a b ∈,使得0()0f x ''≤.2用拉格朗日定理证明不等式例 2 证明:当0x >时,ln(1)1x x x x<+<+. 证明 令()ln(1)f x x =+,则1()1f x x '=+,显然()f x 在[0,]x 上满足拉格朗日定理的条件,由定理得()(0)()(0)f x f f x ξ'-=-,0x ξ<<.由于(0)0f =,1()1f ξξ'=+,因此上式即为ln(1)1x x ξ+=+,又由0x ξ<<,有 11x x x x ξ<<++, 即ln(1)(0)1x x x x x<+<>+. 例3 设函数()f x 在区间[0,]c 上可导,(0)0f =,且()f x '单调减少,证明:对于0a b a b c <≤≤+≤,恒有()()()f a b f a f b +≤+.证明 将()f x 分别在[0,]a 与[,]b a b +上应用拉格朗日定理,有1()(0)()0f a f f a ξ-'=-,1(0,)a ξ∈ )()()()(2ξf bb a b f b a f '=-+-+,2(,)b a b ξ∈+ 显然(0,)(1,2)ic i ξ∈=,且21ξξ<,又因()f x '在[0,]c 上单调减少,所以21()()f f ξξ''≤,即()()()f a b f b f a a a+-≤, 由0a >,知()()()f a b f a f b +≤+.拉格朗日定理是反映函数与导数之间联系的重要定理,虽然它的结论似乎是一条等式,但根据中值点ξ的取值范围,()f ξ'也将有一个取值范围,于是就将等式转化为不等式.证明区间上的不等式,特别是含有两个不等号的,可考虑利用拉格朗日定理.具体证明时通过对不等式结构的分析,构造某特定区间上的函数,使之满足定理的条件,从而达到证明的目的.3用柯西定理证明不等式例4 设2e a b e <<<,证明222ln ln 4b a b a e ->-. 证明 设2()lnf x x =,()g x x =,则2ln ()x f x x'=,()1g x '=.对于()f x ,()g x 在[,]a b 上应用柯西定理,有 22ln ln 2ln ()b a a b b a ξξξ-=<<-. 设2ln ()t t t ϕ=,有22(1ln )()t x tϕ-'=.显然当t e >时,有1ln 0t -<,即()0t ϕ'<,所以()t ϕ单调递减,从而2()()e ϕξϕ>,即222ln ln 2e e e ξξ>=,故222ln ln 4b a b a e ->-.当不等式中含有两个函数的函数值及一阶导数,或含有两个函数的改变量及一阶导数时,可用柯西定理来证明.在用柯西定理证明不等式时要注意应用的条件.4用泰勒中值定理证明不等式例5 证明:23ln(1)(11)23x x x x x +≤-+-<<. 证明 设()ln(1)f x x =+,则()f x 可在0x =处展成带有拉格朗日余项的三阶泰勒公式2344ln(1)234(1)x x x x x ξ+=-+-+,11ξ-<< 又由4404(1)x ξ-≤+,即得23ln(1)23x x x x +≤-+. 例6 设0()lim1x f x x→=,()f x 二阶可导,且()0f x ''>,求证:()f x x ≥. 证明 因为()f x 二阶可导,所以()f x 连续.又因为0()lim 1x f x x →=,所以(0)0f =,且00()(0)()(0)lim lim 1x x f x f f x f x x→→-'===. 将()f x 在0x =处展成泰勒公式,得22()(0)(0)()()22x x f x f f x f x f ξξ'''''=++=+, 由于()0f x ''>,因此()f x x ≥.。
微分中值定理在不等式证明中的应用
![微分中值定理在不等式证明中的应用](https://img.taocdn.com/s3/m/c0e8eea7a0116c175f0e4859.png)
微分中值定理在不等式证明中的应用作者:段胜忠杨国翠来源:《现代商贸工业》2017年第28期摘要:通过典型例子的解答,给出利用拉格朗日中值定理、柯西中值定理和带拉格朗日余项泰勒公式证明不等式的方法和步骤。
关键词:不等式;拉格朗日中值定理;柯西中值定理;泰勒公式;辅助函数中图分类号:TB文献标识码:Adoi:10.19311/ki.16723198.2017.28.094不等式是初等数学和高等数学中的重要内容,在数学分析、泛函分析、非线性泛函分析和证明微分方程解的存在性方面有着非常重要的应用。
同时,不等式的证明由于题型特殊,证明的方法灵活多变,在培养学生的创新思维和创新能力上具有重要的作用。
微分中值定理反映了可导函数在闭区间上整体的平均变化率与区间内某点的局部变化率的关系,是用导数来研究函数性态的理论基础,微分中值定理作为微分学应用的桥梁,在理论和实际中具有极高的研究价值。
本文通过典型例子的解答,希望进一步概括和总结微分中值定理在不等式证明中的方法和步骤,在加深学生对微分中值定理理解的同时,提升学生证明不等式能力。
1预备知识定理1.1 (拉格朗日中值定理)若函数fx满足如下条件:(1)在闭区间a,b上连续;(2)在开区间a,b内可导。
则在a,b内至少存在一点ξ,使得f′ξ=fb-fab-a 。
定理1.2(柯西中值定理)若函数f(x)与g(x)满足下列条件:(1)在闭区间a,b连续;(2)在开区间(a,b)可导,且x∈(a,b),有g′(x)≠0,则在(a,b)内至少存在一点c,使f′(c)g′(c)=f(b)-f(a)g(b)-g(a)。
定理1.3(带拉格朗日余项的泰勒公式)若函数f(x)在点a存在n+1阶导数,则x∈Uo (a)有f(x)=f(a)+f′(a)(x-a)+…+f(n)(a)n!(x-a)n+f(n+1)(ξ)(n+1)!(x-a)n+1,其中ξ介于a与x之间。
2典型例子2.1利用拉格朗日中值定理证明不等式方法步骤:(1)构造恰当的辅助函数;(2)寻找合适的讨论区间;(3)考虑中值的取值范围,进行适当的放缩。
微积分在不等式证明中的应用探究
![微积分在不等式证明中的应用探究](https://img.taocdn.com/s3/m/020b69467f21af45b307e87101f69e314332fa2a.png)
微积分在不等式证明中的应用探究微积分是一门非常重要的数学分支,其在数学、物理、工程以及经济学等各个领域都有广泛的应用。
在不等式证明中,微积分也有着很大的作用,可以帮助我们更好地理解和证明不等式。
本文将探讨微积分在不等式证明中的应用。
一、不等式证明的基本思路不等式证明是数学中的一个重要问题,它的基本思路是通过变形来证明不等式的成立。
通常,我们可以将不等式转化成一个函数的形式,然后利用微积分的思想对函数进行研究,进而得到不等式的证明。
二、微积分在不等式中的应用微积分在不等式证明中有着广泛的应用,下面列举几个例子来说明。
1. 极值法极值法是一种常用的证明不等式的方法。
当我们要证明一个不等式时,我们可以先找到函数的极值点,然后利用函数在极值点处的取值来说明不等式成立。
具体实现方法如下:假设有不等式a≤f(x)≤b,其中f(x)为函数,a、b为已知数。
我们可以通过求解f(x)的导数来找到极值点。
假设f(x)的导数为0,即f'(x)=0,则f(x)在x处取得极值。
根据极值的定义,我们知道当f(x)在极值点处取到最大值或最小值时,不等式a≤f(x)≤b都会成立。
例如,要证明不等式sinx≤x(0≤x≤π/2),我们可以定义函数f(x)=x-sinx,然后求出f'(x)=1-cosx。
当f'(x)=0时,即cosx=1,这时f(x)的极小值为0,因此sinx≤x成立。
2. 积分法积分法也是证明不等式的一种重要方法。
具体方法如下:假设有不等式a≤f(x)≤b,其中f(x)为函数,a、b为已知数。
我们可以通过积分来获得f(x)在[a,b]上的取值。
具体来说,我们可以定义函数g(x)为a≤g(x)≤b且f(x)≤g(x),然后计算g(x)在[a,b]上的积分,即∫[a,b]g(x)dx。
由于a≤f(x)≤g(x)且g(x)在[a,b]上的积分一定小于等于f(x)在[a,b]上的积分,因此就能证明不等式的成立。
微分中值定理在不等式证明中的应用
![微分中值定理在不等式证明中的应用](https://img.taocdn.com/s3/m/2e5f521fa22d7375a417866fb84ae45c3b35c2f9.png)
微分中值定理在不等式证明中的应用微分中值定理是一种常见的数学定理,也被称为中值定理或差分定理,它被用来在不等式证明中提供用于比较函数中极值或峰值的一种工具。
它的特殊性在于,它可以在只使用一个简单的不等式就可以进行有效的比较。
微分中值定理的定义微分中值定理的定义如下:如果f是在闭区间[a,b]上连续且在[a,b]上具有一阶导数的函数,那么在闭区间[a,b]上有f(c)=0,其中c属于(a,b)。
另外,它要求c处的函数具有由“其他特征”定义的行为,即函数在c处可能是极大值和极小值,也可能是可以有一个局部最大值。
微分中值定理在不等式证明中的应用微分中值定理可以通过不等式证明给出有关函数的具体结果。
例如,对于函数f,我们可以证明f(c)=0,其中c属于(a,b)。
然后,我们可以得出相应的不等式,即f(c)≤f(a)或f(c)≥f(b)。
