如何求解旋转扫过的面积
弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略(解析版)-初中数学
弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略【考点导航】目录【典型例题】【考点一已知圆心角的度数,求弧长】【考点二已知弧长,求圆心角的度数】【考点三求某点的弧形运动路径长度】【考点四已知圆心角的度数或弧长,求扇形的面积】【考点五求图形旋转后扫过的面积】【考点六求弓形的面积】【考点七求其他不规则图形的面积】【考点八求圆锥的侧面积与底面半径】【考点九求圆锥侧面展开图的圆心角】【考点十圆锥侧面上最短路径问题】【过关检测】22【典型例题】【考点一已知圆心角的度数,求弧长】1(2023秋·江苏·九年级专题练习)已知扇形的半径为3cm ,圆心角为150°,则该扇形的弧长为cm .【答案】52π/2.5π【分析】直接利用弧长公式进行计算即可.【详解】解:∵L =n πr180,扇形的半径为3cm ,圆心角为150°,∴扇形的弧长L =150π×3180=52π,故答案为:52π.【点睛】本题主要考查了弧长公式的应用,熟练掌握弧长公式:L =n πr180是解题的关键.【变式训练】1(2023·浙江湖州·统考一模)一个扇形的半径为4,圆心角为90°,则此扇形的弧长为.【答案】2π【分析】利用弧长公式进行计算即可.【详解】解:弧长为=90180π×4=2π;故答案为:2π【点睛】本题考查求弧长.熟练掌握弧长公式,是解题的关键.2(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.【答案】4π【分析】根据弧长公式l =n πr180即可求解.【详解】解:扇形的圆心角为40°,半径为18,∴它的弧长为40180×18π=4π,故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.【考点二已知弧长,求圆心角的度数】1(2023·黑龙江哈尔滨·统考三模)一个扇形的面积为10π,弧长为10π3,则该扇形的圆心角的度数为.【答案】100°/100度【分析】根据弧长和扇形面积关系可得S =12lR ,求出R ,再根据扇形面积公式求解.【详解】∵一个扇形的弧长是10π3,面积是10π,∴S =12lR ,即10π=12×10π3R ,解得:R =6,∴S =10π=n π×62360,解得:n =100°,故答案为:100°.【点睛】本题考查了扇形面积的计算;弧长的计算.熟记公式,理解公式间的关系是关键.【变式训练】1(2023·江苏镇江·统考二模)扇形的弧长为6π,半径是12,该扇形的圆心角为度.【答案】90【分析】设此扇形的圆心角为x °,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x °,由题意得,12πx180=6π,解得,x =90,故答案为:90.【点睛】本题考查的是弧长的计算,掌握弧长的公式l =n πr180是解题的关键.2(2023·浙江温州·校考三模)若扇形半径为4,弧长为2π,则该扇形的圆心角为.【答案】90°/90度【分析】设扇形圆心角的度数为n ,根据弧长公式即可得出结论.【详解】解:设扇形圆心角的度数为n ,∵扇形的弧长为2π,∴n π×4180°=2π,∴n =90°.故答案为:90°.【点睛】本题考查的是扇形的面积公式,熟记扇形的面积公式及弧长公式是解答此题的关键.【考点三求某点的弧形运动路径长度】1(2023秋·云南昭通·九年级校联考阶段练习)如图,在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A OB ,其中点A 与点A 对应,点B 与点B 对应.如果A -4,0 ,B -1,2 .则点A 经过的路径长度为(含π的式子表示)【答案】2π【分析】A 点坐标为已知,求出OA 长度,再利用弧长公式l =n πr180求解即可.【详解】解:∵A -4,0如图,由题意A 点以原点O 旋转中心旋转了90°∴点A 经过的路径AA的长度=90⋅π×4180=2π故答案为:2π.【点睛】本题考查图形的旋转、弧长等知识点,需要熟练掌握弧长计算公式.【变式训练】1(2023·湖南郴州·统考中考真题)如图,在Rt △ABC 中,∠BAC =90°,AB =3cm ,∠B =60°.将△ABC 绕点A 逆时针旋转,得到△AB C ,若点B 的对应点B 恰好落在线段BC 上,则点C 的运动路径长是cm (结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ,故C 的运动路径长是CC 的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ,如图所示.在直角△ABC 中,∠B =60°,则∠C =30°,则BC =2AB =2×3=6cm .∴AC =BC 2-AB 2=62-32=33cm .由旋转性质可知,AB =AB ,又∠B =60°,∴△ABB 是等边三角形.∴∠BAB =60°.由旋转性质知,∠CAC =60°.故弧CC 的长度为:60360×2×π×AC =π3×33=3πcm ;故答案为:3π【点睛】本题考查了含30°角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.2(2023·广东东莞·校考一模)如图,△ABC 和△A B ′C ′是两个完全重合的直角三角板,∠B =30°,斜边长为12cm .三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上时,则点A ′所转过的路径长为cm .【答案】2π【分析】根据三角形内角和和含30度的直角三角形三边的关系得到∠A =60°,AC =12AB =6cm ,再根据旋转的性质得CA ′=CA ,于是可判断△CAA ′为等边三角形,所以∠ACA ′=60°,然后根据弧长公式计算弧AA ′的长度即可.【详解】∵∠ACB =90°,∠B =30°,AB =12cm ,∴∠A =60°,AC =12AB =6cm ,∵三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上,∴CA ′=CA ,∴△CAA ′为等边三角形,∴∠ACA ′=60°,∴弧AA ′的长度=60°π×6180°=2πcm ,即点A ′所转过的路径长为2πcm .答案为:2π.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了弧长公式.【考点四已知圆心角的度数或弧长,求扇形的面积】1(2023·江苏·九年级假期作业)已知扇形的圆心角为80°,半径为3cm ,则这个扇形的面积是cm 2.【答案】2π【详解】根据扇形的面积公式即可求解.【分析】解:扇形的面积=80π×32360=2πcm 2 .故答案是:2π.【点睛】本题主要考查了扇形的面积公式,熟练掌握扇形面积公式是解题的关键.【变式训练】1(2023·黑龙江哈尔滨·哈尔滨市第十七中学校校考模拟预测)一个扇形的弧长是8πcm ,圆心角是144°,则此扇形的面积是.【答案】40π【分析】设该扇形的半径为rcm ,然后根据弧长公式计算半径,然后根据扇形面积公式计算即可.【详解】解:设该扇形的半径为rcm ,由题意得:144πr180=8π,解得:r =10,S 扇形=12lr =12×8π×10=40π,故答案为:40π.【点睛】本题主要考查弧长计算公式及扇形面积计算公式,熟练掌握弧长计算公式和扇形面积计算公式是解题的关键.2(2023·海南海口·海师附中校考三模)如图,正五边形ABCDE 的边长为4,以顶点A 为圆心,AB 长为半径画圆,则图中阴影部分的面积是.【答案】245π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【详解】解:∵正五边形的外角和为360°,∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°-72°=108°,∵正五边形的边长为4,∴S 阴影=108⋅π×42360=245π,故答案为:245π.【点睛】本题考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【考点五求图形旋转后扫过的面积】1(2023·河南安阳·统考一模)如图,将半径为1,圆心角为60°的扇形OAB 绕点A 逆时针旋转36°,得到扇形OAB,则AB扫过的区域(即图中阴影部分)的面积为.【答案】π10【分析】结合已知条件及旋转性质,根据面积的和差可得S 阴影=S 扇形BAB,然后利用扇形面积公式计算即可.【详解】∵OA =OB =1,∠AOB =60°,∴△AOB 为等边三角形,∴AB =OA =1,由旋转性质可得,∠OAO =∠BAB =36°,S △AOB =S △AO B,则S 阴影=S 扇形BAB+S △AOB -S 扇形AOB +S 扇形AO B-S △AO B,=S 扇形BAB,=36π×12360,=π10,故答案为:π10.【点睛】此题考查了扇形的面积及旋转性质,结合已知条件将阴影部分面积转化为扇形的面积是解题的关键.【变式训练】1(2022春·四川德阳·九年级校考阶段练习)如图,将△ABC 绕点C 顺时针旋转120°得到△A B C ,已知AC =3,BC =2,则线段AB 扫过的图形(阴影部分)的面积为.【答案】5π3/53π【分析】由于将△ABC 绕点C 旋转120°得到△A B C ,可见,阴影部分面积为扇形ACA ′减扇形BCB ′,分别计算两扇形面积,在计算其差即可.【详解】解:从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是120°,所以阴影面积=大扇形面积-小扇形面积=120π×32-22 360=53π【点睛】本题考查了扇形面积的计算和阴影部分的面积,将阴影部分面积转化为两扇形面积的查是解题的关键.2(2022秋·山东烟台·九年级统考期末)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AB =8,将△ABC 绕点A 按逆时针方向旋转到△A B C 的位置,使C 、A 、B 三点在同一条直线上,则直角边BC 扫过的图形面积为.【答案】16π【分析】根据题意可得:AC =AC =4,BC =B C =43,∠B AC =∠B AC =∠CAB =60°,因此直角边BC 扫过的图形面积为S =S △ABC+S 扇形BAB -S 扇形CAC -S △ABC ,因为S △ABC=S △ABC ,因此S =S 扇形BAB-S 扇形CAC ,代入数值即可求得答案.【详解】解:根据题意可得:AC =AC =4,BC =B C =43,∠B AC =∠B AC =∠CAB =60°,△ABC ≌△AB C ,所以直角边BC 扫过的图形面积为S =S △ABC+S 扇形BAB -S 扇形CAC -S △ABC ,由于S △ABC=S △ABC ,所以S =S 扇形BAB -S 扇形CAC =120°×π×82360°-120°×π×42360°=64π3-16π3=16π,故答案为:16π.【点睛】本题考查了轨迹问题,关键是根据旋转的性质,找出BC 扫过的面积构成,利用扇形的面积公式计算即可.【考点六求弓形的面积】1(2023·云南昆明·昆明八中校考模拟预测)如图,在扇形OAB 中,∠AOB =90°,OA =6,则阴影部分的面积是.【答案】9π-18【分析】利用扇形的面积减去三角形的面积,即可得解.【详解】∵OA =OB =6,∠AOB =90°,∴S 阴=S 扇形OAB -S △AOB =90π×62360-12×6×6=9π-18.故答案为:9π-18.【点睛】本题考查求阴影部分的面积.熟练掌握割补法求面积,是解题的关键.【变式训练】1(2023·山东泰安·统考二模)如图C 、D 在直径AB =4的半圆上,D 为半圆弧的中点,∠BAC =15°,则阴影部分的面积是【答案】23π-3【分析】设AB 的中点为O ,连接OD ,OC ,用扇形COD 的面积减去△COD 的面积即可得出结果.【详解】解:设AB 的中点为O ,连接OD ,OC ,∵C 、D 在直径AB =4的半圆上,D 为半圆弧的中点,∠BAC =15°,∴OD =OC =2,∠DOB =90°,∠COB =2∠BAC =30°,∴∠DOC =∠DOB -∠COB =60°,∴△COD 为等边三角形,∴CD =OD =OC =2,过点O 作OE ⊥CD ,则:CE =12CD =1,∴OE =OC 2-CE 2=3,∴阴影部分的面积=S 扇形COD -S △COD =60π×22360-12×2×3=23π-3;故答案为:23π-3.