2017学年广东省广州市黄埔区八年级(上)期末数学试卷
广东省学校八年级上学期期末考试数学试卷有答案
广东省广州八年级上学期期末考试数学试卷姓名: 班级: 学号: 得分:一、选择题(每题3分,共24分) 1、下列各数中无理数共有( )722,π-,••41.3 ,⋅⋅⋅⋅⋅⋅0131331(相邻二个1之间3的个数逐次加1),49-,39; A.4个 B.3个 C.2个 D.1个2、已知三组数据①2,3,4;②3,4,5③1,3,2;分别以每组数据中的三个数为三角形的三边长, 能构成直角三角形的有( )A. ②B. ①②C. ①③D. ②③3、下列各式中计算正确的是( )A.5)5(2-=- B. 39±= C. 22-33-=)( D.6322=)( 4、关于数据:85,88,80,95,88,86的叙述中,错误的是( )A.极差是15B.众数是88C.中位数是86D.平均数是87 5、关于函数x y 21-=,下列结论正确的是( ) A.函数图象必过点(-2,-1) B. 函数图象经过第1、3象限 C.y 随x 的增大而减小 D. y 随x 的增大而增大 6、下列命题中,是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行 7、长方形ABCD 的三个顶点的坐标是A (1,1)、B (3,1)、C (3,5),那么D 点坐标是( ) A.(1,3) B.(1,5) C.(5,3) D.(5,1)8、甲、乙两人练习跑步,如果乙在甲前面10m 处,则两人同时跑,甲5s 可追上乙;如果甲让乙先跑2s ,则甲4s 可追上乙.设甲的速度为x m/s ,乙的速度为y m/s.下列方程组正确的是( ) A.⎩⎨⎧+=+=y y x y x 2441055 B. ⎩⎨⎧=-=-yx x y x 4241055 C. ⎩⎨⎧=-=+2445105y x y x D. ⎩⎨⎧=-=-y x y x 4241055二、填空题(每题3分,共24分) 9、16的平方根是______________. 10、如果⎩⎨⎧==23y x 是方程3x-ay=-3的一个解,则a=_____________.11、已知a 、b 为两个连续的整数,且b a <<39,则a+b=___________.12、某公司欲招收职员一名,从学历、经验、和工作态度三个方面进行测试,小华测试成绩如下:学历9分,经验7分,工作态度8分.如果将学历、经验和工作态度三项得分按1:2:2的比例确定最终得分,那么小华最后的成绩是___________________.13、如右图,在ABC ∆中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长 线上,DE ∥BC ,︒=∠44A ,︒=∠571,则=∠2____________.E14、如果923b ay x +-与y x b a +232是同类项,则x+y=____________.15、如右图,有一块直角三角形纸片,︒=∠90C ,AC=12cm ,BC=5cm ,将 斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD , 则CE 的长为__________cm.16、某书定价25元,如果一次购买20本以上,超过20本的部分打八折, 试写出付款金额y (单价:元)与购买数量x (x>20)(单位:本)之间的 函数关系式_____________________________________. 三、解答题(共72 分) 17、计算:(每小题4分,共8分) (1)483319122-+ (2)818218、(5分)解方程组⎩⎨⎧-=-=-102304y x y x19、(5分)已知:23+=a ,23-=b .求代数式22b ab a ++的值.20、(6分)如图:网格中的每一个小正方形的边长是1,在这个网格中画一个钝角ABC ∆,使10=AB .(注:点C 必须在格点上)21、(6分)已知ABC ∆的顶点A (-4,5),B (-2,1),完成下列问题: (1)在如图所示的网格中建立直角坐标系;(2)作出ABC ∆关于y 轴对称的'''C B A ∆ (3)写出点'C 的坐标22、(6分)已知一次函数22--=x y ,完成下列问题: (1)画出函数图象.(2)直接写出图象与x 轴、y 轴的交点A 、B 的坐标.(3)观察图象,写出x 在什么范围内取值时,y>0.23、(8分)甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下: 甲:8,6,7,8,9,10,6,5,4,7 乙:7,9,8,5,6,7, 7,6,7,8(1)甲、乙运动员的平均成绩分别是多少? (2)这十次比赛成绩的方差分别是多少? (3)试分析这两名运动员的射击成绩. (注:方差公式()()[()]2222121x x x x x x ns n -+⋅⋅⋅+-+-=24、(8分)如图,已知:DE ⊥AO 于点E , BO ⊥AO 于点O ,∠CFB=∠EDO , 证明:CF ∥DO .25、(10分)某一天,文具经营户花360元从文具批发市场批发了自动铅笔和钢笔共80支,到文具店去卖,自动铅笔和钢笔当天的批发价与零售价如下表所示:品名 钢笔 自动铅笔批发价(元/支) 4.8 4 零售价(元/支)7.25.6问:他卖完这些自动铅笔和钢笔可赚多少钱?26、(10分)一次函数的应用(10分):如图,A l 和B l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。
广东省XX市2017-2018学年八年级上期末考试数学试卷含答案
2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL9、分式中的m、n的值同时扩大到原来的5倍,则此分式的值()A、不变B、是原来的C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A、90°-αB、αC、90°+αD、360°-α二、填空题(每小题4分,共24分)11、若分式有意义,则x的取值范围为。
12、分解因式:m2-3m=。
13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。
14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。
黄埔区八年级期末数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √2B. -πC. 3.14D. 2/32. 如果a=2,b=-3,那么a+b的值是()。
A. -1B. 1C. 5D. -53. 下列图形中,是轴对称图形的是()。
A. 正方形B. 等边三角形C. 等腰梯形D. 长方形4. 下列等式中,正确的是()。
A. 3x + 2 = 2x + 5B. 4a - 3b = 3a + 4bC. 5x - 3 = 2x + 7D. 2x + 3 = 5x - 15. 已知三角形ABC中,∠A=45°,∠B=60°,那么∠C的度数是()。
A. 45°B. 60°C. 75°D. 90°6. 下列函数中,是正比例函数的是()。
A. y = 2x + 3B. y = 3x^2C. y = 2xD. y = x^2 + 17. 如果一个长方体的长、宽、高分别是a、b、c,那么它的体积V可以表示为()。
A. V = ab + bc + acB. V = abcC. V = ab + cD. V = ac + b8. 下列数中,绝对值最小的是()。
A. -5B. -4C. 0D. 39. 下列代数式中,同类项是()。
A. 2x^2和3x^3B. 4xy和5y^2C. 3x和-3xD. 5a^2b和2ab^210. 已知直线l的方程为y = 2x - 1,那么直线l与y轴的交点坐标是()。
A. (0, 1)B. (0, -1)C. (1, 0)D. (-1, 0)二、填空题(每题3分,共30分)11. 计算:3^2 - 2^3 = _______。
12. 若a = -2,b = 3,那么a^2 + b^2的值是 _______。
13. 下列函数中,y是x的一次函数的是 _______。
14. 已知三角形ABC中,∠A = 50°,∠B = 60°,那么∠C的度数是 _______。
广州市八年级上学期期末数学试卷
广州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列图形是中心对称图形的是()A .B .C .D .2. (2分)计算:(﹣x)3•(﹣2x)的结果是()A . ﹣2x4B . ﹣2x3C . 2x4D . 2x33. (2分)要使分式有意义,则x应满足的条件是()A . x>1B . x<1C . x≠0D . x≠14. (2分) (2017七下·江阴期中) 已知x2+2mx+9是完全平方式,则m的值为()A . 6B . ±6C . 3D . ±35. (2分) (2017七下·红桥期末) 如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF 折叠成图3,则图3中∠CFE度数是多少()A . 160°B . 150°C . 120°D . 110°6. (2分)多项式(3a+2b)2﹣(a﹣b)2分解因式的结果是()A . (4a+b)(2a+b)B . (4a+b)(2a+3b)C . (2a+3b)2D . (2a+b)27. (2分) (2015八上·平武期中) 已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为()A . 25°B . 30°C . 15°D . 30°或15°8. (2分)下列各式的运算结果中,正确的是()A . ÷=B . ()•(x﹣3)=C . (-)•=4D . (-)•=ab9. (2分)下列命题的逆命题是真命题的是()A . 面积相等的两个三角形是全等三角形B . 对顶角相等C . 互为邻补角的两个角和为180°D . 两个正数的和为正数10. (2分) (2020八上·阳泉期末) 甲、乙两船分别从相距300km的A、B两地同时出发相向而行,甲船从A 地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A .B .C .D .11. (2分) (2017七下·苏州期中) 下列运算正确的是()A . (-2x2y)3=-6x6y3B . a3÷a3 =aC . 3ab2·(-2a)=-6a2b2D .12. (2分)从0,1,2,3,4,5,6这七个数中,随机抽取一个数,记为a,若a使关于x的不等式组的解集为x>1,且使关于x的分式方程 =2的解为非负数,那么取到满足条件的a值的概率为()A .B .C .D .二、填空题: (共8题;共11分)13. (2分)如图4所示,在△ABC中,AB=AC , D为BC的中点,则△ABD≌△ACD ,根据是________ ,AD与BC的位置关系是________ .14. (1分) (2015八下·青田期中) 如图,在矩形ABCD中,AB=10cm,BC=4cm,M,N两点分别从A,B两点以2cm/s和1cm/s的速度在矩形ABCD边上沿逆时针方向运动,其中有一点运动到点D停止,当运动时间为________秒时,△MBN为等腰三角形.15. (3分) (2016七上·湖州期中) 单项式的系数是________,次数是________,多项式3x2﹣7x ﹣5的次数是________.16. (1分)(2013·连云港) 分解因式:4﹣x2=________.17. (1分) (2016八上·驻马店期末) 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=________.18. (1分) (2016八上·泸县期末) 已知,则的值是________.19. (1分)已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=________20. (1分)(2019·湟中模拟) 某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要天,则根据题意,可列方程为________.三、解答题: (共6题;共55分)21. (10分) (2016八上·宁阳期中) 解分式方程:(1)(2)﹣ =1.22. (5分)(2017·罗平模拟) 先化简代数式:(﹣1)÷ ,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.23. (10分) (2016八上·江山期末) 已知:如图,在△ABC中,点A(﹣3,2),B(﹣1,1).(1)根据上述信息确定平面直角坐标系,并写出点C的坐标;(2)在平面直角坐标系中,作出△ABC关于y轴的对称图形△A1B1C1.24. (10分)(2018·黄梅模拟) 综合题(1)操究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD.①求∠EAF的度数;②DE与EF相等吗?请说明理由(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:①∠EAF的度数②线段AE,ED,DB之间的数量关系25. (10分)(2017·襄州模拟) 某学校去年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2400元,购买乙种足球共花费1600元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)今年学校为编排“足球操”,决定再次购买甲、乙两种足球共50个.如果两种足球的单价没有改变,而此次购买甲、乙两种足球的总费用不超过3500元,那么这所学校最少可购买多少个甲种足球?26. (10分)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1 ,∠A1BC的平分线与∠A1CD的平分线交于点A2 ,…,∠An﹣1BC的平分线与∠An﹣1CD的平分线交于点An .设∠A=θ.则:(1)求∠A1的度数;(2)∠An的度数.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共8题;共11分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题: (共6题;共55分) 21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、第11 页共11 页。
《试卷3份集锦》广州市2017-2018年八年级上学期数学期末联考试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算中错误的是()=C D 4A=B【答案】C【分析】根据二次根式的运算法则和性质逐一判断可得答案.【详解】A==,正确,此选项不符合题意;BC不是同类二次根式,不能合并,此选项错误,符合题意;D4,正确,此选项不符合题意;故选C.【点睛】本题考查了二次根式的运算,二次根式的化简,熟练掌握相关的运算法则是解题的关键.2.下列各命题的逆命题中,①三个角对应相等的两个三角形是全等三角形;②全等三角形对应边上的高相等;③全等三角形的周长相等;④两边及其中一边的对角对应相等的两个三角形是全等三角形;假命题是()A.①②B.①③C.②③D.①④【答案】D【分析】写出各个命题的逆命题,根据全等三角形的判定定理和性质定理判断.【详解】解:①三个角对应相等的两个三角形是全等三角形的逆命题是全等三角形的三个角对应相等,是真命题;②全等三角形对应边上的高相等的逆命题是三边上的高相等的两个三角形全等,是真命题;③全等三角形的周长相等的逆命题是周长相等的两个三角形全等,是假命题;④两边及其中一边的对角对应相等的两个三角形是全等三角形的逆命题是全等三角形两边及其中一边的对角对应相等,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A .AB= A′B′,AC= A′C′,BC= B′C′B .∠A=∠A′,∠B=∠B′, AC= A′C′C .AB= A′B′,AC= A′C′,∠A=∠A′D .AB= A′B′, BC= B′C′,∠C=∠C′【答案】D 【解析】根据全等三角形的判定方法对各项逐一判断即得答案.【详解】解:A 、AB= A′B′,AC= A′C′,BC= B′C′,根据SSS 可判定△ABC 和△A′B′C′全等,本选项不符合题意; B 、∠A=∠A′,∠B=∠B′,AC= A′C′,根据AAS 可判定△ABC 和△A′B′C′全等,本选项不符合题意; C 、AB= A′B′,AC= A′C′,∠A=∠A ′,根据SAS 可判定△ABC 和△A′B′C′全等,本选项不符合题意; D 、AB= A′B′,BC= B′C′,∠C=∠C′,这是SSA ,不能判定△ABC 和△A′B′C′全等,本选项符合题意. 故选:D .【点睛】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键. 4.在△ABC 中,若∠A =80°,∠B =30°,则∠C 的度数是( )A .70°B .60°C .80°D .50°【答案】A【分析】根据三角形的内角和定理,即可求出答案.【详解】解:∵∠A =80°,∠B =30°,∴180803070C ∠=︒-︒-︒=︒,故选:A .【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°.5.把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( )A .B .C .D .【答案】C【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的一个顶点对着正方形的边.故选C .6.计算结果为x 2﹣y 2的是( )A .(﹣x+y )(﹣x ﹣y )B .(﹣x+y )(x+y )C .(x+y )(﹣x ﹣y )D .(x ﹣y )(﹣x ﹣y )【答案】A【分析】根据平方差公式和完全平方公式逐一展开即可【详解】A. (﹣x+y )(﹣x ﹣y )=(- x )2- y 2= x 2﹣y 2,故A 选项符合题意;B. (﹣x+y )(x+y )()()22=y x y x y x -+=-,故B 选项不符合题意;C. (x+y )(﹣x ﹣y )()()22=+2x y x y x xy y -+=---,故C 选项不符合题意; D. (x ﹣y )(﹣x ﹣y )=()()()2222=y x y x y x y x -+--=--=-,故D 选项不符合题意;故选A.【点睛】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键. 7.如图,圆柱的底面半径为3cm ,圆柱高AB 为2cm ,BC 是底面直径,一只蚂蚁从点A 出发沿圆柱表面爬行到点C ,则蚂蚁爬行的最短路线长( )A .5cmB .8cmC .24+9π cmD .24+36π cm【答案】B 【解析】将圆柱体的侧面展开并连接AC .∵圆柱的底面半径为3cm ,∴BC=12×2•π•3=3π(cm ), 在Rt △ACB 中,AC 2=AB 2+CB 2=4+9π2,∴249π+.249π+.