这样,只使用一个不等式就可以比较函数f的不同极值,从而证明函数在特定点上是最大值或最小值。
另外,微分中值定理还可以用来证明函数的稳定性,例如,当f(c)=0时,函数f具有局部最大值和局部最小值。
因此,如果f(c)=0,则函数f的局部极值点c处的全局极值点不会改变。
最后,微分中值定理可以用来证明函数的单调性。
若f(c)=0,其中c属于(a,b),但f(x)≠0或f(x)<0,其中x属于(a,c)或x属于(c,b),则函数f在区间(a,b)上是单调的。
结论从上面可以看出,微分中值定理在不等式证明中有着重要的应用。
它提供了一种容易使用的工具,可以比较函数中极值或峰值,而且还可以用来证明函数的稳定性和单调性。
此外,微分中值定理还可以用来证明函数的其他性质,例如它的连续性和可导性。
因此,微分中值定理是一个非常有用的理论工具,可以帮助我们更好地理解和证明一个函数。
微分中值定理在中学数学中的应用
![微分中值定理在中学数学中的应用](https://img.taocdn.com/s3/m/ea66e362c950ad02de80d4d8d15abe23482f03a1.png)
微分中值定理在中学数学中的应用微分中值定理主要是对一系列中值定理的概括,对研究函数有至关重要的作用。
与其相关的定理主要有罗尔中值定理、拉格朗日中值定理以及柯西中值定理,发挥其在中学数学中的应用将是推动数学进步的重要保证。
一、微分中值定理的相互关系1.微分中值定理微分中值定理主要包括罗尔定理、拉格朗日中值定理与柯西中值定理。
其中罗尔定理中,当函数y=f(x)能够满足闭区间[a,b]连续;开区间(a,b)可导;f(b)=f(a),至少会存在一点ζ∈(a,b)使f ′(ζ)=0。
拉格朗日中值定理中,当函数满足y=f(x)[a,b]闭区间连续,(a,b)开区间可导,则存在一点ζ∈(a,b),使得f′(ζ)=.柯西中值定理中,当函数y=g(x)与y=f(x)满足闭区间[a,b]连续;开区间(a,b)可导,且f ′(x)和g ′(x)都不为0,g(a)≠g(b),将至少有一点ζ∈(a,b),使得=.由此可见,拉格朗日中值定理与柯西中值定理都会涉及到罗尔定理,而且在前提条件方面都比较接近,因此下文中将会对三者之间的关系进行探析。
2.微分中值定理的相互联系罗尔定理、拉格朗日中值定理与柯西中值定理三者之间的关系主要体现在由一般到特殊,再由特殊到一般。
当柯西中值定理条件下g(x)=x,定理将转变为拉格朗日中值定理,如果再使f(a)=f(b),又会转化为罗尔中值定理。
换言之,柯西中值定理的特殊情况是拉格朗日中值定理,而拉格朗日中值定理的特殊情况是罗尔中值定理。
(1)从理论角度,很多情况下,至少有一点ζ能够使此函数在该区间上的导数值与函数值保持一定的等量关系。
而且定理的中值ζ在通常条件下很难发现,但对于定理理论研究与应用价值没有过多的影响。
因此,对中值定理的掌握,必须要将三者在条件、证明方法、结论及几何解释方面正确分析,使三个中值定理的关系在相互联系的情况下可以进行区分。
(2)拉格朗日中值定理与柯西中值定理在证明方法上都需应用罗尔定理,以构造新函数的方法得出结论。
微分中值定理的应用
![微分中值定理的应用](https://img.taocdn.com/s3/m/0cb59d042bf90242a8956bec0975f46527d3a7b4.png)
微分中值定理的应用微分中值定理是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。
微分中值定理反映了导数的局部性与函数的整体性之间的关系,应用十分广泛。
微分中值定理包括罗尔中值定理、拉格朗日中值定理、柯西中值定理及泰勒定理。
微分中值定理的应用:1、应用中值定理可以证明微分学中的许多定理,这些定理在研究函数性质上起着重要作用。
2、中值定理的主要应用是对等式、不等式的证明及归零问题的解决,应用过程中的主要方法是构造辅助函数及多次运用中值定理。
3、泰勒定理可以应用在近似计算上。
4、对某些不能解决的极限问题,应用泰勒定理可以解决。
摘要:本文简单介绍了微分中值定理中几个定理之间的关系,同时给出了微分中值定理在高等数学中的一些应用。
微分中值定理包括罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理,这一组中值定理是微分学的理论基础,在微分中值定理中拉格朗日中值定理建立了函数值与导数之间的定量关系,泰勒中值定理建立了函数值与高阶导数之间的关系。
一、微分中值定理间的关系微分中值定理是一系列中值定理总称,是研究函数的有力工具。
在这一系列定理中拉格朗日定理处于核心地位,因为在拉格朗日定理中,如果f(a)=f(b),那么就可以得到罗尔中值定理,柯西中值定理是其推广形式,另外如果把泰勒定理中的n看作0就可以得到拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。
它们之间的关系如下表所示:定理1:设f(x),g(x),φ(x)在[a,b]上连续,在(a,b)上可导,则至少存在一点ξ∈(a,b),使得f(a)g(b)φ(a)f(b)g(b)φ(b)f′(ξ)g′(ξ)φ′(ξ)=0证明:作辅助函数F(x),令F(x)=f(a)g(b)φ(a)f(b)g(b)φ(b)f(x)g(x)φ(x),显然F(x)在[a,b]上连续,在(a,b)上可导,又因为F(a)=F(b)=0,根据求导法则和罗尔定理知,ξ∈(a,b),使得F′(ξ)=f(a)g(b)φ(a)f(b)g(b)φ(b)f′(ξ)g′(ξ)φ′(ξ)特别的:(1)若令φ(x)=1,g(x)=x,x∈(a,b),f(a)=f(b),可得到罗尔定理的结论:f′(ξ)=0(2)若令φ(x)=1,g(x)=x,x∈(a,b),可得到拉格朗日中值定理f(b)-f(a)b-a=f′(ξ)(3)若令φ(x)=1,g(x)≠0,x∈(a,b),则有f(a)g (b)1f(b)g(b)1f′(ξ)g′(ξ)0=0,从而可得到柯西定理f(b)-f(a)F(b)-F (a)=f′(ξ)F′(ξ)二、微分中值定理的应用微分中值定理在高等数学中的地位是不容置疑的,且在解题中的应用也是十分广泛的,微分中值定理反映了导数的局部性与函数的整体性之间的关系,应用十分广泛。
利用微分中值定理证明不等式
![利用微分中值定理证明不等式](https://img.taocdn.com/s3/m/d3bcd719fc4ffe473368abdb.png)
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)0 前言 (1)1 知识准备 (1)2 利用罗尔中值定理证明 (2)3 利用拉格朗日中值定理证明 (3)4 利用柯西中值定理证明不等式 (5)5 利用泰勒中值定理证明 (7)6 综合利用微分中值定理证明不等式........................................................ (10)参考文献 (11)利用微分中值定理证明不等式摘要:微分中值定理是证明不等式的一种重要的方法,本文讨论了各个中值定理在证明不等式中的不同用法以及综合利用微分中值定理证明不等式.关键词:微分中值定理;不等式Using differential mean value theoremproving inequalityAbstract:Useing the mean value theorem to prove that inequality is a kind of important method , this paper discusses various of mean value theorems to proof inequality in the different usage, and proving inequality by useing comprehensive utilization differential mean value theorem.Key Words:differential mean value theorem;inequalities0前言不等式是数学中的重要内容,也是数学中的重要的方法和工具.在微分学中,微分中值定理,函数单调性判定定理及极值等重要的结论都可以用来证明不等式.本文通过几个具体的例子来具体说明微分中值定理在证明不等式中的运用,以及不同的微分中值定理在解决证明不等式的区别.1知识准备微分中值定理是数学分析中非常重要的基本定理.微分中值定理是指罗尔中值定理,拉格朗日中值定理,柯西中值定理以及泰勒中值定理.微分中值定理在数学分析及高等数学中的地位是不容置疑的,且在解题中的应用也是十分广泛的.在这里我们就利用微分中值定理证明不等式的方法作一简述.首先我们要先介绍一下微分中值定理:定理1罗尔中值定理:如果函数()f x在闭区间[],a b上连续,在开区间(),a b内可导,且满足()()fξ'=.=,那么在(),a b内至少存在一点ξ,使得()0f a f b定理2拉格朗日中值定理:如果函数()f x在闭区间[],a b上连续,在开区间(),a b 内可导, 那么在(),a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ'-=-.当函数()f x 在(),a b 内的变化范围已知时,有()m f x M '≤≤,于是可以利用拉格朗日定理来证明()()()()m b a f b f a M b a -≤-≤-一类的不等式.