【点睛】本题考查求弓形的面积,同时考查了圆周角定理,等边三角形的判定和性质.将阴影部分的面积转化为扇形的面积减去三角形的面积,是解题的关键.2(2023·河南周口·校联考三模)如图,在△ABC 中,BC =BA =4,∠C =30°,以AB 中点D 为圆心、AD 长为半径作半圆交线段AC 于点E ,则图中阴影部分的面积为.【答案】4π3-3【分析】连接DE ,BE ,然后根据已知条件求出∠ABE =60°,AE =23,从而得到∠ADE =120°,最后结合扇形的面积计算公式求解即可.【详解】解:如图,连接DE ,BE .∵AB 为直径,∴∠BEA =90°.∵BC =BA ,∴∠BAC =∠BCA =30°,∴∠ABE =60°,BE =12AB =2,AE =3BE =32AB =23,∵BD =DE ,∴△BDE 是等边三角形,∴∠ADE =120°,∴阴影部分的面积=S 扇形DAE -S △ADE=120π×22360-12S △ABE=120π×22360-12×12×23×2=4π3-3=4π3-3.故答案为:4π3-3.【点睛】本题考查阴影部分面积计算问题,涉及到扇形面积计算,等边三角形的判定与性质,直径所对的圆周为直角等,掌握扇形面积计算公式是解题关键.【考点七求其他不规则图形的面积】1(2023春·河南漯河·九年级校考阶段练习)图1是以AB 为直径的半圆形纸片,AB =8,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 向右平移至扇形O A C ,如图2,其中O 是OB 的中点,O C 交BC于点F ,则图中阴影部分的面积为.【答案】8π3-23【分析】根据题意和图形,利用勾股定理,可以求得O F 的长,再根据图形,可知阴影部分的面积=扇形COB 的面积∽△OO F 的面积-扇形OFC 的面积,计算即可.【详解】解:连接OF ,由题意可得,OB =4,OO =2,∠OO F =90°,∴∠OFO =30°,∴∠O OF =60°,∴O F =23,∴阴影部分的面积是:90π×42360-2×232-30×π×42360=8π3-23,故答案为:8π3-23.【点睛】本题考查扇形面积的计算、平移的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式训练】1(2023·河南信阳·统考一模)如图,正五边形ABCDE 的边长为1,分别以点C ,D 为圆心,CD 长为半径画弧,两弧交于点F ,图中阴影部分的面积为.(结果保留π)【答案】32-π15【分析】连接CF ,DF ,由CF =DF =CD =1,得∠FCD =∠FDC =60°,求出∠FCD =∠FDC =60°,根据公式求出S 扇形BCF ,S 正△CFD ,S 扇形CDF ,即可得到阴影面积.【详解】如图,连接CF ,DF ,由题意,得∠BCD =(5-2)×180°5=108°,∵CF =DF =CD =1,∴∠FCD =∠FDC =60°,∴∠BCF =108°-60°=48°,∴S 扇形BCF =48π×12360=2π15,S 正△CFD =34×12=34,S 扇形CDF =60π×12360=π6,∴S 阴影BCF =2π15+34-π6=34-π30,∴S 阴影=34-π30 ×2=32-π15,故答案为:32-π15.【点睛】此题考查了求不规则图形的面积,扇形面积公式,正多边形的性质,正确理解图形面积的计算方法连接辅助线是解题的关键.2(2023·河南南阳·统考模拟预测)如图,在矩形ABCD 中,AD =2,AB =1,以D 为圆心,以AD 长为半径画弧,以C 为圆心,以CD 长为半径画弧,两弧恰好交于BC 上的点E 处,则阴影部分的面积为.【答案】12【分析】如图,连接DE ,根据勾股定理,得DE =2,根据阴影部分的面积S 1为:扇形AED 的面积减去S 2,根据S 2的等于扇形DCE 的面积减去S 3,即可求解.【详解】解:连接DE ,如图:∵四边形ABCD 是矩形,∴∠ADC =∠BCD =90°,AB =DC =1,∵EC =DC =1,∴∠CDE =45°,∴∠ADE =45°,∴扇形DAE 的面积为:45π×2 2360=π4,∵S 2=S 扇形DCE -S 3=90π×12360-12×1×1=π4-12,∴阴影部分的面积为:S 1=S 扇形ADE -S 2=π4-π4-12 =12.故答案为:12.【点睛】本题考查矩形的性质,扇形的面积,三角形面积,解题的关键是掌握扇形的面积公式,矩形的性质.【考点八求圆锥的侧面积与底面半径】1(2023·全国·九年级专题练习)若圆锥的底面圆半径为2,母线长为5,则该圆锥的侧面积是.(结果保留π)【答案】10π【分析】根据圆锥的底面圆半径为2,母线长为5,直接利用圆锥的侧面积公式求出即可.【详解】解:根据圆锥的侧面积公式:πrl=π×2×5=10π,故答案为:10π.【点睛】本题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.【变式训练】1(2023春·云南昭通·九年级统考期中)若圆雉的侧面积为12π,底面圆半径为3,则该圆雉的母线长是.【答案】4【分析】根据圆锥的侧面积=πrl,列出方程求解即可.【详解】解:∵圆锥的侧面积为12π,底面半径为3,3πl=12π.解得:l=4,故答案为:4.【点睛】本题考查了圆锥的侧面积,解题关键是熟记圆锥的侧面积公式,列出方程进行求解.2(2023·广东梅州·统考一模)若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为cm2.(结果保留π)【答案】12π【分析】根据圆锥的侧面积公式计算即可.【详解】解:∵圆锥的底面半径为3cm,母线长为4cm,∴圆锥的侧面积为12×2×3π×4=12πcm2.故答案为:12π.【点睛】本题主要考查了圆锥的侧面积,属于简单题,熟练掌握扇形面积公式是解题关键.3(2023·江苏·九年级假期作业)已知圆锥侧面展开图圆心角的度数是120°,母线长为3,则圆锥的底面圆的半径是.【答案】1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=120×π×3180,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得2πr=120×π×3180,解得r=1.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4(2023·浙江衢州·统考二模)某个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则这个圆锥的底面半径为cm.【答案】2【分析】把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【详解】解:设此圆锥的底面半径为rcm,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=120π×6180,r=2故答案为2.【点睛】此题考查了圆的周长和圆弧长的计算,熟练掌握它们的计算公式是解题的关键.【考点九求圆锥侧面展开图的圆心角】1(2022秋·广东惠州·九年级校考阶段练习)已知圆锥的底面圆半径是2,母线长是4,则圆锥侧面展开的扇形圆心角是.【答案】180°/180度【分析】根据圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【详解】解:∵圆锥底面半径是2,∴圆锥的底面周长为4π,设圆锥的侧面展开的扇形圆心角为n°,∴nπ×4180=4π,解得:n=180,∴圆锥侧面展开的扇形圆心角是180°.故答案为:180°.【点睛】本题考查求圆锥侧面展开图的圆心角.掌握圆锥的侧面展开图的弧长等于圆锥的底面周长是解题的关键.【变式训练】1(2023·江苏·九年级假期作业)已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为,圆锥侧面展开图形的圆心角是度.【答案】15π216【分析】根据圆锥的侧面积公式S侧=πrl即可求解该圆锥的侧面积;结合弧长公式求出圆锥侧面展开图形的圆心角即可.【详解】解:圆锥的侧面积S侧=π×3×5=15π,圆锥的底面周长L=2π×3=6π,扇形圆心角=180×6ππ×5=216°.故答案为:15π,216.【点睛】本题主要考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.2(2023·江苏·九年级假期作业)若要制作一个母线长为9cm,底面圆的半径为4cm的圆锥,则这个圆锥的侧面展开图的圆心角度数是.【答案】160°/160度【分析】利用圆锥侧面展开图,扇形圆心角与母线和底面圆半径的关系计算,即可求解.【详解】解:设这个圆锥的侧面展开图的圆心角的度数是n,根据题意得:2π×4=n π×9180,解得n =160,即这个圆锥的侧面展开图的圆心角是160°,故答案为:160°.【点睛】本题考查了圆锥侧面展开图,扇形圆心角与母线和底面圆半径的关系,明确圆锥的底面圆的周长=扇形的弧长是解答本题的关键.【考点十圆锥侧面上最短路径问题】1(2023秋·山东东营·九年级东营市胜利第一初级中学校考期末)如图,已知圆锥底面半径为20cm ,母线长为60cm ,一只蚂蚁从A 处出发绕圆锥侧面一周(回到原来的位置A )所爬行的最短路径为cm .(结果保留根号)【答案】603【分析】把圆锥的侧面展开得到圆心角为120°,半径为60的扇形,求出扇形中120°的圆心角所对的弦长即为最短路径.【详解】解:圆锥的侧面展开如图:过S 作SC ⊥AB ,∴AC =BC设∠ASB =n °,即:2π×20=n π×60180,得:n =120,∴∠ASC =60°∴AC =AS ×sin ∠ASC =60×32=303∴AB =2AC =603,故答案为:603.【点睛】本题考查了圆锥侧面展开图的圆心角,特殊角的锐角三角函数值,将圆锥中的数据对应到展开图中是解题的关键.【变式训练】1(2023春·黑龙江齐齐哈尔·九年级校联考期中)如图,AB 是圆锥底面的直径,AB =6cm ,母线PB=9cm .点C 为PB 的中点,若一只蚂蚁从A 点处出发,沿圆锥的侧面爬行到C 点处,则蚂蚁爬行的最短路程为.【答案】932/923【分析】先画出圆锥侧面展开图(见解析),再利用弧长公式求出圆心角∠APA 的度数,然后利用等边三角形的判定与性质、勾股定理可得AC =932,最后根据两点之间线段最短即可得.【详解】画出圆锥侧面展开图如下:如图,连接AB 、AC ,设圆锥侧面展开图的圆心角∠APA 的度数为n °,因为圆锥侧面展开图是一个扇形,扇形的弧长等于底面圆的周长,扇形的半径等于母线长,所以n π×9180=2π×3,解得n =120,则∠APB =12APA =60°,又∵AP =BP =9,∴△ABP 是等边三角形,∵点C 为PB 的中点,∴AC ⊥BP ,CP =12BP =92,在Rt △ACP 中,AC =AP 2-CP 2=932,由两点之间线段最短可知,蚂蚁爬行的最短路程为AC =932,故答案为:932.【点睛】本题考查了圆锥侧面展开图、弧长公式、等边三角形的判定与性质等知识点,熟练掌握圆锥侧面展开图是解题关键.2(2022秋·重庆沙坪坝·八年级重庆八中校考期中)如图1,一只蚂蚁从圆锥底端点A 出发,绕圆锥表面爬行一周后回到点A ,将圆锥沿母线OA 剪开,其侧面展开图如图2所示,若∠AOA =120°,OA =3,则蚂蚁爬行的最短距离是.【答案】3【分析】连接AA ′,作OB ⊥AA ′于点B ,根据题意,结合两点之间线段最短,得出AA ′即为蚂蚁爬行的最短距离,再根据三角形的内角和定理得出∠OAB =30°,再根据直角三角形中30°所对的直角边等于斜边的一半,得出OB =32,再根据勾股定理,得出AB =32,再根据三线合一的性质,得出AB =A ′B ,再根据线段之间的数量关系,得出AA ′=3即可解答.【详解】解:如图,连接AA ′,作OB ⊥AA ′于点B ,∴AA ′即为蚂蚁爬行的最短距离,∵OA =OA ′,∠AOA ′=120°,∴∠OAB =30°,在△OAB 中,OB ⊥AA ′,∠OAB =30°,∴OB =12OA =12×3=32,∴AB =OA 2-OB 2=3 2-32 2=32,在△AOA ′中,OA =OA ′,OB ⊥AA ′,∴AB =A ′B ,∴AA ′=2AB =2×32=3.∴蚂蚁爬行的最短距离为3.故答案为:3【点睛】本题考查了圆锥侧面上最短路径问题、三角形的内角和定理、直角三角形的特征、勾股定理、三线合一的性质等知识点,正确作出辅助线、构造等腰三角形和直角三角形是解题的关键.【过关检测】一、单选题1(2023·黑龙江哈尔滨·哈尔滨市第四十七中学校考模拟预测)一个扇形的半径是4cm ,圆心角是45°,则此扇形的弧长是()A.