解题方法突破 构造辅助线 第十五讲 构造等腰(等边)三角形
构造等腰三角形解题的辅助线做法
构造等腰三角形解题的辅助线做法吕海艳等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起考查。
在许多几何问题中,通常需要构造等腰三角形才能使问题获解。
那么如何构造等腰三角形呢一般有以下四种方法:(1)依据平行线构造等腰三角形;(2)依据倍角关系构造等腰三角形;(3)依据角平分线+垂线构造等腰三角形;(4)依据120°角或60°角,常补形构造等边三角形。
1、依据平行线构造等腰三角形例1:如图。
△ABC中,AB=AB,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证DE=DF.)[点拔]:若证DE=DF,则联想到D是EF的中点,中点的两旁容易构造全等三角形,方法是过E或F作平行线,构造X型的基本图形,只需证两个三角形全等即可。
证明:过E作EG∥AC交BC于G∴∠1=∠ACB,∠2=∠F∵AB=AC∴∠B=∠ACB∴∠1=∠B∴BE=GE∵BE=CF∴GE=CF在△EDG和△FDC中*∠3=∠4∠2=∠FGE=CF∴△EDG≌△FDC∴DE=DF[评注]:此题过E作AC的平行线后,构造了等腰△BEG,从而达到转化线段的目的。
2、依据倍角关系构造等腰三角形例2:如图。
△ABC中,∠ABC=2∠C,AD是∠BAC的平分线求证:AB+BD=AB.[点拔]:在已知条件中出现了一个角是另一个角的2倍,可延长CB,构造等腰三角形,问题即可解决。
证明:延长CB至E,使BE=BA,连接AE∵BE=BA∴∠BAE=∠E∵∠ABC=2∠C, ∠ABC=∠E+∠BAE=2∠E∴∠C=∠EAC=AE∵AD平分∠BAC∴∠1=∠2…∴∠EAD=∠BAE+∠1=∠E+∠1=∠C+∠2=∠BDA∴EA=ED∵ED=EB+BD,EB=AB,AC=AE∴AC=AB+BD[评注]:当一个三角形中出现了一个角是另一个角的2倍时,我们就可以通过转化倍角寻找等腰三角形。
3、依据角平分线+垂线,构造等腰三角形例3,如图。
数学 苏海涛 解题方法突破 构造辅助线 第十五讲 构造等腰(等边)三角形15页PPT
例 3.在 Rt△ABC 中,∠ACB=90°,∠A=30°,BD 是△ABC 的角平分线, DE⊥AB 于点 E.
【解析】(3)结论:AD = DG-DN. 理由如下:
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
(3)若 BAC ,请直接写出 DB 与 DC 的数量关系.
【解析】(1) DB 2DC (2) DB 2DC
证明:过点 C 作 CF BE 交 AD 的延长线于点 F , 在 AD 上取点 G 使得 CG CF ,∴ 6 F 7 ∵ BED 2CED BAC 60 ,∴ 6 F 60 , CED 30
BE BE
例 2.在△ ABC 中,AB AC , D 是底边 BC 上一点,E 是线段 AD 上一点,且 BED 2CED BAC .
(1)如图 1,若 BAC 90,猜想 DB 与 DC 的数量关系为
;
(2)如图 2,若 BAC 60,猜想 DB 与 DC 的数量关系,并证明你的结论;
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
分线)
实战突破
例1.已知:如图,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E. (1)求证:BC=AE+BE; (2)探究:若∠A=108°,那么BC等于哪两条线段长的和呢?试证明之.
【解析】 (1)在 BC 上截取 BD BA 、 BF BE
BA BD ∵ ABE DBE ,∴ BAE BDE ,∴ BDE A 100 , AE DE ,∴ CDE 80 ,
如何构造一个等腰三角形
如何构造一个等腰三角形
在数学几何学中,等腰三角形是指具有两条边相等的三角形。
构造一个等腰三角形的方法有很多种,下面将介绍几种常用的构造方法。
方法一:使用直尺和画圆工具
1. 在纸上画一条基线,作为等腰三角形的底边。
2. 在基线的中点上方或下方用直尺画一条垂直线,作为等腰三角形的高。
3. 使用画圆工具,在基线的两个端点上分别画弧,使其与垂直线相交于同一点。
4. 连接两个交点和基线两端点,得到一个等腰三角形。
方法二:使用直尺和角分度器
1. 在纸上画一条基线,作为等腰三角形的底边。
2. 使用直尺连接基线两端点,找到底角的平分线。
3. 使用角分度器或者直尺和指南针,将底角平分线上的两点与基线两端点分别连接,得到等腰三角形的两条边和高。
方法三:使用直尺和指南针
1. 在纸上画一条基线,作为等腰三角形的底边。
2. 使用直尺连接基线两端点,确定底边的中点。
3. 调整指南针的间距为底边长度的一半,以底边中点为圆心,画出一个等腰三角形的顶点。
4. 连接顶点和基线两端点,得到一个等腰三角形。
无论选择哪种构造方法,都需要仔细测量边长和角度,保证构造出的三角形满足等腰性质。
总结:
构造一个等腰三角形的方法有多种,可以根据个人的偏好和使用的工具选择其中一种。
这些方法基于数学几何原理,通过使用直尺和画圆工具、角分度器或者指南针等工具,可以准确地构造出一个等腰三角形。
在构造过程中,需要注意准确测量边长和角度,以保证构造出的三角形符合等腰性质。
构造等腰三角形解题的常见途径
构造等腰三角形解题的常见途径等腰三角形是研究几何图形的基础,因此在许多几何问题中,常常需要构造等腰三角形才能使问题获解,那么如何构造等腰三角形呢?一般说来有以下几种途径:一、利用角平分线+平行线,构造等腰三角形当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形.例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:.AE =AP .简析 要证.AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角形,故AE =AP .例2 如图3,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点O ,过点O 作DE ∥CABE DO图3图4F CDEBA M图2 FB ACD P E图1①D ②C D C ④FCDAC ,分别交AB 、BC 于点D 、E .试猜想线段AD 、CE 、DE 的数量关系,并说明你的猜想理由.简析 猜想:AD +CE =DE .理由如下:由于OA 、OC 分别是∠BAC 、∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE .例3 如图4,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC .求证:EF ∥AB .简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB .二、利用角平分线+垂线,构造等腰三角形当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形.例4 如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .简析 由BF 平分∠ABC ,CD ⊥BD ,并在图5的揭示之下,延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,故BF =2CD .E 图5ABCD 图6BF DE CA- 3 -三、利用转化倍角,构造等腰三角形当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形.如图7①中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则△DBC 是等腰三角形;如图7②中,若∠ABC =2∠C ,如果延长线CB 到D ,使BD =BA ,连结AD ,则△ADC 是等腰三角形;如图7③中,若∠B =2∠ACB ,如果以C 为角的顶点,CA 为角的一边,在形外作∠ACD =∠ACB ,交BA 的延长线于点D ,则△DBC 是等腰三角形.例5 如图8,在△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°. 简析 由于条件中有两个倍半关系,而结论与角有关,因此首先考虑对∠ACB =2∠B 进行技术处理,即作CD 平分∠ACB 交AB 于D ,过D 作DE ⊥BC 于E ,则由∠ACB =2∠B 知∠B =∠BCD ,即△DBC 是等腰三角形,而DE ⊥BC ,所以BC =2CE ,又BC =2AC ,所以AC =EC ,所以易证得△ACD ≌△ECD ,所以∠A =∠DEC =90°. 说明 本题也可以利用图7的②、③来构造等腰三角形求解.手脑并用巧解题图7 BC DA① ② BC DA③BCDAE 图8CBAD湖北毕保洪随着《课程标准》深入实施:“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实验、自主探索与合作交流成为学习的重要方法”.因此,以等腰三角形为背景的动手操作、动脑设计的手脑并用的中考题悄然兴起.一、模拟画图例1已知在如图1的△ABC中,AB=AC,∠A=36°,仿照图1,请你再用两种不同的方法,将△ABC分割成3个三角形,使每个三角形都是等腰三角形(图2、图3供画图用,作图工具不限,不要求写出作法,不要求证明,但要标出所分得每个等腰三角形的内角度数).解:如图4、图5、图6、图7.此题不仅培养同学们的动手能力,而且考查同学们的发散思维能力.二、手脑并用例2在平面内,分别用3根、5根、6根…火柴,首尾依次相接可以搭成什么形状的三角形呢?通过尝试,列表如下所示:问: (1)4根火柴能搭成三角形吗?(2)8根、12根火柴分别能搭成几种不同形状的三角形?并画出图形.解:(1)4根火柴不能搭成三角形因为1+1=2不满足三边关系.(2)8根火柴能搭成等腰三角形,如图8;而12根能搭成等边三角形,如图9,或等腰三角形,如图10,或直角三角形,如图11.此题动手操作性强而且有助于培养同学们探究学习的学习习惯.三、动手剪裁例3在劳技课上老师请同学们在一张边长为16cm的正方形纸板上,剪下一个腰长为10cm的等腰三角形(要求等腰三角形至少有一条边在正方形的边上),请你帮助同学们画出剪裁的等腰三角形.解:分三种情况:①如图12,AE=AF=10cm,沿EF剪裁;②如图13,AE=AF=10cm,沿EF和AF剪裁;③如图14,AE=EF=10cm,沿AF和EF剪裁.- 5 -。
辅助线构造等腰和直角三角形
构造等腰、直角三角形一、构造等腰(边)三角形:当问题中出现一点发出的二条相等线段时往往要补完整等腰(边)三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰(边)三角形。
通过构造等腰(边)三角形,应用等腰(边)三角形的性质得到一些边角相等关系,达到求证(解)的目的。
典型例题:例1.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB 的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.例2.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.例3.如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.二、构造直角三角形:通过构造直角三角形,应用直角三角形的性质得到一些边角关系(勾股定理,两锐角互余,锐角三角函数),达到求证(解)的目的。