∵AB +BC=8249π+∴蚁爬行的最短路线A ⇒B ⇒C ,故选B.【点睛】运用了平面展开图,最短路径问题,做此类题目先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.8.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【答案】C【解析】试题解析:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选C.考点:基本作图.9.如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是( )A.AB=DE B.∠A=D C.AC=DF D.AC∥DF【答案】C【分析】由已知条件得到相应边相等和对应角相等.再根据全等三角形的判定定理“AAS”,“SAS”,“ASA”依次判断.【详解】∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,∵AB//DE,∴∠B=∠DEF,其中BC是∠B的边,EF是∠DEF的边,根据“SAS”可以添加边“AB=DE”,故A可以,故A不符合题意;根据“AAS”可以添加角“∠A=∠D”,故A可以,故B不符合题意;根据“ASA”可以添加角“∠ACB=∠DFE”,故D可以,故D不符合题意;故答案为C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,C CBFCD BDEDC BDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.二、填空题11.如图1所示,S同学把一张6×6的正方形网格纸向上再向右对折两次后按图画实线,剪去多余部分只留下阴影部分,然后展开摊平在一个平面内得到了一幅剪纸图案.T同学说:“我不用剪纸,我直接在你的图1②基础上,通过‘逆向还原....’的方式依次画出相应的与原图形成轴对称的图形也能得出最后的图案.”画图过程如图2所示.对于图3中的另一种剪纸方式,请仿照图2中“逆向还原.........”的方式,在图4①中的正方形网格中画出还原后的图案...,并判断它与图2中最后得到的图案是否相同.答:□相同;□不相同.(在相应的方框内打勾)【答案】不相同.【分析】根据轴对称图形的性质即可得结论.【详解】如图,在图4①中的正方形网格中画出了还原后的图案,它与图2中最后得到的图案不相同.故答:不相同.【点睛】本题考查了利用轴对称设计图案、剪纸问题,解决本题的关键是掌握轴对称性质.12.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;【答案】AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,∴BD-CD=CE-CD ,∴BC=DE ,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩== ∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E).13.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 【答案】-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围. 详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤< 由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.14.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是______.【答案】三角形的稳定性【详解】钉了一个加固板,即分割成了三角形,故利用了三角形的稳定性故答案为:三角形的稳定性15.若分式3521x +-有意义,则x __________. 【答案】≠12 【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x ≠12. 故答案为:≠12. 【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.16.a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab=1.∴原式=1.故本题应填写:1.17.因式分解:269x x -+= . 【答案】2(3)x -. 【详解】解:269x x -+=2(3)x -.故答案为2(3)x -.考点:因式分解-运用公式法.三、解答题18.计算:(1)231(2)510683-+÷-⨯-- (3)3224332⎛⎫⋅-÷ ⎪⎝⎭a ab a b b b 【答案】(1)242-;(2)2a b - 【分析】(1)先进行二次根式的乘除法运算,再将二次根式化简,同时求出立方根,最后合并化简; (2)根据二次根式的性质和乘除法法则计算化简即可.【详解】解:(1)原式235622(2)82224103=-+---=+-+=-; (2)原式43223114()2223a b a b a a b b ab b ⋅=⨯-⨯⨯⋅=⋅=-⋅- 【点睛】 本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.19.如图所示,在ABC ∆中,38A ∠=,70ABC ∠=,CD AB ⊥于点D ,CE 平分ACB ∠,DF CE ⊥于点F ,求CDF ∠的度数.【答案】74︒【分析】先根据三角形内角和定理计算ACB ∠,再利用角平分线定义计算ECB ∠,然后根据直角三角形两锐角互余计算DCB ∠,进而计算出FCD ECB DCB =-∠∠∠,最后根据直角三角形两锐角互余计算CDF ∠.【详解】∵在ABC 中,38A ∠=︒,70ABC ∠=︒∴18072ACB A ABC =︒--=︒∠∠∠∵CE 平分ACB ∠ ∴1362ECB ACB ==︒∠∠ ∵CD AB ⊥于点D∴90CDB ∠=︒∴在CDB △中,9020DCB ABC =︒-=︒∠∠∴362016FCD ECB DCB =-=︒-︒=︒∠∠∠∵DF CE ⊥于点F∴9074CDF FCD =︒-=︒∠∠【点睛】本题考查三角形的内角和定理及角平分线的定义,熟练掌握三角形的内角和为180︒及直角三角形两锐角互余,将未知角转化为已知角并向要求解的角靠拢是解题关键.20.如图,已知A (-1,2),B (-3,1),C (-4,3).(1)作△ABC 关于x 轴的对称图形△A 1B 1C 1,写出点C 关于x 轴的对称点C 1的坐标;(2)作△ABC 关于直线l 1:y=-2(直线l 1上各点的纵坐标都为-2)的对称图形△A 2B 2C 2,写出点C 关于直线l 1的对称点C 2的坐标.(3)作△ABC 关于直线l 2:x=1(直线l 2上各点的横坐标都为1)的对称图形△A 3B 3C 3,写出点C 关于直线l 2的对称点C 3的坐标.(4)点P (m ,n )为坐标平面内任意一点,直接写出:点P 关于直线x=a (直线上各点的横坐标都为a )的对称点P 1的坐标;点P 关于直线y=b (直线上各点的纵坐标都为b )的对称点P 2的坐标.【答案】(1)图见解析;C 1的坐标为(-4,-3);(2)图见解析;C 2的坐标为(-4,-7);(3)图见解析;C 3的坐标为(6,3);(4)点P 1的坐标为(2a-m ,n );P 2的坐标为(m ,2b-n )【分析】(1)根据x 轴为对称轴,利用轴对称的性质,即可得到△ABC 关于x 轴的对称图形△A 1B 1C 1,进而得到点C 关于x 轴的对称点C 1的坐标;(2)根据直线l 1:y=-2为对称轴,利用轴对称的性质,即可得到△ABC 关于直线l 1:y=-2的对称图形△A 2B 2C 2,进而得到点C关于直线l1的对称点C2的坐标.(3)根据直线l2:x=1为对称轴,利用轴对称的性质,即可得到△ABC关于直线l2:x=1的对称图形△A3B3C3,进而得到点C关于直线l2的对称点C3的坐标.(4)根据对称点到对称轴的距离相等,即可得到点P关于直线x=a的对称点P1的坐标;以及点P关于直线y=b的对称点P2的坐标.【详解】(1)如图所示,△A1B1C1即为所求,C1的坐标为(-4,-3);(2)如图所示,△A2B2C2即为所求,C2的坐标为(-4,-7);(3)如图所示,△A3B3C3即为所求,C3的坐标为(6,3);(4)点P(m,n)关于直线x=a的对称点P1的坐标为(2a-m,n);点P(m,n)关于直线y=b的对称点P2的坐标为(m,2b-n).【点睛】本题主要考查了利用轴对称变换进行作图以及轴对称性质的运用,几何图形都可看做是由点组成,画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,连接这些对称点,就得到原图形的轴对称图形.21.如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.【答案】证明:在ABCD中,AD=BC且AD∥BC,∵BE=FD,∴AF=CE.∴四边形AECF是平行四边形【解析】试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF ∥EC ,AF=EC ,∴四边形AECF 是平行四边形.【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC 是解决问题的关键.22.如图,ABC ∆中,AB AC =,50A ∠=︒,点D 、E 、F 分别在AB 、BC 、AC 上,且BD CE =,BE CF =.求DEF ∠的度数.【答案】65°【分析】根据等腰三角形的性质得到65B C ∠=∠=︒,再证明DBE ECF ∆∆≌,得到DEB EFC ∠=∠,再根据三角形额内角和与平角的性质即可求解.【详解】由题意:AB AC =,50A ∠=︒,有65B C ∠=∠=︒又BD CE =,BE CF =,∴DBE ECF ∆∆≌,∴DEB EFC ∠=∠又180DEB CEF DEF ∠+∠+∠=︒,180EFC CEF C ∠+∠+∠=︒∴65DEF C ∠=∠=︒【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质及全等三角形的判定与性质. 23.(1)解方程:542332x x x+=--. (2)计算:13(2715)3353÷. 【答案】(1)1x =;(2)325-+【分析】(1)先将分式方程化成整式方程,解整式方程求出x 的值,再检验,即可得出答案; (2)先化简根号和绝对值,再根据二次根式的混合运算计算即可得出答案.【详解】(1)解:去分母,得54(23)x x -=-,解得1x =.检验:当1x =时,230x -≠.∴原分式方程的解为1x =.(2)解:原式3(3315)=--353÷+-33553=-++-325=-+.【点睛】本题考查的是解分式方程和二次根式的混合运算,属于基础题型,需要熟练掌握相关的运算步骤和方法. 24.若x+y=3,且(x+2)(y+2)=1.(1)求xy 的值;(2)求x 2+3xy+y 2的值.【答案】(1)2; (2)2【分析】(1)先去括号,再整体代入即可求出答案;(2)先配方变形,再整体代入,即可求出答案.【详解】解:(1)∵x+y=3,(x+2)(y+2)=1,∴xy+2x+2y+4=1,∴xy+2(x+y )=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x 2+3xy+y 2=(x+y )2+xy=32+2=2.【点睛】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中. 25.已知:如图,直线AB 的函数解析式为y=-2x+8,与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 两点的坐标;(2)若点P(m ,n)为线段AB 上的一个动点(与A 、B 不重合),作PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,连接EF,若△PEF的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)以上(2)中的函数图象是一条直线吗?请尝试作图验证.【答案】(1)A(1,0);(2)S△PET=-m2+1m,(0<m<1);(3)见解析【分析】(1)根据坐标轴上点的特点直接求值,(2)由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;(3)列表,描点、连线即可.【详解】(1)解:令x=0,则y=8,∴B(0、8)令y=0,则2x+8=0x=1A(1,0),(2)解:点P(m,n)为线段AB上的一个动点,-2m+8=n,∵A(1.0)OA=1∴0<m<1∴S△PEF= 12PF×PE=12×m×(-2m+8)=2(-2m+8)=-m2+1m,(0<m<1);(3)S关于m的函数图象不是一条直线,简图如下:①列表x 0 0.5 1 1.5 12 2.5 3 3.5 1y 0 0.75 3 3.75 1 3.75 3 0.75 0②描点,连线(如图)【点睛】此题考查一次函数综合题,坐标轴上点的特点,三角形的面积公式,极值的确定,解题的关键是求出三角形PEF的面积.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC 中,90C ∠=︒,DE AB ⊥于点E ,CD DE =,26CBD ∠=︒,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒【答案】D 【分析】根据角平分线的判定可知,BD 平分∠ABC ,根据已知条件可求出∠A 的度数.【详解】解:∵90C ∠=︒,DE AB ⊥,且CD DE =∴BD 是ABC ∠的角平分线,∴26ABD CBD ∠=∠=︒,∴22652ABC ∠=⨯︒=︒,∴在Rt ABC 中,905238A ∠=︒-︒=︒,故答案选D .【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键. 2.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( ) A .40人B .30人C .20人D .10人 【答案】C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.3()()222112a a -+- ) A .0B .42a -C .24a -D .24a -或42a - 【答案】D 2a a =的性质进行化简.原式=2112a a -+-,当1a -1≥0时,原式=1a -1+1a -1=4a -1;当1a -1≤0时,原式=1-1a+1-1a=1-4a .综合以上情况可得:原式=1-4a 或4a -1. 考点:二次根式的性质4.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92 95 95 92方差 3.6 3.6 7.4 8.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【答案】B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【答案】D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF 是△AEF 的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB ∥CD ,∴∠2=∠BEF=50︒,故选:C .【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.7.下列图形中AD 是三角形ABC 的高线的是( )A .B .C .D .【答案】D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC 的顶点A 作AD ⊥BC 于点D ,点A 与点D 之间的线段叫做三角形的高线, ∴D 符合题意,故选D .【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.8.已知M =m ﹣4,N =m 2﹣3m ,则M 与N 的大小关系为( )A .M >NB .M =NC .M≤ND .M <N【答案】C【分析】利用完全平方公式把N ﹣M 变形,根据偶次方的非负性解答.【详解】解:N ﹣M =(m 2﹣3m )﹣(m ﹣4)=m 2﹣3m ﹣m+4=m 2﹣4m+4=(m ﹣2)2≥0, ∴N ﹣M≥0,即M≤N ,故选:C .【点睛】本题考查的是因式分解的应用,掌握完全平方公式、偶次方的非负性是解题的关键.9.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是( )A .D C ∠=∠,BAD ABC ∠=∠B .BD AC =,BAD ABC ∠=∠ C .BAD ABC ∠=∠,ABD BAC ∠=∠D .AD BC =,BD AC =【答案】B 【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意; C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选择:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.10.已知一组数据为2,3,5,7,8,则这组数据的方差为( )A .3B .4.5C .5.2D .6 【答案】C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5, 则方差=15[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C .【点睛】此题考查方差,掌握方差公式是解题关键.二、填空题11.如图,ABC ∆中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =__________.【答案】43【分析】根据题意延长CE 交AB 于K ,由 CE AD ⊥,AD 平分BAC ∠,由等腰三角形的性质,三线合一得8AK AC ==,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE 交AB 于K ,CE AD ⊥,AD 平分BAC ∠,等腰三角形三线合一的判定得8AC AK ∴==,ACK AKC ∠=∠,AC CD AB DB ∴=, 74BC BD =, 34CD BD ∴=, 323AB ∴=, 83KB ∴=, 3ACB B ∠=∠,KCB B ∴∠=∠,83KC KB ==, 1423CE KC ==, 故答案为:43.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.12.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.