电动机实物接线图教学提纲
电动机的基本控制线路及安装、调试与维修 ppt课件
(a) 外形
(b) 结构
交流接触器的外形与结构
PPT课件 9
结构示意图
弹簧
~
电源
常开
常闭
线圈
铁心
衔铁
主触点 电机
M 3~
PPT课件 动画
辅助触点
10
符号 KM
线圈 主触头 KM
常开辅助触头 常闭辅助触头
KM
KM
PPT课件
11
1.5继电器
继电器是一种根据输入信号(电量或非电量)的 变化,来接通或分断小电流电路(如控制电路),实 现自动控制和保护电力拖动装置的电器。
因KM1熔焊,
主触点断不开 按停止按钮SB3后 U V W
主电路
M 3~
RF
电机继续正转
V11
KM1
KM2
控制电路
30 30
PPT课件
课堂小结
小 结
1、掌握三相异步电动机正反 转的工作原理。 2、掌握常用低压电器的结构 功能。 3、树立团队合作精神。
PPT课件 31 31
课后作业
必做题:根据 电动机正反转 的线路图,试 分析电动机正 转时如不按停 止按钮而直接 按反转启动按 钮会有什么现 象发生?
PPT课件
KM2
控制电路
29 29
特殊情况分析
L1 QS U11 V11 W11 FU1 SB1 E KM1 L2 L3 U11 FU2 SB3 E
当KM1主触点发生熔焊故障 时,电动机能否停止或反转?
按下反转按钮SB2时
KM1 SB2 E KM2
KM2无法闭合
KM2 KM2 KM1
KM1未合上 KM1 合不上 KM2线圈不能通电
KM2
三相异步电动机接线图和接线方法
三相异步电动机接线图和接线方法三相异步电动机是工业中常见的一种电动机,它通过三相交流电源驱动,可用于各种工业生产中的传动设备。
三相异步电动机的接线图和接线方法对于电动机的正常运行非常重要,下面将结合实际工程应用来详细介绍三相异步电动机的接线图和接线方法。
一、三相异步电动机接线图三相异步电动机的接线图通常包括主接线和启动接线两部分。
主接线是电机的基本接线,主要用于将电机与电源连接起来,而启动接线则是用于电机的起动和停止操作。
1.主接线图三相异步电动机的主接线图通常是通过连接主线圈和辅助线圈实现电机的正常运行。
主接线图一般包括三个主线圈,分别是U、V、W,以及三个辅助线圈,分别是U1、V1、W1。
连接方式通常遵循星形接线和三角形接线两种方式。
在星形接线中,主线圈和辅助线圈分别相互连接,而在三角形接线中,则是主线圈之间相互连接。
这两种连接方式决定了电机的正反转和运行性能。
2.启动接线图三相异步电动机的启动接线图通常包括起动电容、断电器、热继电器等组件,用于控制电机的启动和停止操作。
起动电容通常用于提供额外的起动助力,断电器用于控制电机的启动和停止,热继电器则用于保护电机在过载状态下的安全运行。
二、三相异步电动机接线方法1.星形接线在星形接线中,主线圈和辅助线圈分别连接在一起,如图1所示。
连接方式为U和U1相连,V和V1相连,W和W1相连。
这种接线方式能够有效提高电机的起动扭矩和运行性能,适用于大型负载的传动。
2.三角形接线在三角形接线中,主线圈之间相互连接,如图2所示。
连接方式为U和V相连,V和W相连,W和U相连。
这种接线方式能够有效降低电机的起动电流和提高运行效率,适用于小型和中型负载的传动。
3.变压器起动除了直接接线方式外,还可以采用变压器起动的方式来实现电机的启动和停止。
变压器起动是通过变压器来控制电机的起动电流和启动扭矩,从而延长电机的使用寿命并提高运行效率。
4.软启动器软启动器是一种通过控制器来实现电机的缓慢启动和停止的方式,能够有效减小电机的起动电流和冲击力,从而延长电机的使用寿命并提高运行效率。
电动机常用原理接线图
直流电动机正反转单按钮控制两台电动机顺序启动反序停止三相异步鼠笼电动机电容制动控制电路图用两个时间继电器控制电动机间歇正反转三地控制三相电动机正反转两地控制一台电动机频敏变阻启动原理图用一个时间继电器,和三个按钮,控制一个灯220和电机380,要求电机能自动运行60秒停止接近开关导通后电机停止接近开关断开后延时N秒电机启动运用时间继电器使电磁铁动作2秒后复位,经过3分钟后动作2秒后复位,再经过5分钟后动作2秒复位利用电接点压力表自动控制水泵两台电动机既可分别启动和停止,也可以同时启动和停止.正转停止后,必须过预定的时间(如5S)后才能反转,反转停止后,必须过预定的时间(如5S)后才能正转用三个时间继电器控制正反转并要有间隙三相异步电动机转子串联电阻启动三相异步电动机启动控制线路图(带故障指示灯)电机有点动还有正常运行用3个继电器控制电动机断相保护用四个时间继电器控制正反转并要有间隙点动与长动的正反转控制电路二台电机按时间顺序起动由时间控制反序停止缺相保护原理图原理:运行中的三相380伏电动机缺一相电源后,变成两相运行,如果运行时间过长则有烧毁电动机的可能。
