九江学院2004-2011专升本数学试卷

合集下载

2005至2011年专升本高等数学试卷合集

2005至2011年专升本高等数学试卷合集

------------------------2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷--------------------2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)1.函数xe x x x y --=)1(sin 2的连续区间是____________________. 2.___________________________)4(1lim2=-+-∞→x x x x .3.(1)x 轴在空间中的直线方程是________________________.(2)过原点且与x 轴垂直的平面方程是._____________________4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=--1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点x=1处连续.5.设参数方程⎩⎨⎧==θθ2sin2cos 32r y r x , (1)当r 是常数,θ是参数时,则_______________=dx dy .(2)当θ是常数,r 是参数时,则=dxdy_____________.姓名:_____________准考证号:______________________报考学校 报考专业:------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值.)(A 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f , )(B 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , )(C 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , )(D 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则). ()2()3(lim000=--+→hh x f h x f h).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A3.设函数⎪⎩⎪⎨⎧<-=>=--0,00,0x ,)(22x e x e x f x x ,则积分⎰-11)(dx x f =( ). .2)( ,e1)( 0)( ,1)(D C B A -4.可微函数),(y x f z =在点),(00y x 处有0=∂∂=∂∂yz x z 是函数),(y x f z =在 点),(00y x 取得极值的( ).(超纲,去掉) )(A 充分条件, )(B 必要条件,)(C 充分必要条件, )( D 既非充分条件又非必要条件.5.设级数∑∞=1n na和级数∑∞=1n nb都发散,则级数∑∞=+1)(n n nb a是( ).)(A 发散, )(B 条件收敛, )(C 绝对收敛,)( D 可能发散或者可能收敛.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共10个小题,每小题7分,共70分)1.求函数xx x y )1(2+-=的导数.2. 求函数1223+-=x x y 在区间(-1,2)中的极大值,极小值.3. 求函数xe x xf 2)(=的n 阶导数nn dxfd .4.计算积分⎰-+-012231dx x x .5.计算积分⎰+dx e x 211.------------------------2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷--------------------6.计算积分⎰-+12)2(dx e x x x.7.设函数)sin()cos(y x xy z ++=,求偏导数x z ∂∂和yx z ∂∂∂2.(超纲,去掉).姓名:_____________准考证号:______________________报考学校 报考专业: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------8.把函数11+=x y 展开成1-x 的幂级数,并求出它的收敛区间.9.求二阶微分方程x y dx dydx y d =+-222的通解.10.设b a ,是两个向量,且,3,2==b a 求2222b a b a -++的值,其中a 表示向量a 的模. .四.综合题: (本题共2个小题,每小题10分,共20分)1.计算积分⎰++π212sin 212sinxdx m x n ,其中m n ,是整数.2.已知函数d cx bx ax x f +++=234)(23, 其中常数d c b a ,,,满足0=+++d c b a , (1)证明函数)(x f 在(0,1)内至少有一个根,(2)当ac b 832<时,证明函数)(x f 在(0,1)内只有一个根.------------------------2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷--------------------2006年浙江省普通高校“专升本”联考《高等数学(二)》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

九江学院2010年“专升本”《高等数学》试卷

九江学院2010年“专升本”《高等数学》试卷

九江学院2010年“专升本”《高等数学》试卷一、填空题:(每题3分,共15分)1.已知2(2)3f x x x +=-+,则()________f x =2.2020lim ________1t x x x e dt e →=-⎰3.曲面2221ax by cz ++=在点(1,1,1)处的切平面方程为4.级数213n n n ∞=∑ 。

(收敛或发散) 5.微分方程''2'50y y y -+=的通解为二、选择题(每题3分,共15分)1.已知2lim()01x x ax b x →∞--=+,其中,a b 是常数( ) A 1a b == B 1,1a b ==- C 1,1a b =-= D 1a b ==-2.曲线xe y x=( ) A 仅有水平渐近线 B 既有水平渐近线又有垂直渐近线C 仅有垂直渐近线D 既无水平渐近线又无垂直渐近线3.若33'()f x dx x c =+⎰,则()f x =( )A x c +B 3x c +C 5365x c +D 5395x c + 4.已知⎰⎰=xt x t dt e dt e x f 022022)()(,则=+∞→)(lim x f x ( ) A 1 B -1 C 0 D ∞+5.改变二次积分的积分次序ln 10(,)e x dx f x y dy =⎰⎰( )A 10(,)y e e dy f x y dx ⎰⎰B 0(,)y ee e dyf x y dx ⎰⎰ C 0(,)y ee e dyf x y dx ⎰⎰ D 10(,)y e e dy f x y dx ⎰⎰三、计算下列各题(每小题7分,共35分)1.求不定积分2(arcsin )x dx ⎰2.求由曲线1y x=与直线y x =及2x =所围成图形的面积 3.求函数2222(,)z f x y x y =+-的二阶偏导数2z x y∂∂∂,(其中f 具有二阶连续偏导数)4.求二重积分Dd σ⎰⎰,其中D是由两条抛物线2y y x ==所围成的闭区域。