典型例题:例2.已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的25 5(即cosC=255,则AC边上的中线长是.例3.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰4,则MNBM的值为【】A.2 B.4 C.25D.26例4.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=900,∠CED=450,∠DCE=900,DE=2,BE=22.求CD的长和四边形ABCD的面积.例5.某市规划局计划在一坡角为16º的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为28º,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12m,⊙O的半径为1.5m,求雕塑最顶端到水平地面的垂直距离(结果精确到0.01m,参考数据:cos28º≈0.9,sin62º≈0.9,sin44º≈0.7,cos46º≈0.7).例6.周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)例7.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在AB上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.构造等腰、直角三角形一、构造等腰(边)三角形:当问题中出现一点发出的二条相等线段时往往要补完整等腰(边)三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰(边)三角形。
构造等腰三角形解题的五种途径
构造等腰三⾓形解题的五种途径2019-09-19等腰三⾓形是⼀类特殊的三⾓形,它的性质和判定在⼏何证明和计算中有着⼴泛的应⽤.有些⼏何图形中不存在等腰三⾓形,可根据已知条件和图形特征,通过添加适当的辅助线,巧妙构造等腰三⾓形,然后利⽤等腰三⾓形的性质使问题获解.⼀、利⽤⾓平分线+平⾏线,构造等腰三⾓形当⼀个三⾓形中出现⾓平分线,我们可以通过作平⾏线构造等腰三⾓形.如图1,AD是ABC的⾓平分线.①如图2,过点D作DE∥AC交AB于点E,则ADE是等腰三⾓形;②如图3,过点B作BE∥AC交AD的延长线于点E,则ABE是等腰三⾓形;③如图5,点E是AB边上⼀点,过点E作EF∥AC分别交AD、BC于点F、G,则AEF是等腰三⾓形;④如图4,点E是AB边上⼀点,过点E作EF∥AC,交AD的延长线于点F,交BC于点G,则AEF是等腰三⾓形;⑤如图6,过点C作CE∥AD交AB的反向延长线于点E,则ACE是等腰三⾓形;⑥如图7,点E是AC边上⼀点,过点E作EF∥AD,交AB的反向延长线于点F,交BC于点G,则AEF是等腰三⾓形.我们知道,等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合,简称“三线合⼀”.现在的问题是:如果三⾓形⼀边上的中线与它的对⾓的⾓平分线重合,那么这个三⾓形是否是等腰三⾓形呢?答案是肯定的,现在就来证明这个定理.例1 如图8,ABC中,中线AD平分∠BAC.求证:AB=AC.分析:AD既是AC的中线,同时⼜是ABC的⾓平分线.联想到与⾓平分线和中线有关的辅助线,可过点B(或点C)作AC(或AB)的平⾏线.证明:如图9,延长AD⾄点E,使DE=AD.BD=CD,∠BDE=∠ADC,DE=AD,BDE≌CDA.BE=AC,∠E=∠CAD.⼜∠BAD=∠CAD,∠BAD=∠E.AB=BE.AB=AC.说明:本例也可过点D作DEAB,DFAC,垂⾜分别为E、F,如图10所⽰,从⾯积⼊⼿证明.⼆、利⽤⾓平分线+垂线,构造等腰三⾓形当⼀个三⾓形中出现⾓平分线时,我们也可以通过作垂线的⽅法构造等腰三⾓形.如图11,点E是∠ABC的⾓平分线AD上的⼀点,过点E作AD的垂线分别交AB、AC于点M、N,则AMN是等腰三⾓形.例2 如图12,在ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D, CEBD,交BD的延长线于点E.求证:CE=BD.分析:由⾓平分线和垂线可以构造以BC为腰、∠ABC为顶⾓的等腰三⾓形.证明:如图12,延长CE交AB的反向延长线于点F.BD平分∠ABC,CEBD,由⾓平分线的对称性知CE=EF=CF.∠1+∠F =90°,∠2+∠F =90°,∠1=∠2.⼜AB=AC,∠BAD=∠CAF=90°,BAD≌CAF.BD=CF.CE=BD.三、利⽤中垂线,构造等腰三⾓形当⼀个三⾓形中出现⾼时,可以在⾼所在的边(或其延长线)上取⼀点,使⾼是该点与该边上三⾓形的⼀顶点组成的线段的中垂线,从⽽构造等腰三⾓形.如图13,AD是ABC的⾼.①如图14,在线段BC上取⼀点E使ED=DE,连结AE,则AEC是等腰三⾓形;②如图15,在线段BC的延长线上取⼀点E,使BD=DE连结AE,则ABE是等腰三⾓形.例3 如图16,在ABC中,ADBC于点D,∠B=2∠C.求证:AB+BD=CD.分析:由待证结论AB+BD=CD并结合已知条件“ADBC”,可构造以AB为腰、AD为底边上的⾼的等腰三⾓形.证明:在BC上取⼀点E,使BD=DE,连结AE,则ABE是等腰三⾓形.AB=AE,∠B=∠AED.⽽∠AED=∠C+∠CAE,且∠B=2∠C,∠C+∠CAE=2∠C.∠CAE=∠C.AE=CE.AB=CE.AB+BD=CE+DE=CD.四、利⽤平⾏线,构造等腰三⾓形过等腰三⾓形⼀腰上的点作底边或另⼀腰的平⾏线,都可以得到等腰三⾓形. 如图17,在ABC中,AB=AC.过线段AB上⼀点D 作DE∥BC,DF∥AC,分别交AC、BC于点E、F,则ADE和BDF都是等腰三⾓形.例4 如图18,ABC中,AB=AC,D是AB上⼀点,E是AC延长线上⼀点,且BD=CE,DE交BC于点F.求证:DF=EF.分析:由待证结论知点F是线段DE的中点,再结合已知条件“AB=AC”,可过点D作DM∥AC构造等腰三⾓形.证明:过点D作DM∥AC交BC于点M,则∠DMB=∠ACB,∠FDM=∠E.AB=AC,∠B=∠ACB.∠B=∠DMB.BD=DM.⼜BD=CE,DM=CE.在DMF和ECF中,DM=CE,∠FDM=∠E,∠DFM=∠EFC,DMF≌ECF.DF=EF.说明:本例也可过点E作EN∥AB交BC的延长线于点N,证明过程留给同学们完成.五、转化倍⾓,构造等腰三⾓形当⼀个三⾓形中出现⼀个⾓是另⼀个⾓的2倍时,我们就可以通过转化倍⾓寻找到等腰三⾓形.如图19,ABC中,∠B=2∠C.①如图20,作BD平分∠ABC,则DBC是等腰三⾓形;②如图21,延长CB到点D,使BD=BA,连结AD,则ADC是等腰三⾓形;③如图22,以C为⾓的顶点,CA为⼀边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则DBC是等腰三⾓形.例5 如图23,在ABC中,∠ABC=2∠C,BC=2AB.求证:∠A=90°.分析:结合已知条件“∠ABC=2∠DBA”和“BC=2AB”,可作∠ABC的平分线BD交AC于点D,并取BC的中点E,连结DE,借助等腰三⾓形的“三线合⼀”和三⾓形全等证明.证明:作∠ABC的平分线BD交AC于点D,则∠DBE=∠C.BD=CD.取BC的中点E,连结DE,则BE=AB,且DEBC.在ABD和EBD中,BE=AB,∠DBE=∠DBA,BD=BD,ABD≌EBD.∠BED=∠A=90°.(作者单位:湖北省襄阳市襄州区黄集镇初级中学)注:本⽂为⽹友上传,不代表本站观点,与本站⽴场⽆关。
八年级数学三角形全等辅助线构造总结
三角形全等辅助线构造总结当题中出现等腰三角形的条件但是不好使用时,可以考虑利用旋转构造辅助线,通过构造等腰三角形得到手拉手全等,利用全等转移边角进行解题旋转三要素:旋转中心、旋转角、旋转方向旋转对象:一般是含已知条件或问题相关的边角所在三角形如何转:确定旋转三角形后,考虑由旋转三角形中的腰旋转至与另一腰重合,整个三角形进行同样的旋转旋转后的图形分析:1、从新构造的全等三角形进行分析;2、从新得到的等腰三角形进行分析板块一、常见旋转相关模型一、邻补模型(∠DAB+∠DCB=180°,AD=AB)条件构成:有两邻边相等的四边形,且四边形对角互补,且一般等腰三角形顶角为特殊角。
常见结论:1、有角平分线;2、有线段和差的倍数关系解题方法:1、作双垂;2、构造旋转全等①90°相关结论:1、AC平分∠BCD2、AC CD BC 2=+ ②60°相关结论:1、AC 平分∠BCD 2、AC CD BC =+ ③120°相关结论:1、AC 平分∠BCD 2、AC CD BC 3=+补充说明:对角互补、邻边相等、角平分线三个条件知到其中两个就可求另外第三个,辅助线的构造与三角形全等相同,但是全等判定会有差异,需要根据具体情况判断变式、不完整的邻补模型条件构成:有邻边相等或者对角互补,角平分线条件改成其中一个半角知道度数常见结论:与邻补模型一样解题方法:利用已知角构造等腰三角形得到手拉手全等二、邻八模型(∠CAD=∠CDB,AB=AC)条件构成:邻边相等、八字形、等腰三角形顶角为特殊角常见结论:1、外角平分线;2、线段的和差倍数关系解题方法:1、作双垂;2、构造旋转全等①90°相关结论:1、AD 为外角平分线 2、AD BD CD 2=-②120°相关结论:1、AD 为外角平分线2、AD BD CD 3=-变式、不完整的邻八模型条件构成:有邻边相等或者八字形,角平分线条件改成知道部分角度 常见结论:与邻补模型一样解题方法:利用已知角构造等腰三角形得到手拉手全等④一般角时(∠ADC=∠ABC)(∠ADB+∠ABC=180°)注:当等腰三角形不为等腰直角三角形或等边三角形时,利用作垂和翻折构造等腰三角形,如上第二图中,可过A 作DC 垂线,垂足F ,然后找E 使DF=EF ,连接则可得到目标等腰三角形三、等腰直角三角形相关旋转模型1、条件构成:△ABC 为等腰直角三角形,D 为直线BC 上任意一点常见结论:2222AD CD BD =+解题思路:构造旋转全等补充说明:2、夹半角模型条件构成:△ABC 是等腰直角三角形,且∠DAE 为45°或135°角常见结论:222DE CE BD =+解题思路:构造旋转全等,证两次全等补充说明:1、以上半角模型的辅助线构造思路都是将△ABD 绕A 逆时针转90°,先后证明AFE ADE ACF ABD ∆≅∆∆≅∆,,再用勾股得到结论2、120°等腰三角形相关夹半角也有类似解法,但结论不同,需要用到解三角形四、对角互余模型(BA=BC,∠BAC+∠BDC=90°) ①等边三角形 结论:222AD CD BD =+②等腰直角三角形结论:222BD=+2ADCD③120°等腰三角形结论:222+BD=CD3AD变式:向内时(∠ADC减等腰三角形底角=90°)结论:与相应对角互余模型相同一、拓展一:等腰+对角和为特殊角模型特点:四边形由一个顶角为特殊角的等腰三角形和一个任意三角形构成,其中一组对角和为特殊角。
等腰三角形解题方法ppt课件
+∠AEF+∠AFE=180°,∴∠DEA+∠AEF =180°×12=90°,∴DE⊥EF,∵EF∥BC,∴ DE⊥BC
五、构造30°的直角三角形 3.如图,△ABC中,BD是AC边上的中线,BD⊥BC于点B,∠ABD=30°, 求证:AB=2BC.