πcmB.2πcmC.4πcmD.8πcm 【答案】A【分析】根据弧长公式进行计算即可.【详解】解:由题意得,扇形的半径为4cm,圆心角为45°,故此扇形的弧长为45π×4180=πcm,故选:A.【点睛】此题考查了扇形弧长的计算,属于基础题,解答本题的关键是熟练掌握弧长计算公式,难度一般.2(2023·浙江温州·校联考三模)已知圆锥的底面半径为4,母线长为5,则圆锥的侧面积为() A.8π B.10π C.12π D.20π【答案】D【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解.【详解】解:根据题意可得:圆锥的侧面积为:π×4×5=20π,故选:D.【点睛】本题考查了圆锥的侧面积展开图公式,解题的关键是掌握圆锥的侧面积的计算公式:圆锥的侧面积=π×底面半径×母线长.3(2023秋·江苏·九年级专题练习)如图,一块含有30°角的直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A B C的位置.若BC的长为7.5cm,那么顶点A从开始到结束所经过的路径长为()A.10πcmB.103πcmC.15πcmD.20πcm【答案】A【分析】顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径的圆弧,旋转的角度是180°-60°=120°,所以根据弧长公式可得.【详解】解:在含有30°角的直角三角板ABC中,∠ACB=60°,BC=7.5cm,∴∠ACA =120°,AC=2BC=15cm,∴120π×15180=10πcm,故选:A.【点睛】本题考查弧长公式,解题的关键是弄准弧长的半径和圆心角的度数.4(2023秋·江苏·九年级专题练习)如图,在扇形AOB中,∠AOB=90°,半径OA=3,将扇形AOB沿过点B的直线折叠,使点O恰好落在AB上的点D处,折痕为BC,则阴影部分的面积为()A.3π-332B.9π4-33 C.π-34D.3π-34【答案】B【分析】连接OD ,由折叠的性质可得CD =CO ,BD =BO ,∠DBC =∠OBC ,从而得到△OBD 为等边三角形,再求出∠CBO =30°,从而得出OC =3,进行得出S △BOC =332,最后由△BOC 与△BDC 面积相等及S 阴影=S 扇形AOB -S △BOC -S △BDC ,进行计算即可得到答案.【详解】解:如图,连接OD ,,根据折叠的性质,CD =CO ,BD =BO ,∠DBC =∠OBC ,∴OB =BD =OD ,∴△OBD 为等边三角形,∴∠DBO =60°,∴∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB ⋅tan ∠CBO =3×33=3,∴S △BOC =12OB ⋅OC =332,∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB -S △BOC -S △BDC =14π×32-332-332=94π-33,故选:B .【点睛】本题主要考查了等边三角形的判定与性质、折叠的性质、扇形面积的计算-求不规则图形的面积,添加适当的辅助线,得到S 阴影=S 扇形AOB -S △BOC -S △BDC 是解题的关键.5(2023·辽宁抚顺·统考一模)如图1是一块弘扬“社会主义核心价值观”的扇面宜传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =3m ,OB =1.5m ,则阴影部分的面愁为()A.4.25πm 2B.25πm 2C.3πm 2D.2.25πm 2【答案】D【分析】根据S 阴影=S 扇形DOA -S 扇形BOC 计算即可.【详解】S 阴影=S 扇形DOA -S 扇形BOC =120π×9360-120π×94360=2.25πm 2故选:D .【点睛】本题考查的是扇形面积的计算,掌握扇形的面积公式S =n πR 2360是解题的关键.二、填空题6(2023·福建福州·福建省福州第一中学校考模拟预测)圆锥母线长l =8,底面圆半径r =2,则圆锥侧面展开图的圆心角θ是.【答案】90°/90度【分析】根据弧长公式,弧长与圆锥底面圆的周长相等,建立等式计算即可.【详解】∵圆锥母线长l =8,底面圆半径r =2,圆锥侧面展开图的圆心角θ,∴2πr =θπl180,∴θ=360×2×π8π=90°,故答案为:90°.【点睛】本题考查了圆锥的侧面展开,弧长公式,熟练掌握展开的特点,牢记弧长公式是解题的关键.7(2023秋·河北唐山·九年级统考期末)如图,半圆O 的直径AB =6,弦CD =3,AD的长为34π,则BC的长为.【答案】5π4【分析】由题意可知:△OCD 是等边三角形,从而可求出弧CD 的长度,再求出半圆弧的长度后,即可求出弧BC 的长度.【详解】解:连接OD 、OC ,∵CD =OC =OD =3,∴△CDO 是等边三角形,∴∠COD =60°,∴CD 的长=60⋅π×3180=π,又∵半圆弧的长度为:12×6π=3π,∴BC =3π-π-3π4=5π4.故答案为:5π4【点睛】本题考查圆了弧长的计算,等边三角形的性质等知识,属于中等题型.8(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .【答案】5【分析】应为圆锥侧面母线的长就是侧面展开扇形的半径,利用圆锥侧面面积公式:S =π⋅r ⋅l ,就可以求出圆锥的底面圆的半径.【详解】解:设圆锥底面圆的半径为r ,l =24,由扇形的面积:S =π⋅r ⋅l =120π,得:r =5故答案为:5【点睛】本题考查了圆锥侧面面积的相关计算,熟练掌握圆锥侧面面积的计算公式是解题的关键,注意用扇形围成的圆锥,扇形的半径就是圆锥的母线.9(2023·吉林长春·校联考二模)如图,AB 是⊙O 的直径,AB =4,点C 在⊙O 上(点C 不与A 、B 重合),过点C 作⊙O 的切线交AB 的延长线于点D ,连接AC .若∠D =45°,则BC的长度是(结果保留π)【答案】π2/12π【分析】连接OC ,根据切线的性质,得出∠OCD =90°,再根据三角形的内角和定理,得出∠DOC =45°,即∠BOC =45°,再根据圆的基本概念,得出OB =2,再根据弧长公式,计算即可.【详解】解:如图,连接OC ,∵CD 是⊙O 的切线,∴CD ⊥OC ,。
例说计算旋转扫过的面积
ABC OD计算旋转扫过的面积河北 欧阳庆红我们知道线旋转,面在平面上旋转都扫过一定面积,如何计算图形旋转扫过的面积呢,下面跟随我的脚步来领略几例计算旋转扫过的面积问题.例1 (08内江市)如图1,Rt A BC ''△是由Rt ABC △绕B 点顺时针旋转而得,且点A B C ',,在同一条直线上,在Rt ABC △中,若90C =∠,2BC =,4AB =,则斜边AB 旋转到A B '所扫过的扇形面积为 .解析: 欲求斜边AB 旋转到A B '所扫过的扇形面积,已知扇形半径AB=4,只要求出其圆心角∠A AB '度数, ∵Rt A BC ''△是由Rt ABC △绕B 点旋转得到的,∴△ACB ≌△B C A '',∴,2,4=='=='BC C B AB B A ∴∠A '=030,∴∠A AB '=∠C '+∠A '=01203090=+,∴.31636041202ππ=⨯⨯='A AB S 扇形例 2 (08甘肃兰州)如图2,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .解析:本题考察了圆的有关计算,勾股定理,旋转等方面的知识. 根据圆面积公式和勾股定理:圆环的面积为:πAB 2-πBC 2=π(AB 2-BC 2)= πAC 2 =π×32 =9π.所以本题填9π.例3 (08宁波)如图3,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是 .解析:本题主要考查扇形面积的计算和菱形的性质,连接BO,O B ',图2ACBCBA图1阴影部分的面积转化为扇形B BO '面积-扇形A CO '面积-三角形BOC 面积-三角形O A B ''面积=扇形B BO '面积-扇形A CO '面积-菱形OABC 的面积,欲求扇形B BO '面积,需要计算OB 的长,于是连接AC,则AC ⊥OB, ∵120A =∠,∴∠AOC=060,∴∠AOB=21∠AOC=030, ∴AD=2121=AO ,根据勾股定理得,OD=22AD OA -=23, ∴OB=3,∵旋转角∠A AO '=,090∴∠A CO '=,030∴∠B BO '=,090∴()OB AC S ⨯⨯-⨯-⨯=2136013036039022ππ阴影=31211243⨯⨯--ππ=23π32-. 例4 (08鄂州)如图4,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( C ) A .77π338- B .47π338+ C .πD .4π33+ 解析:本题考查的知识点有扇形面积的计算,中位线定理和直角三角形的有关性质等,连接BH 和1BH ,∵90ACB ∠=,30CAB ∠=,2BC =,∴AB=2BC=4, ∴AC=,32242222=-=-BC AB∵O H ,分别为边AB AC ,的中点,∴OB=1OB =2,CH=32111==AC H C , ∴BH=()73222211211=+=+=H C BC BH ,易证△HOB ≌△B O H 11,∴线段OH 所扫过部分的面积(即阴影部分面积)为圆心角为图4AHBOC120,半径分别为7和3的两扇形的面积差,即3601202BH S π=阴影3601202BO π-=πππ=-3437.。
线段旋转扫过的图形
课题:§线段旋转扫过的面积泉州市经济技术开发区泉州经济技术开发区实验学校黄立内容分析1.课标要求通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质;能按要求作出简单平面图形旋转后的图形,能利用旋转进行弧长和面积的相关计算。
2.教材分析知识层面:旋转的基本性质:对应线段相等,对应角相等,图形中每一个点都绕旋转中心按同一旋转方向旋转了同样大小的角度。
角的动态定义:将一条射线绕着端点旋转一定的角度所形成的图形。
圆的定义的轨迹说:将一条线段绕着一个端点旋转一周所形成的图形。
本课时既承接这三个知识点,又通过图形面积的割补法推导所得线段旋转扫过的面积,也丰富了圆中的计算的相关应用。
能力层面:学生在学习了旋转的基本性质,已经具有观察和操作能力,积累了一定的探索和推理经验,具备进行“探索—猜想—证明”线段旋转扫过的面积的基础。
先通过学生课前分组发现问题,操作观察,思考解决方案,培养学生的创新意识和建模能力;由合情推理得出结论,再演绎推理论证结论的合理性,进一步发展学生推理证明的能力;最后回到课前的问题解决来培养学生的应用意识。
思想层面:线段旋转扫过的面积的探索和论证过程为渗透数学思想方法提供一个发展提高平台:通过对不规则图形的割补为规则图形进行计算,体现化归与转化的思想;通过线段端点在垂足同侧→线段端点在垂足异侧,这个探究过程体现从特殊到一般的思想,有助于培养学生几何直观能力和思维层次性。
3.学情分析(1)学生已经学习了旋转的基本性质,角的动态定义,圆的定义的轨迹说,并且进行了实际操作验证,这为探究线段旋转扫过的面积提供了认知基础。
(2)从学生的学习动机与需要上看,他们有探究新事物的欲望和好奇心,这为探究线段旋转扫过的面积的证明策略及方法提供了情感保障。
(3)学生在探究线段旋转扫过的面积过程中,其认知顺序可能是建构型的。
旋转的基本性质,角的动态定义,圆的定义的轨迹说是其原有知识储备的主要图式,通过对原有图式完全可以建立线段旋转过程的几何模型,进一步探究求面积的割补方法。
专题3弧长和扇形面积(专项练习含答案
专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。
三角形旋转体面积的求法
三角形旋转体面积的求法
在数学中,三角形旋转体是指由一个三角形绕着其中一条边旋转而成的立体图形。
要计算三角形旋转体的表面积,可以使用积分来解决这个问题。
首先,我们需要知道三角形的边长和高。
假设三角形的底边长为a,高为h。
现在,我们将三角形绕底边旋转360度,形成一个旋转体。
这个旋转体的表面积可以通过积分来求解。
首先,我们将三角形绕着底边旋转,得到的旋转体可以看作是由无数个小矩形叠加而成的。
每个小矩形的宽度可以看作是一个微小的长度dx,而高度则是三角形的高h。
因此,每个小矩形的面积可以表示为2πxh,其中x是距离底边的距离。
为了计算整个旋转体的表面积,我们需要对所有这些小矩形的面积进行求和。
因此,旋转体的表面积S可以表示为:
S = ∫(0到a) 2πxh dx.