2004年江苏省普通高校“专转本”统一考试高等数学参考答案

2004年江苏省普通高校“专转本”统一考试高等数学参考答案

2004年江苏省普通高校“专转本”统一考试高等数学参考答案1—6 A BC B A D 7、1-e 8、32241-+==-z y x 9、!n 10、C x +4arcsin 4111、dx y x f dy dx y x f dy yy⎰⎰⎰⎰-+2021010),(),( 12、()3,1-13、间断点为πk x =,Z k ∈,当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =,0≠k ,Z k ∈时,∞=→xxx sin lim0,为第二类间断点.14、原式=2411221lim 12)sin 1(tan lim 12sin tan lim 3)sin (tan lim320303040=⋅=-=-=-→→→→⎰xx x x x x x x x x dt t t x x x xx 15、0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y y y ,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, ⎰dx x xf )2('⎰⎰==)2(21)2()2(21'x xdf x d x xf ⎰-=dx x f x xf )2(21)2(21 Cx e x e x x x d x f x xf x x +--=-=⎰88)12()2()2(41)2(21222C e x x x+-=241 17、2arctan 2112)1(2111112122π==+=+-=-∞++∞+∞+∞⎰⎰⎰t dt t dt t t t x t dx x x18、y f f xz⋅+=∂∂'2'1; []x f f y f x f f yx z ⋅+-⋅++⋅+-⋅=∂∂∂''22''21'2''12''112)1()1( ''22''21''12''11'2xyf yf xf f f +-+-=19、原式dy y y dx y y dy dxdy y yy y D⎰⎰⎰⎰⎰-===1010sin )1(sin sin 2 1sin 1cos cos )1(110-=--=⎰ydy y y20、n nn n x x x x f 4)2()1(41421141241)(0--=-+⋅=-+=∑∞=,)42(<-x 21、证明:令x t -=π,⎰⎰⎰-=---=ππππππ0)(sin )()(sin()()(sin dt t f t dt t f t dx x xf⎰⎰-=πππ0)(sin )(sin dx x xf dx x f故⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,证毕.4)arctan(cos 2cos 1sin 2cos 1sin 200202ππππππ=-=+=+⎰⎰x dx x x dx xx x 22、等式两边求导的)(2)('x f x x xf +=即x x xf x f 2)()('=-且1)0(-=f ,x p -=,x q 2=,⎰-=22xpdx ,22e pdxee -=⎰,22x pdxe e =⎰-,222222x x pdxedx xqdx qe ---==⎰⎰⎰所以2222222)2()(x x x Ce eC ex f +-=+-=--,由1)0(-=f ,解得1=C ,222)(x ex f +-=23、设污水厂建在河岸离甲城x 公里处,则22)50(40700500)(x x x M -++=,500≤≤x ,0)50(40)50(22170050022'=-+-⨯⨯+=x x M解得650050-=x (公里),唯一驻点,即为所求.。

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。

九江学院2012年专升本《高等数学Ⅱ》考试大纲

九江学院2012年专升本《高等数学Ⅱ》考试大纲

九江学院2012年专升本《高等数学Ⅱ》考试大纲第一部分:总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。

应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

第二部分:复习考试内容函数、极限与连续(一)函数1.知识范围(1)函数的概念:函数的定义、函数的表示法、分段函数、隐函数。

(2)函数的简单性质:单调性、奇偶性、有界性、周期性。

(3)反函数:反函数的定义,反函数的图象。

(4)函数的四则运算与复合运算。

(5)基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。

(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

了解分段函数的概念。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数)(x f y =与其反函数)(1x f y -=之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系。

(二)极限1.知识范围(1)数列极限的概念:数列,数列的极限。

(2)数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列的极限存在定理。

(3)函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x 趋于无穷(x →∞,x →+∞,x →-∞)时函数的极限。

(4)函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(完整版)专升本高等数学习题集与答案

(完整版)专升本高等数学习题集与答案

·第一章 函数一、选择题1.以下函数中,【 C 】不是奇函数A.y tan x xB. y xC. y ( x 1) ( x 1)D. y2 sin 2 x2.f (x) 与 g( x) 同样的是【x以下各组中,函数 】A.f ( x) x, g( x)3x 3B.f ( x) 1, g( x) sec 2 xtan 2 xC. f ( x) x 1, g(x) x21D. f ( x) 2 ln x, g( x)ln x 23.x1以下函数中,在定义域内是单一增添、有界的函数是【】A. y x+arctan xB. y cosxC. yarcsin xD. y x sin x4. 以下函数中,定义域是 [,+ ] , 且是单一递加的是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x5. 函数 yarctan x 的定义域是 【】A. (0, )B. (2 , )2C.[, 2 ]D. (,+ )26. 以下函数中,定义域为 [ 1,1] ,且是单一减少的函数是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x7. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]8. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]9.以下各组函数中, 【 A 】 是同样的函数A. f ( x) ln x 2和 gx 2ln x B. f (x)x 和 g xx 2C. f ( x) x 和 g x ( x )2D. f ( x) sin x 和 g(x) arcsin x10. 设以下函数在其定义域内是增函数的是【】A. f ( x) cos xB. f ( x) arccos xC. f (x)tan xD. f (x)arctan x11. 反正切函数 y arctan x 的定义域是【】A. (, ) B. (0, )2 2C. ( , )D. [1,1]12. 以下函数是奇函数的是【】··A. y x arcsin xB.y x arccosxC.y xarccot xD. yx 2 arctan x13. 函数 y5ln sin 3x 的复合过程为 【 A 】A. y 5u ,u ln v, v w 3 , w sin xB. y 5u 3, u ln sin xC. y5ln u 3 ,u sin x D. y5u , u ln v 3,v sin x二、填空题1.函数 yarcsin xarctan x的定义域是 ___________.5 5 2.f ( x)x 2arcsin x的定义域为 ___________.33.函数 f ( x) x 2 arcsinx 1的定义域为 ___________。

九江学院专升本高等数学模拟题 (2)

九江学院专升本高等数学模拟题 (2)