解:设∠B=x°,∵AB=AC,∴∠B=∠C=x°,又∵BD=AD,∴∠BAD= x°,∴∠ADC=x°+x°=2x°,∵AC=DC,∴∠DAC=2x°,在△ADC中,2x +2x+x=180,x=36,∴∠BAC=36°×3=108°
二、分类讨论在等腰三角形中的应用
5.已知等腰△ABC一腰上的高与另一腰的夹角为50°,求△ABC的三个内角
证明:(1)∵∠BAC=∠EAF,∴∠BAC+∠CAE=∠EAF+∠CAE,即∠BAE= ∠CAF,又∵AB=AC,AE=AF,∴△BAE≌△CAF(SAS),∴BE=CF (2)由(1)得△BAE≌△CAF,∴∠AFC=∠AEB,∵∠AFM+∠MFE+∠AEF=90°, ∴∠MEA+∠AEF+∠EFM=90°,∴∠EMF=90°,即BE⊥CF
度数.
①当△ABC为锐角三角形时,∵BD⊥AC,∴∠ABD + ∠A = 90 ° , 又 ∵∠ABD = 50 ° , ∴ ∠ A = 90 ° - 50°=40°,∴∠ABC=∠C=(180°-40°)=70°, 即这个三角形的三个内角分别为40°,70°,70°; ②当△ABC为钝角三角形时,如图所示:∵BD⊥AC, ∠ DBA = 50 ° , ∴ ∠ BAC = 90 ° + 50 ° = 140 ° , ∴∠ABC=∠C=(180°-140°)=20°.即这个三角形 的三个内角分别为140°,20°,20°.综上所述,这个 三角形的三个内角分别为40°,70°,70°或140°, 20°,20°
解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)解析
第05讲解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)目录【考点一等腰三角形中底边有中点时,连中线】 (1)【考点二等腰三角形中底边无中点时,作高】 (6)【考点三利用平行线+角平分线构造等腰三角形】 (12)【考点四过腰或底作平行线构造等腰(边)三角形】 (15)【考点五巧用“角平分线+垂线合一”构造等腰三角形】 (24)【考点六利用倍角关系构造新等腰三角形】 (28)【考点一等腰三角形中底边有中点时,连中线】例题:(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,120BAC ∠=︒,AB AC =,D 为BC 的中点,DE AC ⊥于E .(1)求EDC ∠的度数;(2)若2AE =,求CE 的长.【答案】(1)60︒(2)6【分析】本题考查了等腰三角形的“三线合一”,含30︒角的直角三角形的性质等知识,(1)连接AD ,根据等腰三角形的“三线合一”即可作答;(2)根据含30︒角的直角三角形的性质即可作答.【详解】(1)连接AD ,∵AB AC =,120BAC ∠=︒,∴AD BC ⊥,AD 平分BAC ∠,∴1602∠=∠=︒DAC BAC ,ADC ∠1.(2023上·北京·八年级期末)如图,在ABC 中,AB AC =,D 是BC 的中点,过A 作EF BC ∥,且AE AF =.求证:(1)DE DF =;(2)BG CH =.【答案】(1)见解析(2)见解析【分析】(1)连接AD ,利用等腰三角形“三线合一"的性质得AD BC ⊥,再利用平行线的性质得90DAF ADB ∠=∠=︒,从而说明AD 垂直平分EF ,则有DE DF =;(2)利用等角的余角相等EDB FDC ∠=∠,再利用ASA 证明BDG CDH ≌,从而证明结论.【详解】(1)证明:连接AD ,ABAC =,点D 为BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,EF BC ∥,∴90DAF ADB ∠=∠=︒,∴AD EF ⊥,AE AF =,∴AD 垂直平分EF ,∴DE DF =;(2),,DE DF DA EF =⊥ ,EAD FAD ∴∠=∠,ADB ADC ∠=∠ ,EDB FDC ∴∠=∠,AB AC =,B C ∴∠=∠在BDG 和CDH △中,,B C BD CD BDG CDH ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA),BDG CDH ∴△≌△.BG CH ∴=【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的性质,余角的性质,熟练掌握等腰三角形“三线合一"的性质是解题的关键.2.(2023上·辽宁葫芦岛·八年级统考期末)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,且BE AC =.(1)求证:AD BC ⊥.(2)若90BAC ∠=︒,2DC =,求BD 的长.【答案】(1)见解析(2)6【分析】(1)连接AE ,根据线段垂直平分线的性质得到BE AE =,证明AE AC =,根据等腰三角形的三线合一证明结论;(2)证明AEC △为等边三角形,根据等边三角形的性质解答即可.【详解】(1)证明:连接AE ,EF 是AB 的垂直平分线,BE AE ∴=,BE AC = ,AE AC ∴=,AEC ∴ 是等腰三角形,D 为线段CE 的中点,AD BC ∴⊥;(2)解:BE AE = ,EAB B ∴∠=∠,2AEC EAB B B ∴∠=∠+∠=∠,AE AC = ,AEC C ∴∠=∠,2C B ∴∠=∠,90BAC ∠=︒ ,60C ∴∠=︒,AEC ∴ 为等边三角形,2DC ED ==,24AE EC BE DC ∴====,426BD BE ED ∴=+=+=.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一是解题的关键.3.(2023上·全国·八年级专题练习)如图,已知ABC 中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别在直线AB AC 、上运动,且始终保持AE CF =.(1)如图①,若点E F 、分别在线段AB AC 、上,DE 与DF 相等且DE 与DF 垂直吗?请说明理由;(2)如图②,若点E F 、分别在线段AB CA 、的延长线上,(1)中的结论是否依然成立?说明理由.【答案】(1)DE DF =且DE DF ⊥,见解析(2)成立,见解析【分析】(1)先利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解;(2)利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解.【详解】(1)DE DF =且DE DF ⊥,理由是:如图①,连接AD ,∵90BAC ∠=︒,AB AC =,D 为BC 中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌(),∴DE DF =,ADE CDF ∠=∠,又∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.(2)若点E F 、分别在线段AB ,CA 的延长线上,(1)中的结论依然成立,如图②,连接AD ,理由如下:∵AB AC =,90BAC ∠=︒,点D 为BC 的中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌();∴DE DF ADE CDF =∠=∠,,又∵90CDF ADF ∠-∠=︒,∴90ADE ADF ∠-∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】本题考查了等腰直角三角形的性质和全等三角形的判定与性质,解题关键是正确作出辅助线构造全等三角形.【考点二等腰三角形中底边无中点时,作高】例题:(2023上·福建厦门·八年级厦门一中校考期中)如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点M N 、在边OB 上,PM PN =,若5OM =,求MN 的长.【答案】2【分析】本题考查了等腰三角形的性质、含角形的性质可得CM 练掌握等腰三角形的三线合一以及直角三角形中PM PN = ,PC ⊥CM CN ∴=,在OPC 中,PCO ∠162OC OP ∴==,5OM = ,1.(2023上·河南省直辖县级单位·八年级校联考期末)在ABC 中,点,D E 是边BC 上的两点.(1)如图1,若AB AC =,AD AE =.求证:BD CE =;(2)如图2,若90BAC ∠=︒,BA BD =,设B x ∠=︒,CAD y ∠=︒.(2)①猜想:2x y =,理由是:∵BA BD =,B x ∠=︒,∴(11802BAD BDA ∠=∠=︒-∠∵90BAC ∠=︒,CAD y ∠=︒,∴90BAD CAD ∠+∠=︒,即90整理得:2x y =;(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是表示)(2)如图2,当点E 与点C 不重合时,连接DE .①用等式表示BAC ∠与DAE ∠之间的数量关系,并证明;②用等式表示线段BE ,CD ,DE 之间的数量关系,并证明.则90AMC ADC ∠∠=︒=∵AB AC =,∴1122CM BM BC ===在ACD 与ACM △中,∵AB AC =,∴B ACB ∠=∠,∵ACB ACB '∠=∠,∴B ACB ACD '∠=∠=∠【考点三利用平行线+角平分线构造等腰三角形】例题:(2024上·北京西城·八年级校考期中)如图,在ABC 中,BD 平分ABC ∠,DE CB ∥,F 是BD 的中点.(1)求证:BDE 是等腰三角形(2)若50ABC ∠=︒,求DEF ∠的度数.【答案】(1)见解析(2)65︒【分析】本题考查了等腰三角形的判定与性质,熟记相关定理内容是解题关键.(1)由角平分线的定义得EBD CBD ∠=∠,由DE CB ∥得EDB CBD ∠=∠即可求证;(2)先求出EDB ∠,根据“三线合一”得EF BD ⊥,即可求解.