【答案】x1<x1【解析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【点睛】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.13.点P在第四象限内,点P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为_______.【答案】(2,−1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为−1.故点P的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.14.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.【答案】(22020﹣1,22019)【分析】求出直线y =x+1与x 轴、y 轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B 1、B 2、B 3……的坐标,根据规律得到答案.【详解】解:直线y =x+1与x 轴,y 轴交点坐标为:A 1(0,1),即正方形OA 1B 1C 1的边长为1, ∵△A 1B 1A 2、△A 2B 2A 3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),即:B 1(21﹣1,20),B 2(22﹣1,21),B 3(23﹣1,22),B 4(24﹣1,23),故答案为:B 2020(22020﹣1,22019).【点睛】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B 的坐标的概率是得出答案的关键.15.若(m+1)0=1,则实数m 应满足的条件_____.【答案】m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.16.点P (3,﹣5)关于x 轴对称的点的坐标为______.【答案】(3,5)【解析】试题解析:点()3,5P -关于x 轴对称的点的坐标为()3,5.故答案为()3,5.点睛:关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.17.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三、解答题18.如图,在ΔABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-PC.【答案】答案见解析【解析】在AB 上取AE =AC ,然后证明△AEP 和△ACP 全等,根据全等三角形对应边相等得到PC =PE ,再根据三角形的任意两边之差小于第三边证明即可.【详解】如图,在AB 上截取AE ,使AE =AC ,连接PE .在△AEP 和△ACP 中,∵12AE AC AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△AEP ≌△ACP (SAS ),∴PE =PC .在△PBE 中,BE >PB ﹣PE ,即AB ﹣AC >PB ﹣PC .【点睛】本题考查了全等三角形的判定与性质,涉及到全等三角形的判定与性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.19.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A ,C 坐标分别是(a ,5),(﹣1,b ).(1)求a ,b 的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC 关于y 轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系,即可判定a ,b 的值; (2)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,。
广州市八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2的绝对值是()A. 2B. -2C.D.2.在下列长度的各组线段中,能组成三角形的是()A. 1,2,4B. 1,4,9C. 3,4,5D. 4,5,93.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A. 0.277×107B. 0.277×108C. 2.77×107D. 2.77×1084.下列平面图形中,不是轴对称图形的是()A. B. C. D.5.,,,,a+中,分式的个数有()A. 2个B. 3个C. 4个D. 5个6.下列计算中正确的是()A. (ab3)2=ab6B. a4÷a=a4C. a2•a4=a8D. (-a2)3=-a67.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是()cm2.A. a2-a+4B. a2-7a+16C. a2+a+4D. a2+7a+168.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是()A. 12cmB. 16cmC. 16cm或20cmD. 20cm9.下列条件中,不能判定两个直角三角形全等的是()A. 两个锐角对应相等B. 一条边和一个锐角对应相等C. 两条直角边对应相等D. 一条直角边和一条斜边对应相等10.如图,△EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A. 90°B. 75°C. 70°D. 60°二、填空题(本大题共6小题,共24.0分)11.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=______.12.如果一个正多边形的内角和是900°,则这个正多边形是正______ 边形.13.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是______.14.二元一次方程组的解为______.15.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为______.16.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:______(写出一个即可).三、计算题(本大题共2小题,共13.0分)17.解方程:.18.计算:四、解答题(本大题共7小题,共53.0分)19.计算:2-1-|-3|-(2-)0+20.先化简,再求值:[(x-y)2+(x-y)(x+y)]÷x,其中x=-1,y=.21.如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.22.已知:如图,点B、E、C、F在一条直线上,A、D两点在直线BF的同侧,BE=CF,∠A=∠D,AB∥DE.求证:AC=DF.23.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.问:甲、乙两队单独完成这项工程各需多少天?在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B、C、E在同一条直线上,连结DC.(1)请在图2中找出与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)若AE=1时,求AP的长;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.答案和解析1.【答案】A【解析】解:-2的绝对值是2,即|-2|=2.故选:A.根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】C【解析】解:将27700000用科学记数法表示为2.77×107,故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.结合选项根据轴对称图形的概念求解即可.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】A【解析】解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.根据分式的定义进行解答即可.本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.6.【答案】D【解析】解:A、(ab3)2=a2b6,故此选项错误;B、a4÷a=a3,故此选项错误;C、a2•a4=a6,故此选项错误;D、(-a2)3=-a6,正确.故选:D.直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.【答案】D【解析】解:根据题意可知,这幅摄影作品占的面积是a2+4(a+4)+4(a+4)-4×4=a2+7a+16.故选:D.此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.【答案】D【解析】解:当腰长为4cm时,4+4=8cm,不符合三角形三边关系,故舍去;当腰长为8cm时,符合三边关系,其周长为8+8+4=20cm.故该三角形的周长为20cm.故选:D.题中没有指明哪个是底哪个是腰,所以应该分两种情况进行分析.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】A【解析】解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定ASA,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选A.直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.【答案】D【解析】解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°-(∠CBD+∠BDC)=180°-60°=120°,∴∠ECD=∠CED=180°-∠BCD-∠BCA=180°-120°-15°=45°,∴∠CDE=180°-(∠ECD+∠CED)=180°-90°=90°,∴∠EDF=∠EFD=180°-∠CDE-∠BDC=180°-90°-30°=60°,∴∠DEF=180°-(∠EDF+∠EFD)=180°-120°=60°.故选:D.根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.此题主要考查了等腰三角形的性质及三角形内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.11.【答案】-2【解析】解:∵点A(2,a)与点B(b,4)关于x轴对称,∴b=2,a=-4,则a+b=-4+2=-2,故答案为:-2.直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.【答案】七【解析】解:设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数.此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.13.【答案】3【解析】解:如图,过D作DF⊥AB于F,则DF的长是点D到AB的距离,∵AD是角平分线,DE⊥AC,∴DF=DE,∵AC=4,S△ADC=6,∴×4×DE=6,∴DE=3,∴DF=3,即点D到AB的距离是3,故答案为:3.过D作DF⊥AB于F,则DF的长是点D到AB的距离,根据角平分线性质求出DF=DE,求出DE即可.本题主要考查平分线的性质,即角的平分线上的点到角的两边的距离相等.14.【答案】【解析】解:,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【答案】40°【解析】解:∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°-80°-60°=40°.故答案为:40°.根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.【答案】101030或103010或301010【解析】解:4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),当x=10,y=10时,x=10;2x+y=30;2x-y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.【答案】解:方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴.检验:当时,2(x-1)≠0.∴是原分式方程的解.【解析】本题主要考察分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.观察可得方程最简公分母为2(x-1).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.18.【答案】解:原式=-•=-=.【解析】根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:原式=-3-1+3=-.【解析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:[(x-y)2+(x-y)(x+y)]÷x,=(x2-2xy+y2+x2-y2)÷x,=(2x2-2xy)÷x,=2x-2y,当x=-1,y=,原式=2×(-1)-2×=-3.【解析】利用完全平方公式和平方差公式计算,再利用多项式除单项式的法则计算化简,然后代入数据计算即可.本题主要考查完全平方公式,平方差公式,合并同类项法则的运用,熟练掌握运算法则是解题的关键.21.【答案】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【解析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.【答案】证明:∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF.【解析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.23.【答案】解:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.24.【答案】解:(1)图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∵在△ABE与△ACD中,,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.【解析】(1)根据等腰直角三角形的性质,利用SAS判定△ABE≌△ACD;(2)根据全等三角形的对应角相等,可得∠ACD=∠ABE=45°,根据∠ACB=45°,可得到∠BCD=∠ACB+∠ACD=90°,进而得出DC⊥BE.此题主要考查了等腰三角形的性质及全等三角形的判定方法的理解及运用,解题时注意:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.25.【答案】解:(1)∵△ABC是等边三角形,∴∠A=60°,∵PE⊥AB,∴∠APE=30°,∵AE=1,∠APE=30°,PE⊥AB,∴AP=2AE=2;(2)解:过P作PF∥QC,则△AFP是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,,∴△DBQ≌△DFP,∴BD=DF,∵∠BQD=∠BDQ=∠FDP=∠FPD=30°,∴BD=DF=FA=AB=2,∴AP=2;(3)解:由(2)知BD=DF,∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=3为定值,即DE的长不变.【解析】(1)根据等边三角形的性质得到∠A=60°,根据三角形内角和定理得到∠APE=30°,根据直角三角形的性质计算;(2)过P作PF∥QC,证明△DBQ≌△DFP,根据全等三角形的性质计算即可;(3)根据等边三角形的性质、直角三角形的性质解答.本题考查的是全等三角形的判定和性质、等边三角形的判定和性质以及平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2016-2017年广东省广州市黄埔区八年级上学期期末数学试卷与答案