专升本高等数学(二)模拟103一、选择题1、当x→0时,下列变量是无穷小量的是______2、曲线y=x3-3x上切线平行于x轴的点是______A.(0,0) B.(1,2)C.(-1,2) D.(-1,-2)3、若f(u)可导,且y=f(e x),则dy=______A.f'(e x)dx B.f'(e x)e x dxC.f(e x)e x dx D.f'(e x))等于______4、已知函数y=f(x)在点飘处可导,且,则f'(xA.-4 B.-2 C.2 D.45、如果在区间(a,b)内,函数f(x)满足f'(x)>0,f"(x)<0,则函数在此区间是______A.单调递增且曲线为凹的 B.单调递减且曲线为凸的C.单调递增且曲线为凸的 D.单调递减且曲线为凹的6、曲线y=(x-1)3-1的拐点是______A.(2,0) B.(1,-1)C.(0,-2) D.不存在7、若,则f(x)等于______8______9、设z=x y,则dz=______A.yx y-1dx+x y lnxdy B.x y-1dx+ydyC.x y(dx+dy) D.x y(xdx+ydy)10、某建筑物按设计要求使用寿命超过50年的概率为0.8,超过60年的概率为0.6,该建筑物经历了50年后,它将在10年内倒塌的概率等于______A.0.25 B.0.30 C.0.35 D.0.40二、填空题11、______.12、当f(0)=______时,在x=0处连续.13、若f'(x0)=1,f(x)=0,______.14、设y=x2cosx+2x+e,则y'=______.15、______.16、______.17、设f(x)=e-x,______.18、设z=cos(xy2),______.19、设______.20、设______.三、解答题21、22、试确定a,b的值,使函数23、设y=lncosx,求y"(0).2425、从一批有10件正品及2件次品的产品中,不放回地一件一件地抽取产品,设每个产品被抽到的可能性相同,求直到取出正品为止所需抽取的次数X的概率分布.26、确定函数y=2x4-12x2的单调区间、极值及函数曲线的凸凹性区间和拐点.27、求曲线y=x2与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.28、求由方程2x2+y2+z2+2xy-2x-2y-4z+4=0确定的隐函数的全微分.答案:一、选择题1、C本题考查了无穷小量的知识点.经实际计算及无穷小量定义知应选C.注:先观察四个选项,从已知极限,先把A排除,再利用lnx的性质可把B排除,C自然可验证是正确的,由cotx的性质,可排除D项.2、C本题考查了曲线上一点处的切线的知识点.由y=x3-3x得y'=3x2-3,令y'=0,得x=±1,经计算x=-1时,y=2;x=1时,y=-2,故选C.3、B本题考查了复合函数的微分的知识点.因为y=f(e x),所以,y'=f'(e x)e x dx.4、B本题考查了利用定义求函数的一阶导数的知识点.)=-2.因=于是f'(x5、C本题考查了函数的单调性和凹凸性的知识点.因f'(x)>0,故函数单调递增,又f"(x)<0,所以函数曲线为凸的.6、B本题考查了曲线的拐点的知识点.因y=(x-1)3-1,y'=3(x-1)2,y"=6(x-1),令y"=0得x=1,当x<1时,y"<=-1,于是曲线有拐点(1,-1).0;当x>1时,y">0,又因y|x=17、D本题考查了不定积分的知识点.因|f(x)dx=ln(x+)+C,所以f'(x)==8、C本题考查了无穷区间的反常积分的敛散性的知识点.对于选项A:=lim|cosxdx=lim(sinb-sin1)不存在,此积分发散;对于选项B:=不存在,此积分发散;对于选项C:,此积分收敛;对于选项D:=不存在,此积分发散.9、A本题考查了二元函数的全微分的知识点.由,所以10、A本题考查了条件概率的知识点.设A={该建筑物使用寿命超过50年},B={该建筑物使用寿命超过60年} 由题意,P(A)=0.8,P(B)=0.6,所求概率为:二、填空题11、本题考查了极限的知识点.12、mk本题考查了函数在一点处连续的知识点.所以当f(0)=km时,f(x)在x=0处连续.13、-114、2xcosx-x2sinx+2x ln2本题考查了一元函数的一阶导数的知识点.(x2cos)'=2xcosx-x2sinx,(2x)'=2x·ln2,e'=0,所以y'=2xcosx-x2sinx+2x ln2.15、本题考查了定积分的知识点.因函数在[-1,1]上是奇函数,因此.注:奇偶函数在对称区间上积分的性质是常考题目之一,应注意.16、本题考查了洛必达法则的知识点..17、本题考查了不定积分的知识点.本题也可另解如下:由f(x)=e-x得f'(x)=-e-x,所以f'(lnx)=-e-lnx=,故18、-2xysin(xy2)本题考查了二元函数的一阶偏导数的知识点.因z=cos(xy2),故=-sin(xy2)·(xy2)'=-2xysin(xy2).19、本题考查了二元函数的一阶偏导数的知识点.20、(1+xe y)e y+xey本题考查了二元函数的混合偏导数的知识点.因z=e xey,于是;三、解答题21、原式==注:将分母sin2x用与之等价的无穷小量x2代换,这是一个技巧. 22、因为f(x)在处连续,则=,即a=1,b=2. 23、所以y"(0)=-1. 24 25、由题意,X的所有可能的取值为1,2,3,X=1,即第一次就取到正品,P{x=1}=;X=2,即第一次取到次品且第二次取到正品,;同理,,故X的概率分布如下26、y'=8x3-24x,y"=24x2-24,令y'=0,得.令y"=0,得时,y'<0;<x<0时,y'>0;0<x<时,y'<0;x>时,y'>0.于是,函数的递增区间为;递减区间为;有极小值f(±)=-18,有极大值f(0)=0.又因当-∞<x<-1时,y">0,则y为凹函数;当-1<x<1时,y"<0,则y为凸函数;当1<x<+∞时,y">0,则y为凹函数.综上得函数y的凹区间为(-∞,-1)和(1,+∞),凸区间为(-1,1),且拐点为(-1,-10)和(1,-10). 27、如图所示,在x=a处切线的斜率为=2a,切线方程为y-a2=2a(x-a),y'|x=a即y=2ax-a2,28、等式两边对x求导,将y看做常数,则=,同理,.。