定理3 柯西中值定理:如果函数(),()f x g x 在闭区间[],a b 上连续,在开区间(),a b 内可导,且()g x '在(),a b 内每一点均不为零,那么在(),a b 内至少存在一点ξ,使得()()()()()()f b f a fg b g a g ξξ'-='-. 定理4 泰勒中值定理:如果函数()f x 在含有点0x 的区间D 上有直到(1)n +阶的导数,则函数()f x 在D 内可表示成一个多项式()n P x 与一个余项式()n R x 的和:20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+. 其中11()()()(1)!n n n f R x x n ξξ++=-+,0(,)x x ξ∈. 注:当0n =时,即为拉格朗日中值定理,所以泰勒中值定理是拉格朗日中值定理的推广.这个公式又称为带有朗格朗日型余项的泰勒公式.在微分学中,微分中值定理在证明不等式中起着很大的作用,我们可以根据不等式的两边的代数式选取不同的函数()f x ,应用微分中值定理得出一个等式之后,对这个等式根据x 取值范围的不同进行讨论,得到不等式,以下通过例子来说明微分中值定理在证明不等式的应用.2利用罗尔中值定理证明不等式罗尔中值定理的几何意义:在满足定理条件下,在曲线()y f x =上必有一点,使得过该点(,())P f ξξ的切线平行于x 轴.在一般情况下,利用罗尔中值定理很容易证明关于方程的根的问题,但是仅用罗尔中值定理却很难证明不等式,所以在利用罗尔中值定理证明时要综合利用其他的微分中值定理,这类内容会放在第六部分详细介绍, 这里就不再赘述. 3利用拉格朗日中值定理证明不等式拉格朗日中值定理的几何意义:在满足定理条件下,在曲线()y f x =上必有一点(,())P f ξξ,使得过该点的切线平行于曲线两端点的连线(,())a f a ,(,())b f b 两点的弦.我们在证明中引入的辅助函数()()()()()()f b f a F x f x f a x a b a-=----,正是曲线()y f x =与弦线之差. 拉格朗日中值定理是罗尔中值定理的推广,当()()f a f b =时,本定理即为罗尔中值定理的结论,这表明罗尔中值定理是朗格朗日定理的一个特殊情形()y f x =.拉格朗日中值定理的其它表示形式:(1) ()()()()f b f a f b a ξ'-=-,a b ξ<<;(2) ()()(())()(01)f b f a f a b a b a θθ'-=+--<<;(3) ()()(),0 1.f a h f a f a h θθ'+-=+<<值得注意的是:拉格朗日中值定理无论对于a b <,还是a b >都成立.而ξ则是介于a 与b 之间的某一定数,而(2),(3)两式的特点,在于把中值点ξ表示成了()a b a θ+-,使得不论a ,b 为何值,θ总可为小于1的某一整数.例1 (1)如果0x >,试证ln(1)1x x x x<+<+; (2)求证: arctg arctg αβαβ-≤-.证明 (1)令()ln(1)f x x =+,()f x 在区间[]0,(0)x x >上连续,在()0,(0)x x >内可导,应用拉格朗日中值定理,则有ln(1)ln(1)1x x ξ+-=+,(0,)x ξ∈. 由于在闭区间[]0,x 上,有11x x x x ξ<<++,所以ln(1)1x x x x <+<+(0)x >. (2)当αβ=时,显然等号成立.当αβ≠时,不妨设αβ>.设()(),,f x arctgx x βα=∈,由拉格朗日中值定理得,211arctg arctg αβαβξ-=-+ ,(,)ξβα∈.则有 21()1arctg arctg αβαβξ-=-+ 所以 21()1arctg arctg αβαβαβξ-=-≤-+. 以上两个例子都是利用拉格朗日中值定理来证明不等式,有些不等式利用此定理时,方法要灵活些.例2 当0x ≥时,函数()f x 在其定义域上可导,且()f x '为不增函数,又()0f x =, 0,1,2,...,,i x i n ≥=求证 11()()n ni i i i f x f x ==≤∑∑.证明 用数学归纳法当1n =时,显然不等式成立.当2n =时,若12,x x 均为0,或者一个为0时,当一个为0时,显然有 1212()()()f x x f x f x +=+.设12,x x 均大于0,不妨设12x x ≤,在[]10,x 应用拉格朗日中值定理可得:()1111111()()(0)(),0,0f x f x f f x x ξξξ-'==∈-. 在[]212,x x x +上再次利用拉格朗日中值定理可得:()122122222121122()()()()(),,f x x f x f x x f x f x x x x x x x ξξ+-+-'==∈++- 显然12ξξ<,由题设知, 12()()f f ξξ''≥.所以 122111()()()f x x f x f x x x +-≤, 即 12122()()()f x x f x x f x +≤++.假设当n k =时不等式成立,即 11()()k ki i i i f x f x ==≤∑∑.取1111()()k ki i k i i f x f x x ++===+∑∑,显然10k x +=的情况不证而明,,所以只考虑10k x +>的情况.取1ki i u x ==∑,由前面已证的结论有11()()()k k f u x f u f x +++≤+,再用归纳假设可得 1111()()k k i i i i f x f x ++==≤∑∑,即当1n k =+时结论成立.所以11()()n ni i i i f x f x ==≤∑∑.4利用柯西中值定理证明不等式柯西中值定理是研究两个函数(),()f x g x 的变量关系的中值定理,当一个函数(不妨设此函数为()g x )取作自变量自身时它就是拉格朗日中值定理,所以用拉格朗日中值定理能证明的不等式一定能用柯西中值定理来证明,反之则不然.下面举例来说明:对例1用柯西中值定理证明,这里仅用第一个小题来说明,其证法如下:证明 (1)令()ln(1)f x x =+,()g x x =.(),()f x g x 在区间[]0,(0)x x >上连续,在()0,(0)x x >内可导,且()g x '在[]0,(0)x x >内每一点都不为零,那么由柯西中值定理可得:ln(1)ln(1)1(1)11x x ξ+-=+-+,(0,)x ξ∈ 则有 ln(1)ln(1)1x x ξ+-=+,(0,)x ξ∈. 下面与例1中解法同,这里就不再赘述了. 例3 (1)设0x >,对01α<<的情况,求证: 1x x ααα-≤-.(2)设0x >,求证: sin 1x x e <-.证明 (1)设()f t x α=,()g t x α=.当1x =时结论显然成立.当1x ≠时,取[],1x 或[]1,x ,(),()f x g x 在闭区间[],1x 或[]1,x 上连续,在开区间(),1x 或()1,x 可导,且()g x '在内(),1x 或()1,x 每一点均不为零,由柯西中值定理可得:()(1)()()(1)()f x f fg x g g ξξ'-='-,(,1)x ξ∈或(1,)x ξ∈ 即 111x x ααααξξααα---==-. 所以1x x ααα-≤-得证.(2)设()sin f t t =,()t g t e =,[]0,t x ∈,(),()f x g x 在闭区间[]0,x 上连续,在开区间()0,x 内可导,且()g x '在()0,x 内每一点均不为零,那么由柯西中值定理可得:()(0)()()(0)()f x f fg x g g ξξ'-='-,()0,x ξ∈. 即sin cos 1t x e e ξξ=-,()0,x ξ∈. 因为10x e ->,10e ξ>>,所以sin cos 11t x e eξξ=<-. 即 sin 1x x e <-.注意:例3中的两个不等式能用柯西中值定理来证明,但不能用拉格朗日中值定理证明.例 4 如果函数()f x 满足两个条件:(1)在闭区间[],a b 上有二阶导数()f x '';(2) ()()0f a f b ''==.试证明:在开区间(),a b 内至少存在一点c ,使得 24()()()()f c f b f a b a ''≥--. 证明 令24()()()k f b f a b a =--.在此我们利用用反证法来证明本题, 我们不妨假设()f x k ''<,a x b <<.对于构造的辅助函数[]000()()()()()F x f x f x f x x x '=-+-及20()()G x x x =-(其中0x 是[],a b 中任意固定的一点),两次利用柯西中值定理,可得:200001()()()()()()2f x f x f x x x x x f ξ'''=+-+- 其中ξ介于0x 与x 之间(即0x x ξ<<或0x x ξ<<),x 为[],a b 上任意点,特别地,在上式中取0x a =,2a b x +=,并利用已知条件()0f a '=,则有: 21()()()()28a b b a f f a f c +-''=+,其中1c 满足12a b a c +<<, 于是 2()()()28a b b a f f a k +--<. 