广州市执信中学2018-2019学年高三上学期第三次月考试卷数学含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市执信中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .
11
a b
< C .22a b > D .33a b > 2. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80
D .S 21=84
3. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )
A .4
B .5
C .6
D .7
4. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若
+
,则x 、y 的值分
别为( )
A .x=1,y=1
B .x=1,y=
C .x=,y=
D .x=,y=1
5. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )
A.{}|12x x <≤
B.{}|21x x -≤≤
C. {}2,1,1,2--
D. {}1,2
【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.
6. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )
A .2
B .
C .
D .3
7. 函数2
2()(44)log x x f x x -=-的图象大致为( )
8. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3
y x π
=+
B .22sin(2)3y x π=+
C .2sin()23x y π=-
D .2sin(2)3
y x π=-
9. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )
A .11
B .12
C .13
D .14 10.某几何体的三视图如图所示,则此几何体不可能是( )
A
. B . C
. D
.
11.已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪
-+⎨⎪-+⎩
……… 内的概率为( )
A.
3
4
B.
38
C.
14
D.
18
【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.
12.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.等比数列{a n }的公比q=
﹣,a 6=1,则S 6= .
14.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A
.5- B
C
.6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
15.自圆C :2
2
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)
x ∈时2()1f x x =+,则(7)f 的值为 ▲ .
三、解答题(本大共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
17.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设
,且
,则的最小值为
(几何证明选做题)如图,中,
,以
为直径的半圆分别交
于点
,
若
,则
18.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p (0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率
(Ⅰ)设通讯器械上正常工作的元件个数为X ,求X 的数学期望,并求该通讯器械正常工作的概率P ′(列代数式表示)
(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.