(完整)2011高数专升本试卷及答案,推荐文档

(完整)2011高数专升本试卷及答案,推荐文档

河北省2011年普通高校专科接本科教育选拔考试《数学(二)》(财经类)试卷(考试时间60分钟)说明:请将答案填写在答题纸的相应位置上,填在其它位置上无效。

一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其它位置上无效)1.函数 91)1ln(2-++=x x y 定义域为( )A. (-1,+∞)B. (-1,3)C. (3,+∞)D. (-3,3)2.极限)(x 1x 2xx lim =⎪⎭⎫⎝⎛-∞→A.e 2B. 1C. 2D. e 2-3.已知函数⎪⎪⎩⎪⎪⎨⎧>+=<=021cos 00sin )(x x x x b x xaxx f 在定义域内连续,则)(=+b aA. 4B. 2C. 1D. 04.由方程3+=xy e y 所确定的隐函数)(x y y =的导数)(=dxdy-A. x e y y -B.yx e y - C.x e y y + D. x e y y --5.曲线1322+-=x x y 的凹区间为( )A. (]0,∞-B.[)+∞,0C.(]1,∞-D.[)+∞,16.已知某产品的总收益函数与销售量x 的关系为210)(2x x x R -=,则销售量x=12时的边际收益为( )A. 2B.2-C.1D.1-7.设)(x F 是)(x f 的一个原函数,则⎰=--)()(dx e f e xxA.C e F x +-)(B.C eF x+--)( C. C e F x +)( D. C e F x +-)(8.微分方程xe y y =-'满足初始条件00==x y的特解为( )A. )(c x e x+ B. )1(+x e xC.1-x eD. xxe9. 当( )时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλλ 有非零解-A.1≠λB.2-≠λC.12=-=λλ或 D. 12≠-≠λλ且10.下列级数发散的是( )A. ∑∞=-11)1(n nn B.∑∞=-152)1(n n n C.∑∞=11n n D.∑∞=-121)1(n n n 二.填空题(本大题共5小题,每小题4分,共20分,将答案填写在答题纸的相应位置上,填写在其它位置上无效)11.已知2xe 为)(x f 的一个原函数,则⎰________)('dx x xf12.幂级数∑∞=--113)1(n n nn x 的收敛半径为_____________ 13.已知二元函数________________),ln(22=∂∂+=xzy x x z 则14.二阶方阵A 满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10122111A ,则_____________=A 15.微分方程y y xy ln '=的通解为_____________________=y三.计算题(本大题共4小题,每小题10分,共40分,将解答的主要过程、步骤和答案填写在答题的相应位置上,填写在其它位置上无效) 16. 求极限⎪⎭⎫ ⎝⎛--→1e 1x 1lim x 0x 17.求由曲线2e y =与其在点)e ,1(处的切线及主轴所围成平面图形的面积。

2011九江学院专升本高数考试大纲

2011九江学院专升本高数考试大纲

九江学院2012年专升本《高等数学Ⅱ》考试大纲第一部分:总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。

应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

第二部分:复习考试内容一、 函数、极限与连续(一)函数1.知识范围(1)函数的概念:函数的定义、函数的表示法、分段函数、隐函数。

(2)函数的简单性质:单调性、奇偶性、有界性、周期性。

(3)反函数:反函数的定义,反函数的图象。

(4)函数的四则运算与复合运算。

(5)基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。

(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

了解分段函数的概念。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数)(x f y =与其反函数)(1x fy -=之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系。

(二)极限1.知识范围(1)数列极限的概念:数列,数列的极限。

(2)数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列的极限存在定理。

(3)函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x 趋于无穷(x →∞,x →+∞,x →-∞)时函数的极限。

(4)函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

广东省专插本-高等数学-2004-2010年-历年题集(含答案)

广东省专插本-高等数学-2004-2010年-历年题集(含答案)
4、下列函数中,不是 的原函数的是
A. B. C. D.
5、已知函数 ,则dz=
A. B.ydx+xdyC. D.
二、填空题(本大题共5小题,每小题3分,共15分)
6、极限 =。
7、曲线y=xlnx在点(1,0)处的切线方程是=。
8、积分 =。
9、设 ,则 =。
10、微分方程 的通解是。
三、计算题(本大题共8小题,每小题6分,共48分)
5、设 则
A.等于1 B.等于-1 C.等于0 D.不存在
二、填空题(本大题共5小题,每小题3分,共15分)
6、极限 。
7、设 ,要使 在 处连续,应补充定义 =。
8、设函数 ,则其函数图像的水平渐近线方程是。
9、微分方程 的通解是y=。
10、设 ,则全微分du=。
三、计算题(本大题共8小题,每小题6分,共48分)
11、求极限 。
12、计算不定积分 。
13、设函数 。
14、函数y = y(x)是由方程 所确定的隐函数,求 在点(1,0)处的值。
15、计算定积分 。
16、求二重积分 ,其中积分区域 。
17、设函数 ,求 。
18、求微分方程 满足初始条件 的特解。
四、综合题(本大题共2小题,第19小题14分,第20小题8分,共22分)
1、函数 的定义域是
A.( ,0) (0, )B.( ,0)
C.(0, )D.Ø
2、极限
A.等于-1 B.等于0 C.等于1 D.不存在
3、设 是 在(0, )内的一个原函数,下列等式不成立的
A. B.
C. D.
4、设函数 ,则下列结论正确的是
A. 的极大值为1 B. 的极小值为1

往年江西专升本试题及答案

往年江西专升本试题及答案

往年江西专升本试题及答案江西专升本考试是江西省为专科生提供升入本科学习机会的一种选拔性考试。

以下是一份模拟的往年江西专升本试题及答案,仅供参考:一、选择题(每题2分,共20分)1. 江西专升本考试的全称是什么?A. 江西省专科生升本科考试B. 江西省本科入学考试C. 江西省专科生升学考试D. 江西省专科生转学考试答案:A2. 以下哪项不是江西专升本考试的科目?A. 语文B. 数学C. 英语D. 体育答案:D3. 江西专升本考试通常在每年的哪个月份举行?A. 1月B. 3月C. 6月D. 9月答案:C4. 江西专升本考试的总分是多少?A. 300分B. 400分C. 500分D. 600分答案:C5. 江西专升本考试的报名条件是什么?A. 必须是江西省户籍B. 必须是全日制专科在校生C. 必须通过英语四级考试D. 必须有工作经验答案:B...二、填空题(每空1分,共10分)1. 江西专升本考试的报名通常在考试前 _______ 个月进行。

答案:32. 江西专升本考试的录取率通常在 _______ 左右。

答案:30%3. 江西专升本考试的考试内容包括 _______ 、 _______ 、 _______ 等科目。

答案:语文、数学、英语...三、简答题(每题10分,共20分)1. 简述江西专升本考试的报名流程。

答案:考生需要在规定的时间内登录江西省教育考试院的官方网站进行网上报名,填写个人信息,上传照片,选择考试科目,提交报名信息,并在规定时间内完成网上缴费。

报名成功后,考生需要在指定时间打印准考证,并按照准考证上的时间、地点参加考试。

2. 江西专升本考试的录取原则是什么?答案:江西专升本考试的录取原则是“公平、公正、公开”,依据考生的考试成绩和志愿,按照“分数优先,遵循志愿”的原则进行录取。

...四、论述题(每题15分,共30分)1. 论述江西专升本考试对专科生的意义。

答案:江西专升本考试为专科生提供了一个继续深造的机会,使他们能够通过考试获得进入本科院校学习的机会。

专转本数学历年真题

专转本数学历年真题

2001年江苏省普通高校“专转本”统一考试 高等数学 负责人:张源教授装饰11-2一、选择题 (本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctanπ+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2yx x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、y x z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