同理再取0x b =,2a b x +=,并利用已知条件()0f b '=,则得: 22()()()()28a b b a f f b f c +-''=+,其中2c 满足22a b c b +<<. 于是: 2()()()28a b b a f b f k +--<. 因此,2()()()()()()()()()224a b a b b a f b f a f b f f f a k f b f a ++--≤-+-<=-. 这是不可能的.所以在区间(),a b 内至少存在一点c ,使得 24()()()()f c f b f a b a ''≥--. 5利用泰勒中值定理证明不等式泰勒公式的余项大体分两种:佩亚诺型余项,拉格朗日型余项.与带拉格朗日型余项的泰勒公式相比,带佩亚诺型余项的泰勒公式对函数()f x 的假设条件较少,只需函数()f x 在0x 处n 阶可导,不需要1n +阶可导,也不需要在0x 的邻域内存在n 阶连续导数,因此应用范围较广.但是在证明不等式时,精确度却不如带拉格朗日型余项的泰勒公式好.利用此原理可以证明一般的不等式,积分不等式,估值不等式等多种不等式,这种方法的用法非常广泛.证明方法:(1)根据已知条件,围绕证明目标,寻取适当的点将函数在该点展成泰勒展式.(2)根据已知条件,向着有利于证明不等式的方向对上面的展式作适当的处理,直到可以结合已知条件证出不等式为止.下面举例来说明:例5 当02x π<<时,求证:2221200(1)sin (1)(21)!(21)!k k k kn n k k x x x k x k -==--<<++∑∑. 分析:由于朗格朗日中值定理很容易证明sin 01x x<<, 而利用泰勒中值定理时,当1n =时,不等式为:224sin 113!3!5!x x x x x -<<-+. 显然第二个比前一个的不等式的精确度高得多,随着n 的增大,不等式的精确度会大幅度地提高,所以我们在做题过程中,按题目的要求来选择适当的方法来证明不同的不等式.证明 令()sin f x x =,那么函数()f x 在00x =点展开前2n 项的泰勒公式,余项取拉格朗形式,那么有:212430(1)sin ()(21)!k k nn k x x R x k ++=-=++∑43434343433sin()sin cos 2()(43)!(43)!(43)!n x n n n n x R x x x x n n n ξπξξ+=+++++-===+++. 因为02x πξ<<<,所以cos 0ξ>,从而21()0n R x +<,所以有 2120(1)sin (21)!k k n k x x k +=-<+∑.即 220(1)sin (21)!k knk x x k =-<+∑. 同理,因为412sin()2()0(41)!n n R x x n πξ++=>+,所以左端的不等号也成立. 另外,在遇到高阶导数的不等式,一般都首先考虑泰勒中值定理.像之前的例4.我们也可以用泰勒中值定理来证明,下面具体来说明:例4的另一种证法:由题设条件,应用泰勒展开式有:211()()()()()2222a b b a b a f f a f a f ξ+--'''=++,221()()()()()2222a b a b a b f f b f b f ξ+--'''=++, 其中1ξ介于a 与2a b +之间,2ξ介于2a b +与b 之间. 上述两式相减,且有()()0f a f b ''==,得:2211()()()[()()]22a b f b f a f f ξξ-''''-=⋅-, ()221()()()()()8a b f b f a f f ξξ-''''-≤+. 令21max{(),()}()f f f ξξξ''''''=,(,)a b ξ∈,则有:2()()()()4a b f a f b f ξ-''-≤,(,)a b ξ∈. 即 24()()()()f f b f a b a ξ''≥--. 例6 设函数()f x 在[],a b 上二阶可导,且()0f x ≥,()0f x ''<.求证:对任意的[],x a b ∈,有2()()b a f x f t b a≤-⎰. 证明: 对任意的[],x a b ∈,将()f x 在t 点展开[](,)t a b ∈.2()()()()()()2!f f x f t f t x t x t ξ''=+-+-(其中ξ介于x 与t 之间). 注意到()0f x ''<,所以有()()()f x f t f x t '≤+-.对上述不等式的两边对t 积分,得:()()()()bb b a a af x dt f t dt f t x t dt '≤+-⎰⎰⎰ ()()()()()()b bb a a a b a f x f t dt f x x t f t dt -≤+-+⎰⎰2()()()()()ba f t dt fb x b f a x a =+---⎰ 因为()0()()()()0f x f b x b f a x a ≥⇒---≤.所以2()()b a f x f t b a≤-⎰. 6综合利用微分中值定理证明不等式 利用拉格朗日中值定理能够很方便的判断出函数的单调性,其方法是:如果函数()f x 在[],a b 上连续,在(),a b 内可导,则有:(1)如果在在(),a b 内函数()f x 的导数()0f x '>,则函数()f x 在[],a b 上单调增加;(2) 如果在在(),a b 内函数()f x 的导数()0f x '<,则函数()f x 在[],a b 上单调减少.另外,函数()f x 在(),a b 内除有个别点外,仍有()0f x '>(或()0f x '<),则函数()f x 在[],a b 上单调增加(或减少)的,即连续函数在个别点处无导数并不影响函数的单调性.再利用函数的单调性及函数图象上峰值点与各极值点的性质,便可以方便地求出函数的极值,从而证明出不等式.其方法为:确定函数()f x 的定义域,然后求出定义域内的所有驻点,并找出()f x 连续但()f x '不存在的所有点,讨论所有驻点和不可导点左右两侧附近()f x '的符号变化情况,确定函数()f x 的极值点,并求出相应的极大值点与极小值点,从而进一步证明不等式.例7 求证 (1)当0x >时,证明2ln(1)2x x x +>-成立. (2)当(0,)2x π∈时,证明tan sin x x x x>成立. 证明 (1)令2()ln(1)2x f x x x =+>-,因为函数()f x 在[0,)+∞上连续,在(0,)+∞内可导,且 21()111x f x x x x'=-+=++. 当0x >时,2()01x f x x'=>+,所以当0x >时,函数()f x 是单调递增的.故当0x >时,有:()(0)0f x f >=,即()0f x >,从而 2ln(1)2x x x +>-成立. (2)因为(0,)2x π∈,所以sin 0x >,tan 0x >.令函数2()sin tan f x x x x =-,则有: 21()sin sec sin 2tan (cos )cos f x x x x x x x x'=+-=+因为(0,)2x π∈时, 1cos 2cos x x +>,tan x x >,所以()0f x '>.即()f x 在(0,)2x π∈时严格递增的,又因为()0f x =,所以()0((0,))2f x x π>∈,即tan sin x x x x>成立. 例8 设函数()f x 在闭区间[],a b 上二次可微,且满足()0f x ''>,试证:当a x b <<时,有不等式: ()()()()f x f a f b f a x a b a--<--成立. 证明 令()()()f x f a x x a ϕ-=-,那么()()()()f x f x a x x aξϕξ''-'=<<-. 由于()0f x ''>,可知()f x '在闭区间[],a b 上是严格递增的,即()()f x f ξ''>,从而有 ()0x ϕ'>,故函数()x ϕ在闭区间[],a b 上也是严格递增的,于是当[],x a b ∈时,有:()()x b ϕϕ<,即 ()()()()f x f a f b f a x a b a--<--成立. 参考文献[1]D.S.密斯特利诺维奇.解析不等式[M].北京:科学出版社.1987.[2]Γ.Μ.菲赫金哥尔茨.微积分学教程(第八版).北京:高等教育出版社.2006.[3]R.科朗等.微积分和数学分析引论[M].北京:科学出版社.2002.[4]华东师范大学数学系.数学分析[M].北京:高等教育出版社,1991.[5]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1994.[6]刘玉莲.数学分析讲义[M].北京:高等教育出版社,1999.[7]林丽绿.利用微分中值定理证明不等式[J].泉州师专学报,1997,第一卷.[8]赵文祥.微分中值定理与不等式[J].天津电大学报,2007,增刊.[9]孙学敏.微分中值定理的应用[J].数学教学研究,2008,第28卷第10期.。
微分中值定理
![微分中值定理](https://img.taocdn.com/s3/m/e28dfb12cc7931b765ce15fd.png)
O
1
x
O
1 2
1 x
O
1 x