通过对上式进行积分,我们可以得到三角形旋转体的表面积。
这个方法可以用于任意形状的旋转体,只需要根据具体的形状和旋
转轴来确定积分的上下限和积分式。
通过这种方法,我们可以很方便地求解三角形旋转体的表面积,同时也可以推广到其他形状的旋转体,为解决更加复杂的几何问题
提供了一种有效的工具。
备战中考数学旋转(大题培优)附答案
一、旋转真题与模拟题分类汇编(难题易错题)1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在)'轴、工轴的正半轴上,点。
在原点.现将正方形Q48C绕。
点顺时针旋转,当A点一次落在直线)'=、上时停止旋转,旋转过程中,边交直线)'=x于点M,边交*轴于点N (如图).(1)求边。
4在旋转过程中所扫过的面积;(2)旋转过程中,当"和AC平行时,求正方形。
48C旋转的度数:(3)设的周长为P,在旋转正方形O45C的过程中,P值是否有变化?清证明你的结论. 【答案】(1)爪/2 (2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的而积公式来求得边0A在旋转过程中所扫过的面积:(2)解决本题需利用全等,根据正方形一个内角的度数求出ZAOM的度数:(3)利用全等把△ MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1):A点第一次落在直线y=x上时停出旋转,直线y=x与y轴的夹角是45。
,/. 0A 旋转了45。
.・•・0A在旋转过程中所扫过的面积为EE- = £360 2(2)•/ MNII AC,・.・Z BMN=Z BAC=45°, Z BNM=Z BCA=45°.Z BMN=Z BNM. /. BM=BN.又・..BA=BC, ・.・AM=CN.又..・OA=OC, Z OAM=Z OCN,二 ' OAM罢△ OCN.Z A0M=Z CON=- (Z AOC-Z MON ) =- (90o-45°)=22.5°.2 2・・・旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45。
-22.5。
=22.5。
. (3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则匕AOE=45°-Z AOM, Z CON=90°-45°-Z AOM=45°-Z AOM,・.・ Z AOE=Z CON.又・.・OA=OC, Z OAE=180°-90°=90°=Z OCN./. △ OAE竺乙OCN.OE=ON, AE=CN.又■/ Z MOE=Z MON=45°, OM=OM,/. △ OME罢△ OMN. ... MN=ME=AM+AE./. MN=AM+CN,/. p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图1, OABCD和QAEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将oABCD固定不动,oAEFG绕点A逆时针旋转,旋转角为a (0°<a<360o), AB=a,BC=2a;并发现:如图2,当uAEFG旋转到点E落在AD ±时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角a的度数;探究二:(2)如图3,当oAEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM, DF, 请你判断四边形CDFM的形状,并给予证明:探究三:(3)如图1,连接CF, BF,在旋转过程中ABCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1) a=120。
椭圆扫过面积计算公式
椭圆扫过面积计算公式
椭圆扫过面积计算公式是通过椭圆体沿着某一方向旋转扫过的
面积计算公式。
在二维坐标系中,椭圆的方程为
$(frac{x}{a})^2+(frac{y}{b})^2=1$,其中$a$和$b$分别为椭圆的
长轴和短轴。
如果椭圆体沿着$x$轴旋转,则扫过的面积公式为
$S_x=pi ab$。
如果椭圆体沿着$y$轴旋转,则扫过的面积公式为
$S_y=pi ab$。
如果椭圆体沿着其他方向旋转,则可以通过投影的方
法将其转化为沿$x$轴或$y$轴旋转的情况,再利用上述公式计算面积。
椭圆扫过面积计算公式在物理学、工程学、数学和计算机图形学等领域有广泛的应用。
- 1 -。
九年级上册第24章第13课时《扇形面积》(教师版)
总结:利用扇形的面积公式进行求解注意两种情况:(1)已知圆心角和半径,利用公式S(2)已知弧长和半径,利用公式SA.433π-B.423π-总结:求图形绕某点旋转后扫过的图形面积,先要根据运动轨迹分析出扫过的图形的形状,然后根据图形形状求解面积.如果是规则图形,就利用规则图形的公式进行计算;如果是不规则图形,要先转化为规则图形.不规则图形转化为规则图形的方法有:(1)等积变换法.对所求图形进行适当等积变形,即找到与它面积相等的规则图形;(2)割补法.对所求图形进行适当分割,并将一部分图形移位,组成规则图形;练3.(2012•广东校级模拟)当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的12.(2015•东莞模拟)如图是圆心角为典例探究答案:【例1】【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积=12π×22﹣21202360π⨯⨯=2π﹣43π=23π.答:图中阴影部分的面积等于23π.故答案为:23π.【点评】考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.练1.解:π425【例2】【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解.【解答】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,,∴,∴图中阴影部分的面积为:21202360π⨯⨯﹣12×1=43π.故选:A .【点评】本题考查了扇形面积的计算,切线的性质,解题的关键是理解阴影部分的面积=扇形OCD 的面积﹣三角形OCD 的面积.练2.【分析】(1)根据直径得出∠ACB=∠ADB=90°,根据勾股定理求出BC ,根据圆周角定理求出AD=BD ,求出AD 即可;(2)根据三角形的面积公式,求出△AOC 和△AOD 的面积,再求出S 扇形COD ,即可求出答案.【解答】解:(1)∵AB 是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角), 在Rt △ABC 中,∠B=30°,AC=2, ∴AB=4,∴,∵∠ACB 的平分线交⊙O 于点D , ∴∠DCA=∠BCD∴ AD = BD, ∴AD=BD ,∴在Rt △ABD 中,; (2)连接OC ,OD ,∵∠B=30°,∴∠AOC=∠2∠B=60°, ∵OA=OB ,∴S △AOC =12S △ABC =12×12×AC×BC=12×12×2×, 由(1)得∠AOD=90°, ∴∠COD=150°, S △AOD =12×AO×OD=12×22=2,∴S 阴影=S 扇形COD ﹣S △AOC ﹣S △AOD =21502360π⨯﹣2=53π2.【点评】本题考查了勾股定理、圆周角定理、三角形的面积等知识点的应用,关键是求出∠ACB=∠ADB=90°,题型较好,通过做此题,培养了学生运用定理进行推理的能力. 【例3】【分析】根据点A 的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB 的长,再根据旋转的性质和扇形的面积公式即可求解. 【解答】解:∵点A 的坐标(﹣2,0), ∴OA=2,∵△ABO 是直角三角形,∠AOB=60°, ∴∠OAB=30°, ∴OB=12OA=1, ∴边OB 扫过的面积为:2901360π⨯⨯=14π.故答案为:14π. 【点评】本题考查了旋转和扇形的面积公式,准确找到运动路径是解题的关键.练3.【分析】雨刷CD 扫过的面积就是一个大扇形﹣小扇形的面积,圆心角是90度,半径分别为115cm ,35cm ,所以根据扇形的面积公式计算.【解答】解:由题意可知:△ABD ≌△AB′D′,△ACD ≌△AC′D′, 且大扇形半径AC=115cm ,小扇形半径AD=35cm ,且圆心角都为直角, 所以雨刷CD 扫过的面积为:S 扇形ACC′﹣S 扇形ADD′=290115360π⨯﹣29035360π⨯=4π(115+35)(115﹣35)=3000π(cm 2).答:雨刷扫过的面积为3000πcm 2.【点评】此题主要考查了扇形面积计算,本题的关键是看出雨刷CD 扫过的面积就是一个大扇形﹣小扇形的面积,然后再从一堆的数据中分出哪些是有用的,哪些是没用的.根据扇形的面积公式计算.课后小测答案: 一、选择题1.【分析】由∠AOB 为90°,得到△OAB 为等腰直角三角形,于是OA=OB ,而S 阴影部分=S扇形OAB﹣S △OAB .然后根据扇形和直角三角形的面积公式计算即可.【解答】解:S 阴影部分=S 扇形OAB ﹣S △OAB=29021223602π⨯⨯-⨯⨯=π﹣2 故选:A .【点评】本题考查了扇形面积的计算,是属于基础性的题目的一个组合,只要记住公式即可正确解出.关键是从图中可以看出阴影部分的面积是扇形的面积减去直角三角形的面积. 2.【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =12lr ,计算即可. 【解答】解:∵正方形的边长为3, ∴弧BD 的弧长=6, ∴S 扇形DAB =12lr =12×6×3=9. 故选:D .【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S 扇形DAB =12lr . 3.【分析】根据题意得出AB=AB′=12,∠BAB′=60°,根据图形得出图中阴影部分的面积S=26012360π⨯+12π×122﹣12π×122,求出即可.【解答】解:∵AB=AB′=12,∠BAB′=60° ∴图中阴影部分的面积是: S=S 扇形B′AB +S 半圆O′﹣S 半圆O=26012360π⨯+12π×122﹣12π×122=24π.故选:B.【点评】本题考查的是扇形的面积及旋转的性质,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.4.【分析】作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH 的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.【解答】解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,AB,AB,∴DM=DN,∴四边形DMCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG 和△DNH 中,MDG NDH DMG DNH DM DH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≌△DNH ,∴四边形DGCH 的面积=正方形DMCN 的面积, ∵正方形DMCN 的面积=DM 2=18AB 2, ∴四边形DGCH 的面积=218AB , ∵扇形FDE 的面积=290360CD π⋅⋅=216AB π, ∴阴影部分的面积=扇形面积﹣四边形DGCH 的面积=()2216AB π-(定值),故选:C .【点评】本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键. 