【详解】(1)证明:∵BD 平分ABC ∠,∴EBD CBD ∠=∠,∵DE CB ∥,是等腰三角形;(1)如图1,求证:CDE∠交AC于E,(2)如图2,若DE平分ADC的长.【答案】(1)见解析(2)4【分析】本题考查角平分线、平行线的性质以及直角三角形的边角关系,掌握角平分线的定义,平行线的性质是解决问题的关键.∠=∠(1)根据角平分线的定义得出BCD(1)当53BE CF ==,,则EF =___________;(2)当BE CF >时,若CO 是ACB ∠的外角平分线,如图2,它仍然和∠作EF BC ∥,交AB 于E ,交AC 于F ,试判断EF BE ,,CF 之间的关系,并说明理由.【答案】(1)8(2)EF BE CF =-,见解析∴∠EOB =∠OBC ,∠FOC =∠OCB ,∵ABC ∠和ACB ∠的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠BCO ,∴∠EBO =∠EOB ,∠FCO =∠FOC ,∴53BE OE OF CF ====,,∴8EF EO FO =+=,故答案为:8;(2)EF BE CF =-,理由如下:∵BO 平分ABC ∠,∴ABO OBC ∠=∠,∵EO BC ∥,∴EOB OBC ∠=∠,∴ABO EOB ∠=∠,∴BE EO =,同理可得FO CF =,∴EF EO FO BE CF =-=-.【考点四过腰或底作平行线构造等腰(边)三角形】例题:(2023上·吉林通化·八年级统考期末)如图,ABC 是等边三角形,点D 在AC 上,点E 在BC 的延长线上,且BD DE =.(1)若点D 是AC 的中点,如图1,则线段AD 与CE 的数量关系是__________;(2)若点D 不是AC 的中点,如图2,试判断AD 与CE 的数量关系,并证明你的结论;(提示:过点D 作DF BC ∥,交AB 于点F )(3)若点D 在线段AC 的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【答案】(1)AD CE =,理由见解析(2)AD CE =,理由见解析(3)成立,理由见解析【分析】本题考查全等三角形判定与性质,平行线性质,等腰三角形性质,等边三角形性质与判定.(1)求出E CDE ∠=∠,推出CD CE =,根据等腰三角形性质求出AD DC =,即可得出答案;(2)过D 作DF BC ∥,交AB 于F ,证明BFD DCE ≌,推出DF CE =,证ADF △是等边三角形,推出AD DF =,即可得出答案;(3)过点D 作DP BC ∥,交AB 的延长线于点P ,证明BPD DCE ≌,得到PD CE =,即可得到AD CE =.【详解】(1)解:AD CE =,理由如下:ABC 是等边三角形,60,ABC ACB AB AC BC ∴∠=∠=== .∵点D 为AC 中点,30,DBC AD DC ∴∠== ,BD DE = ,30E DBC ∴∠=∠= ,ACB E CDE ∠=∠+∠ ,30CDE E ∴∠=∠= ,CD CE ∴=,又AD DC = ,AD CE ∴=.故答案为:AD CE =;(2)解:AD CE =,理由如下:如图,过点D 作DF BC ∥,交AB 于点F ,则60ADF ACB ∠=∠= ,60A ∠= ,AFD ∴ 是等边三角形,,60AD DF AF AFD ∴==∠= ,18060120BFD DCE ∴∠=∠=-= ,D F B C ∥ ,FDB DBE E ∴∠=∠=∠,在BFD △和DCE △中,FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE ∴ ≌()AAS ,DF CE ∴=,又AD DF = ,AD CE ∴=;(3)解:结论仍成立,理由如下:如图,过点D 作DP BC ∥,交AB 的延长线于点P ,则60,60ABC APD ACB ADP ∠=∠=∠=∠= ,60A ∠= ,APD ∴ 是等边三角形,AP PD AD ∴==,ACB DCE ∠=∠ ,DCE ACB P ∴∠=∠=∠,DP BC ∥ ,PDB CBD ∴∠=∠,DB DE = ,DBC DEC ∴∠=∠,PDB DEC ∴∠=∠,在BPD △和DCE △中,PDB CED P DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BPD DCE ∴ ≌()AAS ,PD CE ∴=,又AD PD = ,AD CE ∴=.【变式训练】(1)如图1,当点E 运动到线段AB 的中点,点D 在线段(2)如图2,当点E 在线段AB 上运动,点D 在线段说明理由.【答案】(1)12∵EF BC ∥,∴60AFE ACB ∠=∠=︒120,EFC AFE ∴∠=︒∠EF EA∴=∵60ABC ∠=︒,(1)【感知】如图1,当点E为AB的中点时,则线段(2)【类比】如图2,当点E为AB边上任意一点时,∥,交AC于点F.示如下:过点E作EF BC(3)【拓展】在等边三角形ABC中,点E在直线(2)AE DB =,理由如下:过点E 作EF BC ∥,交AC 于点F ,则AEF ABC AFE ACB ∠=∠∠=∠,,FEC ECD ∠=∠,∵ABC 是等边三角形,∴60AB AC A ABC ACB =∠=∠=∠=︒,,∴60120AEF AFE A DBE ∠=∠=∠=︒∠=︒,,∴AEF △为等边三角形,120EFC ∠=︒,∴AE EF =,∵ED EC =,∴D ECD ∠=∠,∴D FEC ∠=∠,在DBE 和EFC 中,DBE EFC D FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE EFC ≌,∴DB EF =,∴AE DB =;(3)过点E 作EF BC ∥,交AC 于点F ,如图3所示:同(2)得:AEF △是等边三角形,()AAS DBE EFC ≌,∴33AE EF DB EF ====,,∵2BC =,∴235CD BC DB =+=+=.故答案为:5.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.(1)求证:2AP AQ AB +=(2)求证:PD DQ =;(3)如图,过点P 作PE ⊥出这个长度;如果变化,请说明理由.【答案】(1)见解析(2)见解析(3)ED 为定值5,理由见解析【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,线段的和差,准确作出辅助线找出全等三角形是解题关键.(1)利用P 、Q 的移动速度相同,得到CQ PB ∴=,AB AC = ,2AP AQ AB PB AC CQ AB ∴+=-++=;(2)如图,过点P 作PF AC ∥,交BC 于点F ,PF AC ∥,,PFB ACB DPF DQC ∴∠=∠∠=∠,AB AC = ,B ACB ∴∠=∠,B PFB ∴∠=∠,BP PF ∴=,由(1)得BP CQ =,PF CQ ∴=,在PFD 与QCD 中,PDF QDC DPF DQC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS PFD QCD ∴ ≌,PD DQ ∴=;(3)解:ED 为定值5,理由如下:如图,过点P 作PF AC ∥,交BC 于点F ,由(2)得:PB PF =,【考点五巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∵E 是BC 的中点,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1.如图:(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点A 为OM 上一点,过点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC BOC ≌△△,则AO 点C 为AB 的中点).(2)【类比解答】如图2,在ABC 中,CD 平分ACB ∠,AE CD ⊥于E ,若63EAC ∠=︒,37B ∠=︒,通过上述构造全等的办法,可求得DAE ∠=.(3)【拓展延伸】如图3,ABC 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足E 在CD 究BE 和CD 的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC 边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取ACB ∠的角平分线CD ;②过点A 作AD 13BC =,10AC =,ABC 面积为20,则划出的ACD 的面积是多少?请直接写出答案.【答案】(1)ASA(2)26︒(3)12BE CD =,证明见解析100【考点六利用倍角关系构造新等腰三角形】例题:(2023上·河南信阳·八年级统考期中)阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,解答下列问题:如图1,在ABC 中,交BC 于点D ,AD 平分BAC ∠,且2B C ∠=∠.(1)为了证明结论“AB BD AC +=”,小亮在AC 上截取AE ,使得AE AB =,解答了这个问题,请按照小亮的思路写证明过程;(2)如图2,在四边形ABCD 中,已知58BAD ∠=︒,109D ∠=︒,42ACD ∠=︒,80ACB ∠=︒,10AD =,CE AB ⊥3EB =,求AB 的长.