2º定理条件只是充分的,并非必要条件. y f ( x ) sgn x 1 ( ,0) (0, ) x O -1 f ( ) 0.
3°使 f ( ) 0的点不一定是f ( x )的最值点.
. 4°罗尔定理未指明在(a , b)内的具体位置
x0 x
极限的 保号性
0 0
f ( x0 ) 0
导数为零的点称为驻点
证 由于 f (x) 在闭区间[ a, b ]连续,故在[ a, b ]
上取得最大值 M 和最小值 m . (1) 若 M = m , 则在闭区间[ a, b ] 上 f ( x ) M , 因此 (2) 若 M > m , f (a ) f (b)
O
b x
a (b a ).
推论 若 f ( x ) 在[a , b]上连续,且在(a , b)内, 恒有 f ( x ) 0, 则 f ( x ) 在[a , b]上是一个常数 .
注
推论中的闭区间a , b]可换成: [
( a , b ), ( a , ), [a , b ), ( , )
且 (a ) 0 (b)
由罗尔定理,知 (a , b), 使得 ( ) 0.
即
f (b) f (a ) f ( ) F ( ) 0. 命题得证. F (b) F (a )
注
1 当 F ( x ) x 时, F (b) F (a ) b a, F ( x ) 1,
在( a , b ) 内至少存在一点 , 使得
f ( ) 0
(1.1)
中值定理在不等式证明中的应用
![中值定理在不等式证明中的应用](https://img.taocdn.com/s3/m/007d8abb1eb91a37f0115c12.png)
本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍•关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式AbstractThis paper idea wrote in in equality proof of use freque ntly duri ng several of the mea n value theorem, which in the Lagra nge mea n value theorem proving in equality in the application of the three methods to speak: direct formula method, variable value method, the method to con struct auxiliary fun ctio n. in the applicati on of proof in equalities of the Taylor mea n value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the fun cti on extreme value point or the most value point, the in terval of known at any point. And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify in equality. And Cauchy mid-value theorem and in tegral mea n value theorem in the applicati on process to prove the in equality were briefly discussedKey words:The Lagrange Mean Value Theorerp Taylor's Formula; Cauchy Mean Value Theorem; In equality ;The Mean Value Theorem for In tegrals摘要 (I)Abstract (I)1引言 (1)2拉格朗日中值定理在不等式证明中的应用 (2)2.1拉格朗日中值定理 (2)2.2利用拉格朗日中值定理证明不等式 (2)2.2.1 直接公式法( 2) 2.2.2 变量取值法( 4) 2.2.3 辅助函数构造法 (5)3泰勒中值定理在不等式证明中的应用 (7)3.1 泰勒中值定理............................... ( 7) 3.2利用泰勒公式证明不等式( 7) 3.2.1 中点取值法( 7) 3.2.2 端点取值法( 9) 3.2.3 极值取值法( 9) 3.2.4 任意点取值法(11)4柯西中值定理在不等式证明中的应用 (14)4.1柯西中值定理 (14)4.2利用柯西中值定理证明不等式 (14)5积分中值定理在不等式证明中的应用 (16)5.1 积分中值定理(16)5.2利用积分证明不等式 (16)结束语 (18)参考文献 (19)致谢 (20)1引言不等式也是数学中的重要内容,也是数学中重要方法和工具.中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理以及积分中值定理等.以拉格朗日中值定理(也称微分中值定理)为中心,介值定理是中值定理的前奏,罗尔定理是拉格朗日中值定理的特殊情形,而柯西中值定理、泰勒中值定理及定积分中值定理则是它的推广.利用中值定理证明不等式,是比较常见和实用的方法.人们对中值定理的研究,从微积分建立之后就开始了以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,它们建立了函数值与导数值之间的定量联系,中值定理的主要作用在于理论分析和证明;应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态. 此外,在极值问题中有重要的实际应用.微分中值定理是数学分析乃至整个高等数学的重要理论,它架起了利用微分研究函数的桥梁.微分中值定理从诞生到现在的近300年间,对它的研究时有出现.特别是近十年来,我国对中值定理的新证明进行了研究,仅在国内发表的文章就近60篇.不等式的证明不仅形式多种多样,而且证明方式多变,常见的方法有:利用函数的单调性证明,利用微分中值定理证明,利用函数的极值或最值证明等,在众多方法中,利用中值定理证明不等式比较困难,无从下手,探究其原因,一是中值定理的内容本身难理解,二是证明不等式,需要因式而变,对中值定理的基础及灵活性要求较高.我们在日常教学中常常遇到不等式的证明问题,不等式是初等数学中最基本的内容之一,我们有必要把这类问题单独拿出来进行研究,找出它们的共性,以方便我们日后的教学研究工作的开展.2拉格朗日中值定理在不等式证明中的应用2.1拉格朗日中值定理拉格朗日(grange , 1736-1813,法国数学家,力学家,文学家)• 拉格朗日中值定理设函数f x在闭区间[a,b]上连续,在开区间a,b内可导,则在开区间(a,b)内至少存在一点X。
谈利用拉格朗日中值定理证明不等式
![谈利用拉格朗日中值定理证明不等式](https://img.taocdn.com/s3/m/a31b3a98a1116c175f0e7cd184254b35eefd1a87.png)
谈利用拉格朗日中值定理证明不等式和利山摘要:该文主要阐述利用微分中值定理,即拉格朗日中值定理证明不等式问题。
对于有些不等式,利用初等数学知识来证明,有时较难,而利用高等数学知识来证明,往往显得较容易些。
该文列举了四个关于不等式证明的问题,从而说明拉格朗日中值定理在证明不等式中的应用。
关键词:拉格朗日中值定理的应用证明不等式在初等数学中,数量之间不等问题经常碰到,而证明不等式的方法也颇多,如综合法、分析法、反证法、数学归纳法等等。
现列举几个实例来说明拉格朗日中值定理在证明有些不等式中的应用。
首先,我们给出拉格朗日中值定理。
定理:若函数y = f ( x )在闭区间[a , b ]上连续, 在开区间( a , b )内可导, 则至少存在一点ξ∈(a,b), 使得f ( b ) – f ( a ) =fˊ(ξ) ( b-a )成立。
拉格朗日中值定理也叫微分中值定理,它是微分学中的一个重要定理。
这个定理有两个条件,当两个条件同时满足时,才能应用此定理。
第一个条件是“函数y = f ( x )在闭区间[ a , b ]上连续”。
这就要求函数f (x )在闭区间[ a , b ]上的图象是一条连续曲线。
第二个条件是“函数y = f ( x )在开区间(a , b)内可导”。
这就要求除区间的两个端点外,在区间(a , b)范围内,函数f ( x )处处存在导数fˊ(x)。
拉格朗日中值定理指出了ξ点在(a , b)内的存在性,而没有指出究竟在开区间(a , b)内有几个ξ点,也没有指出ξ点的具体位置和ξ点的计算方法。
但是,拉格朗日中值定理在理论上具有十分重要的作用,以至它构成了微分学的理论基础。
对于有些不等式,利用初等数学的知识来证明,有时比较困难,而利用拉格朗日中值定理来证明,往往显得比较容易些。
现举几个例子来说明拉格朗日中值定理在证明不等式中的运用。
例1、证明不等式e x >1 + x ,(x≠0)。