九江学院专升本3套模拟题答案

九江学院专升本3套模拟题答案

模拟试卷(一)参考答案一、单项选择题(每题1分,共20分)1-5 CBBBD 6-10 ACCCC 11-15 DAABD 16-20 ABCBA二、多项选择题(10*2=20分)1.AD 2.ABD 3.AD 4.ABCD 5.BC6.ABD 7.ABD 8.ACD 9.BCD 10.ABD三、填空题(每空1分,共10分)1.平均无故障工作时间 2. ARPANET 3.通信技术 4.多态性 5.内聚6.元组 7. DMA 8. Chart1 9. 24 10. 123400四、判断题(每小题1分,共10分)1.√ 2.X 3.X 4.√ 5.√ 6.√ 7.√ 8.X 9.X 10.X五、简答题(前5题每题4分,后两题每题10分共40分)1.参考答案:一个完整的计算机系统由硬件系统和软件系统两大部分组成。

硬件系统是计算机系统的实体,主要由五大部分组成:运算器、控制器、存储器、输入设备和输出设备。

软件系统主要是指让计算机完成各种任务所需的程序,包括系统软件和应用软件两大类。

2.参考答案:任务是在软件投入生产性运行之前,尽可能多地发现软件中的错误。

与测试的区别:测试是为了发现软件中的错误,而调试是诊断并改正错误。

3.参考答案:RAM是随机存储器。

断电后的内容全部丢失,既可以读又可以写,速度比Cache 慢,可分为静态RAM(SRAM)和动态RAM(DRAM)两种。

ROM是只读存储器。

计算机运行时其内容只能读出而不能写入。

数据不易丢失,即使计算机断电后ROM存储单元的内容依然保存。

只读存储器一般存储计算机系统中固定的程序和数据,如引导程序、监控程序等。

4.参考答案:按计算机机型分,可分为微型计算机操作系统、小型计算机操作系统和大型计算机操作系统;按用户数目,可分为单用户操作系统和多用户操作系统;按处理方式,可分为批处理系统、分时操作系统、实时操作系统、网络操作系统和多媒体操作系统;按处理语言,可分为英文操作系统、中文操作系统、日文操作系统等;按用户操作界面,可分为字符型操作系统和图形操作系统。

九江学院专升本试卷二和答案

九江学院专升本试卷二和答案

答案:
一,填空题:
1.程序窗口软件窗口
2.Ctrl
3. D
4.控制器和运算器
5. 2
6.不及格
7.域名
8.排序
9.选定打印内容
10.二进制
二,选择题
1-5: DBDBC 6-10: DBADD 11-15: ACBBB
16-20: CDCCC 21-25: BABDA 26-30: DCABB
三,判断题
1-5:对错对错对 6-10:错对对错错
四,简答题
1,基本特征:采用二进制表示,程序存储,计算机系统组成
工作过程:取指令――分析指令――执行指令――循环以上步骤――直到程序执行结束
(或数据通过输入设备进入计算机存储器,在控制器的指挥下在运算器进行逻辑运算和
算术运算处理,通过输出设备把结果告诉计算机用户)
2,开始选项卡―――编辑组―――-替换―――编辑栏里输入电脑――替换栏里输入计算机――――全部替换
3,切换选项卡―――切换到此幻灯片―――华丽型――――溶解
4,网络接口层――网络层――传输层―――应用层
五、计算题
1,
(1)26.3125 D=11010.0101 B
(2)253.34 D=375.26 O=FD57 H
(3)3A9D.4 H=15005.25 D
2,
[+7]原码=[+7]反码=[+7]补码=00000111
[-7]原码=10000111
[-7]反码=11111000
[-7]补码=11111001。

九江学院历年专升本真题答案(09-10年)

九江学院历年专升本真题答案(09-10年)

2010年九江学院专升本计算机试题答案一、选择题1-5 CBACB 6-10 CDDCC11-15 BBBBC 16-20 BBDCD二、填空题1、冯·诺依曼或存储程序程序控制2、111010003、Ctrl+V4、CapsLock5、控制面板6、记事本7、Ctrl+Shift8、exe或com9、ctrl+A10、菜单栏下的“工具” “字数统计”11、页面12、F113、输入sheet2工作表中D14单元格中的数据14、3月19日15、浏览16、幻灯片放映17、 418、统一资源定位器19、网络加密技术20、光纤三、判断题1-5 对、错、错、错、错6-10 错、错、对、错、错11-15错、对、对、对、对四、简答题(略)1、(6’)简述计算机的特点和性能指标。

答、计算机的特点:①运算速度快;0.5’②计算精度高;0.5’③具有记忆功能;0.5’④具有逻辑判断功能;0.5’⑤具有自动执行程序功能。

0.5’计算的主要性能指标有:①字长;0.5’②存储容量;0.5’③运算速度;0.5’④外设扩展能力;0.5’⑤软件配置情况。

0.5’2、(4’)某毕业生写好了一篇毕业论文,请写出word文档中生成目录的步骤。

答:①把光标定位到需要插入目录的位置;1’②在菜单栏下选择“插入”→“引用”→“索引和目录”,双击弹出“索引和目录”对话框;2’③在“索引和目录”对话框中选择“目录”选项卡(标签),在“目录级别”列表框中输入所需的目录级别,单击“确定”按钮完成操作。

1’3、(5’)word文档打印时设置不当会造成纸张浪费,有哪些方法可以节约纸张?请写出步骤。

答:节省纸张主要通过以下方法相应的设置:①改变字号的大小及字符间距:打开“格式”菜单下的“字体”,单击“字体”对话框中“字体”选项卡,在字号列表框中选择一种合适的字号;单击“字体”对话框中“字符间距”选项卡,在“缩放”和“间距”列表框中进行适当的设置。