二、填空题5.【分析】将所给数据直接代入扇形面积公式S 扇形=2360n R π⋅进行计算即可得出答案. 【解答】解:由题意得,n=120°,R=6cm ,故21206360π⋅=12π.故答案为12π.【点评】此题考查了扇形面积的计算,属于基础题,解答本题的关键是熟记扇形的面积公式及公式中字母所表示的含义,难度一般.6.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积. 【解答】解:设扇形的半径为r . 则120180rπ=6π, 解得r=9,∴扇形的面积=21209360π⨯=27π.故答案为:27π.【点评】此题主要考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=180n rπ;扇形的面积公式S=2360n r π.7.【分析】由图可知,阴影部分的面积是两个圆心角为90°,且半径为a 的扇形的面积与正方形的面积的差,可据此求出阴影部分的面积.【解答】解:由题意可得出:S 阴影=2S 扇形﹣S 正方形=2×290360a π⨯﹣a 2=(2π﹣1)a 2.故答案为:(2π﹣1)a 2.【点评】本题利用了扇形的面积公式,正方形的面积公式求解,得出S 阴影=2S 扇形﹣S 正方形是解题关键.8.【分析】连接相交两圆的交点,根据其图形的对称性可知,阴影部分的面积等于公共弦与圆所构成的弓形面积的2倍.【解答】解:如图连接AB ,OA 、OB ,根据对称性可知OA=OB=2,OC ⊥AB ,OC=1, ∴∠AOB=2∠AOC=2×60°=120°, ∴S 阴影部分=2(S 扇形AOB ﹣S △AOB )=2(21202360π⨯)=(83π﹣故答案为:(83π﹣.【点评】本题考查了扇形的面积及相交两圆的性质,解题的关键是正确的分析图形并分解为两个弓形的面积的和.9.【分析】阴影部分的面积=2扇形AO1E的面积﹣△AO1O2的面积.【解答】解:连接AB交O1O2于点C,∵把⊙O1向右平移8个单位长度得⊙O2,∴O1O2=8,∴O1C=8÷2=4,易得△AO1O2为等腰直角三角形,∴AO1∴阴影部分的面积×÷2=8π﹣16,故答案为8π﹣16.【点评】本题的难点是得到圆的半径,关键是得到阴影的面积的求法.10.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣2302360π⨯⨯﹣2×1÷2=4﹣13π﹣1=3﹣13π.故答案为:3﹣13π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.11.【分析】首先根据已知得出正方形内空白面积,进而得出扇形COB中两空白面积相等,进而得出阴影部分面积.【解答】解:如图所示:连接EFMN,∵四边形的边长为2,四个角都是直角,∴四边形EFMN是正方形,正方形中两部分阴影面积为:22﹣π×12=4﹣π,∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4,∵⊙O的半径为2,∴O1,O2,O3,O4的半径为1,∴小圆的面积为:π×12=π,扇形COB的面积为:2902360π⨯=π,∴扇形COB中两空白面积相等,∴阴影部分的面积为:π×22﹣2(2π﹣4)=8.故答案为:8.【点评】此题主要考查了扇形的面积公式以及正方形面积公式,根据已知得出空白面积是解题关键.12.【分析】由图可知S1=812π,S2=812π×3,S3=812π×5,S4=812π×7,…S n=812π×(2n﹣1),从而得出S n的值.【解答】解:由题意可得出通项公式:S n=812π×(2n﹣1),即S n=23π×(2n﹣1),故答案为() 2213nπ-.【点评】本题考查了扇形面积的计算,是一道规律性的题目,难度较大.三、解答题13.【考点】扇形面积的计算;弧长的计算;旋转的性质.【分析】先求出三个扇形的圆心角之和与半径,再根据扇形的面积公式及弧长公式即可得出结论.【解答】解:∵三个扇形的半径相等,都为1,圆心角之和为135°,∴三个小扇形的面积和=21351360π⨯=38π,∴三个小扇形的弧长和=1351180π⨯=34π,∴三个小扇形的周长和=6+34π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.14.【分析】直接利用扇形面积公式求出即可.【解答】解:阴影部分ABDC的面积=23030360π⨯﹣23018360π⨯=()22303018360π⨯-=48π(cm2).【点评】此题主要考查了扇形面积公式应用,正确记忆扇形面积公式是解题关键.15.【分析】首先求出∠DOB=60°,再利用扇形面积公式求出S扇形DOB,再利用勾股定理求出AD的长,再利用三角形面积公式求出阴影部分面积即可.【解答】解:过点O作OE⊥AD于点E,连接DO,∵∠A=30°,∴∠DOB=60°,∴S 扇形DOB =2604360π⨯=83π,∵∠A=30°,AO=4,∴EO=2,∴∴, ∵∠A=30°,AB=8,∴∴S △ABC =12×,S △AOD =12×EO×AD=12×2×,﹣83﹣83π.【点评】此题主要考查了扇形面积公式以及三角形面积公式和勾股定理得出应用,根据已知得出AD 的长是解题关键.16.【分析】根据矩形的性质得到AD=BC=4,∠FAD=90°,根据图形得到S 阴=S 矩ABCD +S 扇ADF ﹣S △FBC ,然后根据矩形、扇形和三角形的面积公式分别计算得到S 矩ABCD =AB•BC=8×4=32,S 扇ADF =2904360π⋅⋅=4π,S △FBC=12BC•FB=12×4×(8+4)=24,再代入S 阴=S 矩ABCD +S 扇ADF ﹣S △FBC 计算即可得到商标图案的面积. 【解答】解:∵矩形ABCD 中,AB=2BC ,且AB=8cm , ∴AD=BC=4,∴S 阴=S 矩ABCD +S 扇ADF ﹣S △FBC , ∵S 矩ABCD =AB•BC=8×4=32,S 扇ADF =2904360π⋅⋅=4π,S △FBC =12BC•FB=12×4×(8+4)=24, ∴S 阴=32+4π﹣24=(8+4π)cm 2.所以商标图案的面积为(8+4π)cm2.【点评】本题考查了扇形的面积公式:S=2360n Rπ⋅⋅(其中n为扇形的圆心角的度数,R为半径).也考查了矩形的性质.。
中考数学:线段旋转所扫边的图形面积
线段旋转所扫边的图形面积线段AB 和点O 在同一平面内,将线段AB 绕点O 旋转,在旋转过程中,线段AB 所扫过的图形面积该如何计算?笔者认为可从点与线段的位置及旋转的角度等几个方面研究.一、旋转中心O 在线段AB 上如图1,设AO =a ,BO =b(a ≥b),旋转角度为α.(1)当0°≤α≤180°时,线段AB 所扫过的图形如图2中的阴影部分所示,其蕊积为扇形OAA'与扇形OB B'的面积和,故()2222360360360S a b a b αααππ=+=+(2)当180°<α≤360°时,线段AB 所扫过的图形如图3中的阴影部分所示,其面积为以AO 为半径的圆的面积减去图中空白部分的面积,故二、旋转中心O 在线段AB 的延长线上如图4,设AO =a ,BO =b ,旋转角度为α.线段AB 所扫过的图形如图5中的阴影部分所示,其面积为扇形OAA'减去扇形OBB'的面积,故()2222360360360S a b a b αααππ=-=-三、旋转中心O 不在直线AB 上(1)当线段AB 的两个端点分别是线段AB 上到旋转中心O 的距离最长的点和距离最短的点时,如图6(1).设AO =a ,BO =b(a>b),旋转角度为α.线段AB 所扫过的图形如图6(2)中的阴影部分所示.因为△OAB ≌△OA'B',所以阴影部分的面积可转化为其面积为扇形OAA'减去扇形OBB'的面积,故()2222360360360S a b a b αααππ=-=-(2)当线段AB 的两个端点不是线段AB 上到旋转中心O 的距离最短的点时,如图7.作OD ⊥AB ,垂足为D ,设OA =a ,OB =b(a ≥b),O D =h ,∠BOD =β,旋转的角度为α.①若0°<α<2β时,线段AB 所扫过的图形如图8中的阴影部分所示,计算线段AB 所扫过的图形面积比较复杂,限于初中学生的知识水平,不需要掌握.②若2β≤α≤360°-2β时,线段AB 所扫过的图形如图9中的阴影部分所示.作OI ⊥A'B',垂足为I ,则△OAD ≌△OA'I ,所以阴影部分的面积可以用以OA 和OD 为半径的两个扇形的面积差加上一个弓形的面积表示,即()22222tan 360360S a b h bαβπβπ=-+-∙.③若360°-2β<α<360°时,线段AB 所扫过的图形如图9中的阴影部分所示.此时阴影部分的面积以初中学生的知识也不能计算.④若α=360°时,线段AB 所扫过的图形如图11中的阴影部分所示,为一个圆环的面积,故S =π(a 2-h 2).计算线段AB 绕点O 旋转所形成的图形面积,关键在于准确画出AB 旋转所形成的图形.其形状是由线段AB 的初始位置、终止位置及点A 、B 、D (点D 是线段AB 上到O 点距离最近的点)的运动轨迹所围成的封闭图形.。
如何求解旋转扫过的面积
如何求解旋转扫过的面积我们知道线旋转、面在平面上旋转都扫过一定面积,如何计算图形旋转扫过的面积呢?下面跟随我的脚步来领略几例此类问题.例 1如图,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .析解:本题考查了圆的有关计算,勾股定理,旋转等方面的知识. 根据圆面积公式和勾股定理,得圆环的面积为: πAB 2-πBC 2=π(AB 2-BC 2)= πAC 2 =π×32 =9π.例2如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由弧BB ′,B ′A ′,弧A ′C ,CB 围成的阴影部分的面积是 .析解:本题主要考查扇形面积的计算和菱形的性质,连接BO,O B ',阴影部分的面积转化为扇形B BO '面积-扇形A CO '面积-三角形BOC 面积-三角形O A B ''面积=扇形B BO '面积-扇形A CO '面积-菱形OABC 的面积,欲求扇形B BO '面积,需要计算OB 的长,于是连接AC,则AC ⊥OB, ∵120A =∠,∴∠AOC=060,∴∠AOB=21∠AOC=030,∴AD=2121=AO , 根据勾股定理得,OD=22AD OA -=23, ∴OB=3,∵旋转角∠A AO '=,090∴∠A CO '=,030∴∠B BO '=,090∴()OB AC S ⨯⨯-⨯-⨯=2136013036039022ππ阴影=31211243⨯⨯--ππ=2π3例3 如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A.7π3-B.4π3+C .πD.4π3+析解:本题考查的知识点有扇形面积的计算,中位线定理和直角三角形的有关性质等,连接BH 和1BH ,∵90ACB ∠=,30CAB ∠=,2BC =, ∴AB=2BC=4,∴AC=,32242222=-=-BC AB ∵O H ,分别为边AB AC ,的中点,∴OB=1OB =2,CH=32111==AC H C ,∴BH=()73222211211=+=+=H C BC BH ,易证△HOB ≌△B O H 11,∴线段OH 所扫过部分的面积(即阴影部分面积)为圆心角为120,半径分别为7和3的两扇形的面积差,即3601202BH S π=阴影3601202BO π-=πππ=-3437.AH BOC 1O 1H1A1C。
三角形围绕顶点旋转的问题(二)
9
6
3
可见数学运算的结果与画板测量结果一致。
4.如果用画板的测量值按下式计算:
̂ + "
̂ ) × ( − )
("
2
不难发现其结果刚好等于环扇形面积(如图 9)。
8
9
≈ 2.8.