分析:首先设函数f(x)=e x,然后验证函数f(x)符合拉格朗日中值定理的条件,最后分 x>0和x<0两种情况应用拉格朗日中值定理进行证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安阳师范学院本科学生毕业论文微分中值定理及其应用作者张在系(院)数学与统计学院专业数学与应用数学年级2008级学号06081090指导老师姚合军论文成绩日期2010年6月学生诚信承诺书本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。
与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。
签名:日期:论文使用授权说明本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
签名:导师签名:日期微分中值定理及其应用张庆娜(安阳师范学院 数学与统计学院, 河南 安阳455002)摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用.关键词:连续;可导;微分中值定理;应用1 引言人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积.意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理.人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理.近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要.2 预备知识由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理.定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤.定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值.定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点0(,)x a b ∈使得0()f x μ= .定理2.4(根的存在定理) 若函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b <).则至少存在一点0(,)x a b ∈使0()0f x =, 即方程()0f x =在开区间(,)a b 内至少有一个根.定理 2.5(一致连续性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在闭区间[,]a b 上一致连续.定理 2.6 设区间1I 的右端点为1,c c I ∈;区间2I 的左端点也为2,c c I ∈(其中1I ,2I 可分别为有限或无限区间).若()f x 分别在1I 和2I 上一致连续,则()f x 在12I I 上也一致连续.定理 2.7(比较原则) 设n u ∑和n v ∑是两个正项级数,如果存在某正数N ,对一切n N >都有n n u v ≤,则(1)若级数n v ∑收敛,则级数n u ∑也收敛; (2)若级数n u ∑发散,则级数n v ∑也发散.定理2.8 绝对收敛的级数一定收敛. 3 相关的几个重要定理定理3.1(费马定理) 设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有0()0f x '=.定理3.2(罗尔中值定理) 若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =,则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.定理3.3(拉格朗日中值定理) 若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得()()()f b f a f b aξ-'=-.定理3.4(柯西中值定理) 若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠;则在开区间(),a b 内存在一点ξ,使得()()()()()()f f b f ag g b g a ξξ'-='-. 注 上面各定理的条件是充分的,但不是必要的. 4 微分中值定理的应用 4.1 证明有关等式在证明一些出现导数的等式时,进行适当的变形后,考虑应用微分中值定理加以证明.还有,就是我们在证明一些与中值定理有关的题目时,构造辅助函数是解决问题的关键.在证明题中巧妙选用和构造辅助函数,进行系统分析和阐述,从而证明相关结论.例 4.1.1[5]()f x 是定义在实数集R 上的函数,若对任意,x y R ∈,有2()()()f x f y M x y -≤-,其中M 是常数,则()f x 是常值函数.证明 对任意x R ∈,x 的改变量为x ∆,由条件有2()()()f x x f x M x +∆-≤∆,即()()f x x f x M x x+∆-≤∆∆,两边关于0x ∆→取极限得0()()0limlim 0x x f x x f x M x x∆→∆→+∆-≤≤∆=∆ 所以()0f x '=.由中值定理()(0)()0f x f f x ξ'-==,即()(0)f x f =, 故在R 上()f x 是常值函数.思路总结 要想证明一个函数()f x 在某区间上恒为常数一般只需证明该函数的导函数()f x '在同一区间上恒为零即可.例4.1.2[2] 设()f x =112112321343x x x x x x ------,证明:存在(0,1)ξ∈,使得()0f ξ'=.证明 由于()f x 在[0,1]上连续,在(0,1)内可导,111(0)1220133f --=--=--,11(1)111121f =--0= .符合罗尔中值定理的条件,故存在ξ(0,1)∈,使()0f ξ'=例 4.1.3 若()f x 在[0,1]上有三阶导数,且(0)(1)f f =0=,设3()()F x x f x =,试证在(0,1)内至少存在一个ξ,使()0F ξ'''=.证明 由题设可知()F x ,()F x ',()F x '',()F x '''在[0,1]上存在,又(0)(1)F F =,由罗尔中值定理,∃1ξ(0,1)∈使1()0F ξ'=,又230(0)[3()()]|0x F x f x x f x =''=+=可知()F x '在上1[0,]ξ满足罗尔中值定理,于是21(0,)ξξ∃∈,使得2()0F ξ''=,又230(0)[6()6()()]|0x F xf x x f x x f x ='''''=++=对()F x ''存在21(0,)(0,)(0,1)ξξξ∈⊂⊂,使'''=. Fξ()0例4.1.4[4](达布定理的推论) 若函数()f x 在[,]a b 内有有限导数,且()()0f a f b +-''< ,则至少存在(,)c a b ∈,使得()0f c '=.证明 ()()0f a f b +-''<,不妨设()0f a +'<,()0f b -'>,因为()lim[()()]/()0x af a f x f a x a ++→'=--<由极限的局部保号性可知,∃1δ0>,当1(,)x a a δ∈+时,()()0f x f a -<,即()()f x f a <.同样∃20δ>,当2(,)x b b δ∈-时,()()0f x f b -<,即()()f x f b <.取12min{,,}2b aδδδ-=,于是在(,)a a δ+,(,)b b δ-中,分别有 ()()f x f a <和()()f x f b <.故()f a ,()f b 均不是()f x 在[,]a b 中的最小值,最小值一定是在内部的一点处取得,设为c 由费马定理可知,()0f c '=.小结 证明导函数方程()()0n f x =的根的存在性的证明方法有如下几种:①验证函数()f x 在[,]a b 上满足罗尔中值定理的三个条件,由此可直接证明()0f ξ'=. ②在大多数情况下,要构造辅助函数()F x ,验证在[,]a b 上满足罗尔中值定理的三个条件,证明()0F ξ'=,进而达到证明问题的目的.③验证x ξ=为函数的极值点,应用费马定理达到证明问题的目的.例 4.1.5 设()f x 在[,]a b 上连续,在(,)a b 内可导,0a b <<,试证:,(,)a b ξη∃∈使()()2a bf f ξηη+''=.证明 由于0a b <<,2(),()f x g x x =,()20g x x '=≠,(,)x a b ∈由于(),()f x g x 在[,]a b 上满足柯西中值定理 ,所以(,)a b η∃∈使22()()()2f f b f a b a ηη'-=- ()()()()()2f f b f a b a f b aηξη'-'⇒+==-,(,)a b ξ∈由上面二式可得,(,)a b ξη∃∈使得:()()2a bf f ξηη+''=.例4.1.6 设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==.试证:对任意给定的正数,a b 在(0,1)内不同的ξ,η使()()a ba b f f ξη+=+''. 证明 由于,0a b >所以01aa b<<+. 又由于()f x 在[0,1]上连续且(0)0,(1)1f f ==.