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2016-2017学年广东省广州市黄埔区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则()A.B(3,5)B.B(﹣3,﹣5)C.B(5,3)D.B(5,﹣3)2.(2分)在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°3.(2分)如图,已知△ABC≌△DEF,点B与点E是对应点,点A与点D是对应点,下列说法不一定成立的是()A.AB=DE B.AC=DF C.BE=EC D.BE=CF4.(2分)如图,点E在线段AB上,若AC=AD,CE=DE,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对5.(2分)若等腰三角形的两边长分别是3,5,则第三边长是()A.3 B.5 C.3或5 D.4或66.(2分)如图,线段AB与CD相交于点P,AC∥BD,∠A=39°,∠D=50°,则()A.∠APD=39°B.∠APD=50°C.∠APD=89°D.∠APD=76°7.(2分)计算(﹣a)2a3的结果有()A.a6B.﹣a6 C.﹣a5 D.a58.(2分)与分式相等的是()A. B.C. D.9.(2分)下列式子可利用平方差公式计算的是()A.(a﹣3b)(﹣a+3b)B.(﹣4b﹣3a)(﹣3a+4b) C.(a+b)(﹣a﹣b)D.(a﹣2b)(a+3b)10.(2分)到三角形三边距离相等的点是()A.三角形的两条平分线的交点B.三角形的两条高的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:ab+bc=.12.(3分)若分式有意义,则x的取值范围为.13.(3分)若(m﹣3)m=1成立,则m的值为.14.(3分)如图,在△ABC中,DB=DC,比较△ABD的面积与△ADC的面积的大小,则S△ABD S△ADC(填写“<”,“=”,“>”)15.(3分)下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是(填序号)16.(3分)在△ABC中,∠B=90°,AD平分∠BAC交BC于D,DE是AC的垂直平分线,若BD=1,那么BC=.三、解答题(本大题共8题,共62分)17.(6分)尺规作图(不写作法,保留作图痕迹)如图,已知△ABC,求作△ABC的高AD.18.(6分)如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.19.(8分)计算:(1)a(a+b)﹣b(a﹣b)(2)(x﹣2y)(2y+x)+(2y+x)2﹣2x(x+2y)20.(8分)计算:(1)÷;(2)﹣.21.(8分)如图,在△ABC中,AB=AC,AE=AF,BF与CE相交于D.(1)求证:△AEC≌△AFB;(2)求证:ED=FD.22.(8分)甲做360个零件与乙做480个零件所用的时间相等,已知甲比乙每天少做2个零件,求甲、乙每天各做多少个零件?23.(8分)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.24.(10分)两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.2016-2017学年广东省广州市黄埔区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则()A.B(3,5)B.B(﹣3,﹣5)C.B(5,3)D.B(5,﹣3)【解答】解:∵点A(﹣3,5)与点B关于x轴对称,∴点B的坐标为(﹣3,﹣5).故选B.2.(2分)在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°【解答】解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.3.(2分)如图,已知△ABC≌△DEF,点B与点E是对应点,点A与点D是对应点,下列说法不一定成立的是()A.AB=DE B.AC=DF C.BE=EC D.BE=CF【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故选C4.(2分)如图,点E在线段AB上,若AC=AD,CE=DE,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:图中的全等三角形共有3对.∵AC=AD,CE=DE,AE公共,∴△ACE≌△ADE.(SSS)进而得出△CEB≌△DEB,△ABC≌△ABD;故选C5.(2分)若等腰三角形的两边长分别是3,5,则第三边长是()A.3 B.5 C.3或5 D.4或6【解答】解:由题意得,当腰为3时,则第三边也为腰,为3,此时3+3>5.故以3,3,5可构成三角形;当腰为5时,则第三边也为腰,此时3+5>5,故以3,5,5可构成三角形.故第三边长是3或5.故选:C.6.(2分)如图,线段AB与CD相交于点P,AC∥BD,∠A=39°,∠D=50°,则()A.∠APD=39°B.∠APD=50°C.∠APD=89°D.∠APD=76°【解答】解:∵AC∥BD,∠A=39°,∴∠B=∠A=39°,∵∠APD是△BDP的外角,∴∠APD=∠B+∠D=39°+50°=89°,故选:C.7.(2分)计算(﹣a)2a3的结果有()A.a6B.﹣a6 C.﹣a5 D.a5【解答】解:原式=a2•a3=a5,故选:D.8.(2分)与分式相等的是()A. B.C. D.【解答】解:∵==,故选A.9.(2分)下列式子可利用平方差公式计算的是()A.(a﹣3b)(﹣a+3b)B.(﹣4b﹣3a)(﹣3a+4b) C.(a+b)(﹣a﹣b)D.(a﹣2b)(a+3b)【解答】解:能用平方差公式计算的为(﹣4b﹣3a)(﹣3a+4b),故选B10.(2分)到三角形三边距离相等的点是()A.三角形的两条平分线的交点B.三角形的两条高的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点【解答】解:∵点到两边距离相等,∴这个点在两边夹角的平分线上,同理可知,这个点在任意两边夹角的平分线上,∴这个点是三角形的两条平分线的交点,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:ab+bc=b(a+c).【解答】解:ab+bc=b(a+c).故答案为:b(a+c).12.(3分)若分式有意义,则x的取值范围为x≠2.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.13.(3分)若(m﹣3)m=1成立,则m的值为2,4,0.【解答】解:当m=2时,(m﹣3)m=(﹣1)2=1;当m=4时,(m﹣3)m=13=1;当m=0时,(m﹣3)m=(﹣3)0=1,故答案为:2,4,0.14.(3分)如图,在△ABC中,DB=DC,比较△ABD的面积与△ADC的面积的大小,则S△ABD =S△ADC(填写“<”,“=”,“>”)【解答】解:∵DB=DC,A到DB、DC的距离相等,∴S△ABD=S△ADC.故答案为:=.15.(3分)下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是①③(填序号)【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.正确的有①③,故答案为:①③.16.(3分)在△ABC中,∠B=90°,AD平分∠BAC交BC于D,DE是AC的垂直平分线,若BD=1,那么BC=3.【解答】解:∵∠B=90°,DE是AC的垂直平分线,若BD=1,∴DC=AD,BD=DE,CE=AE,∵AD平分∠BAC交BC于D,∴AB=AE,∴AC=2AB,∴∠C=30°∴∠CAB=60°,∴∠BAD=30°,∴AD=2BD=2,∴CD=2,∴BC=3.\故答案为:3.三、解答题(本大题共8题,共62分)17.(6分)尺规作图(不写作法,保留作图痕迹)如图,已知△ABC,求作△ABC的高AD.【解答】解:如图,AD即为所求..18.(6分)如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.【解答】解:∵∠A=47°,∠ADB=116°,∴∠ABD=180°﹣47°﹣116°=17°,∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°﹣47°﹣34°=99°.19.(8分)计算:(1)a(a+b)﹣b(a﹣b)(2)(x﹣2y)(2y+x)+(2y+x)2﹣2x(x+2y)【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)原式=(x2﹣4y2)+(x2+4xy+4y2)﹣(2x2+4xy)=020.(8分)计算:(1)÷;(2)﹣.【解答】解:(1)原式=×=;(2)原式=﹣=﹣==﹣.21.(8分)如图,在△ABC中,AB=AC,AE=AF,BF与CE相交于D.(1)求证:△AEC≌△AFB;(2)求证:ED=FD.【解答】证明:(1)在△AEC与△AFB中,,∴△AEC≌△AFB;(2)∵△AEC≌△AFB,∴∠FCD=∠EBD,∵AB=AC,AE=AF,∴BE=CF,在△EDB与△FDC中,,∴△EBD≌△FDC,∴ED=FD.22.(8分)甲做360个零件与乙做480个零件所用的时间相等,已知甲比乙每天少做2个零件,求甲、乙每天各做多少个零件?【解答】解:设乙每天做x个零件,则甲每天做(x﹣2)个零件,由题意得=,解得:x=8,经检验:x=8是原方程的根,x﹣2=8﹣2=6.答:甲每天做6个零件零件,乙每天做8个零件.23.(8分)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∠B=∠CAF,证明:∵AE=ED,EF⊥AD,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CAF.24.(10分)两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.【解答】解:(1)∵a2+b2=5,ab=2,∴(a+b)2=a2+2ab+b2=5+2×2=9,∴a+b=±3;(2)∵a2﹣2a=m,b2﹣2b=m,∴a2﹣2a=b2﹣2b,a2﹣2a+b2﹣2b=2m,∴a2﹣b2﹣2(a﹣b)=0,∴(a﹣b)(a+b﹣2)=0,∵a≠b,∴a+b﹣2=0,∴a+b=2,∵a2﹣2a+b2﹣2b=2m,∴a2+b2﹣2(a+b)=2m,∵a2+b2=5,∴5﹣2×2=2m,解得:m=,即a+b=2,m=.。
【精选3份合集】2017-2018年广东省名校八年级上学期数学期末考试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.为了应用乘法公式计算(x -2y +1)(x +2y -1),下列变形中正确的是 ( )A .[x -(2y +1)]2B .[x -(2y -1)][x +(2y -1)]C .[(x -2y)+1][(x -2y)-1]D .[x +(2y -1)]2 【答案】B【解析】分析:根据平方差公式的特点即可得出答案.详解:(x ﹣2y +1)(x +2y ﹣1)=[x ﹣(2y ﹣1)][x +(2y ﹣1)]故选B .点睛:本题考查了平方差公式的应用,主要考查学生的理解能力.2.计算211a a a a ---的结果是 A .1a a + B .1a a +- C .1a a - D .1a a-- 【答案】B【分析】首先通分,然后进行同分母分式的减法运算即可.【详解】2211(1)(1)1=1(1)(1)a a a a a a a a a a a a a-+-+-==-----. 故选:B .【点睛】此题考查了分式的加减法.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.如图,平行线AB ,CD 被直线AE 所截,若1100∠=︒,则2∠等于( )A .70︒B .80︒C .90︒D .110︒【答案】B 【分析】根据平行线的性质,同旁内角互补,可求得∠2的大小.【详解】∵AB ∥CD∴∠1+∠2=180°∵∠1=100°∴∠2=80°本题考查平行线的性质,常用性质有3点:同位角相等、内错角相等、同旁内角互补.4.下列二次根式中, 是最简二次根式的是()A.13B.20C.22D.121【答案】C【分析】化简得到结果,即可做出判断.【详解】A.13=33,故13不是最简二次根式;B.20=25,故20不是最简二次根式;C. 22是最简二次根式;D. 121=11,故121不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.5.如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.4【答案】C【详解】解:∵BE⊥AC,CF⊥AB,∴∠AEB=∠AFC=∠CED=∠DFB=90°.在△ABE和△ACF中,A AAEB AFCAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACF(AAS),∴AE=AF.在△CDE 和△BDF 中,CDE BDF CED DFB CE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△BDF (AAS )∴DE=DF .∵BE ⊥AC 于E ,CF ⊥AB ,∴点D 在∠BAC 的平分线上.根据已知条件无法证明AF=FB.综上可知,①②③正确,④错误,故选C .【点睛】本题考查了全等三角形的判定及性质、角平分线的判定等知识点,要求学生要灵活运用,做题时要由易到难,不重不漏.6.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,下列结论:①CD=ED ;②AC+BE=AB ;③∠BDE=∠BAC ;④BE=DE ;⑤S BDE :S △ACD =BD :AC ,其中正确的个数( )A .5个B .4个C .3个D .2个【答案】C 【分析】根据角平分线的性质,可得CD =ED ,易证得△ADC ≌△ADE ,可得AC +BE =AB ;由等角的余角相等,可证得∠BDE =∠BAC ;然后由∠B 的度数不确定,可得BE 不一定等于DE ;又由CD =ED ,△ABD 和△ACD 的高相等,所以S △BDE :S △ACD =BE :AC .【详解】解:①正确,∵在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,∴CD =ED ;②正确,因为由HL 可知△ADC ≌△ADE ,所以AC =AE ,即AC +BE =AB ;③正确,因为∠BDE 和∠BAC 都与∠B 互余,根据同角的补角相等,所以∠BDE =∠BAC ;④错误,因为∠B 的度数不确定,故BE 不一定等于DE ;⑤错误,因为CD =ED ,△ABD 和△ACD 的高相等,所以S △BDE :S △ACD =BE :AC .故选:C .【点睛】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.7.给出下列实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个 【答案】B【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),2π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个. 故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【答案】C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A .对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B .对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C .对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D .对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C .【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A.245B.5 C.6 D.8【答案】A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.10.等腰△ABC中,AB=AC,∠A的平分线交BC于点D,有下列结论:①AD⊥BC;②BD=DC;③∠B=∠C;④∠BAD=∠CAD,其中正确的结论个数是().A.4个B.3个C.2个D.1个【答案】A【分析】证明△≌△ABD ACD,利用三角形全等的性质,得出正确的结论【详解】,==AB AC BAD CAD AD ADABD ACD===︒⊥∵∠∠,∴△≌△∴∠ADC=∠ADB 90,AD BC,BD=DC,∠B ∠C ,∠BAD=∠CAD结论①②③④成立,故选A【点睛】本题考查了全等三角形的判定定理(SAS ),证明目标三角形全等,从而得出正确的结论二、填空题11.因式分解:224436xy x y y --=______________.【答案】24(3)y x -- ;【分析】先提公因式,然后利用完全平方公式进行分解因式,即可得到答案.【详解】解:224436xy x y y --=24(69)y x xy --+=24(3)y x --;故答案为:24(3)y x --. 【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是熟练掌握分解因式的方法和步骤.12.已知21x x -=,则代数式3222020x x -+=______.【答案】1【分析】x 2-1=x ,则x 2-x=1,x 3-x 2=x ,x 3-2x 2+2020=x 3-x 2-x 2+2020,即可求解.【详解】x 2-1=x ,则x 2-x=1,x 3-x 2=x ,x 3-2x 2+2020=x 3-x 2-x 2+2020=x-x 2+2020=-1+2020=1,故答案为1.【点睛】此题考查分解因式的实际运用,解题的关键是由x 2-x=1推出x 3-x 2=x .13.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.【答案】1【分析】延长AC 至E ,使CE=BM ,连接DE .证明△BDM ≌△CDE (SAS ),得出MD=ED ,∠MDB=∠EDC ,证明△MDN ≌△EDN (SAS ),得出MN=EN=CN+CE ,进而得出答案.【详解】延长AC 至E ,使CE=BM ,连接DE .∵BD=CD ,且∠BDC=110°,∴∠DBC=∠DCB=20°,∵∠A=10°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM 和△CDE 中,BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,= ∴△BDM ≌△CDE (SAS ),∴MD=ED ,∠MDB=∠EDC ,∴∠MDE=∠BDC=110°,∵∠MDN=70°,∴∠EDN=70°=∠MDN ,在△MDN 和△EDN 中,MD ED MDN EDN DN DN ⎧⎪∠∠⎨⎪⎩==,=∴△MDN ≌△EDN (SAS ),∴MN=EN=CN+CE ,∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=1;故答案为:1.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键. 14.春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A 礼盒,10个B 礼盒,10个C 礼盒;乙套餐每袋装有5个A 礼盒,7个B 礼盒,6个C 礼盒;丙套餐每袋装有7个A 礼盒,8个B 礼盒,9个C 礼盒;丁套餐每袋装有3个A 礼盒,4个B 礼盒,4个C 礼盒,若一个甲套餐售价1800元,利润率为20%,一个乙和一个丙套餐一共成本和为1830元,且一个A 礼盒的利润率为25%,问一个丁套餐的利润率为______.(利润率100%)=⨯利润成本【答案】18.75%【分析】先由甲套餐售价1800元,利润率为20%,可求出甲套餐的成本之和为1500元.设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,则由题意得15x 10y 10z 150012x 15y 15z 1830++=⎧++=⎨⎩,可同时消去y 和z ,得到x 40=,再根据一个A 礼盒的利润率为25%,可求出一个A 礼盒的售价为50元,进而可得出一个B 礼盒与一个C 礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.【详解】设甲套餐的成本之和m 元,则由题意得1800m 20%m -=,解得m 1500(=元). 设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,由题意得15x 10y 10z 150012x 15y 15z 1830++=⎧++=⎨⎩, 同时消去字母y 和z ,可得x 40=所以y z 90+=A 礼盒的利润率为25%,可得其利润4025%10=⨯=元,因此一个A 礼盒的售价401050=+=元. 