【答案】(1)见解析(2)16【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定及性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)在AC 上截取AE ,使得AE AB =,连接DE ,根据角平分线的定义可得BAD DAC ∠=∠,再利用SAS 证明ABD AED ≌,从而可得B AED ∠=∠,BD DE =,进而可得2AED C ∠=∠,然后利用三角形的外角性质可得AED C EDC ∠=∠+∠,从而可得C EDC ∠=∠,进而可得DE CE =,再根据等量代换可得BD EC =,最后利用线段的和差关系进行计算,即可解答;(2)在AE 上截取AF AD =,连接CD ,先利用三角形内角和定理可得29DAC ∠=︒,从而可得29DAC FAC ∠=∠=︒,再利用SAS 证明DAC FAC ≌,从而可得109AFC D ∠=∠=︒,进而可得71CFE ∠=︒,然后利用三角形内角和定理可得71B CFE ∠=∠=︒,从而可得CF BC =,再利用等腰三角形的三线合一性质可得26BF BE ==,最后利用线段的和差关系进行计算,即可解答.【详解】(1)解:证明:在AC 上截取AE ,使得AE AB =,∵AD 平分BAC ∠,∴BAD DAC ∠=∠,∵AD AD =,∴()SAS ABD AED ≌,∴B AED ∠=∠,BD DE =,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED ∠是DEC 的一个外角,∴AED C EDC ∠=∠+∠,∴C EDC ∠=∠,∴DE CE =,∴BD EC =,∵AE EC AC +=,∴AB BD AC +=;(2)在AE 上截取AF AD =,连接CF ,∵109D ∠=︒,42ACD ∠=︒,∴18029DAC D ACD ∠=︒-∠-∠=︒,∵58BAD ∠=︒,∴29FAC BAD DAC ∠=∠-∠=︒,∴29DAC FAC ∠=∠=︒,∵AC AC =,∴()SAS DAC FAC ≌,∴109AFC D ∠=∠=︒,∴18071CFE AFC ∠=︒-∠=︒,∵80ACB ∠=︒,29FAC ∠=︒,∴18071B ACB FAC ∠=︒-∠-∠=︒,∴B CFE ∠=∠,∴CF BC =,∵CE AB ⊥,∴26BF BE ==,∴10616AB AF BF =+=+=,∴AB 的长为16.【变式训练】1.在Rt ABC 中,90BAC ∠=︒,点D 在边BC 上,AB AD =,点E 在线段BD 上,3BAE EAD ∠=∠.(1)如图1,若点D 与点C 重合,则AEB ∠=______︒;(2)如图2,若点D 与点C 不重合,试说明C ∠与EAD ∠的数量关系;(3)在(1)的情况下,试判断BE ,CD 与AC 的数量关系,并说明你的理由.【答案】(1)67.5(2)2C EAD∠=∠(3)BE CD AC +=,理由见解析【分析】(1)根据等腰直角三角形的性质得到45D ∠=︒,根据题意求出EAD ∠,根据三角形的外角性质计算,得到答案;(2)根据直角三角形的两锐角互余得到90B C ∠=︒-∠,根据等腰三角形的性质、三角形内角和定理得到2BAD C ∠=∠,进而证明结论;(3)在BD 上截取BF DE =,连接AF ,证明ABF △≌ADE V ,根据求等三角形的性质得到BAF DAE ∠=∠,根据三角形的外角性质得到CAF CFA ∠=∠,得到AC CF =,进而得出结论.【详解】(1)解:在Rt BAD 中,90BAD ∠=︒,AB AD =,则45D ∠=︒,90BAD ∠=︒Q ,3BAE EAD ∠=∠,22.5EAD ∴∠=︒,67.5AEB EAD D ∴∠=∠+∠=︒,故答案为:67.5;(2)解:2C EAD ∠=∠,理由如下:90BAC ∠=︒ ,90B C ∴∠=︒-∠,AB AD = ,则BE BF EF DE EF DF =+=+=,BE CD DF CD CF ∴+=+=,在ABF △和ADE V 中,AB AD B ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ADE △(1)写出图1中与BAC ∠相等的角,BAC ∠=______(2)如图1,若GFC FGE ∠=∠,在图中找出与AG (3)如图2,若2,3HC CE ==,求BC 的长度.【答案】(1)AGF∠(2)AG CE =,证明见解析(3)72MGN AGF BAC∠=∠=∠,∠=∠,则N BAC∴∠=∠,N MGNMG MN∴=,∠=∠=∠+∠FGE BEG BEG2∴∠=∠,BEG GME∴=,MG GE,=AC GE∴=,MN AC。
构造等腰三角形解题方法论
构造等腰三角形解题方法论山东沂源县徐家庄中心学校256116 左效平等腰三角形是一种特殊的三角形,它的性质和判定在计算和证明中有着广泛的应用.当图形中无显性的等腰三角形时,可根据条件和图形的特征,适当添加辅助线,如延长线,平行线等等,直接构造等腰三角形或判定三角形是等腰三角形,后利用等腰三角形的性质,破解问题.1.延长线段法直接构造等腰三角形例1 如图1,已知在△ABC中,AD平分∠BAC,∠B=2∠C.求证:AB+BD=AC.图 1分析:延长AB到点E,使得BE=BD,只需证明△ADE≌△ADC,结论得证.证明:延长AB到点E,使得BE=BD,连接DE,因为BE=BD,所以∠ABC=2∠E.因为∠ABC=2∠C,所以∠C=∠E.所以DAE DACE CDA DA∠=∠⎧⎪∠=∠⎨⎪=⎩,所以△ADE≌△ADC,所以AC=AE.因为AE=AB+BE,所以AB+BD=AC.点评:延长较长的线段,使得延长线段等于较短的线段,从而把折线段的和转化为共线线段的和,设法证明构造的新线段与所求和线段相等即可.这是证明这类问题的一种常用方法要熟练掌握.例2 如图2,已知在△ABC中,AB=AC,∠A=90°,BD平分∠ABC.求证:BC=AB+AD.图 2分析:注意等腰直角三角形锐角为45°.证明:延长AB到点E,使得AE=AD,连接DE,因为AE=AD,AB=AC,∠A=90°,所以∠C=∠E=45°.所以EBD CBDE CDB DB∠=∠⎧⎪∠=∠⎨⎪=⎩,所以△BDE≌△BDC,所以BC=BE.因为BE=AB+AE,所以BC=AB+AD.点评:熟记等腰直角三角形锐角为45°是解题的重要因素.2.延长线段法先判断等腰三角形后证不等式例3 如图3,已知,在△ABC中,AD是边BC上的中线,DE平分∠ADB,DF平分∠ADC,连接EF. 求证:EF<BE+CF.图 3分析:延长ED到点G,使得ED=DG,则DF是三角形EFG的中线,根据DE平分∠ADB,DF平分∠ADC,可以得到DF⊥EG,从而判断三角形EFG是等腰三角形,把EF迁移到 FG的位置上,利用三角形全等的性质,把BE迁到CG的位置上,利用三角形的三边关系定理即可破解.证明:延长ED到点G,使得ED=DG,因为DE平分∠ADB,DF平分∠ADC,所以DE⊥DF,连接FG,则三角形EFG是等腰三角形,所以EF=FG.连接CG,因为DE DGEDB CDG DB DC=⎧⎪∠=∠⎨⎪=⎩,所以△ADE≌△ADC,所以CG=BE.因为FG<CG+CF,所以EF<BE+CF.点评:通过构造等腰三角形把不共三角形的线段迁移到同一三角形中,这也是解题的重要思路.3.延长线段法先判断等腰三角形后证等量关系例4 如图4梯形ABCD中,AD∥BC,点E是CD的中点,且AE⊥BE.求证:AB=AD+BC.图 4分析:延长AE,BC交于点F,易证AE=EF,为解题补充条件,结合已知条件AE⊥BE,轻松得到等腰三角形ABF,应用等腰三角形的性质,全等三角形的性质,问题轻松破解.解:延长AE,BC交于点F,所以DAE CFEADE FCEDE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,所以△ADE≌△FCE,所以AE=EF,AD=CF,因为AE⊥BE,所以AB=BF,因为BF=BC+CF,AD=CF,所以AB=AD+BC.点评:熟练判断三角形ABF是等腰三角形是解题的关键.灵活应用等腰三角形的性质,全等三角形的性质也是解题的重要依据.4.延长等腰梯形的两腰构造等腰三角形例5 已知,如图5,在等腰梯形ABCD中,AD∥BC,AB=CD,P是BC上的一点,PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E,F,G,求证:BG=PE+PF.图 5分析:同一个图形的面积相同,且整体图形的面积等于分割后几个部分图形的面积和,这也是解答此类问题常用的方法---面积法.证明:如图5,延长BA,CD交于点M,连接PM.因为四边形ABCD是等腰梯形,所以三角形MBC是等腰三角形,所以MB=MC.三角形MBC的面积=21×MC×BG,三角形MPB的面积=21×MB×PE,三角形MPC的面积=21×MC×PF,且三角形MBC的面积=三角形MPB的面积+三角形MPC 的面积, 所以21×MC ×BG=21×MB ×PE +21×MC ×PF=21×MC (PE+PF ),所以所以BG=PE+PF .点评:面积法能帮助我们解答很多类型的问题,希望能重视这种解题方法.5.平行线+角平分线构造等腰三角形 例6 如图6,在平行四边形ABCD 中,BE 平分∠ABC,交边AD 于点E. 求证:BC=CD+DE .图 6分析:证明AB=AE 是解题的关键. 证明:因为四边形ABCD 是平行四边形, 所以AD ∥BC,AD=BC,AB=CD , 因为BE 平分∠ABC, 所以∠ABE=∠AEB , 所以AB=AE , 所以AD=AE+ED , 所以BC=AB+ED , 所以BC=CD+DE .点评:角平分线和平行线相遇易生成一个等腰三角形,这是解题的一个关键.6.垂直+角平分线构造等腰三角形例7 如图7,(第26届希望杯初二试题) 在四边形ABCD 中,AC 平分∠DAB,AD=9,BC=CD=10,AB=21, 则AC= .图 7分析: AC 平分∠DAB,作DE ⊥AC ,垂足为G ,交AB 于点E ,连接CE ,可判断三角形ADE 是等腰三角形,三角形CDE 是等腰三角形,这样就为解题创造了条件,提供了一条求解的思路.解:作DE ⊥AC ,垂足为G ,交AB 于点E ,连接CE ,AC 平分∠DAB, 所以AD=AE=9,CD=CE=CB=10, 因为AB=21,所以EB=12.作CF ⊥AB ,垂足为F ,交AB 于点F ,则EF=FB=6.在直角三角形BCF 中,BC=10,所以CF=8.在直角三角形ACF 中,AF=AE+EF=9+6=15,CF=8,所以AC==17.点评: 正确构造两个等腰三角形是解题的关键.例8 如图8,已知△ABC 中,AB=AC, ∠BAC=90°,BD 平分∠ABC ,交AC 于点D ,CE ⊥BE ,垂足为E ,求证:BD=2CE.图 8分析:BE 平分∠CAB,CE ⊥BE ,延长CE,交BA 的延长线于点F ,可判定三角形BCF 是等腰三角形,CE=EF.只需证明BD=CF,问题就顺利得证.证明:延长CE,交BA的延长线于点F,BE平分∠CAB,CE⊥BE,所以CE=EF,所以CF=2CE.易证Rt△BAD≌Rt△CAF,所以BD=CF,所以BD=2CE.点评:构造等腰三角形BCF是证明的关键.7.梯形中构造等腰三角形例9 如图9,已知AC∥BD, EA、EB分别平分∠CAB,∠ABD,CD经过点E,求证:AB=AC+BD.图9分析 AC∥BD, EA、EB分别平分∠CAB,∠ABD,可知AE⊥BE,AE平分∠CAB,延长BE,交AC的延长线于点F,可判定三角形ABF是等腰三角形,故AB=AF=AC+CF,易证CF=BD.问题得证.证明:延长延长BE,交AC的延长线于点F,由AC∥BD, EA、EB分别平分∠CAB,∠ABD,可知AE⊥BE,所以AF=AB,BE=EF.易证△EFC≌Rt△EBD,所以BD=CF.由AF=AC+CF,所以AB=AC+BD.点评:构造等腰三角形ABF是证明的关键.。