由介值性定理,(0,1)τ∃∈使得()a f a bτ=+, ()f x 在[0,],[,1]ττ上分别用拉格朗日中值定理有()(0)(),(0,)f f f ττξξτ'-=∈即()(),(0,)f f ττξξτ'=∈(1)()(1)(),(,1)f f f ττηητ'-=-∈即1()(1)(),(,1)f f ττηητ'-=-∈于是由上面两式有1()1()()()f bf a b f ττηη--==''+ ()()()()f a f a b f ττξξ==''+将两式相加得1()()()()a ba b f a b f ξη=+''++即()()a ba b f f ξη+=+''. 小结 大体上说,证明在某区间内存在,ξη满足某种等式的方法是: ①用两次拉格朗日中值定理.②用一次拉格朗日中值定理,一次罗尔中值定理. ③两次柯西中值定理.④用一次拉格朗日中值定理,一次柯西中值定理. 4.2 证明不等式在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例4.2.1[3] 设 ⑴(),()f x f x '在[,]a b 上连续;⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b ==⑷在(,)a b 内存在点c ,使得()0;f c >求证在(,)a b 内存在ξ,使()0f ξ''<.证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以1()0f x '=.由泰勒公式:211111()()()()()(),(,)2!f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<.例4.2.2 设0b a <≤,证明ln a b a a ba b b--≤≤. 证明 显然等式当且仅当0a b =>时成立. 下证 当0b a <<时,有ln a b a a ba b b--<<① 作辅助函数()ln f x x =,则()f x 在[,]b a 上满足拉格朗日中值定理,则(,)b a ξ∃∈使ln ln 1a b a b ξ-=- ②由于0b a ξ<<<,所以111a bξ<< ③ 由②③有1ln ln 1a b a a b b-<<-,即ln a b a a ba b b--<<. 小结 一般证明方法有两种①利用泰勒定理把函数()f x 在特殊点展开,结论即可得证. ②利用拉格朗日中值定理证明不等式,其步骤为:第一步 根据待证不等式构造一个合适的函数()f x ,使不等式的一边是这个函数在区间[,]a b 上的增量()()f b f a -;第二步 验证()f x 在[,]a b 上满足拉格朗日中值定理的条件,并运用定理,使得等式的另一边转化为()()f b a ξ'-;第三步 把()f ξ'适当放大或缩小.4.3 利用微分中值定理求极限及证明相关问题例 4.3.1 设函数在0x x =点的某一邻域内可导,且其导数()f x '在0x 连续,而0n n x αβ<<当n →∞时00,n n x x αβ→→,求 ()()lim n n n n nf f βαβα→∞--.解 设00{},{}()n n u x αβ⊂,则由拉格朗日中值定理有()()(),()n n n n n n n nf f f βαξαξββα-'=<<-.已知0()n x n ξ→→∞,又()f x '在0x 连续,即00()lim ()x x f x f x →''=,所以0()()limlim ()lim ()()n n n n n x x n nf f f f x f x βαξβα→∞→∞→--'''===.例4.3.2 若()f x 在(,)a +∞内可导,且lim[()()]0x f x f x →∞'+=,求lim ()x f x →∞.分析 由式[()()][()]x x f x f x e f x e ''+=,引进辅助函数()(),()x x F x f x e g x e ==,显然()0g x '≠.解 由lim[()()]0x f x f x →∞'+=,知0ε∀>,0X ∃>当x X >时()()f x f x ε'+<,令()()x F x f x e =,()x g x e =对x X >,在[,]X x 上利用柯西中值定理有()()()()()()F x F X F g x g X g ξξ'-='-,(,)X x ξ∈即()()[()()]x X x X f x e f X e f f e e e e ξξξξ'-+=-,亦有[()()]()()1X xX xf x f X e f f e ξξ---'=+-,或|()||()||()()|(1)X x X x f x f X e f f e ξξ--'≤+++由于lim 0X x x e -→+∞=,所以1,x X ∃>当1x x >时有X x e ε-<和1X x e -<,于是1x x ∀>,使|()||()|2f x f X εε≤+即lim ()x f x →∞0=.小结方法1 选择适当的函数和区间利用拉格朗日中值定理并结合导函数的特点及极限的迫敛性求的最终结果.方法2 选择适当的函数和区间利用柯西中值定理结合具体题意求的最终结果. 4.4 证明零点存在性在证明方程根的存在性时,出现满足中值定理的相关条件时,可以考虑运用微分中值定理加以解决.从某种意义来说,微分中值定理为证明方程根的存在性提供了一种方法.例4.4.1 设i a R ∈且满足120 (0231)n a a aa n ++++=+,证明方程12012...0n n a a x a x a x ++++=在(0,1)内至少有一个实根.证明 引进辅助函数231012() (231)n n x x x F x a x a a a n +=+++++,显然(0)(1)0F F ==,()F x 又是多项式函数在[0,1]上连续,在(0,1)可导,()F x 满足罗尔中值定理的条件,故存在(0,1)ξ∈使()0F ξ'=而12012()...n n F x a a x a x a x '=++++故方程12012...0n n a a x a x a x ++++=在(0,1)内至少有一个实根ξ.注 本题构造()F x 的依据是使()F x 得导数恰好是所证方程的左边. 例4.4.2 证明:方程510x x +-=有唯一正根. 证明 (存在性)令5()1f x x x =+-,显然()f x 是连续函数,取区间[0,]N 则()f x 在[0,]N 上连续,在(0,)N 内可导,且4()510f x x '=+>,由连续函数的零点定理,知存在0x (0,)N ∈使0()0f x =即方程有正根(0)N >. (唯一性)下面用反证法证明正根的唯一性,设处0x 外还有一个10x >不妨设01x x <使1()0f x =则()f x 在01[,]x x 上满足罗尔中值定理条件,于是存在01(,)x x ξ∈使()0f ξ'=这与上面的4()510f x x '=+>矛盾.所以,方程有唯一的正根.例 4.4.3 设(),(),()f x g x h x 在[,]a b 上连续,在(,)a b 内可导,证明(,)a b ξ∃∈使()()()()()()0()()()f ag ah a f b g b h b f g h ξξξ='''并由此说明拉格朗日中值定理和柯西中值定理都是它的特例. 证明 作辅助函数()()()()()()()()()()f ag ah a F x f b g b h b f x g x h x =由于()()0F a F b ==,由罗尔中值定理知(,)a b ξ∃∈使()()()0()()()()()()()f a g a h a F f b g b h b f g h ξξξξ'==''', ①若令()1h x =,则由①式有()()10()()()1()()0f ag a F f b g b f g ξξξ'=='', ② 由②式可得()()()()()()f b f a fg b g a g ξξ'-='-此即柯西中值定理.若令()1h x =,()g x x =由①式有()10()()1()10f a a F f b b f ξξ'==', ③由③可得()()()f b f a f b aξ-'=-此即为拉格朗日中值定理.此类型题的一般解题方法小结 证明根的存在性有以下两种方法 (1)构造恰当的函数()F x ,使()()F x f x '=;对()F x 使用洛尔定理即可证得结论存在ξ,使得()0f ξ=;(2)对连续函数()f x 使用介值定理;证明根的唯一性一般用反证法,结合题意得出矛盾,进而结论得证. 4.5 函数的单调性例4.5.1[6] 证明:若函数()f x 在[0,)a 可导,()f x '单调增加,且(0)0f =,则函数()f x x在(0,)a 也单调增加.证明 对任意12,(0,)x x a ∈,且12x x <,则()f x 在1[0,]x 与12[,]x x 均满足拉格朗日中值定理条件,于是分别存在11212(0,),(,)c x c x x ∈∈,使111()(0)()0f x f f c x -'=-,21221()()()f x f x f c x x -'=-,由于()f x '单调增加,且(0)0f =,所以121121()()()f x f x f x x x x -≤-, 从而1212()()f x f x x x ≤, 即函数()f x x在(0,)a 也单调增加.