(弧A"A + 弧D"D)∙( AB
2
CB)
= 2.80 厘米2
图9
5.环扇形面积公式的推导(如图 10 所示):
【拓展】总结环扇形的面积公式。
【分析】∆在旋转过程中,可以利用曲边三角形全等来进行面积转化,进而求
出不规则图形的面积。
【几何画板操作步骤】
Ⅰ新建:
1.构造三角形,右键显示各点标签;
2.选择“数据”、“新建参数”、“角度”,设置参数名称()等属性(如图 1);
图1
Ⅱ标记:
3.选中参数,选择“变换”,“标记角度”或右键“标记角度”(如图 2);
左侧变量“扇形" ”,“ 确定”(如图 8)。
图8
几何画板源文件地址:https:///s/1CF8Cqz7ZV3h6CgklDY0LHw
提取码:oxvc
【数学解答】
1.取边扫过的角度(60°)计算扇形面积即可,此时扇 =
2. = 30° =
圆
Ⅳ显示:
7.右键显示各点标签;
8.选中弧",“构造”,“弧内部”,“扇形内部”(如图 6);
图6
Ⅴ分析:
9.选中扇形"内部和扇形",选择“度量”,“面积”或“弧长”(如图 7)
。
图7
10.曲边三角形面积等于曲边三角形"""面积,故所求面积即环扇形""面
中考数学复习指导:例析线段旋转扫过的图形面积
例析线段旋转扫过的图形面积——兼谈一个基本图形的结构本文对于旋转中心O不在线段AB上,并且旋转角α为0°<α< 2β与360°-2β<α< 360°的情况进行再探讨,给出初中生也能理解的方法,并谈谈对一个基本图形的结构启示,以供读者参考.一、线段旋转的约定与问题解决如图1,将线段AB绕点O旋转到A'B',设OA=a,OB=b(a≥b) ,OD=h,∠BOD =β,旋转角度为α.情况1 当旋转角α的范围为0°<α<2β时.分析如图1,线段AB在旋转的过程中,应该分别考虑线段BD和线段AD所扫过的不同图形的面积.这里需要注意的是,不能将二者简单相加.DD'所围考察图1,可知上述两条线段都扫过了同一个区域,即由线段DP、D'P以及成的部分,此区域形状虽为不规则图形,但我们很容易将其转化为一个四边形与一个扇形面积的差.为方便起见,我们把这部分区域的面积表示为S PDD',则有1于是得到此时线段AB扫过部分的面积为:情况2 当旋转角α的范围为360°-2β<α<360°时.分析将线段AB绕点O顺时针旋转α°到A'B'位置,如图2.依照上述方法,我们将线段AB分成AC、CD、DB三段来考察.由图2可知,AC扫过了一个宽度为b-a,圆心角为a的圆环的一部分;其中CD、DB两线段始终在一个宽度为a-h的圆环内扫,但此圆环中有部分区域未被扫到,即S PDD'.如上所述,我们考虑求出S PDD',不过现在的∠DOD'=360°-α,不妨记以a-h为宽度的圆环面积为S中环,故得此时线段AB扫过部分的面积为:23二、基本图形解构至此,我们利用初中数学知识得到了上述两类线段扫过面积的求法.同时,值得注意的是,在以上两种情况下,我们都需要用到一个对角互补的筝形,如图3.其基本结构所包含的数学形态颇多,笔者曾经刊文指出这一基本模型的变化方式,现在看来,此图又可解构为一个扇形与一个由两条线段和一条弧所围成的封闭图形;或者整体地看,DP 、DP'是以O 为圆心,OD 为半径的圆的两条切线段,计算S PDD'这个封闭图形的面积只要结合全等、三角函数、扇形面积公式即可解决.由此联想,此图在数学教学中大有用武之地.鉴于此,笔者尝试将该图从不同角度的解构做一梳理、总结.解构1 角平分线定理与逆定理教学用图(如图4).解构2 分成两个等底等腰三角形(如图4).解构3 延长一组对边后形成一对相似三角形(如图5).4解构4 分割后旋转形成等腰三角形(如图6).解构5 分别以O ,P 为圆心,以DP ,OD 为半径在图形内部画弧可分别得到两个扇形(如图7).三、一点感想基本图形的教学是初中几何教学中的重点,也是个难点,笔者以为,在初三首轮复习阶段,尤其是几何模块的复习教学过程中,对这样的基本图形进行解构式的教学非常重要,再辅以实例,可以使学生获得解一题、通一类、会一片的效果.正如波利亚所说:“拿一个有意义但又不复杂的题目去帮助学生发掘问题的各个方面,使得通过这道题就好像通过一道门户,把学生引入一个完整的领域.”。
中考数学旋转(大题培优易错难题)及答案
一、旋转真题与模拟题分类汇编〔难题易错题〕1 .在由△ ABC中,AB=BC=5, Z B=90%将一块等腰直角三角板的直角顶点放在斜边AC的中点.处,将三角板绕点0旋转,三角板的两直角边分别交AB, BC或其延长线于E, F两点,如图①与②是旋转三角板所得图形的两种情况.〔1〕三角板绕点0旋转,△OFC是否能成为等腰直角三角形?假设能,指出所有情况〔即给出△OFC是等腰直角三角形时BF的长〕:假设不能,请说明理由:〔2〕三角板绕点0旋转,线段0E和OF之间有什么数量关系?用图①或②加以证实:〔3〕假设将三角板的直角顶点放在斜边上的点P处〔如图③〕,当AP:AC=L4时,PE和PF 有怎样的数量关系?证实你发现的结论.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF 的长度;【小题2】连接0B,由己知条件推出△ OEB合么OFC,即可推出OE=OF:【小题3]过点P做PM±AB, PN±BC,结合图形推出△ PNF~ & PME, △ APM- △ PNC,继而推出PM: PN=PE: PF, PM: PN=AP: PC,根据条件即可推出PA: AC=PE: PF=1: 4.2 .在平面直角坐标中,边长为2的正方形OA8C的两顶点A、C分别在y轴、X轴的正半轴上,点.在原点.现将正方形.48c绕.点顺时针旋转,当A点一次落在直线y=x上时停止旋转,旋转过程中,A5边交直线〕'='于点M边交汇轴于点N 〔如图〕.〔1〕求边04在旋转过程中所扫过的面积;〔2〕旋转过程中,当和AC平行时,求正方形O43C旋转的度数:(3)设AM3N的周长为P,在旋转正方形O45C的过程中,〃值是否有变化?请证实你的结论. 【答案】(1)n/2(2) 22.5.⑶周长不会变化,证实见解析【解析】试题分析:(1)根据扇形的面积公式来求得边0A在旋转过程中所扫过的面积:(2)解决此题需利用全等,根据正方形一个内角的度数求出NAOM的度数:(3)利用全等把△ MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1) TA点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45.,/. 0A 旋转了45°.0A在旋转过程中所扫过的面积为土」=-.360 2(2) •/ MNII AC,・•. Z BMN=Z BAC=45% Z BNM=Z BCA=45°./. Z BMN=Z BNM. /. BM=BN.又YBA=BC, A AM=CN.又;OA=OC, Z OAM=Z OCN, △ OAM合△ OCN./. Z A0M=Z CON=- (Z AOC-Z MON ) =- (90°-45°) =22.5°.2 2旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45.-22.5.=22.5..(3)在旋转正方形OABC的过程中,p值无变化.证实:延长BA交y轴于E点,那么N AOE=45°-Z AOM, Z CON=90°-45°-Z AOM=450-Z AOM,・•. Z AOE=Z CON.又:OA=OC, Z OAE=180o-90o=90°=Z OCN.:, & OAE2 A OCN.「.OE=ON, AE=CN.文:Z MOE=Z MON=45°, 0M=0M,「・△ OME2△ OMN. /. MN=ME=AM+AE.・•, MN=AM+CN,/. p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4...・在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.3.己知:如图1,将两块全等的含30.角的直角三角板按图所示的方式放置,N 84c=N 8MiC=30°,点8, C, 8]在同一条直线上.(1)求证:AB=2BC(2)如图2,将△ABC绕点C顺时针旋转凌.(0Va<180),在旋转过程中,设AB与AiC. AiB】分别交于点D、E, AC与A】Bi交于点F.当骏等于多少度时,AB与A X B工垂直?请说明理由.〔3〕如图3,当△ABC绕点C顺时针方向旋转至如下图的位置,使ABIICBi,AB与AK 交于点D,试说明A1D=CD.【答案】〔1〕证实见解析〔2〕当旋转角等于30.时,AB与AiBa垂直.〔3〕理由见解析【解析】试题分析:⑴由等边三角形的性质得八8=88],又由于8B1=2BC,得出A8=28C;⑵利用AB与AiBi垂直得N AiED=90°,那么N AQE=90°-N Ai=60°,根据对顶角相等得Z BDC=60.,由于N B=60°,利用三角形内角和定理得N A1CB=180°-Z BDC-Z B=60°,所以N ACA】=90.-/AiCB=30.,然后根据旋转的定义得到旋转角等于30.时,AB与AiBi垂直:⑶由于ABIICB], N ACBF90.,根据平行线的性质得N ADC=90.,在由△ ADC中,根据含30度的直角三角形三边的关系得到CD=L AC,再根据旋转的性质得AC=AC 所以2CD=-AiC,贝ljAiD=CD.2试题解析:(1).「△488]是等边三角形;AB=BBi•/ 881=2BCAB=2BC〔2〕解:当AB 与AiBi垂直时,Z AiED=90%・•, Z A1DE=90°-Z A F900-30°=60°,Z B=60% ?. Z BCD=60%/. Z ACAi=90°-60c=30°,即当旋转角等于30.时,AB与A】B,垂直.〔3〕 ABII CBi, Z ACBi=90%/. Z CDB=90°,即CD 是△ ABC 的高,设BC=.,AC=.,贝lj由〔1〕得AB=2fl, ,7 ^WRC = — BCxAC = — ABxCD.UBC 2 2即[=k2axeO2 2CD = -b 9即CD=-!-AiC,2 2/. AiD=CD.【点睛】此题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中央的距离相等: 对应点与旋转中央的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.4.:在△ ABC中,BC=a, AC=b,以AB为边作等边三角形ABD.探究以下问题:〔1〕如图1,当点D与点C位于直线AB的两侧时,a=b=3,且N ACB=60.,那么CD=—: 〔2〕如图2,当点D与点C位于直线AB的同侧时,a=b=6,且N ACB=90.,那么CD=_;〔3〕如图3,当NACB 变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的N ACB的度数.【答案】〔1〕3\产:〔2〕 3、伸-3\4 ㈠〕当NA CB=120.时,CD有最大值是a+b.【解析】【分析】〔1〕a=b=3,且NACB=60.,△ ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;〔2〕 a=b=6,且NACB=90.,△ ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差:〔3〕以点D为中央,将△ DBC逆时针旋转60.,那么点B落在点A,点C落在点E.连接AE, CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)/ a=b=3,且NACB=60°,「. △ ABC是等边三角形,3//. 0C= 2 ,/. CD=3、3:(2)石-3©〔3〕以点D 为中央,将△ DBC 逆时针旋转60., 那么点B 落在点A,点C 落在点E.连接AE, CE, CD 有最大值是a+b.此题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD 有最大值的条件, 是解题的关键.5.