构造等腰三角形的常用方法
构造等腰三角形的常用方法方法一:通过边边边构造法构造等腰三角形边边边构造法是指通过已知等腰三角形的两边和夹角,来构造等腰三角形。
具体步骤如下:1. 画出已知等腰三角形ABC,其中AB=AC;2. 以B为圆心,AB为半径画弧,交AB的延长线于D;3. 连接AD,即可得到等腰三角形ABD。
方法二:通过边角边构造法构造等腰三角形边角边构造法是指通过已知等腰三角形的一边、夹角和另一边,来构造等腰三角形。
具体步骤如下:1. 画出已知等腰三角形ABC,其中AB=AC;2. 以A为圆心,AB为半径画弧,交AC的延长线于D;3. 连接BD,即可得到等腰三角形BCD。
方法三:通过高度构造法构造等腰三角形高度构造法是指通过已知等腰三角形的底边和高度,来构造等腰三角形。
具体步骤如下:1. 画出已知等腰三角形ABC,其中AB=AC;2. 以B为圆心,AB为半径画弧,交AC于D;3. 以D为圆心,AD为半径画弧,交AB于E;4. 连接BE,即可得到等腰三角形BEC。
以上是三种常见的构造等腰三角形的方法。
需要注意的是,这些方法只适用于已知等腰三角形的一些特定条件的情况下,如果没有这些条件,就无法使用这些方法来构造等腰三角形。
构造等腰三角形还可以使用其他的方法,如通过平行线、相似三角形等性质来构造。
不同的方法适用于不同的情况,我们可以根据具体的问题来选择合适的方法。
总结一下,构造等腰三角形的常用方法包括边边边构造法、边角边构造法和高度构造法。
在构造等腰三角形时,我们可以根据已知条件选择合适的方法,并根据具体步骤进行构造。
这些方法不仅能够帮助我们构造等腰三角形,还能够提高我们对三角形性质的理解和运用能力。
希望通过本文的介绍,能够帮助大家更好地理解和应用构造等腰三角形的方法。
等腰直角三角形常用辅助线构造方法
等腰直角三角形常用辅助线构造方法【方法归纳】等腰直角三角形“三线合一”.如图等腰直角△ABC,D为斜边(底边)BC的中点,连接AD.AD是中线、角平分线,也是高线.结论:①∠BDA=∠CDA=90°;②BD=AD=CD=1/2BC;③∠B=∠BAD=∠CAD=∠C=45°.【典型例题】1.(11黑河)在正方形ABCD的边AB上任取一点E,作EF⊥AB 交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG =CG且EG⊥CG.图(1)图(2)图(3)(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.【解题过程】解:(1)EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.理由如下:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,由图(3)可知,∵BD平分∠ABC,∠ABC=90°,∴∠EBF=45°,又∵EF⊥AB,∴△BEF为等腰直角三角形,∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC=90°,FG=DG,∴MG=1/2FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,又∵FG=DG,∠CMG=1/2∠EMC=45°,∴∠F=∠GMC.∵在△GFE与△GMC中,FG=MG,∠F=∠GMC,EF=CM,∴△GFE≌△GMC(SAS).∴EG=CG,∠FGE=∠MGC.∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.。
构造等腰三角形的常用方法
构造等腰三角形的常用方法-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN构造等腰三角形的常用方法几何图形中添加辅助线往往能把分散的条件集中起来,使隐蔽的条件显现,将复杂的问题简单化,在解题的过程中有时需要构造等腰三角形,利用等腰三角形的性质从而使问题迎刃而解 .本节主要来介绍下常用构造等腰三角形的方法 .方法一作“平行线”来构造等腰三角形1.如图,在△ABC 中,AB = AC,点 D 在 AB 上,点 E 在 AC 的延长线上,DE 交 BC 于点 F,且 DF = EF .求证:BD = CE .证明:过点 D 作 DG∥AE,交 BC 于 G 点,则∠GDF = ∠E .∵∠GDF = ∠CEF,∠DFG = ∠EFC,DF = EF ,∴△DGF ≌△ECF(ASA),∴ GD = CE .∵ AB = AC ,∴∠B = ∠ACB,∵ DG∥AE,∴∠DGB = ∠ACB,∴∠DBG = ∠DGB,∴ GD = BD ,∴ BD = CE .2.已知△ABC 为等边三角形,点 D 为 AC 上的一个动点,点 E 为 BC 延长线上一点,且 BD = DE .(1)如图①,若点 D 在边 AC 上,猜想线段 AD 与 CE 之间的关系,并说明理由;(2)如图②,若点 D 在 AC 的延长线上,(1)中的结论是否还成立,请说明理由 .解:(1)AD = CE .理由如下:过点 D 作 DP∥BC,交 AB 于点 P .∵△ABC 是等边三角形,∴△APD 也是等边三角形,∴ AP = PD = AD , ∠APD = ∠ABC = ∠ACB = ∠PDA = 60°,∵ DB = DE ,∴∠DBC = ∠DEC,∵ DP∥BC,∴∠PDB = ∠DBC .∴∠PDB = ∠DEC .又∵∠BPD = ∠A + ∠ADP = 120°,∠DCE = ∠A + ∠ABC = 120°,∴∠BPD = ∠DCE .在△BPD 和△DCE 中,∠BPD = ∠DCE,∠PDB = ∠CED,DB = DE ,∴△BPD ≌△DCE(AAS),∴ PD = CE,∴ AD = CE ;(2)(1)中的结论成立 .理由如下:过点 D 作 DP∥BC,交 AB 的延长线于点 P .∵△ABC 是等边三角形,∴△APD 也是等边三角形,∴ AP = PD = AD , ∠APD = ∠ABC = ∠ACB = ∠PDC = 60°,∵ DB = DE ,∴∠DBC = ∠CED .∵ DP∥BC,∴∠PDB = ∠DBC,∴∠PDB = ∠CED .在△BPD 和△DCE 中,∠P = ∠DCE,∠PDB = ∠CED,DB = DE ,∴△BPD ≌△DCE(AAS),∴ PD = CE ,∴ AD = CE .方法二利用“三线合一”构造等腰三角形3.如图,在△ABC 中,BP 平分∠ABC,且 AP⊥BP 于点 P , 连接 CP .若 BC = 4,点 P 到 BC 的距离为 1,求△ABC 的面积 .解:延长 AP 交 BC 于点 E .∵ BP 平分∠ABC,∴∠ABP = ∠EBP .∵ AP⊥BP,∴∠APB = ∠BPE .在△APB 和△EPB 中,∠ABP = ∠EBP,BP = BP , ∠BPA = ∠BPE,∴△APB ≌△EPB(ASA),∴ S△ABP = S△BPE,AP = PE .∵△APC 与△PCE 等底同高,∴ S△APC = S△PCE,∴ S△ABC = S△ABP + S△BPE + S△APC + S△PCE = 2 S△BPC,∵ BC = 4,点 P 到 BC 的距离为 1,∴ S△BPC = 1/2 × 4 × 1 = 2,∴ S△ABC = 2 × 2 = 4 .4.如图,已知△ABC 是等腰直角三角形,∠A = 90°,BD 平分∠ABC 交 AC 于点 D,CE⊥BD,交 BD 的延长线于点 E .求证:BD = 2 CE .证明:延长 BA , CE 交于点 M .∵ CE⊥BD,∴∠BEC = ∠BEM = 90° .∵ BD 平分∠ABC,∴∠MBE = ∠CBE .又∵ BE = BE ,∴△MBE ≌△CBE(ASA),∴ EM = EC = 1/2 MC .∵△ABC 是等腰直角三角形,∴∠BAC = ∠MAC = 90°,AB = AC ,∴∠ABD + ∠BDA = 90° .∵∠BEC = 90°,∴∠ACM + ∠CDE = 90° .∵∠BDA = ∠CDE,∴∠ABD = ∠ACM .在△ABD 和△ACM 中,∠ABD = ∠ACM,AB = AC , ∠BAD = ∠CAM,∴△ABD ≌△ ACM(ASA),∴ DB = MC,∴ BD = 2 CE .方法三利用“倍角关系”构造等腰三角形5.如图,在△ABC 中,AD 平分∠BAC 交 BC 于点 D,且∠ABC = 2 ∠C .求证:AB + BD = AC .证明:在边 AC 上截取 AP = AB,连接 PD .∵ AD 平分∠BAC,∴∠BAD = ∠PAD .在△ABD 和△APD 中,AB = AP,∠BAD = ∠PAD,AD = AD ,∴△ABD ≌△APD(SAS).