设一个B 礼盒的售价为a 元,一个C 礼盒的售价为b 元,则可得155010a 10b 1800⨯++=,整理得a b 105(+=元)所以一个丁套餐的售价()3504a b 150420570(=⨯++=+=元)一个丁套餐的成本()3404y z 120360480(=⨯++=+=元)因此一个丁套餐的利润率570480100%18.75%480-=⨯= 故答案为:18.75%【点睛】 本题考查了方程组的应用以及有理数的混合运算,根据运算规律,找出关于x 的方程组是解题的关键. 15.如图,将ABC △沿着DE 对折,点A 落到A '处,若70BDA CEA ∠'+∠=',则A ∠=__________.【答案】35【解析】根据折叠的性质得到∠A′DE=∠ADE ,∠A′ED=∠AED ,由平角的定义得到∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,根据已知条件得到∠ADE+∠AED=145°,由三角形的内角和即可得到结论.【详解】∵将△ABC 沿着DE 对折,A 落到A′,∴∠A′DE=∠ADE ,∠A′ED=∠AED ,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA ′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=35°.故答案为35°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.16.计算:2220192018- =________.【答案】1【分析】把给的算式进行因式分解后再计算即可.【详解】20192-20182=(2019+2018)()=2019+2018=1.故答案为:1.【点睛】本题考查有理数的乘方运算,关键是利用因式分解可简化运算.17.解方程:2236111x x x +=+--. 【答案】方程无解【分析】先去分母得到整式方程,再解所得的整式方程即可,注意解分式方程最后要写检验.【详解】解:2236111x x x +=+-- 去分母得解得经检验是原方程的增根 ∴原方程无解.考点:解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.三、解答题18.阅读下列一段文字,然后回答下列问题.已知平面内两点 M (x1,y1)、N (x2,y2),则这两点间的距离可用下列公式计算: MN=221212()()x x y y -+-例如:已知 P (3,1)、Q (1,﹣2),则这两点间的距离 22(31)(12)-++13.特别地,如果两点 M (x1,y1)、N (x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐 标轴,那么这两点间的距离公式可简化为 MN=丨 x1﹣x2 丨或丨 y1﹣y2 丨.(1)已知 A (1,2)、B (﹣2,﹣3),试求 A 、B 两点间的距离;(2)已知 A 、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为﹣1, 试求 A 、B 两 点间的距离;(3)已知△ABC 的顶点坐标分别为 A (0,4)、B (﹣1,2)、C (4,2),你能判定△ABC 的形状 吗?请说明理由.【答案】 (1)()()22122334AB =+++=;(2)()516AB =--=;(3)△ABC 是直角三角形, 【解析】(1)(2)根据两点间的距离公式即可求解;(3)先根据两点间的距离公式求出AB ,BC ,AC 的长,再根据勾股定理的逆定理即可作出判断.【详解】(1)()()22122334AB =+++=;(2) ()516AB =--=(3)△ABC 是直角三角形,理由:∵()()()()222201425,14225AB BC =++-==--+-=, ()()22044220AC =-+-=,。
广东省广州市八年级上学期期末数学试卷
广东省广州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·高邑期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)对于分式,当x=-1时,其值为0,当x=1肘,此分式没有意义,那么()A . a=b= -1B . a=b=lC . a=l, b= -1D . a=- 1, b=l3. (2分) (2019七上·海曙期中) 一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102-12 ,故99是一个智慧数.在下列各数中,不属于“智慧数”的是()A . 15B . 16C . 17D . 184. (2分)已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A . 6B . 2m﹣8C . 2mD . ﹣2m5. (2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A . 带①去B . 带②去C . 带③去D . 带①和②去6. (2分)(2017·黑龙江模拟) 下列运算正确的是()A . m4•m2=m8B . (m2)3=m6C . 3m﹣2m=2D . (m﹣n)2=m2﹣n27. (2分) (2017八上·杭州期中) 等腰三角形的三边长分别为3x-2,4x-3,6-2x,则该三角形的周长为()A . 6B . 6或9或8.5C . 9或8.5D . 与x的取值有关8. (2分) (2017七下·南江期末) 用两种正多边形铺满地面,其中一种是正八边形,则另一种正多边形是()。
A . 正三角形B . 正四边形C . 正五边形D . 正六边形9. (2分) (2019八上·和平月考) 已知,则的值为()A . 1B .C .D .10. (2分)(2020·丹东) 如图,是的角平分线,过点作交延长线于点,若,,则的度数为()A . 100°B . 110°C . 125°D . 135°二、填空题 (共6题;共6分)11. (1分) (2020八上·柯桥开学考) 若分式的值为0,则a = ________12. (1分) (2018七下·江都期中) 若,则 ________13. (1分) (2019八上·厦门月考) 如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC 的度数为________.14. (1分) (2015八上·番禺期末) 分解因式:a2+2a+1=________.15. (1分)(2019·海曙模拟) 如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G.若CD⊥AC,EF=9,EG=4,则AC的长为________.16. (1分)(2019·通州模拟) 如图,正方形ABCD由四个矩形构成,根据图形,写出一个含有a和b的正确的等式________.三、解答题 (共9题;共75分)17. (5分)因式分解(1)﹣2a3+12a2﹣18a(2)(x2+4)2-16x2(3)(x2-2x)2+2(x2-2x)+118. (10分)(2012·镇江)(1)计算:﹣4sin45°+(﹣2012)0;(2)化简:÷(x+1).19. (11分) (2017八上·泸西期中) 如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).(1)请在图中作出△ABC关于y轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F 的坐标.D、E、F点的坐标是:D(________,________) E(________,________) F(________,________);(2)求四边形ABED的面积.20. (10分) (2019九上·辽阳期末) 如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.21. (7分) (2019八下·孝义期中) 综合与实践数学活动课上,小红画了如图1所示的两个共用直角顶点的等腰直角三角形与等腰直角三角形,其中,,连接,、、分别为边、、的中点,连接、 .(1)操作发现:小红发现了:、有一定的关系,数量关系为________;位置关系为________.(2)类比思考:如图2,在图1的基础上,将等腰直角三角形绕点旋转一定的角度,其它条件都不变,小红发现的结论还成立吗?请说明理由.(提示:连接、并延长交于一点)深入探究:在上述类比思考的基础上,小红做了进一步的探究.如图3,作任意一个三角形,其中,在三角形外侧以为腰作等腰直角三角形,以为腰作等腰直角三角形,分别取斜边、与边的中点、、,连接、、,试判断三角形的形状,并说明理由.22. (10分) (2020八下·云梦期中) 已知,,求下列各式的值:(1);(2) .23. (5分) (2017八上·阿荣旗期末) 某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,问原计划每小时修路多少米?24. (7分) (2016九上·北京期中) 阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.(1)小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为________.(2)参考小昊思考问题的方法,解决问题:如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.①求的值;(3)②若CD=2,则BP=________.25. (10分) (2019九上·重庆开学考) 已知:如图,在中,,平分交于点,平分交于点,过点做交延长线于点,若 .(1)求的度数;(2)求的度数.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共75分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、。
广东省广州市八年级数学上学期期末测试卷(含答案)
广东省广州市八年级数学上学期期末测试卷(含答案)一、选择题:(共30分.)1.下列各组图形中,成轴对称的两个图形是()A.B.C.D.2.下列图形中具有稳定性的是()A.等边三角形B.正方形C.平行四边形D.梯形3.若分式有意义,则x的取值范围是()A.x≠6B.x≠0C.x≠﹣D.x≠﹣64.下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4B.5,7,7C.5,6,12D.6,8,105.下列计算正确的是()A.m5+m5=m10B.(m3)4=m12C.(2m2)3=6m6D.m8÷m2=m46.下列各分式中,是最简分式的是()A.B.C.D.7.已知等腰三角形的一个角为70°,则它的顶角为()A.70°B.55°C.40°D.40°或70°8.已知点P关于x轴对称的点的坐标是(﹣5,﹣4),则点P关于y轴对称的点的坐标是()A.(﹣5,4)B.(﹣5,﹣4)C.(5,4)D.(5,﹣4)9.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.2010.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1B.2C.3D.4二、填空题:(满分18分)11.有一种病毒的直径为0.000068米,用科学记数法可表示为米.12.计算:(π﹣3.14)0+(﹣)﹣2=.13.一个多边形的每一个外角为30°,那么这个多边形的边数为.14.分解因式:a2b﹣9b=.15.如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,BD=5cm,则△ABD的周长是cm.16.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=.三、解答题(共72分.)17.计算:(m+2)(m﹣2)﹣(3m2n﹣6n)÷3n.18.计算:﹣÷.19.如图,在△ABC中,∠BAC=60°,∠C=80°,AD是△ABC的角平分线,点E是边AC上一点,且∠ADE=∠B.求:∠CDE的度数.20.如图,已知点D是△ABC的边AC上任意一点.(1)尺规作图:作∠BAC的平分线AE,交BC于E;(2)在AE上求作一点P,使PC+PD的值最小(保留作图痕迹,不写画法).21.先化简,再求值:+÷,其中b与2,4构成△ABC的三边,且b为整数.22.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包一次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数是第一批所进包数的1.5倍,每包口罩的进价比第一批每包口罩的进价多0.5元,求购进的第一批医用口罩有多少包?23.如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE交BC于点F,过点D作DG⊥BC,垂足为G.求证:BC=2FG.24.(1)按照要求画出图形:画等边三角形△ABC,点D在BC的延长线上,连接AD,以AD为边作等边三角形△ADE,连接CE;(2)请写出AC、CD、CE之间的数量关系并证明;(3)若AB=6cm,点D从点C出发,在BC的延长线上运动,点D的运动速度为每秒2cm,运动时间为t秒,则t为何值时,CE⊥AD?25.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为xcm/s,其他条件不变,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.参考答案一、选择题:(共30分.)1.解:根据两个图形成轴对称的性质得出:只有选项C成轴对称图形.故选:C.2.解:等边三角形,正方形,平行四边形,梯形中只有等边三角形具有稳定性.故选:A.3.解:要使分式有意义,必须x+6≠0,解得,x≠﹣6,故选:D.4.解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.5.解:A、m5+m5=2m5,故本选项不合题意;B、(m3)4=m12,故本选项符合题意;C、(2m2)3=8m6,故本选项不合题意;D、m8÷m2=m6,故本选项不合题意.故选:B.6.解:A.是最简分式;B.==x﹣y,不符合题意;C.==,不符合题意;D.=,不符合题意;故选:A.7.解:当这个角是底角时,其顶角=40°;当这个角是顶角时,顶角=70°;故选:D.8.解:∵点P关于x轴对称的点的坐标是(﹣5,﹣4),∴P(﹣5,4),则点P关于y轴对称的点的坐标是(5,4).故选:C.9.解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,可得m=﹣20,故选:A.10.解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选:D.二、填空题:(满分18分)11.解:0.000068=6.8×10﹣5;故答案为:6.8×10﹣5.12.解:原式=1+9=10,故答案为:10.13.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.14.解:a2b﹣9b=b(a2﹣9)=b(a+3)(a﹣3).故答案为:b(a+3)(a﹣3).15.解:∵DE是线段AB的垂直平分线,AE=3cm,BD=5cm,∴DA=DB=5(cm),AB=6(cm),∴△ABD的周长=BD+AD+AB=16(cm),故答案为:16.16.解:如图,过点P作PE⊥OA于E,∵∠AOB=30°,OP平分∠AOB,∴∠AOP=∠BOP=15°.∵PC∥OB,∴∠BOP=∠OPC=15°,∴∠PCE=∠AOP+∠OPC=15°+15°=30°,又∵PC=6,∴PE=PC=3,∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,∴PD=PE=3,故答案为3.三、解答题(共72分.)17.解:原式=m2﹣4﹣m2+2=﹣2.18.解:原式=﹣•=﹣==﹣.19.解:∵在△ABC中,∠BAC=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=70°,∵∠ADE=∠B=20°,∴∠CDE=∠ADC﹣∠ADE=70°﹣20°=50°.20.解:(1)如图,AE为所求.(2)如图,点P为所求.21.解:原式====,∵b与2,4构成△ABC的三边,∴4﹣2<b<4+2,∴2<b<6,∵b为整数,∴b=3或4或5,∵b﹣3≠0且b+3≠0且b≠0且b﹣4≠0,∴b≠3且b≠﹣3且b≠0且b≠4,∴b=5,当b=5时,原式=.22.解:设购进的第一批医用口罩有x包,依题意得:.解得:x=2000.经检验,x=2000是原分式方程的解且符合题意.答:购进的第一批医用口罩有2000包.23.证明:过点D作DH∥AC交BC于H,则∠BHD=∠ACB,∠DHF=∠ECF,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BHD,∴BD=DH,∵CE=BD,∴DH=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS)∴,∵BD=DH,DG⊥BC,∴,∴,∴BC=2FG.24.解:(1)图形如图1所示,(2)AC+CD=CE;证明:∵△ABC和△ADE是等边三角形,∴AC=AB=BC,AD=AE∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵BD=BC+CD=AC+CD,∴AC+CD=CE;(3)如图2,∵△ADE是等边三角形,AB=6cm,∴AC=AB=(6cm),∵△ADE时等边三角形,CE⊥AD,∴CE垂直平分AD,∴CD=AC=AB=6(cm),∴t=6÷2=3,∴当t为3时,CE⊥AD.25.解:(1)△ACP≌△BPQ;PC⊥PQ,理由如下:∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ;∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt 解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t 解得:x=,t=.。
广东省广州市 八年级(上)期末数学试卷