在△ ABC 中,AB=AC, Z A=30°,将线段BC 绕点B 逆时针旋转60.得到线段BD,再将线 段BD 平移到EF,使点E 在AB 上,点F 在AC 上.〔1〕如图1,直接写出N ABD 和NCFE 的度数;〔2〕在图1中证实:AE=CF ;〔3〕如图2,连接CE,判断4CEF 的形状并加以证实.□ 1 口2【答案】(1)15% 45.: (2)证实见解析:(3) 4CEF 是等腰直角三角形,证实见解析.【解析】试题分析:(1)根据等腰三角形的性质得到N ABC 的度数,由旋转的性质得到/ DBC 的度 数,从・•・A CDE 为等边三角CE=CD.当点E 、A 、C 不在一条直线上时,有 CD=CE<AE+AC=a+b ;当点E 、A 、C 在一条直线上时,CD 有最大值,CD=CE=a+b :只有当N ACB=120°时,Z CAE=180%即A 、C 、E 在一条直线上,此时AE 最大【点/. Z ACB=120°, 因此当N ACB=120°时,而得到NABD的度数;根据三角形外角性质即可求得NCFE的度数.(2)连接CD、DF,证实△ BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而ABH FD,证实△ AEF合△ FCD即可得AE=CF.(3)过点E作EG J_CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证实△ CEF是等腰直角三角形.(1) :在△ ABC 中,AB=AC, ZA=30% Z ABC=75°.•将线段BC绕点B逆时针旋转60.得到线段BD,即NDBC=60..NABD=15../. Z CFE=Z A+Z ABD=45°.(2)如图,连接CD、DF.线段BC绕点B逆时针旋转60得到线段BD, /. BD=BC, Z CBD=60°. △ BCD是等边三角形.「・CD=BD.・「线段BD平移到EF,・・.EFII BD, EF=BD.四边形BDFE是平行四边形,EF=CD.「AB = AC, Z A=30°, /. Z ABC=Z ACB=75°. /. Z ABD=Z ACD=15°.,•,四边形BDFE是平行四边形…♦・ABH FD. /. Z A=Z CFD.:■ & AEF合△ FCD (AAS)./. AE=CF.(3) ZkCEF是等腰直角三角形,证实如下:如图,过点E作EG_LCF于G,: Z CFE =45°, /. Z FEG=45°. /. EG=FG.1EG =耳AEZ A=30°, NAGE=90°,「・2・1 1EG = £:F FG = KFV AE=CF,「. 2 . /. 2.・.G为CF的中点.「.EG为CF的垂直平分线.EF=EC./. Z CEF=Z FEG=90°.・•.△ CEF是等腰直角三角形.考点:1 •旋转和平移问题:2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质:5.平行四边形的判定和性质:6.全等三角形的判定和性质;7.含30度直角三角形的性质:8.垂直平分线的判定和性质:9.等腰直角三角形的判定.6.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上〔如图1〕.现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB 边交DF于点M, BC边交DG于点N.〔1〕求边DA在旋转过程中所扫过的面积:〔2〕旋转过程中,当MN和AC平行时〔如图2〕,求正方形ABCD旋转的度数;〔3〕如图3,设AMBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?清证实你的结论.71【答案】〔1〕2 〔2〕 225°;〔3〕不变化,证实见解析.【解析】试题分析:〔1〕将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了45°,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.〔2〕旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为22.5.〔3〕延长BA交DE轴于H点,通过证实/D4〃三4DCN和/DM〃三4DMN可得结论.〔1〕;A点第一次落在DF上时停止旋转,「.DA旋转了45°.457r x 22 7TDA在旋转过程中所扫过的而积为360― 一2〔2〕 ,/ MN II AC, = ^-BAC = 45° Z./7/VM = ZBC4=45°.乙BMN =乙BNM . BM = BN・•・• • •T7.. BA = BC . AM = CN • ,・・•T7..DA = DC,4AM =乙DCN . ADAM=ADCN• /• • •1"DM = k〔900 - 45°〕 = 22.5°.L ADM=乙CDN . 2••• ・• •厂.旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为45°-22.5.= 22.5.⑶不变化,证实如下:如图,延长BA交DE轴于H点,那么LADE = 45° - LADM L CDN = 900 - 45° - L ADM = 450 - L ADM,,.LADE =乙CDN•• •T7.. DA = DC^DAH = 1800-90° = 90° = LDCN . ADAH^ADCN • •• • •.DH = DN f AH = CN•• ♦..〔MDE =乙MDN = 45°刀M = DM . ADMHwADMNv.MN = MH = AM + AH . MN = AM + CNp = MN + BN + BM = AM + CN + BN + BM = AB + BC = 4,在旋转正方形ABCD的过程中,P值无变化.考点:1 ,而动旋转问题:2.正方形的性质:3,扇形面积的计算:4.全等三角形的判定和性质.7.思维启迪:(1)如图1, A, B两点分别位于一个池塘的两端,小亮想用绳子测量A, B 间的距离,但绳子不够长,聪明的小亮想出一个方法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P (点P可以直接到达A点),利用工具过点C作CDII AB,思维探索:(2)在4ABC 和4ADE 中,AC=BC. AE = DE,且AE<AC,Z ACB = Z AED =90.,将△ ADE绕点A顺时针方向旋转,把点E在AC边上时△ ADE的位置作为起始位置 (此时点B和点D位于AC的两侧),设旋转角为a,连接BD,点P是线段BD的中点,连接PC, PE.①如图2,当△ ADE在起始位置时,猜测:PC与PE的数量关系和位置关系分别是;②如图3,当a = 90.时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证实你的结论:③当a=150.时,假设BC = 3, DE=I,请直接写出PC?的值.【答案】(1) 200: (2)①PC=PE, PC_LPE:②PC与PE的数量关系和位置关系分别是PC=PE, PC±PE,见解析:@PC2=-1()+ 3-.2【解析】【分析】(1)由CDIIAB,可得NC=NB,根据N APB=N DPC即可证实△ ABP2△ DCP,即可得AB = CD,即可解题.(2)①延长EP交BC于F,易证△ FBP合△ EDP (SAS)可得△ EFC是等腰直角三角形,即可证实PC=PE, PCXPE.②作BFII DE,交EP延长线于点F,连接CE、CF,易证△ FBP合△ EDP (SAS),结合得BF = DE=AE,再证实△FBCW △ EAC (SAS),可得△ EFC是等腰直角三角形,即可证实PC = PE, PC±PE.③作BFII DE,交EP延长线于点F,连接CE、CF,过E点作EH_LAC交CA延长线于H 点,由旋转旋转可知,Z CAE = 150", DE与BC所成夹角的锐角为30.,得N FBC = N EAC, 同②可证可得PC=PE, PC_LPE,再由己知解三角形得J. EC2=CH2+HE2=1O + 3JJ,即可求出尸C2=9EC2 = 1()-3丫’3 2 2【详解】(1)解:丁CDII AB, J Z C=Z B,在仆ABP和aDCP中,BP = CPZAPB = NDPC,/B = /C:■ & ABP合△ DCP (SAS),DC=AB.AB = 200 米.・•・CD=200米,故答案为:200.(2)①PC与PE的数量关系和位置关系分别是PC=PE, PCXPE.理由如下:如解图1,延长EP交BC于F,同(1)理,可知,△ FBP合 & EDP (SAS),/. PF=PE, BF = DE,又,.,AC=BC, AE = DE,FC=EC,又•・・Z ACB = 90\EFC是等腰直角三角形,・/ EP = FP,・・.PC=PE, PCJLPE.®PC与PE的数量关系和位置关系分别是PC = PE, PC±PE.理由如下:如解图2,作BFII DE,交EP延长线于点F,连接CE、CF, 同①理,可知△ FBP2△ EDP (SAS),・・.BF = DE. PE = PF=-EF, 2・/ DE=AE,/. BF = AE,・••当a=90.时,Z EAC=90°,ED II AC, EAII BCFBII AC, Z FBC=90,・•・ Z CBF=Z CAE,在^ FBC和^ EAC中,BF = AE< NCBE = NCAE ,BC = AC:■ & FBC合 ' EAC (SAS),・•. CF = CE, Z FCB = Z EC A,•/ Z ACB = 90°,/. Z FCE = 90°,△ FCE是等腰直角三角形,・/ EP = FP,CP±EP, CP = EP=-EF.2③如解图3,作BFII DE,交EP延长线于点F,连接CE、CF,过E点作EH_LAC交CA延长线于H点,当a=150.时,由旋转旋转可知,Z CAE = 150°, DE与BC所成夹角的锐角为30.,・•・ Z FBC=Z EAC=a=150°同②可得^ FBP24 EDP (SAS),同②△ FCE是等腰直角三角形,CPJ_EP, CP = EP=』±CE,2在RSAHE 中,NEAH = 30.,AE=DE=1,HE=- , AH=叵,2 2又< AC=AB=3,/. CH=3+正,2・•, EC2=CH2+HE2=IO +3>/3【点睛】此题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30.直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.8.小明合作学习小组在探究旋转、平移变换.如图△ ABC, △ DEF均为等腰直角三角形, 各顶点坐标分别为 A (1, 1) , B (2, 2) , C (2, 1) , D ( 0) , E( 2五,0),〔1〕他们将△ ABC绕C点按顺时针方向旋转45.得到△ AiBiC.请你写出点A],Bi的坐标,并判断A】C和DF的位置关系:〔2〕他们将△ ABC绕原点按顺时针方向旋转45.,发现旋转后的三角形恰好有两个顶点落在抛物线y = 2g?+bx+c±.请你求出符合条件的抛物线解析式:〔3〕他们继续探究,发现将△ ABC绕某个点旋转45,假设旋转后的三角形恰好有两个顶点落在抛物线y = x?上,那么可求出旋转后三角形的直角顶点P的坐标.请你直接写出点P的所有坐标.A】C和DF的位置关系是平行.〔2〕•/ △ ABC绕原点按顺时针方向旋转45.后的三角形即为^ DEF,2 应x〔扃+>/Ib + c = O①当抛物线经过点D、E时,根据题意可得:{, ,解得2 应x〔2 回一+ 2回+ c=0b = -12(=8万A y = 2>/2x2-12x+8x/2 .2 五x(近忘b + c = o②当抛物线经过点D、F时,根据题意可得:{(3①丫372 点,解得I 2 J 2 2b = -llL = 7-72y = 2V2x2-llx+7>/2.2耳〔2⑸+2岳+ c = 0③当抛物线经过点E、F时,根据题意可得:{〔30丫35/22ax --- +---b + c =-2 2J 乙b = -13'c = 10 应y = 2x/2x2-13x + 10x/2 .