最新模拟江西专升本九江学院数学

最新模拟江西专升本九江学院数学

2009模拟江西专升本九江学院数学2010年专升本高等数学模拟题一. 选择题:*1. 当«Skip Record If...»时,«Skip Record If...»与«Skip Record If...»比较是()A. «Skip Record If...»是较«Skip Record If...»高阶的无穷小量B. «Skip Record If...»是较«Skip Record If...»低阶的无穷小量C. «Skip Record If...»与«Skip Record If...»是同阶无穷小量,但不是等价无穷小量D. «Skip Record If...»与«Skip Record If...»是等价无穷小量*2. 设函数«Skip Record If...»,则«Skip Record If...»等于()A. «Skip Record If...»B. «Skip Record If...»C. «Skip Record If...»D. «Skip Record If...»3. 设«Skip Record If...»,则向量«Skip Record If...»在向量«Skip Record If...»上的投影为()A. «Skip Record If...»B. 1C. «Skip Record If...»D. «Skip Record If...»*4. 设«Skip Record If...»是二阶线性常系数微分方程«Skip Record If...»的两个特解,则«Skip Record If...»()A. 是所给方程的解,但不是通解B. 是所给方程的解,但不一定是通解C. 是所给方程的通解D. 不是所给方程的通解*5. 设幂级数«Skip Record If...»在«Skip Record If...»处收敛,则该级数在«Skip Record If...»处必定()A. 发散B. 条件收敛C. 绝对收敛D. 敛散性不能确定二. 填空题:6. 设«Skip Record If...»,则«Skip Record If...»_________。

2004年江苏省普通高校专转本数学试卷

2004年江苏省普通高校专转本数学试卷
在每小题给出的四个选项中只有一项符合题目要求请把所选项前的字母填在题后的括号内a有界函数b奇函数c偶函数d周期函数2当时是关于的a高阶无穷小b同阶但不是等价无穷小c低阶无穷小价无穷小3直线与轴平行且与曲线相切则切点的坐标是10求不定积分11交换二次积分的次序12幂级数的收敛区间为三解答题本大题共8小题每小题5分满分40分13求函数的间断点并判断其类型
2004年江苏省普通高校“专转本”统一考试 高等数学
一、单项选择题(本大题共6小题,每小题3分,满分18分. 在每小题给出的四个选项中,
只有一项符合题目要求,请把所选项前的字母填在题后的括号内)
1、,是: A、有界函数 B、奇函数 C、偶函数 D、周期函数 2、当时,是关于的 A、高阶无穷小 B、同阶但不是等价无穷小 C、低阶无穷小 D、等 价无穷小 3、直线与轴平行且与曲线相切,则切点的坐标是 A、 B、 C、 D、 4、设所围的面积为,则的值为 A、 B、 C、 D、 5、设、,则下列等式成立的是 A、 B、 C、 D、 6、微分方程的特解的形式应为 A、 B、 C、 D、
四、综合题(本大题共3小题,每小题8分,满分24分) 21、证明:,并利用此式求. 22、设函数可导,且满足方程,求. 23、甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河 岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上 合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费 用分别为每公里500、700元。问污水处理厂建在何处,才能使铺设排 污管道的费用最省、A 2、B 3、C 4、B 5、A 6、D 7、 8、 9、 10、 11、 12、 13、间断点为,,当时,,为可去间断点;当,,时,,为第二类间断
点. 14、原式. 15、代入原方程得,对原方程求导得,对上式求导并将、代入,解 得:. 16、因为的一个原函数为,所以, 17、 18、; 19、原式 20、, 21、证明:令,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九江学院2011年“专升本”《高等数学》试卷一、填空题:(每题3分,共15分) 1.已知1(1)1x f x x -+=+,则1()________f x= 2.23ln(1)lim________x x t dt x →+=⎰3.无穷级数112nn n ∞=∑(收敛或发散) 4.微分方程''x y xe =的通解为 5.过点(3,1,2)-且与直线431534x y z -+-==垂直的平面方程为 (一般方程)二、选择题(每题3分,共15分) 1.下列极限不存在的是( )A 102030(2)lim (51)x x x x →∞++B 0sin lim n nx x x → C 1lim sin x x x→∞ D limln x x →∞ 2.已知(1)0f =,'(1)1f =,则21()lim1x f x x →=-( ) A 1 B 2 C12D 0 3.设()f x是连续函数,则40(,)xdx f x y dy =⎰⎰( )A244(,)yy dy f x y dx ⎰⎰ B 2440(,)y ydy f x y dx ⎰⎰C 41104(,)dy f x y dx ⎰⎰ D 2044(,)yy dy f x y dx ⎰⎰4.下列级数中条件收敛的是( ) A111(1)n n n∞-=-∑ B 1211(1)n n n ∞-=-∑ C 11(1)n n n ∞-=-∑ D11(1)ln n n n ∞-=-∑5.设函数()f x 的一个原函数是1x,则'()f x =( ) A ln x B 32x C 1xD 21x -三、计算题(每题6分,共30分)1.求极限123lim 21x x x x +→+∞+⎛⎫ ⎪+⎝⎭2.求不定积分3ln x xdx ⎰3.已知ln y x y =,求dy 4.求定积分90⎰5.求幂级数13nn n x n ∞=∑的收敛域四、解答及证明题(共40分)1.做一个底为正方形,容积为108的长方形开口容器,怎样做使得所用材料最省?(8分) 2.证明不等式:ln(1)1xx x x<+<+ (0)x > (7分) 3.计算二重积分D,其中D 是由曲线221x y +=及坐标轴所围的在第一象限内的闭区域(8分)4.设函数22(,),xz f ye x y =-其中f 具有二阶连续偏导数,求2zx y∂∂∂(9分)5.求微分方程''3'2cos x y y y e x -++=的通解(8分)九江学院2010年“专升本”《高等数学》试卷一、填空题:(每题3分,共15分)1.已知2(2)3f x x x +=-+,则()________f x = 2.220lim________1t x xx e dte →=-⎰3.曲面2221ax by cz ++=在点(1,1,1)处的切平面方程为4.级数213n n n ∞=∑ 。