∴∠APD = ∠B,PD = BD .∵∠B = 2 ∠C,∴∠APD = 2 ∠C .又∵∠APD = ∠C + ∠PDC,∴∠PDC = ∠C,∴ PD = PC ,∴ AB + BD = AP + PC = AC .方法四利用“截长补短法”构造等腰三角形6.如图,在△ABC 中,∠BAC = 120°,AD⊥BC 于点 D,且 AB + BD = DC , 求∠C 的度数 .方法一:截长法如图,在 CD 上截取点 E,使 DE = BD,连接 AE .∵ AD⊥BE,DE = BD,∴ AB = AE .∵ AB + BD = DC ,∴ AE + DE = DC .又∵ DE + CE = DC ,∴ CE = AE = AB .∴∠B = ∠AED = ∠C + ∠CAE = 2 ∠C .∵∠BAC + ∠B + ∠C = ∠BAC + 3 ∠C = 180°,∠BAC = 120°,∴∠C = 20°;方法二:补短法如图,延长 DB 至点 F,使得 BF = AB,则 AB + BD = BF + BD = DF = CD ,∴ AF = AC , ∠C = ∠F = 1/2 ∠ABC .∵∠BAC + ∠ABC + ∠C = ∠BAC + 3 ∠C = 180°,∠BAC = 120°,∴∠C = 20° .7.如图,在△ABC 中,AB = AC,点 D 是△ABC 外一点,且∠ABD = 60°,∠ACD = 60° .求证:BD + DC = AB .证明:延长 BD 至点 E,使得 BE = AB,连接 AE , CE .∵∠ABE = 60°,BE = AB ,∴△ABE 为等边三角形,∴∠AEB = 60°,AE = AB .又∵∠ACD = 60°,∴∠ACD = ∠ABE .∵ AB = AC , AB = AE ,∴ AC = AE ,∴∠ACE = ∠AEC,∴∠DCE = ∠DEC,∴ DC = DE ,∴ AB = BE = BD + DE = BD + DC ,即 BD + DC = AB .。
-人教版八年级上册 等腰三角形 做辅助线构造等腰三角形 (45°角的用法)
【板块五】45°角的用法——构造等腰直角三角形方法技巧:(1)利用45°角构造等腰直角三角形进而构造出三角形全等(旋转全等).(2)利用45°角构造等腰直角三角形进而构造出K型全等(内K或外K).(3)利用45°构造对称全等.(利用45°找八字型导角).题型一利用45°角导角【例1】如图,在Rt△AOB中,∠AOB=90°,AO=BO,C为AB上一点,D为OB上一点,OC=CD,DE⊥AB,垂足为点E,若CE=2,求AB的长.题型二利用45°角作垂线构造等腰直角三角形【例2】如图,点D为Rt△ACB外一点,∠ACB=90°,AC=BC,∠ADC=45°,求证:∠CDB=45°题型三过45°角的顶点作一边的垂线构造对称型全等【例3】如图,在Rt△ACB中,∠ACB=90°,AC=BC,点F在AB上,点F在AB上,AE⊥AB,∠ECF=45°,求证:EF=AE+FB.题型四利用45°角作高构造K型全等【例4】如图,在平面直角坐标系中,A(0,﹣3),B(﹣4,3),AB交x轴于点D.(1)求点D的坐标;(2)点C在y轴上,∠CBA=45°,求△ABC的面积.针对练习51.如图,在Rt△BAD中,AB=BD,∠ABD=90°,BC⊥AD。
垂足为点C,点E,F都在AB上,且∠ECF =45°,过点C作CT⊥CE交DB于点T.(1)求证:S四边形ECTB=S△ACB;(2)若△ACB的面积为4,AE·FB=2,求△ECF的面积.2.如图,在△AOB中,∠AOB=90°,BC平分∠ABO交AC于点C,点D、E分别在边OB、OA上,DE∥CB,∠ADE=45°,求证:AB=AE+DB.3.如图,AB=AC,∠BAC=90°,点D为BC上一点,DA=DE,∠ADE=90°,求∠DBE的度数.4.如图,已知,△ABO是等腰直角三角形,OB=OA,C,D在直线BO上,BC=OD,ON⊥AD,垂足为点N,AB,NO的延长线交于点M,连接MC,求证:∠C=∠D=180°.5.已知在平面直角坐标系中,A(0,a),B(a,0).(1)如图1,D为△AOB外一点,DM⊥x轴于点M,BD平分∠ABM,∠ADO=45°,求证:AD=OD;(2)如图2,点P为△AOB外一点,∠APO=45°,PA=6,PB=2,求四边形AOBP的面积.。
等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册
专题13.14等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)第一部分【模型归纳与题型目录】题型目录【题型1】作等腰三角形底边上高线求值或证明 (1)【题型2】遇到中点作中线求值或证明 (2)【题型3】过一腰上的某一已知点做另一腰的平行线 (3)【题型4】过一腰上的某一已知点做底边的平行线 (4)【题型5】倍长中线构造等腰三角形 (5)【题型6】截长补短构造等腰三角形 (6)【题型7】延长相交构造或证明等腰三角形 (7)第二部分【题型展示与方法点拨】【题型1】作等腰三角形底边上高线求值或证明【例1】(2024·浙江·模拟预测)如图,ABC V 是等腰三角形,AB AC =.设BAC α∠=.(1)如图1,点D 在线段AB 上,若45ACD BAC ∠+∠=︒,求DCB ∠的度数(用含α的代数式表示).(2)如图2,已知AB AC BD ==.若180∠+∠=︒ABD BAC ,过点B 作BH AD ⊥于点H ,求证:12BH BC =.【变式1】(24-25八年级上·全国·课后作业)如图,在ABC V 中,2AC AB =,AD 平分BAC ∠交BC 于点D ,E 是AD 上一点,且EA EC =.求证:EB AB ⊥.【变式2】(22-23八年级上·江苏泰州·阶段练习)在ABC V 中,AB AC =,过点C 作射线CB ',使ACB ACB '∠=∠(点B '与点B 在直线AC 的异侧)点D 是射线CB '上一动点(不与点C 重合),点E 在线段BC 上,且90DAE ACD ∠+∠=︒.(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是,若BC a =,则CD 的长为;(用含a 的式子表示)(2)如图2,当点E 与点C 不重合时,连接DE ,①若30DAE ∠=︒,求BAC ∠的度数;②用等式表示BAC ∠与DAE ∠直间的数量关系,并证明.【题型2】遇到中点作中线求值或证明【例3】(23-24七年级下·四川成都·阶段练习)在Rt ABC △中,AB AC =,45DEF ∠=︒且DEF ∠的顶点E 在边BC 上移动,在移动过程中,边DE ,EF 分别与AB ,AC 交于点M ,N ,(1)当BE CN =且M 与A 重合时,求证:ABE ECN△≌△(2)当E 为BC 中点时,连接MN ,求证:NC AM MN=+【变式1】(23-24八年级上·广东汕头·期中)如图,ABC V 中,AB AC =,D 是BC 的中点,E 、F 分别是AB 、AC 上的点,且AE AF =,求证:DE DF =.【变式2】(24-25八年级上·全国·课后作业)如图,在ABC 中,B C ∠∠=,过BC 的中点D 作DE AB ⊥,DF AC ⊥,垂足分别为点E ,F .(1)求证:DE DF =;(2)若40BDE ∠=︒,求BAC ∠的度数.【题型3】过一腰上的某一已知点做另一腰的平行线【例3】(23-24八年级上·福建泉州·阶段练习)如图,ABC V 是等边三角形,D 是AC 的中点,点F 在AB 上,点E 在直线BC 上,120EDF ∠=︒(1)当点E 与C 重合时,判断ADF △的形状,并说明理由?(2)当点E 在BC 的延长线上时,求证:DE DF =.【变式1】(2024八年级上·全国·专题练习)如图,在等边ABC V 中,点D 、E 分别在BC 和AC 边上,以DE 为边作等边DEF ,连接CF .若1BD =,3AE =.则CF 的长是.【变式2】(22-23八年级下·广西南宁·开学考试)如图,等边三角形ABC 中,D 为AC 上一点,E 为AB 延长线上一点,DE AC ⊥交BC 于点F ,且DF EF =.若12AB =,则BF 的长为.【题型4】过一腰上的某一已知点做底边的平行线【例4】(23-24八年级上·湖南怀化·期末)如图,在等边ABC V 中,点M 为AB 上任意一点,延长BC 至点N ,使AM CN =,连接MN 交AC 于点P .(1)求证:MP NP =;(2)作MH AC ⊥于点H ,设AB a =,请用含a 的式子表示PH 的长度.【变式1】(23-24七年级下·陕西榆林·阶段练习)阅读下面的题目及分析过程,并按要求进行证明.如图,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF DE =,连接BF ;②如图2,过点B 作BF DE ⊥,交DE 的延长线于点F ,过点C 作CG DE ⊥,垂足为G .(2)请你在图3中添加不同于(1)中的辅助线,并对原题进行证明.【变式2】(21-22八年级上·湖北武汉·期中)如图,在等边三角形ABC 中,点D 在AC 上,延长BC 至点E ,使CE AD DF BC =⊥,于点F .(1)如图①,若点D 是AC 的中点,求证:BF EF =;(2)如图②,若点D 是AC 上任意一点,BF EF =是否仍然成立?请证明你的结论;(3)如图③,若点D 是AC 延长线上的任意一点,其他条件不变,(2)中的结论是否仍然成立?画图并写出你的结论,不必证明.【题型5】倍长中线构造等腰三角形【例5】(22-23八年级上·湖北武汉·期中)如图,在ABC V 中,D 是BC 的中点,E 是AD 上一点,BE AC =,BE 的延长线交AC 于点F ,若60ACB ∠=︒,44DAC ∠=︒,则求FBC ∠的度数为.【变式1】(23-24七年级下·黑龙江哈尔滨·阶段练习)如图在四边形ABCD 中,E 是DC 的中点,连接AE ,AE 平分DAB ∠,90D C ∠=∠=︒,32AD BC ==,则线段AB 的长为.