〔3〕在旋转过程中,可能有以下情形:①顺时针旋转45.,点A、B落在抛物线上,如答图1所示,易求得点p坐标为〔o, Lz叵〕. 2②顺时针旋转45.,点B、C落在抛物线上,如答图2所示,设点夕,.的横坐标分别为右,X2,易知此时BC与一、三象限角平分线平行,.•.设直线BC的解析式为y=x+b.联立丫f2与丫=乂+1〕得:x2=x+b,即X? — x-b = 0,「. X]+x? =1,X t x2 =-b ..•.根据题意易得:|x「x」=走,.J 〔Xi-xJ?=:,即 2 2\2 IX] +X2〕 -4x^2 =-..1- l + 4b = i,解得b =一2 8x2-x + - = 0,解得x = ^^x 或x = ^^.8 4 4••1点c的横坐标较小,x = 三口 .42 - *\/2 . 9 3-2近1IX = ------------- 时,y = x = ---------------------- .4 8.p f 2-5/2 3-2V2 .4 8③顺时针旋转45.,点C、A落在抛物线上,如答图3所示,设点C, A,的横坐标分别为4, X2.易知此时C7V与二、四象限角平分线平行,.•.设直线C7V的解析式为y = -x + b.联立y=x?与y = lX + b 得:x° =-x + b ,即+ x - b = 0 , /. X. +x?=一1, x,x, ="b .••・UA'=1, .•.根据题意易得:|x「x」= WI, ... 〔x「X2〕2 =;,即2 2.1- l+4b = l,解得b =一 2 8, 2 I ] 八-2 + y/2 T -2 - V2..X- + X + —= 0 , 解得X = ------------------ x 或X = ---------------- -8 4 4•・•点C的横坐标较大,「. x = "2+V,2 .4w + V? . 2 3 -2>/2ix = --------------- 时,y = x = ----------------------- .4 8*〕.4 8④逆时针旋转45.,点A、B落在抛物线上.由于逆时针旋转45.后,直线AB与y轴平行,由于与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45.,点B、C落在抛物线上,如答图4所示,与③同理,可求得:P 〔二2 一退,3二2巫〕.4 8⑥逆时针旋转45.,点C、A落在抛物线上,如答图5所示,与②同理,可求得:p 〔2y,,一y.〕.综上所述,点P的坐标为:〔0,上叵〕,〔三叵,3-2立〕,p〔―2 +点,2 4 8 43-2>/2 2 + 72 3 + 20\8 4 8等图I 答医2 硝; 1 答& 等国【解析】〔1〕由旋转性质及等腰直角三角形边角关系求解.〔2〕首先明确△ ABC绕原点按顺时针方向旋转45.后的三角形即为ADEF,然后分三种情况进行讨论,分别计算求解.〔3〕旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C和点D三种可能,因此共有六种可能的情形,需要分类讨论,防止漏解.考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.。
中考压轴专题(四):旋转问题
中考压轴专题(四):旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。
注意旋转过程中三角形与整个图形的特殊位置。
一、 直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M点N ,使M 、N 两点重合成一点C ,构成△(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________;②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________;(2)当α=90°时,判断四边形EDBC 是否为菱AB NM (第1题)形,并说明理由.3、(2009年北京市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转90得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP1=x,S11P FC=y,求y与x之间的函数关系式,并写出自变量x的取值范围.分析:此题是综合开放题-------已知条件、问题结论、解题依据、解题方法这四个要素中缺少两个或两个以上,条件需要补充,结论需要探究,解题方法、思考方向有待搜寻。
一个石英钟的分针长10cm,分针旋转过的面积是157
一个石英钟的分针长10cm,分针旋转过的面积是157
一个石英钟的分针长10cm,分针旋转扫过的面积是157cm2。
求分针走了多少分?
答案解析
3.14×102
=3.14×100
=314(平方厘米)
157÷314×60=30(分钟)
答:分针走了30分钟。
这是一道关于圆的面积的题目,想一想分针经过若干分钟旋转扫过的面积与分针旋转一周扫过的面积之间有何关系?
分针旋转一周扫过的面积就是半径为10厘米的圆的面积,利用圆的面积=鹱半径2,先计算出分针旋转一周扫过的面积;
接着用扫过的面积÷旋转一周扫过的面积,求出扫过的面积占整个圆的分率即分针旋转扫过的面积所需时间占60分钟的分率,再乘以60分即可求出分针走了多少分。
定长线段绕定点旋转一定角度扫过的面积
定长线段绕定点旋转一定角度扫过的面积基本知识及图形储备:线段AB 绕点O 旋转一定角度,线段AB 扫过的面积为大扇形的面积与小扇形的面积之差满足的条件:线段AB 上各点到旋转中心O 的距离均不相等,且一端点(点A )离旋转中心O 最近,另一端点(点B )离旋转中心O 最远。
如下图所示,在正方形ABCD 中,点E 、F 分别在线段AB 、BC 上,且DE=DF ,则ΔDAE ≌ΔDCF因此,若看到左下图,常见的辅助线就是右下图1、如图,在平面直角坐标系中放置矩形O ABC ,其顶点为O (0,0),A (0,2),B (4,2),C (4,0)。
直线DE 经过线段AB 上的动点D 和y 轴上的定点E ,点B 、C 关于动直线DE 的对称点分别为B 1、C 1。
若在点D 移动的过程中B 1能与点O 重合。
(1)求定点E 的坐标; (key :(0,5))(2)当B 1与O 重合时,求点D 和C 1的坐标; key :(3/2,2),(8/5,-6/5)(3)求点D 从点B 移动到点A 的过程中,线段B 1C 1扫过的面积。
(key :π45212)●●●●(模仿)在平面直角坐标系中,点A、B的坐标分别是(1,0),(3,2),点Q是线段AB上一个动点,点P是y轴正半轴上的定点(1)点Q在线段AB上某一位置时,点A和点B关于PQ对称,求该定点P的坐标;(2)把ΔPOA沿PQ对折得到ΔPO′A′①求BO′的最小值;②求点Q从点A移动到点B的过程中,线段O′A′扫过的面积(参考数据:tan18°=1/3)A’B'A B C 2、如图所示,在R t △ABC 中,点C 为直角顶点,BC=1,AC=3,将△ABC 绕点C 顺时针旋转至点B 刚好落到线段AB 上,旋转即刻停止。
(1)旋转角∠BC B ′=(2)线段AB 在旋转中所覆盖的面积为 136324π- (3)求△ABC 绕点C 顺时针旋转60°所扫过的面积。
小圆滚动中扫过的面积计算公式
小圆滚动中扫过的面积计算公式一、小圆滚动中扫过的面积相关概念。
1. 滚动方式。
- 当小圆在平面上滚动时,有不同的滚动情况。
如果是沿着直线滚动,扫过的面积形状相对规则;如果是沿着曲线滚动,情况会复杂一些。
2. 小圆的特征。
- 小圆的半径r是计算扫过面积的重要参数。
二、小圆沿直线滚动扫过的面积。
1. 完整滚动一周。
- 当小圆完整滚动一周时,它扫过的面积由两部分组成:一个长方形和两个半圆(合起来是一个圆)。
- 长方形的长为小圆滚动一周的距离,也就是小圆的周长C = 2π r,宽为小圆的直径2r。
- 所以长方形的面积S_1=2π r×2r = 4π r^2。
- 两个半圆合起来的圆面积S_2=π r^2。
- 那么小圆滚动一周扫过的总面积S = S_1+S_2=4π r^2+π r^2=5π r^2。
2. 滚动多周。
- 如果小圆滚动n周,扫过的面积就是S = 5π r^2× n。
三、小圆沿曲线滚动扫过的面积(以沿大圆滚动为例)1. 小圆在大圆内部滚动。
- 设大圆半径为R,小圆半径为r。
- 当小圆在大圆内部滚动时,小圆滚动一周扫过的面积是一个环形的一部分。
- 小圆滚动的圆心轨迹半径为R - r。
- 小圆滚动一周扫过的面积S=π((R - r + r)^2-(R - r)^2)=π(R^2-(R - r)^2)=π(2Rr - r^2)。
2. 小圆在大圆外部滚动。
- 小圆滚动的圆心轨迹半径为R + r。
- 小圆滚动一周扫过的面积S=π((R + r + r)^2-(R + r)^2)=π((R + 2r)^2-(R +r)^2)=π(2Rr+ 3r^2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何求解旋转扫过的面积
我们知道线旋转、面在平面上旋转都扫过一定面积,如何计算图形旋转扫过的面积呢?下面跟随我的脚步来领略几例此类问题.
例 1如图,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 . 析解:本题考查了圆的有关计算,勾股定理,旋转等方面的知识. 根据圆面积公式和勾股定理,得圆环的面积为: πAB 2-πBC 2=π(AB 2-BC 2)= πAC 2 =π×32 =9π.
例2如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由弧BB ′,B ′A ′,弧A ′C ,CB
围成的阴影部分的面积是 .
析解:本题主要考查扇形面积的计算和菱形的性质,连接BO,O B ',阴影部分的面积转化为扇形B BO '面积-扇形A CO '面积-三角形BOC 面积-三角形O A B ''面积=扇形B BO '面积-扇形A CO '面积-菱形OABC 的面积,欲求扇形B BO '面积,需要计算OB 的长,于是连接AC,则AC ⊥OB,
∵120A =∠,∴∠AOC=060,
∴∠AOB=21∠AOC=030,∴AD=2
121=AO ,
根据勾股定理得,OD=22AD OA -=23, ∴OB=3,∵旋转角∠A AO '=
,
090∴∠A CO '=,030∴∠B BO '=,090 ∴()OB AC S ⨯⨯-⨯-⨯=2136013036039022ππ阴影=31211243⨯⨯--ππ=23π32
-. 例3 如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋
转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )
A .77π338-
B .47π338+
C .π
D .4π33
+ 析解:本题考查的知识点有扇形面积的计算,中位线定理和直角三角形的有关性质等,连接BH 和1BH ,
∵90ACB ∠=,30CAB ∠=,2BC =,
∴AB=2BC=4,
∴AC=,32242222=-=-BC AB ∵O H ,分别为边AB AC ,的中点, ∴OB=1OB =2,CH=32
111==AC H C , ∴BH=()7322
2211211=+=+=H C BC BH , 易证△HOB ≌△B O H 11,∴线段OH 所扫过部分的面积(即阴影部分面积)为圆心角为120,半径分别为7和3的两扇形的面积差,即
3601202BH S π=阴影360
1202BO π-=πππ=-3437.
A H
B O
C 1O 1H 1A 1C。