(收敛或发散)5.微分方程''2'50y y y -+=的通解为 二、选择题(每题3分,共15分)1.已知2lim()01x x ax b x →∞--=+,其中,a b 是常数( ) A 1a b == B 1,1a b ==- C 1,1a b =-= D 1a b ==-2.曲线xe y x=( )A 仅有水平渐近线B 既有水平渐近线又有垂直渐近线C 仅有垂直渐近线D 既无水平渐近线又无垂直渐近线 3.若33'()f x dx x c =+⎰,则()f x =( )A x c +B 3x c +C 5365x c +D 5395x c +4.已知⎰⎰=x t xt dte dt e xf 02222)()(,则=+∞→)(lim x f x ( )A 1B -1C 0D ∞+ 5.改变二次积分的积分次序ln 10(,)ex dx f x y dy =⎰⎰( )A 10(,)y ee dyf x y dx ⎰⎰B0(,)y e ee dyf x y dx ⎰⎰C(,)ye e edy f x y dx ⎰⎰D1(,)y e edy f x y dx ⎰⎰三、计算下列各题(每小题7分,共35分) 1.求不定积分2(arcsin )x dx ⎰ 2.求由曲线1y x=与直线y x =及2x =所围成图形的面积 3.求函数2222(,)z f x y x y =+-的二阶偏导数2zx y∂∂∂,(其中f 具有二阶连续偏导数)4.求二重积分Dd σ⎰⎰,其中D是由两条抛物线2y y x ==所围成的闭区域。

5.求幂级数211(1)21n nn x n +∞=-+∑的收敛半径及收敛域。

四、解答及证明题(每小题8分,共40分)1.设函数21()1x x f x ax b x ⎧≤=⎨+>⎩,为了使函数()f x 在1x =处连续且可导,,a b 应取什么值?2.设函数()y y x =由方程1y xy e +=所确定,求''(0)y 3.设0>>a b ,用拉格朗日中值定理证明:ln a b b a ba a b--<<4.求过点(1,0,4)A -,且平行于平面:34100x y z α-+-=,又与直线113:112x y zL +-==相交的直线L 的方程 5.求微分方程2''1(')y y =+的通解九江学院2009年“专升本”高等数学试卷一、填空题:(每题3分,共15分)1.已知x x x f 3)1(2+=-,则=)(sin x f ______.2.已知⎪⎩⎪⎨⎧≤+>=0,0,1sin )(2x x a x xx x f 在R 上连续,则=a _____. 3.极限=+∞→xx xx 2)1(lim _________. 4.已知)1ln(2x x y ++=,则='y _____.5.已知函数xye z =,则此函数在(2,1)处的全微分=dz _____________.二、选择题:(每题3分,共15分)1.设)(x f 二阶可导,a 为曲线)(x f y =拐点的横坐标,且)(x f 在a 处的二阶导数等于零,则在a 的两侧( )A .二阶导数同号 B.一阶导数同号 C.二阶导数异号 D.一阶导数异号 2.下列无穷级数绝对收敛的是( )A .∑∞=--111)1(n n n B .∑∞=--111)1(n n n C .∑∞=--1121)1(n n n D .∑∞=--11)1(n n n 3.变换二次积分的顺序⎰⎰=2022),(yy dx y x f dy ( )A .⎰⎰22),(xx dy y x f dx B .⎰⎰42),(xx dy y x f dxC .⎰⎰422),(xx dy y x f dx D .⎰⎰42),(xxdy y x f dx4.已知⎰⎰=x t xt dtedt e x f 022022)()(,则=+∞→)(lim x f x ( )A .1B .-1C .0D .+∞5.曲面3=+-xy z e z在点(2,1,0)处的切平面方程为( )A .042=-+y xB .042=-+y xC .02=++y xD .042=++y x 三、计算下列各题(每小题7分,共35分)1.求极限)111(lim 0--→x x e x 2.求不定积分⎰xdx x cos 23.已知02sin 2=-+xy e y x ,求dxdy 4.求定积分⎰-+52111dx x5.求二重积分⎰⎰+D d y x σ)23(,其中D 是由两坐标轴及直线3=+y x 所围成的闭区域。