八年级(上)期末数学试卷 题号一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.若代数式在实数范围内有意义,则实数a 的取值范围为( )1a−4A. B. C. D. a =4a >4a <4a ≠42.下列计算正确的是( )A. B. C. D. a 2+a 3=a 5(2a )2=4a a 2⋅a 3=a 5(a 2)3=a 53.计算(a -2)(a +3)的结果是( )A. B. C. D. a 2−6a 2+a−6a 2+6a 2−a +64.下面四个图形分别是绿色食品、节能、节水和低碳标志,在这四个标志中,是轴对称图形的是( )A. B. C. D.5.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3,则点D 到AB 的距离是( )A. 5B. 4C. 3D. 26.一个多边形的内角和是720°,这个多边形的边数是( )A. 6B. 7C. 8D. 97.若等腰三角形的两边长分别是3、5,则第三边长是( )A. 3或5B. 5C. 3D. 4或68.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于( )A. B. C. D. 40∘45∘50∘55∘9.如图,五边形ABCDE 中有一正三角形ACD ,若AB =DE ,BC =AE ,∠E =115°,则∠BAE 的度数为何?( )A. 115B. 120C. 125D. 13010.如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,点P 是AD 上一个动点,则BP +EP 的最小值等于线段( )的长度.A. BCB. CEC. ADD. AC二、填空题(本大题共6小题,共18.0分)11.计算:2x 3÷x =______.12.计算:=______.x 2x +1−1x +113.如图,△AEB ≌△DFC ,AE ⊥CB ,DF ⊥BC ,AE =DF ,∠C =28°,则∠A =______.14.等腰三角形的一个内角为100°,则顶角的度数是______.15.已知a m =3,a n =2,则a 2m -n 的值为______.16.如图,△ABC 中,AB =AC ,AD ⊥BC 于D 点,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =3cm ,则BF =______cm .三、计算题(本大题共3小题,共24.0分)17.计算:(1)(a 2b )2⋅b 2a(2)(2x -1)2-x (2-x )18.分解因式:(1)mn 2-2mn +m(2)x 2-2x +(x -2)19.计算(1)x−2x +2⋅x 2+4x +4x 2−4(2)()1a−1+1a +1÷4+2aa 2−1四、解答题(本大题共4小题,共38.0分)20.如图,在△ABC 中,AD 是中线,CE ⊥AD 于点E ,BF ⊥AD ,交AD 的延长线于点F ,求证:BF =CE .21.如图,在正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(-4,6),(-1,4).(1)请在图中的网格平面内建立平面直角坐标系(直接在图中画出);(2)请画出△ABC关于x轴对称的△A1B1C1;(3)写出点A1、C1的坐标.22.列方程解应用题:某商店在2016年至2018年期间销售一种礼盒.2016年,该商店用2200元购进了这种礼盒并且全部售完:2018年,这种礼盒每盒的进价是2016年的一半,且该商店用2100元购进的礼盒数比2016年的礼盒数多100盒.那么,2016年这种礼盒每盒的进价是多少元?23.已知点D、E分别是∠B的两边BC、BA上的点,∠DEB=2∠B,F为BA上一点.(1)如图①,若DF平分∠BDE,求证:BD=DE+EF;(2)如图②,若DF为△DBE的外角平分线,BD、DE、EF三者有怎样的数量关系?请证明你的结论.答案和解析1.【答案】D【解析】解:依题意得:a-4≠0,解得a≠4.故选:D.分式有意义时,分母a-4≠0.本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.2.【答案】C【解析】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.根据积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案.本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.3.【答案】B【解析】解:(a-2)(a+3)=a2+a-6,故选:B.根据多项式的乘法解答即可.此题考查多项式的乘法,关键是根据多项式乘法的法则解答.4.【答案】A【解析】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】C【解析】解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选:C.过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.6.【答案】A【解析】解:设这个多边形的边数为n,则(n-2)×180°=720°,解得n=6,故这个多边形为六边形.故选:A.设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=720°,然后解方程即可.本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n-2)×180°解答.7.【答案】A【解析】解:由题意得,当腰为3时,则第三边也为腰,为3,此时3+3>5.故以3,3,5可构成三角形;当腰为5时,则第三边也为腰,此时3+5>5,故以3,5,5可构成三角形.故第三边长是3或5.故选:A.题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.【答案】C【解析】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.9.【答案】C【解析】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°-115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.10.【答案】B【解析】解:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选:B.如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.本题考查轴对称-最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】2x2【解析】解:2x3÷x=2x2.故答案为:2x2.直接利用整式的除法运算法则求出即可.此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.【答案】x-1【解析】解:==x-1.故答案为:x-1.根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.本题比较容易,考查同分母分式的加减运算,一定注意最后结果能约分的一定要约分.13.【答案】62°【解析】解:∵DF⊥BC,∠C=28°,∴∠D=90°-28°=62°,∵△AEB≌△DFC,∴∠A=∠D=62°.故答案为:62°.根据直角三角形两锐角互余求出∠D,再根据全等三角形对应角相等可得∠A=∠D.本题考查了全等三角形对应角相等的性质,直角三角形两锐角互余,熟记性质并准确识图判断出对应角是解题的关键.14.【答案】100°【解析】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.15.【答案】4.5【解析】解:∵a m=3,∴a2m=32=9,∴a2m-n===4.5.故答案为:4.5.首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】6【解析】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.17.【答案】解:(1)(a2b)2⋅b2a=a4b2•b2a=a3b4;(2)(2x-1)2-x(2-x)=4x2-4x+1-2x+x2=5x2-6x+1.【解析】(1)依据分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)依据整式的混合运算法则进行计算,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.本题主要考查了分式的乘法法则以及整式的混合运算,整式的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.18.【答案】解:(1)原式=m (n 2-2n +1)=m (n -1)2;(2)原式=x (x -2)+(x -2)=(x -2)(x +1).【解析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【答案】解:(1)原式=•=1;x−2x +2(x +2)2(x +2)(x−2)(2)原式=[+]÷a +1(a+1)(a−1)a−1(a +1)(a−1)2(2+a)(a +1)(a−1)=•2a (a+1)(a−1)(a +1)(a−1)2(2+a)=.a a +2【解析】(1)先将分子和分母因式分解,再约分即可得;(2)先计算括号内的加法,同时将除式分母和分子因式分解,再将除法转化为乘法,继而约分即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【答案】解:∵CE ⊥AD ,BF ⊥AD ,∴∠CED =∠BFD =90°,∵AD 是中线,∴BD =CD ,在△CED 和△BFD 中,,{∠CED =∠BFD ∠CDE =∠BDF CD =BD∴△CED ≌△BFD (AAS ),∴BF =CE .【解析】根据AAS 证明△CED ≌△BFD 即可解决问题.本题考查全等三角形的判定和性质,三角形的中线的定义等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21.【答案】解:(1)如图所示;(2)如图所示,△A 1B 1C 1即为所求.(3)点A 1的坐标为(-4,-6)、C 1的坐标为(-1,-4)..【解析】(1)根据A 、C 两点坐标根据平面直角坐标系即可;(2)画出A 、B 、C 关于x 轴对称的A 1、B 1、C 1即可;(3)根据所作图形求解可得.本题考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及其平面直角坐标系的概念.22.【答案】解:设2016年这种礼盒每盒的进价是x 元,则2018年这种礼盒每盒的进价是x 元,12根据题意得:-=100,210012x 2200x 解得:x =20,经检验,x =20是原方程的解,且符合题意.答:2016年这种礼盒每盒的进价是20元.【解析】设2016年这种礼盒每盒的进价是x 元,则2018年这种礼盒每盒的进价是x元,根据数量=总价÷单价结合2018年该商店用2100元购进的礼盒数比2016年的礼盒数多100盒,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【答案】解:(1)如图①,在BA上截取EG=DE,连接DG,则∠EDG=∠EGD,∵∠DEB=∠EDG+∠EGD=2∠EGD,∵∠DEB=2∠B,∴∠B=∠DGB,∴BD=DG,∵DF平分∠BDE,∴∠BDF=∠EDF,∵∠DFE=∠B+∠BDF,∠FDG=∠FDE+∠EDG,∴∠DFG=∠FDG,∴DG=GF,∴FG=BD,∵FG=EF+AE,∴BD=DE+EF;(2)如图②在BA上截取EG=DE,连接DG,则∠EDG=∠EGD,∵∠DEB=∠EDG+∠EGD=2∠EGD,∵∠DEB=2∠B,∴∠B=∠DGB,∴BD=DG,∵DF平分∠CDE,∴∠CDF=∠EDF,∵∠DFE=∠CDF-∠B,∠GDF=∠EDF-∠EDG,∴∠GDF=∠DFG,∴DG=FG,∴GF=BD,∵EF=EG+GF,∴EF=DE+BD.【解析】(1)如图①,在BA上截取EG=DE,连接DG,得到∠EDG=∠EGD,根据三角形外角的性质和角平分线的定义即可得到结论;(2)在BA上截取EG=DE,连接DG,则∠EDG=∠EGD,根据三角形外角的性质和角平分线的定义即可得到结论.本题考查了等腰三角形的性质,角平分线的定义,三角形的外角的性质,正确的作出辅助线是解题的关键.。
广东省广州市八年级(上)期末数学试卷
八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A. B. C. D.2.下列运算中,正确的是()A. a2⋅a4=a8B. a10÷a5=a2C. (a5)2=a10D. (2a)4=8a43.下列变形属于因式分解的是()A. 4x+x=5xB. (x+2)2=x2+4x+4C. x2+x+1=x(x+1)+1D. x2−3x=x(x−3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A. 0.34×10−9B. 3.4×10−9C. 3.4×10−10D. 3.4×10−115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A. 72∘B. 60∘C. 50∘D. 58∘6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A. 13B. 16C. 8D. 107.下列各式成立的是()A. x−2y2y−x=1B. (−a−b)2=(a+b)2C. (a−b)2=a2−b2D. (a+b)2−(a−b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③④B. ①②④C. ①③D. ②③④10.已知x=3y+5,且x2-7xy+9y2=24,则x2y-3xy2的值为()A. 0B. 1C. 5D. 12二、填空题(本大题共6小题,共18.0分)11.因式分解:2a2-8=______.12.若代数式x−1x−3有意义,则实数x的取值范围是______.13.一个n边形的内角和是540°,那么n=______.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB=15,则△ABD的面积是______.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为______.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+12∠ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC-∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有______(填序号).三、计算题(本大题共2小题,共20.0分)17.计算(1)(x+1)2-(x+1)(x-1)(2)(x+2)(2x+1)2x-x-218.已知代数式(2x2+2xx2−1−x2−xx2−2x+1)÷xx+1.(1)先化简,再求当x=3时,原代数式的值;四、解答题(本大题共7小题,共82.0分)19.计算(1)(2-3)0-(12)-2(2)(-3a2)3÷6a+32a2•a320.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.21.如图,已知A(-2,4),B(4,2),C(2,-1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).22.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.23.如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE=AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x-m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x-1,宽为x-2.体积为x4-x3+ax2+bx-6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=______;CM=______.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.答案和解析1.【答案】B【解析】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】C【解析】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【答案】D【解析】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【答案】C【解析】解:0.000 000 00034=3.4×10-10;故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】D【解析】解:由于两个三角形全等,∴∠1=180-50°-72°=58°,故选:D.根据全等三角形的性质即可求出答案.本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【答案】A【解析】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【答案】B【解析】解:A、,错误;B、(-a-b)2=(a+b)2,正确;C、(a-b)2=a2-2ab+b2,错误;D、(a+b)2-(a-b)2=4ab,错误;故选:B.根据完全平方公式和分式的化简判断即可.此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【答案】A解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【答案】C【解析】解:∵x=3y+5,∴x-3y=5,两边平方,可得x2-6xy+9y2=25,又∵x2-7xy+9y2=24,两式相减,可得xy=1,∴x2y-3xy2=xy(x-3y)=1×5=5,故选:C.依据x-3y=5两边平方,可得x2-6xy+9y2=25,再根据x2-7xy+9y2=24,即可得到xy的值,进而得出x2y-3xy2的值.本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.11.【答案】2(a+2)(a-2)解:2a2-8=2(a2-4)=2(a+2)(a-2).故答案为:2(a+2)(a-2).首先提取公因式2,进而利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【答案】x≠3【解析】解:由题意得:x-3≠0,解得:x≠3,故答案为:x≠3.根据分式有意义的条件可得x-3≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【答案】5【解析】解:设这个多边形的边数为n,由题意,得(n-2)•180°=540°,解得n=5.故答案为:5.根据n边形的内角和为(n-2)•180°得到(n-2)•180°=540°,然后解方程即可.本题考查了多边的内角和定理:n边形的内角和为(n-2)•180°.14.【答案】30【解析】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】18°【解析】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°-72°=18°,故答案为:18°.