证明函数为单调函数一般有两种方法: (1)利用函数单调的定义来证明;(2)利用导函数()f x '来证明.若在该区间上恒有()0f x '≥则()f x 为单增函数;若在该区间上恒有()0f x '≤则()f x 为单减函数. 4.6 导数的中值估计例 4.6.1[7] 设()f x 在[,]a b 上二次可微, ()()0f a f b ''==,则至少存在一点(,)a b ξ∈,使得22()()()()f f b f a b a ξ''≥--. 证明 因为函数()f x 在[,]2a b a +与[,]2a bb +上可导,所以由中值定理有11()()2(),(,),22a b f f a a b f c c a a b a +-+'=∈+- (1)22()()2(),(,),22a bf b f a b f c c b a b b +-+'=∈+- (2) (1)(2)+,并整理得212()()[()()]f c f c f b f a b a''+=--, (3)又()()0f a f b ''==,且()f x 在[,]a b 上二次可微,则分别在1(,)a c 与2(,)c b 内至少存在1ξ与2ξ,使11111()(),(,),f c f a c c aξξ'''=∈- (4)22222()(),(,),f c f c b c bξξ'''=∈- (5)(4)(5)+,并整理得211122()()()()()(),f c f c f c a f c b ξξ''''''+=-+- (6)将(6)式代入(3)式得11222()()()()()()f b f a f c a f c b b aξξ''''-=-+-- 令12()max{(),()}f f f ξξξ''''''=,则11222()()()()f b f a f c a f c b b aξξ''''-≤-+--()f b a ξ''≤- 即22()()()()f f b f a b a ξ''≥--,(,)a b ξ∈.解题方法小结选择适当的区间分别利用拉格朗日中值定理并进行适当处理,再结合具体题目采用适当的手段最终证得所求结论.4.7 证明函数在区间上的一致连续例4.7.1 设函数()f x 在(0,1]内连续且可导,有0lim ()0x x +→'=,证明:()f x 在(0,1]内一致连续.证明 由函数极限的局部有界性知,存在0M >和(0,1)c ∈,使(),(0,]x M x c '≤∈于是12,(0,]x x c ∀∈,且12x x ≠不妨设12x x <由柯西中值定理,12(,)x x ξ∃∈,有()ξ''==即221x x x =+-≤-故0,ε∀>2min{(),}2c Mεδ∃=,当12,(0,]x x c ∈,且21x x δ-<时,由上面两式得到21()()22f x f x Mε-≤≤于是知()f x 在(0,]c 上一致连续,由于()f x 在(0,1]上连续,所以()f x 在[,1]c 上一致连续, 由定理知()f x 在(0,1]内一致连续.证明函数在区间上的一致连续解题小结:利用一致连续的定义并结合有关一致连续的定理即可证得结论成立. 4.8 用来判定级数的敛散性例 4.8.1 设函数()f x 在点0x =的某邻域内有二阶连续导数,且0()lim0x f x x→=,证11()n f n ∞=∑绝对收敛.证明 由0()lim0x f x x→=且()f x 在0x =可导,知(0)0,(0)0f f '==故()f x 在点0x =处的一阶泰勒公式为:2211()(0)(0)()()2!2!f x f f x f x f x ξξ'''''=++=,(0,)x ξ∈ 因()f x M ''≤,故221()()2!2M f x f x x ξ''=≤. 取1x n=有 211()()2M f n n≤ 由于211()2n M n ∞=∑收敛,由比较判别知11()n f n ∞=∑绝对收敛.定理[8] 已知()f x 为定义在[1,)+∞上的减函数,()F x 为定义在[1,)+∞上的连续函数,且()()0F x f x '=>,(1,)x ∈+∞.⑴当极限lim ()n F n →∞存在时,正项级数1()n f n ∞=∑收敛,设其和为a ,则lim ()(1)lim ()(1)(1)n n F n F a F n F f →∞→∞-≤≤-+;⑵当极限lim ()n F n →∞=∞时,正项级数1()n f n ∞=∑发散.证明 下面只证定理的前半部分.因为函数()F x 在区间[,1]k k +上满足中值定理的条件(其中1k ≥),所以在(,1)k k +内至少存在ξ使得(1)()()F k F k f ξ+-=成立,又()f x 为减函数,故有(1)(1)()(),1,2,,f k F k F k f k k n +<+-<=⋅⋅⋅.将上述n 个不等式相加得(2)(3)...(1)(1)(1)(1)(2)...()f f f n F n F f f f n ++++<+-<+++.令(1)(2)...()n S f f f n =+++, 则(1)(1)(1)(1)n n S f f n F n F S -++<+-<,(1)因极限lim ()n F n →∞存在,()f x 为减函数,从而数列{()}F n 有界,(1)(1)f n f +<,所以数列{}n S 单调递增且有上界,故极限lim n n S →∞存在,即级数1()n f n ∞=∑收敛.从而lim ()0n f n →∞=,由(1)可得1lim ()(1)()lim ()(1)(1)n n n F n F f n F n F f ∞→∞→∞=-≤≤-+∑.例4.8.2 判定级数21n n n e∞=∑是否收敛?若收敛,请估计其和.解 令2()x f x x e -=,2()(22)x F x x x e -=-++,则()()F x f x '=,()(2)x f x x x e -'=-,故当2x ≥时,()0f x '≤,此时()f x 为减函数,又lim ()n F n →∞0=,由定理知级数21n n n e∞=∑收敛,且22lim ()(2)lim ()(2)(2)n n n n n F n F F n F f e∞→∞→∞=-≤≤-+∑, 所以210(2)(1)0(2)(2)(1)n n n F f F f f e∞=-+≤≤-++∑即2212111014n n n e e e e e∞----=+≤≤+∑.判定级数的敛散性的一般解题方法方法一 一般先运用泰勒定理并结合题意,再运用比较判别法即可得到所要证明的结论;方法二 先验证级数满足相关定理的条件,即可得到相应结论; 5 总结人们对微分中值定理的认识可以上溯到公元前古希腊时代,对微分中值定理的研究从微积分建立之始就开始了.至今有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用.参考文献[1]华东师范大学数学系编.数学分析[M].北京:高等教育出版社第三版,2001.[2]孙清华,孙昊编. 数学分析内容、方法与技巧(上)[M]. 武汉:华中科技出版社, 2003.[3]钱吉林.数学分析题解精粹第二版[M]. 武汉: 湖北长江出版集团,2009.[4]邓乐斌编. 数学分析的理论、方法与技巧[M]. 武汉:华中科技出版社,2005.[5] 王宝艳.微分中值定理的应用[J].雁北师范学院学报,2005,2:59~61.[6]贾田田,刘伟伟,霍丽元. 微分中值定理的应用及其在特定条件下问题的思路分析[J].工程科技Engineering Technolofy,2009,2下:182.[7] 罗群. 微分中值定理及其应用[J].肇庆学院学报,2003,24(5):31~36.[8]刘章辉. 微分中值定理及其应用[J].山西大同大学学报(自然科学版),2007,2(27):9~81.The Differential Mean-value Theorem and It’sApplicationZhang Qing-na(School of mathematics and statistics,Anyang NormalUniversity, Anyang,Henan 455002)Abstract:The paper introduces some common methods of using Rolle Theorem ,Lagrange Theorem and Cauchy Theorem of Mean-value ,in which the problems of testify being ,issue of judging convergence or divergence of series and the application of testify inequality or equality and of seeking limit are presend .This article also introduces the application of differential Mean-value Theorems in sloving problems by some examples.Key words:continuation ; derivable ; the theorem of differential median ; reply(注:本资料素材和资料部分来自网络,仅供参考。