四、求幂级数∑∞=-1)3(n nnx 的收敛半径和收敛域。

(9分)五、已知),(xy y x f z +=,且f 具有二阶连续偏导数,试求yx z∂∂∂2。

(9分)六、求二阶微分方程xxe y y y =+-6'5''的通解。

(9分)七、设0>>a b ,证明不等式ba ab a b -<-ln ln 。

(8分)九江学院2008年“专升本”高等数学试卷注:1.请考生将试题答案写在答题纸上,在试卷上答题无效.2.凡在答题纸密封线以外有姓名、班级学号、记号的,以作弊论. 3.考试时间:120分钟一、填空题(每题3分,共15分)1. 设函数⎪⎪⎩⎪⎪⎨⎧=≠+=0,0,)1()(2x k x x x f x 在0=x 处连续,则参数=k __________.2. 过曲线2x y =上的点(1,1)的切线方程为_______________. 3. 设x y arccos =,则==0|'x y _______________.4. 设1)('=x f ,且0)0(=f ,则⎰=dx x f )(_______________.5. 设ye x z +=2,则z 的全微分=dz _______________. 二、选择题(每题3分,共15分)1.设)(x f y =的定义域为(0,1],x x ln 1)(-=ϕ,则复合函数)]([x f ϕ的定义域为( ) A.(0,1) B.[1,e] C.(1,e] D.(0,+∞) 2.设23231)(x x x f -=,则)(x f 的单调增加区间是( ) A.(-∞,0) B.(0,4) C.(4, +∞) D. (-∞,0)和(4, +∞)3.函数a a x x f (||)(+=为常数)在点0=x 处( )A.连续且可导B.不连续且不可导C.连续且不可导D.可导但不连续 4.设函数3)(x x f =,则xx f x x f x ∆-∆+→∆)()2(lim等于( )A.26x B.32x C.0 D.23x 5.幂级数∑∞=-1)21(n nx 的收敛区间为( ) A.[-1,3] B.(-1,3] C.(-1,3) D.[-1,3) 三、计算题(每题7分,共42分) 1.3sin limxxx x -→ 2.⎰xdx x sin3.已知⎪⎩⎪⎨⎧==⎰ta y udu a x tsin sin 0(a 为非零常数),求dx dy4.求直线2=+y x 和曲线2x y =及x 轴所围平面区域的面积. 5.计算二重积分⎰⎰Dydxdy ,其中D 是由22,x y y x ==所围平面区域. 6.求微分方程xxy xy ln '+=的通解. 四、设二元函数)ln(22y x z +=,试验证2=∂∂+∂∂yz y x z x(7分) 五、讨论曲线1234+-=x x y 的凹凸性并求其拐点.(7分)六、求幂级数∑∞=-111n n x n的收敛域,并求其和函数.(9分)七、试证明:当0≥x 时,x e x≥-1(5分)九江学院2007年“专升本”高等数学试卷一、填空题(每小题3分,共15分)1.已知⎪⎩⎪⎨⎧<≥+=0,0,)(2x e x a x x f x 在R 上连续,则=a _______.2.极限=+-∞→kxx x)11(lim _______.3.已知3x e y =,则=dxdy_______.4.x x f sin )(=在],0[π上的平均值为_______.5.过椭球632222=++z y x 上的点(1,1,1)的切平面为_______. 二、选择题(每小题3分,共15分) 1.若级数∑2na和∑2nb都收敛,则级数∑-n n nb a )1(( )A.一定条件收敛B.一定绝对收敛C.一定发散D.可能收敛,也可能发散 2.微分方程'''y y =的通解为( )A.xe c c y 21+= B.xe c x c y 21+= C.x c c y 21+= D. 221x c c y +=3.已知131)(23+-=x x x f ,则)(x f 的拐点的横坐标是( ) A.1=x B.0=x C.2=x D. 0=x 和2=x4.设)('0x f 存在,则xx x f x x f x ∆∆--∆+→∆)()(lim000=( )A.)('0x fB.)('20x fC.)('0x f -D.∞5.xxx 3sin lim0→等于( )A.0B.31C.1D.3三、计算(每小题7分,共35分)1. 求微分方程0)'(''2=-y yy 的通解. 2.计算⎰xdx x arctan 3.计算⎰⎰Dxyd σ,其中D 是由抛物线x y=2和直线2-=x y 所围成的闭区域.4.将函数341)(2++=x x x f 展开成)1(-x 的幂级数.5.求由方程xyy x )(sin )(cos =所确定的隐函数)(x f y =的导数dxdy . 四、求极限)2(1sin lim2007>⎰++∞→n dx xx n nn (9分)五、设)(x f 在[0,1]上连续,证明:⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并计算⎰+π2cos 1sin dx xxx .(10分) 六、设连续函数)(x f 满足方程⎰+=π2)(2)(x dt t f x f ,求)(x f .(10分)七、求极限]arctan ln )1arctan([ln lim 2x x x x -++∞→.(6分)九江学院2006年“专升本”高等数学试卷一、填空题(每小题3分,共15分) 1.极限=+∞→xx x)21(lim ___________. 2.设]1,0[,)(3∈=x x x f ,则满足拉格朗日中值定理的=ξ___________. 3.函数)ln(2y x z +=在点(1,1)的全微分是___________. 4.设⎰+=2221)(x tdt x f ,已知)(y g 是)(x f 的反函数,则)(y g 的一阶导数=)('y g ___.5.中心在(1,-2,3)且与xoy 平面相切的球面方程是_________. 二、选择题(每小题3分,共15分)1.下列各对函数中表示同一函数的是( )A.x x g x x f ==)(,)(2 B.x x g e x f x ==)(,)(lnC.1)(,11)(2+=--=x x g x x x f D.||)(,0,0,)(x x g x x x x x f =⎩⎨⎧<-≥= 2.当0→x 时,下列各对无穷小是等价的是( )A.2;cos 1x x -B.x e x2;1- C.x x );1ln(+ D.x x ;11-+3.已知函数的一阶导数x x f 22sin )(cos '=,则=)(x f ( )A.x 2cos B.C x +2sin C.22x x - D. C x x +-22 4.过点(1,-2,0)且与平面023=+-+-z y x 垂直的直线方程是( ) A.11231-=+=--z y x B. 11231zy x =--=+C.012113-=-+=-z y x D.⎩⎨⎧==++--00)2()1(3z y x 5.幂级数∑∞=-12)2(2)1(n n nx n的收敛区间为( ) A.)2,2(- B.)21,21(- C.)1,1(- D.)21,2(- 三、计算题(每小题5分,共40分) 1.求极限30sin tan limxxx x -→ 2.求摆线⎩⎨⎧-=-=)cos 1(2)sin (2t y t t x 在2π=t 处的切线方程.3.方程0=--yxe e xy 确定了一个隐函数)(xf y =,求0|'=x y .4.求不定积分⎰-+dx xe e xx)cos 1(25.求定积分⎰π202cos xdx x6.求由抛物线x y =2与半圆22y x -=所围成图形的面积.7.设D 为:422≤+y x ,求二重积分⎰⎰+Ddxdy y x )(22 8.求常系数线性齐次微分方程0'4'3''=--y y y 满足初始条件5)0(',0)0(-==y y 的特解. 四、求函数⎰+-=xdt t tx f 0211)(的极值.(7分)五、求幂级数∑∞=+02!)12(n nx n n 的和函数.(7分) 六、应用中值定理证明不等式:)0()1ln(1><+<+x x x xx(7分) 七、求微分方程xe x y y y 3)1(9'6''+=+-的通解.(9分)九江学院2005年“专升本”《高等数学》试卷一、填空题:(每题3分,共15分)1.函数)(x f y =在),(b a 内有0)(>'x f ,0)(>''x f ,则函数)(x f y =在),(b a 内单调性为________,曲线)(x f y =的凸凹性为________。

相关文档
最新文档