设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF 的度数.本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【答案】①④【解析】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°-(∠CAP+∠ACP)=180°-(∠BAC+∠ACB)=180°-(180°-∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC-∠PBC=90°-∠ACB-(180°-∠BAC-∠ACB)=(∠BAC-∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC-∠PBC=90°-∠ACB-(180°-∠BAC-∠ACB)=(∠BAC-∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:(1)原式=x2+2x+1-(x2-1)=x2+2x+1-x2+1=2x+2;(2)原式=2x2+5x+22x-2x(x+2)2x=2x2+5x+22x-2x2+4x2x=x+22x.【解析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.18.【答案】解:(1)原式=[2x(x+1)(x+1)(x−1)-x(x−1)(x−1)2]•x+1x=(2xx−1-xx−1)•x+1x=xx−1•x+1x=x+1x−1,当x=3时,原式=3+13−1=2;(2)若原代数式的值等于-1,则x+1x−1=-1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于-1.【解析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=-1,解之求得x的值,再根据分式有意义的条件即可作出判断.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.【答案】解:(1)原式=1-4=-3;(2)原式=-27a6÷6a+32a2•a3=-92a5+32a5=-3a5.【解析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.20.【答案】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,BC=DFAB=DE∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【解析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.21.【答案】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【解析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.22.【答案】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:600x+50=450x,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)3000150-3000200=20-15=5(天).答:现在比原计划提前5天完成.【解析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率-工作总量÷现在工作效率,即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【答案】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,AE=AC∠EAC=∠CAFAF=AF,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=12AE=4,∴三角形ABE的面积=12×AB×EG=12×8×4=16.【解析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG=4,根据三角形面积公式可得结论.本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【答案】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x-m=(x+4)(x+n)=x2+(4+n)x+4n∴4+n=2可得n=-24n=-m可得m=8综上所述:m=8(2)①设甲容器的高为x2+mx-3,则有:(x-1)(x-2)(x2+mx-3)=x4-x3+ax2+bx-6∴x•(-2)•x2+(-1)•x•x2+x•x•mx=-2x3-x3+mx3=(m-3)x3=-x3从而得m-3=-1m=2原甲容器的体积=(x-1)(x-2)(x2+2x-3)=x4-x3-9x2+13x-6从而得a=-9,b=13②由乙容器的底面为正方形可得:x4-x3-9x2+13x-6=(x-1)(x-2)(x2+2x-3)=(x-1)(x-2)(x+3)(x-1)=(x-1)2(x2+x-6)故答案为:甲容器的高为x2+2x-3,乙容器的高为x2+x-6【解析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【答案】8-t t【解析】解:(1)∵M,N两点均以1个单位/秒的速度匀速运动,∴CM=BN=t,∴AN=8-t,故答案为:8-t,t;(2)①若△CPM和△APN的面积相等∴S△CPM+S四边形BMPN =S△APN+S四边形BMPN,∴S△ABM=S△BNC,∴=∴8×(5-t)=5t∴t=∴当t=时,△CPM和△APN的面积相等;②如图,过点P作PF⊥BC,PG⊥AB,过点A作AE⊥CN,交CN的延长线于点E,连接BP,∵PG⊥AB,PF⊥BC,∠B=90°,∴四边形PGBF是矩形,∴PF=BG,∵t=3,∴CM=3=BN,∴BM=2,AN=5,∵S△ABM=S△ABP+S△BPM,∴∴16=8PG+2PF ①∵S△BCN=S△BCP+S△BPN,∴×5×3=∴15=3PG+5PF ②由①②组成方程组解得:PG=,PF=,∴BG=∴NG=BN-BG=3-=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°(1)根据路程=速度×时间,可用含t的代数式表示BN,CM的长,即可用含t 的代数式表示AN的长;(2)①由题意可得S△ABM=S△BNC,根据三角形面积公式可求t的值;②过点P作PF⊥BC,PG⊥AB,过点A作AE⊥CN,交CN的延长线于点E,连接BP,可证四边形PGBF是矩形,可得PF=BG,根据三角形的面积公式,可得方程组,求出PG,PF的长,根据勾股定理可求PN的长,通过证△ANE∽△CNB,可求AE,NE的长,即可求∠APN的度数.本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
广东省广州市八年级上学期数学期末试卷
广东省广州市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·满洲里模拟) 已知一个等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为()A . 5B . 4C . 3D . 5或42. (2分)下列运算正确的是()A . a2•a3=a6B . ﹣2(a﹣b)=﹣2a﹣2bC . 2x2+3x2=5x4D . (﹣)﹣2=43. (2分)如图是用4个相同的小长方形与1个小正方形镶嵌而成的图案,已知该图案的面积为25,小正方形的面积为4,若用x,y表示小长方形的两邻边长(x<y),则下列关系中不正确的是()A . x+y=5B . y﹣x=2C . 4xy+4=25D . y2+x2=254. (2分)在平面直角坐标系中,点P(2,3)在A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2016八上·瑞安期中) 如图,已知∠ABC=∠ABD,则下列条件中,不能判定△ABC≌△ABD的是()A . AC=ADB . BC=BDC . ∠C=∠DD . ∠CAB=∠DAB6. (2分) (2019七下·瑞安期末) 分式与的最简公分母是()A . abB . 2a2b2C . a2b2D . 2a3b37. (2分) (2018八上·殷都期中) 下列说法错误的是()A . 已知两边及一角只能作出唯一的三角形B . 到△ABC的三个顶点距离相等的点是△ABC的三条边垂直平分线的交点C . 腰长相等的两个等腰直角三角形全等D . 点A(3,2)关于x轴的对称点A坐标为(3,﹣2)8. (2分) (2019八上·霍林郭勒期中) 如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A . 5B . 4C . 3D . 79. (2分) (2019八上·松桃期中) 如图,设k=(a>b>0),则有()A . k>2B . 1<k<2C .D .10. (2分) (2018九上·彝良期末) 如图,C为半圆内一点,O为圆心,直径AB的长为2cm, BOC=60 ,BCO=90 ,将 BOC绕圆心O逆时针旋转至△ ,点在OA上,则边BC扫过区域(图中阴影部分)的面积为()cm2 .A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2017八上·丛台期末) 分解因式:3a3﹣12a2+12a=________.12. (1分) (2017七下·萧山期中) 如图,在△ABC中,∠ABO=20°,∠ACO=25°,∠A=65°,则∠BOC 的度数________.13. (1分)如图,在△ABC中,AB=AC , D、E是△ABC内两点,AD平分∠BAC ,∠EBC=∠E=60º,若BE=6 cm,DE=2cm,则BC=________.14. (1分)(2016·景德镇模拟) 分式方程的解x=________.15. (1分)如图,已知AB=AC,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是________.16. (1分)(2020八上·覃塘期末) 我们在二次根式的化简过程中得知:,…,则________三、解答题 (共7题;共66分)17. (15分) (2019九上·兰陵期中) 已知:如图,在△ABC中,,以为直径的⊙O与交于点,,垂足为,的延长线与的延长线交于点.(1)求证:是⊙O的切线.(2)若⊙O的半径为4,,求的长.18. (10分) (2020七下·无锡期中) 因式分解:(1);(2);(3) .19. (10分) (2016八上·余杭期中) 如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条,,不动,,,如图,量得第四根木条,判断此时与是否相等,并说明理由.(2)若固定二根木条,不动,,,量得木条,,写出木条的长度可能取到的一个值(直接写出一个即可).(3)若固定一根木条不动,,量得木条.如果木条 , 的长度不变,当点移到的延长线上时,点也在的延长线上;当点移到的延长线上时,点,,能构成周长为的三角形,求出木条,的长度.20. (10分) (2016七上·新泰期末) 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD= ,求AD的长.21. (5分)(2020·昌吉模拟) 先化简,再求值. ,从中选一个适合的整数代入求值.22. (6分) (2020八下·江阴期中) 甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?23. (10分)(1)解方程:;(2)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.①如果x=-1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共66分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。
黄浦区2017学年第一学期初二数学期末卷答案
黄浦2017学年第一学期八年级数学期末考试试卷参考答案2018.1一、 选择题(本大题共6题,每题3分,满分18分)1.B; 2.D; 3.C; 4.B; 5.A; 6.C.二、填空题(本大题共12题,每题2分,满分24分)7.π-4; 8.0; 9.0或32; 10.()()21-2-1-+x x 11.3≠x ; 12.32+; 13.5<m 14.3m >15.线段AB 的垂直平分线 16.213 17.40 18.112 三、简答题(本大题共4题,19、20每题5分,21、22每题6分,满分22分) 19.解:计算:2719131362-+-+⋅.解:原式=+2-- ······················································ 1分+1分+1分 =2. ·································································································· 2分20.由原方程得:2(1)(1)120x x ----=------------------------------------ 1分 则 (14)(13)0x x ---+=,即(5)(2)0x x -+=------------- 2分 所以125,2x x ==----------------------------------------------------- 2分21.(1) 作图略------------------------------------------------------------------------------------ - 2分 结论------------------------------------------------------------------------------------------ 1分(2)8--------------------------------------------------------------------------------------- 3分22.解:(1)∵点P (m ,4)在反比例函数xy 12-=的图像上, ∴m = -3,即点P 的坐标为(-3,4).……………………………………………(1分)设正比例函数的解析式为y =kx ,(k ≠0)∵正比例函数的图像经过点P ,∴34-=k .……………………………………(1分) ∴所求的正比例函数的解析式为x y 34-=.……………………………………(1分) (2)∵点Q (6,n )在这个正比例函数的图像上,∴n = -8,即点Q 的坐标为(6,-8).……………………………………………(1分)∴PQ=15-----------------------------------------------------------------------------------------2分四、解答题(本大题共4题,23、24每题6分,25、26每题7分,满分26分)23.(1)小强去学校时下坡路长 2 千米; ------------------------------- 2分(2)小强下坡的速度为 0.5 千米/分钟; ------------------------------ 2分(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是 14 分钟。
20170107广州市八年级上学期数学期末测试(3套卷)
广州市八年级(上)期末数学试卷(一)一、选择题1.计算(a 2)3的结果是( )A.a 5B.a 6 C .a 8 D.a 92.使分式x y -3有意义的x 的取值是( ) A. x ≠0 B.x ≠y C..x ≠-3 D. x ≠33.下列平面图形中,不是轴对称图形的是( )A. B . C . D .4.点P(3,-5)关于x 轴对称的点的坐标为( )A.(-3.-5)B.(5,3)C.(-3,5)D.(3,5)5.将一副三角板按图中方式叠放,则角α等于( )A .30°B .45°C .60°D .75°6.如果分式32732--x x 的值为0,则x 的值应为( ) A.-3 B.3 C.±3 D.97.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,48.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A.6.5⨯10-5B.6.5⨯10-6C. 6.5⨯10-7D. 65⨯10-69.下列说法正确的是( )A.等腰三角形的高,中线,角平分线互相重合B.等腰三角形的两个底角相等C.等腰三角形一边不可以是另一边的二倍D.顶角相等的两个等腰三角形全等10.把a 3-2a 2+a 分解因式的结果是( )A. A(a-1)2B.a(a+1)(a-1)C.a(a 2-2)D.a 2(a-2)+a二.填空题11.因式分解:a 2-1= _________12.一个等腰三角形的两条边长分别为4cm 和8cm,则这个三角形的周长为 _________13.分式方程xx 112=-的解是 _________ 14.如图,在Rt ABC,∠ACB=90。
,∠A=250,D 是AB 上一点,将Rt ABC 沿CD 折叠,使B 落在AC 边上的B ,处,则∠ADB ,= _________15.如图,AB=AC,BD=BC,若∠A=40,则∠ABD= _________16.如图,边长为a 的大正方形中有一个边长为b 的小正方形,若将图1中的阴影部分拼成一个长方形如图2,比较图1和图2中的阴影部分的面积,你能得到的公式是 _________ 三.解答题17.分解因式(1)x 4-y 4 (2)2a(b+c)-3(c+b) (3)(2a-b)2+8ab18.如图,在三角形ABC 中,AB=AC ,点D,E 分别是AB,AC 的中点,点F 是BE,CD 的交点,请写出图中两组全等的三角形,并选出其中一组加以证明。
黄埔区八年级期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列选项中,绝对值最小的是()。
A. -2B. -1C. 0D. 12. 如果a > b,那么下列不等式中正确的是()。
A. a + 2 > b + 2B. a - 2 > b - 2C. a + 3 > b + 3D. a - 3 > b - 33. 已知一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()。
A. 24cm²B. 28cm²C. 32cm²D. 36cm²4. 在平面直角坐标系中,点A(-3,2)关于原点对称的点是()。
A.(3,-2)B.(-3,-2)C.(-3,2)D.(3,2)5. 下列函数中,是反比例函数的是()。
A. y = 2x + 1B. y = x²C. y = 1/xD. y = 3x6. 在梯形ABCD中,AD平行于BC,AD=6cm,BC=8cm,AB=CD=5cm,那么梯形的高是()。