【变式2】(24-25八年级上·陕西西安·开学考试)小明同学在学习完全等三角形后,发现可以通过添加辅助线构造全等三角形来解决问题.(1)如图(1),AD 是ABC V 的中线,且AB AC >,延长AD 至点E ,使ED AD =,连接BE ,可证得ADC EDB V V ≌,其中判定两个三角形全等的依据为________.(2)如图(2),在ABC V 中,点E 在BC 上,且DE DC =,过E 作EF AB ∥,且EF AC =.求证:AD 平分BAC ∠.【题型6】截长补短构造等腰三角形【例6】(23-24八年级上·广东深圳·期末)如图,在ABC V 中,40ABC ∠=︒,30ACB ∠=︒,三角形内有一点P ,连接AP ,BP ,CP ,若BP 平分ABC ∠,13BCP ACB ∠=∠,则PAC ∠=.【变式1】(23-24八年级上·江苏南京·期末)如图,在ABC V 中,AB AC =,BD 平分ABC ∠交AC 于点D ,点E 在BA 的延长线上,DB DE =,若62BC AE ==,,则线段AD 的长为.【变式2】(2024·陕西西安·三模)如图,ACB △是等边三角形,D 为ACB △外一点,且60ADB ∠=︒,连接CD ,若6,4BD CD ==,则AD 的长为.【题型7】延长相交构造或证明等腰三角形【例7】(23-24八年级上·福建泉州·阶段练习)如图,在ABC V 中,6BC =,EF BC ∥,动点P 在射线EF 上,BP 交CE 于D ,CBP ∠的平分线交CE 于Q .则当12CQ CE =时,EP BP +=.【变式1】(23-24八年级下·黑龙江哈尔滨·开学考试)如图,D 为ABC 外一点,BD AD ⊥,B 平分ABC 的一个外角,若2180C BAD ∠+∠=︒,5AB =,3BC =,则B 的长为.【变式2】(23-24九年级下·山东临沂·期中)如图,AB CD ∥,60BCD ∠=︒,点E 为AD 的中点,若2AB =,6,BC =,8CD =,则BE 的长为.。
等腰三角形辅助线的做法
专题:等腰三角形辅助线的作法类型一:利用三线合一作辅助线(1)等腰三角形中有底边中点时,常连底边上的中线1、 如图ΔABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点且AE= AF,求证:DE=DF2、 如图,在ΔABC中,D是BC的中点,过A作EF‖BC且AE=AF,求证:DE=DF(2)没有底边中点时作底边上的高3、如图,在ΔABC中,AB=AC,BD⊥AC于D,求证:∠BAC=2∠DBC类型二:做平行线构造等腰三角形(1)作腰的平行线构造等腰三角形4、如图,ΔABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF(2)作底边的平行线构造等腰三角形5、如图,AB=AC,点D是BA的延长线上一点,E在AC上,且AD=AE,求证:DE⊥BC(3)利用“角平分线+平行线” 构造等腰三角形6、如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF‖BC 交BD于F,求证:AB=EF类型三:用“截长补短法” 构造等腰三角形7、如图,ΔABC中,∠BAC=120,AD⊥BC于D,且AB+BD=DC,求∠C的度数。
8、如图,ΔABC中,∠BAC=108,AB=AC,BD平分∠ABC交AC于D,求证:BC=CD+AB类型四:运用角平分线作垂线9、如图,四边形AOBC中,AC=BC,∠A+∠OBC=180,CD⊥OA于D。
(1)求证:OC平分∠AOB;(2)若OD=3DA =6,求OB的长。
10、如图,已知等腰RTΔABC中,∠ACB=90,AC=BC=4,D为ΔABC的一个外角∠ABF的平分线上一点,且∠ADC=45,CD交AB于E,(1)求证:AD=CD(2)求AE的长。
中考数学解题技巧专题:构造等腰三角形的技巧压轴题三种模型全攻略
解题技巧专题:构造等腰三角形的技巧压轴题三种模型全攻略【考点导航】目录【典型例题】1【类型一利用平行线+角平分线构造新等腰三角形】1【类型二过腰或底作平行线构造新等腰(边)三角形】13【类型三利用倍角关系构造新等腰三角形】22【典型例题】【类型一利用平行线+角平分线构造新等腰三角形】1已知,如图△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.(1)如图1若AB=AC,图中有个等腰三角形,且EF与BE、CF的数量关系是.(2)如图2若AB≠AC,其他条件不变,(1)问中EF与BE、CF间的关系还成立吗?请说明理由.(3)如图3在△ABC中,若AB≠AC,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.请直接写出EF与BE、CF间的数量关系是.【变式训练】1在△ABC中,AD是∠BAC的角平分线,E是BC的中点,过E作EF∥AD交CA延长线于P,交AB于F,求证:(1)△APF是等腰三角形;(2)BF=CP(3)若AB=12,AC=8,试求出PA的长.2已知:如图1,ΔABC中,∠ABC与∠ACB的角平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.(1)求证:BE+CF=EF;(2)若将已知条件中的“∠ACB的角平分线”改为“∠ACB的外角平分线”,其他条件不变(如图2)(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请写出BE,CF,EF之间的关系.(不需证明)3(2023春·江西吉安·八年级统考期末)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.已知△ABC.(1)观察发现如图①,若点D是∠ABC和∠ACB的角平分线的交点,过点D作EF∥BC分别交AB,AC于E,F.填空:EF与BE、CF的数量关系是.请说明理由(2)猜想论证如图②,若点D是外角∠CBE和∠BCF的角平分线的交点,其他条件不变,填:EF与BE、CF的数量关系是.请说明理由(3)类比探究如图③,若点D是∠ABC和外角∠ACG的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.4解答(1)问题背景如图(1),已知AB∥CD,AD平分∠BAC,求证:AC=CD.(2)尝试应用:如图(2),在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的数量关系,并证明你的结论.(3)拓展创新:如图(3),在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,请直接写出你的结论.5【问题背景】在学习了等腰三角形等有关知识后,数学活动小组发现:当角平分线遇上平行线时一般可得等腰三角形.如图1,P为∠AOB的角平分线OC上一点,常过点P作PD∥OB交OA于点D,易得△POD为等腰三角形.(1)【基本运用】如图2,把长方形纸片ABCD沿对角线AC折叠,使点B落在点B 处,则重合部分△ACE是等腰三角形.请将以下过程或理由补充完整:∵在长方形ABCD中,DC∥AB,∴∠ACD=∠BAC,由折叠性质可得:,∴∠ACD=∠B AC,∴AE=CE,(依据是:)∴△ACE是等腰三角形;(2)【类比探究】如图3,△ABC中,内角∠ABC与外角∠ACG的角平分线交于点O,过点O作DE∥BC分别交AB、AC于点D、E,试探究线段BD、DE、CE之间的数量关系并说明理由;(3)【拓展提升】如图4,四边形ABCD中,AD∥BC,E为CD边的中点,AE平分∠BAD,连接BE,求证:AE⊥BE.【类型二过腰或底作平行线构造新等腰(边)三角形】方法点拨:在等腰三角形内部或外部作任意一边的平行线均可构造出新的等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)若 BAC ,请直接写出 DB 与 DC 的数量关系.
【解析】(1) DB 2DC (2) DB 2DC
证明:过点 C 作 CF P BE 交 AD 的延长线于点 F , 在 AD 上取点 G 使得 CG CF ,∴ 6 F 7 ∵ BED 2CED BAC 60 ,∴ 6 F 60 , CED 30
(3)若 BAC ,请直接写出 DB 与 DC 的数量关系.
解题技巧
根据题目条件及图形特征: 符合等腰三角形特征(特 殊度数的角或边等的特 征)、等边三角形的特征
(60°角等)
添加辅助线: 构造等腰三角形 (等边三角形)
利用等腰、等边定义 性质得到结论
(全等三角形性质、 角平分线性质、等边 对等角、线段垂直平
BE BE
例 2.在△ ABC 中,AB AC , D 是底边 BC 上一点,E 是线段 AD 上一点,且 BED 2CED BAC .
(1)如图 1,若 BAC 90,猜想 DB 与 DC 的数量关系为
;
(2)如图 2,若 BAC 60,猜想 DB 与 DC 的数量关系,并证明你的结论;
例 3.在 Rt△ABC 中,∠ACB=90°,∠A=30°,BD 是△ABC 的角平分线, DE⊥AB 于点 E.
【解析】(3)结论:AD = DG-DN. 理由如下:
构造等腰(等边)三角形
直击中考
例:在△ ABC 中,AB AC , D 是底边 BC 上一点,E 是线段 AD 上一点,且BED 2CED BAC .
(1)如图 1,若 BAC 90,猜想 DB 与 DC 的数量关系为
;
(2)如图 2,若 BAC 60,猜想 DB 与 DC 的数量关系例1.已知:如图,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E. (1)求证:BC=AE+BE; (2)探究:若∠A=108°,那么BC等于哪两条线段长的和呢?试证明之.
【解析】 (1)在 BC 上截取 BD BA 、 BF BE
BA BD ∵ ABE DBE ,∴ BAE BDE ,∴ BDE A 100o , AE DE ,∴ CDE 80o ,