A. 3cmB. 4cmC. 5cmD. 6cm7. 下列各数中,有最小整数解的是()。
A. |x - 3| < 2B. |x + 2| > 5C. |x - 1| ≤ 4D. |x - 4| = 78. 已知一次函数y = kx + b的图象经过点(1,3)和(-2,-1),则k和b的值分别是()。
A. k = 2,b = 1B. k = 2,b = -1C. k = -2,b = 1D. k = -2,b = -19. 下列各式中,正确的是()。
A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)³ = a³ + 3a²b + 3ab² + b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³10. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,那么三角形ABC的周长是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年黄埔区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在直角坐标系中,点A (﹣3,5)与点B 关于x 轴对称,则( ) A .B (3,5)B .B (﹣3,﹣5)C .B (5,3)D .B (5,﹣3)2.(2分)在ABC ∆中,其两个内角如下,则能判定ABC ∆为等腰三角形的是( ) A .∠A =40°,∠B =50° B .∠A =40°,∠B =60° C .∠A =20°,∠B =80°D .∠A =40°,∠B =80°3.(2分)如图,已知≌ABC DEF ∆∆,点B 与点E 是对应点,点A 与点D 是对应点,下列说法不一定成立的是( )A .AB DE =B .AC DF =C .BE EC =D .BE CF =4.(2分)如图,点E 在线段AB 上,若AC AD =,CE DE =,则图中的全等三角形共有( )A .1对B .2对C .3对D .4对5.(2分)若等腰三角形的两边长分别是3,5,则第三边长是( ) A .3B .5C .3或5D .4或66.(2分)如图,线段AB 与CD 相交于点P ,∥AC BD ,∠A =39°,∠D =50°,则( )A .39°APD ∠=B .50°APD ∠=C .89°APD ∠=D .76°APD ∠=7.(2分)计算23()a a -的结果有( ) A .6aB .6a -C .5a -D .5a8.(2分)与分式a ba b-+--相等的是( ) A .a ba b-+B .a b a b +--C .a ba b+-D .a ba b--+ 9.(2分)下列式子可利用平方差公式计算的是( ) A .(3)(3)a b a b --+ B .(43)(34)b a a b ---+C .()()a b a b +--D .(2)(3)a b a b -+10.(2分)到三角形三边距离相等的点是( ) A .三角形的两条平分线的交点 B .三角形的两条高的交点 C .三角形的三条中线的交点D .三角形的三条边的垂直平分线的交点二、填空题(本大题共6小题,每小题3分,共18分) 11.(3分)分解因式:ab bc += . 12.(3分)若分式12x -有意义,则x 的取值范围为 . 13.(3分)若(-3)1m m =成立,则m 的值为 .14.(3分)如图,在ABC ∆中,DB DC =,比较ABD ∆的面积与ADC ∆的面积的大小,则ABD S ∆ ADC S ∆(填写“<”,“=”,“>”)15.(3分)下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是 (填序号)16.(3分)在ABC ∆中,90°B ∠=,AD 平分BAC ∠交BC 于D ,DE 是AC 的垂直平分线,若1BD =,那么BC = .三、解答题(本大题共8题,共62分)17.(6分)尺规作图(不写作法,保留作图痕迹) 如图,已知ABC ∆,求作ABC ∆的高AD .18.(6分)如图,在ABC ∆中,BD 为ABC ∆的角平分线,如果47°A ∠=,116°ADB ∠=,求ABC ∠和C ∠的度数.19.(8分)计算:(1)()()a a b b a b +-- (2)2(2)(2)(2)2(2)x y y x y x x x y -+++-+20.(8分)计算:(1)22153714x y xy ab ab -÷-; (2)231926x x ---.21.(8分)如图,在ABC ∆中,AB AC =,AE AF =,BF 与CE 相交于D . (1)求证:≌AEC AFB ∆∆; (2)求证:ED FD =.22.(8分)甲做360个零件与乙做480个零件所用的时间相等,已知甲比乙每天少做2个零件,求甲、乙每天各做多少个零件?23.(8分)如图,在ABC ∆中,AD 平分BAC ∠交BC 于D ,∥DE AC 交AB 于E ,过E 作EF AD ⊥,垂足为H ,并交BC 延长线于F .(1)求证:AE ED =;(2)Q 请猜想B ∠与CAF ∠的大小关系,并证明你的结论.24.(10分)两个不相等的实数a ,b 满足225a b +=. (1)若2ab =,求a b +的值;(2)若22a a m -=,22b b m -=,求a b +和m 的值.2016-2017学年广东省广州市黄埔区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2016秋•黄埔区期末)在直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则()A.B(3,5)B.B(﹣3,﹣5)C.B(5,3)D.B(5,﹣3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:∵点A(﹣3,5)与点B关于x轴对称,∴点B的坐标为(﹣3,﹣5).故选B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.2.(2分)(2016•岳池县模拟)在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°【分析】根据等腰三角形性质,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是熟练掌握三角形内角和定理.3.(2分)(2016秋•黄埔区期末)如图,已知△ABC≌△DEF,点B与点E是对应点,点A 与点D是对应点,下列说法不一定成立的是()A.AB=DE B.AC=DF C.BE=EC D.BE=CF【分析】根据全等三角形的性质判定即可.【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故选C【点评】此题主要考查了三角形全等的性质,关键是根据全等三角形的性质得出对应边相等.4.(2分)(2016秋•黄埔区期末)如图,点E在线段AB上,若AC=AD,CE=DE,则图中的全等三角形共有()A.1对B.2对C.3对D.4对【分析】由已知易得△ACE≌△ADE,从而运用全等三角形性质及判定方法证明△CEB≌△DEB,△ABC≌△ABD.【解答】解:图中的全等三角形共有3对.∵AC=AD,CE=DE,AE公共,∴△ACE≌△ADE.(SSS)进而得出△CEB≌△DEB,△ABC≌△ABD;故选C【点评】此题考查了全等三角形的判定和性质,注意不要漏解.5.(2分)(2016秋•黄埔区期末)若等腰三角形的两边长分别是3,5,则第三边长是()A.3 B.5 C.3或5 D.4或6【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:由题意得,当腰为3时,则第三边也为腰,为3,此时3+3>5.故以3,3,5可构成三角形;当腰为5时,则第三边也为腰,此时3+5>5,故以3,5,5可构成三角形.故第三边长是3或5.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(2分)(2016秋•黄埔区期末)如图,线段AB与CD相交于点P,AC∥BD,∠A=39°,∠D=50°,则()A.∠APD=39°B.∠APD=50°C.∠APD=89°D.∠APD=76°【分析】先根据平行线的性质,得出∠B=∠A=39°,再根据三角形外角性质,得出∠APD=∠B+∠D=39°+50°=89°即可.【解答】解:∵AC∥BD,∠A=39°,∴∠B=∠A=39°,∵∠APD是△BDP的外角,∴∠APD=∠B+∠D=39°+50°=89°,故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质的综合应用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.7.(2分)(2016秋•黄埔区期末)计算(﹣a)2a3的结果有()A.a6B.﹣a6C.﹣a5D.a5【分析】根据积的乘方,可得同底数幂的乘法,根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:原式=a2•a3=a5,故选:D.【点评】本题考查了积的乘方,熟记法则并根据法则计算是解题关键.8.(2分)(2016秋•黄埔区期末)与分式相等的是()A. B.C. D.【分析】利用分式的基本性质,分子分母同时乘﹣1即可.【解答】解:∵==,故选A.【点评】本题考查分式是基本性质,解题的关键是灵活运用分式的基本性质解决问题,属于基础题,中考常考题型.9.(2分)(2016秋•黄埔区期末)下列式子可利用平方差公式计算的是()A.(a﹣3b)(﹣a+3b)B.(﹣4b﹣3a)(﹣3a+4b)C.(a+b)(﹣a﹣b)D.(a﹣2b)(a+3b)【分析】原式各项利用平方差公式计算即可得到结果.【解答】解:能用平方差公式计算的为(﹣4b﹣3a)(﹣3a+4b),故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.(2分)(2016秋•黄埔区期末)到三角形三边距离相等的点是()A.三角形的两条平分线的交点B.三角形的两条高的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点【分析】根据到角的两边的距离相等的点在它的平分线上解答.【解答】解:∵点到两边距离相等,∴这个点在两边夹角的平分线上,同理可知,这个点在任意两边夹角的平分线上,∴这个点是三角形的两条平分线的交点,故选:A.【点评】此题主要考查了角平分线的性质,熟记角平分线上的点到角的两边的距离相等是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2016秋•黄埔区期末)分解因式:ab+bc=b(a+c).【分析】直接提取公因式b,进而分解因式得出答案.【解答】解:ab+bc=b(a+c).故答案为:b(a+c).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(3分)(2017•海淀区二模)若分式有意义,则x的取值范围为x≠2.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.13.(3分)(2016秋•黄埔区期末)若(m﹣3)m=1成立,则m的值为2,4,0.【分析】根据乘方的意义,可得答案.【解答】解:当m=2时,(m﹣3)m=(﹣1)2=1;当m=4时,(m﹣3)m=13=1;当m=0时,(m﹣3)m=(﹣3)0=1,故答案为:2,4,0.【点评】本题考查了零指数幂,利用了零指数幂,负数的偶数次幂,1的任何次幂.14.(3分)(2016秋•黄埔区期末)如图,在△ABC中,DB=DC,比较△ABD的面积与△ADC 的面积的大小,则S△ABD=S△ADC(填写“<”,“=”,“>”)【分析】根据三角形的面积=底×高÷2,由DB=DC,A到DB、DC的距离相等,可得S△ABD=S△ADC.【解答】解:∵DB=DC,A到DB、DC的距离相等,∴S△ABD=S△ADC.故答案为:=.【点评】此题主要考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:三角形的面积=底×高÷2.15.(3分)(2016秋•黄埔区期末)下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是①③(填序号)【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.正确的有①③,故答案为:①③.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.16.(3分)(2016秋•黄埔区期末)在△ABC中,∠B=90°,AD平分∠BAC交BC于D,DE是AC的垂直平分线,若BD=1,那么BC=3.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,角平分线上的点到角的两边的距离相等可得DC=DE,然后根据直角三角形的性质即可得到结论.【解答】解:∵∠B=90°,DE是AC的垂直平分线,若BD=1,∴DC=AD,BD=DE,CE=AE,∵AD平分∠BAC交BC于D,∴AB=AE,∴AC=2AB,∴∠C=30°∴∠CAB=60°,∴∠BAD=30°,∴AD=2BD=2,∴CD=2,∴BC=3.\故答案为:3.【点评】本题考查了线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.三、解答题(本大题共8题,共62分)17.(6分)(2016秋•黄埔区期末)尺规作图(不写作法,保留作图痕迹)如图,已知△ABC,求作△ABC的高AD.【分析】以点A为圆心,任意长为半径画圆,交BC于点E,F,再作线段EF的垂直平分线即可.【解答】解:如图,AD即为所求..【点评】本题考查的是作图﹣基本作图,熟知过直线外一点作直线垂线的作法是解答此题的关键.18.(6分)(2016秋•黄埔区期末)如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.【分析】根据三角形内角和定理求出∠ABD,根据角平分线的定义求出∠ABC,根据三角形内角和定理求出∠C.【解答】解:∵∠A=47°,∠ADB=116°,∴∠ABD=180°﹣47°﹣116°=17°,∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°﹣47°﹣34°=99°.【点评】本题考查的是三角形内角和定理的应用、角平分线的定义,掌握三角形内角和等于180°是解题的关键.19.(8分)(2016秋•黄埔区期末)计算:(1)a(a+b)﹣b(a﹣b)(2)(x﹣2y)(2y+x)+(2y+x)2﹣2x(x+2y)【分析】根据整式运算的法则即可求出答案.【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)原式=(x2﹣4y2)+(x2+4xy+4y2)﹣(2x2+4xy)=0【点评】本题考查整式运算,涉及多项式乘以多项式,完全平方公式.20.(8分)(2016秋•黄埔区期末)计算:(1)÷;(2)﹣.【分析】(1)结合分式混合运算的运算法则进行求解;(2)先将分式进行通分,然后结合分式混合运算的运算法则进行求解即可.【解答】解:(1)原式=×=;(2)原式=﹣=﹣==﹣.【点评】本题考查了分式的混合运算,解答本题的关键在于熟练掌握分式混合运算的运算法则以及分式的通分.21.(8分)(2016秋•黄埔区期末)如图,在△ABC中,AB=AC,AE=AF,BF与CE相交于D.(1)求证:△AEC≌△AFB;(2)求证:ED=FD.【分析】(1)根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的判定和性质即可得到结论.【解答】证明:(1)在△AEC与△AFB中,,∴△AEC≌△AFB;(2)∵△AEC≌△AFB,∴∠FCD=∠EBD,∵AB=AC,AE=AF,∴BE=CF,在△EDB与△FDC中,,∴△EBD≌△FDC,∴ED=FD.【点评】本题考查了全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.22.(8分)(2016秋•黄埔区期末)甲做360个零件与乙做480个零件所用的时间相等,已知甲比乙每天少做2个零件,求甲、乙每天各做多少个零件?【分析】设乙每天做x个零件,则甲每天做(x﹣2)个,根据等量关系:甲做360个零件与乙做480个零件所用的时间相等,列方程求解.【解答】解:设乙每天做x个零件,则甲每天做(x﹣2)个零件,由题意得=,解得:x=8,经检验:x=8是原方程的根,x﹣2=8﹣2=6.答:甲每天做6个零件零件,乙每天做8个零件.【点评】本题考查分式方程的应用,解答本题的关键是读懂题意,根据题意找到合适的等量关系,列方程求解.23.(8分)(2016秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC 交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.【分析】(1)感觉平行线的性质和角平分线的定义即刻得到结论;(2)根据线段的垂直平分线的性质证明FA=FD,得到∠FAD=∠FDA,根据三角形外角的性质得到∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,根据等量代换得到答案.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∵AE=ED,EF⊥AD,AD平分∠BAC,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CA.【点评】本题考查的是线段的垂直平分线的性质、角平分线的定义和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.24.(10分)(2016秋•黄埔区期末)两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.【分析】(1)先根据完全平方公式求出(a+b)2,再求出即可;(2)两等式相加、相减,变形后求出a+b=2,再变形后代入a2+b2﹣2(a+b)=2m,即可求出m.【解答】解:(1)∵a2+b2=5,ab=2,∴(a+b)2=a2+2ab+b2=5+2×2=9,∴a+b=±3;(2)∵a2﹣2a=m,b2﹣2b=m,∴a2﹣2a=b2﹣2b,a2﹣2a+b2﹣2b=2m,∴a2﹣b2﹣2(a﹣b)=0,∴(a﹣b)(a+b﹣2)=0,∵a≠b,∴a+b﹣2=0,∴a+b=2,∵a2﹣2a+b2﹣2b=2m,∴a2+b2﹣2(a+b)=2m,∵a2+b2=5,∴5﹣2×2=2m,解得:m=,即a+b=2,m=.【点评】本题考查了分解因式和完全平方公式等知识点,能灵活运用公式进行变形是解此题的关键.参与本试卷答题和审题的老师有:星期八;wd1899;1987483819;HJJ;szl;2300680618;弯弯的小河;sks;知足长乐;gbl210;放飞梦想;sjzx;王学峰;ZJX;神龙杉;caicl;zjx111(排名不分先后)菁优网2017年6月19日。