为了防止缺相运行烧毁电动机,可以采用多种保护方案。
下图为一种三相电动机断相保护电路,当电动机运行时发生断相后三相电压不平衡,桥式整流则有电压输出,当输出的直流电压达到中间继电器KA动作值时,KA动作,于是与自锁触点串联的常闭触点断开,使KM线圈断电其主触头全部释放,电动机停止。
电动机可逆带限位控制电路原理图控制两台电机,第一台启动后第二台才能启动,第一台停止后第二台才能停止电路图三台电动机顺序启动反序停止工作原理在正常情况下,按下启动按钮SB1,电流通过按钮到时间继电器KT5的常闭触头KT4-1(因为时间继电器此时没有工作常闭触头KT5-1是闭合导通的)到交流接触器线圈KM1形成回路,接触器主触头闭合机械泵得电开始运行,同时接触器辅助触头KM1-1闭合,接触器长期得电保持、时间继电器KT1也得电开始计时为旋转阀的启动做准备,当KT1达到设定时间后,时间继电器延时闭合的常开触头KT1-1闭合接通交流接触器KM2线圈、时间继电器KT2,接触器KM2主触头闭合,旋转阀得电运行,时间继电器KT2开始计时为KM3的启动做准备同时交流接触器辅助触头KM2-1、KM2-2动作,KM2-1闭合,KM2长期保持,KM2-2断开,切断时间继电器KT1,使时间继电器停止工作;当KT2达到设定时间后,时间继电器延时闭合的常开触头KT2-1闭合接通交流接触器KM3线圈,接触器KM3主触头闭合,压缩机得电运行,同时接触器辅助触头KM3-1闭合,接触器长期得电保持。
电机正反转控制电路及实际接线图个人学习用
电机正反转控制电路及实际接线图个人学习用Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。
电动机三角型与星型的区别和接线方法图解
电动机三角型与星型的区别和接线方法图解
电动机常规通用有两种接线法,就是三角型接线法和星型接线法。
采用星型接法的电动机一般都是在3.0KW以下的小功率电机,星型小功率电动机起动时对电网电压冲击力小,所以小功率电动机一般都是星型接线法。
其特点:小功率、大扭矩。
大功率电动机起动时,为了不形成起动时对电网电压造成过大的冲击,避免起动时对电动机绕组和绝缘的冲击和耗损,采用了降压启动,星三角(y~△)降压启动是其中之一。
电动机的星型接线法是:将电动机的绕组的六个抽头,三相按各一组首尾分开,将三相绕组尾端(就是末端头)并接在一起,形成回路的点。
电动机的三相绕组的抽头首端(头线)就是接线端、接电源线端口。
电动机实物接线图
电动机的接线原理图
电动机绕组的三角型接线法是:电动机三相绕组的六个抽头,三相分三组的各一相首尾分清,将三相绕组各相绕组头尾并接(就是三相其中的和各一相头尾连接),三相的每相头尾连接好后,就是接电源的接线端。
电动机的实物接线图
电工组有一个电工去接2.2KW的电机,去了很久都不见回来值班室,打电话问他,他说:‘刚回来的新电动机,接上电源线合闸后,电动机不转,就算不运行,那么电动机总有一点声音呀,可是电动机就是一点点声音也没有,没办法了’,随后我到现场打开电动机接线盒一看,电动机绕组的六个抽头(接线柱)都是单独的,并没有连接片向往常电动机接的星型或三角型接线法,我立即让他找来三个连接片按星型接线图接好线,合上闸,电动机正常运行运转。
所以说:电工也需要不断的学习、随着电气设备的更新,自己也要不断的更新进步学习。
电机正反转控制电路及实际接线图完整版
电机正反转控制电路及实际接线图Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。
电机与拖动接线示意图讲义(点动与连动)
1
U1 W2 V1 W1 V2
3 SB1 2
4
M
PE U2
L1
L2
L3
三相异步电动机
1
2
3
1
FU1
3
5 6
1
3
FU2
两地起动控制线路
QS
4 5 6
2
4
2
4
2
KM
4
6
1
3
5
1 4
3
SB2 2
1
FR
3 4
5 6
95
1 4
3
SB3 2
2
96
1
U1 W2 V1 W1 V2
3 SB1 2
4
M
PE U2
L1
5 6
95
2
96Leabharlann 1U1 W2 V1 W1 V2
3 SB1 2
4
M
PE U2
三相异步电动机
L1
L2
L3
点 连 动控制线路
1
2
3
1
FU1
3
5 6
1
3
FU2
QS
4 5 6
2
4
2
4
2
KM
4
6
1
3
5
1 4
3
SB2 2
1
FR
3 4
5 6
95
2
96
1
U1 W2 V1 W1 V2
3 SB1 2
4
M
PE U2
三相异步电动机
电动机点动控制线路
电源开关 控制电路熔断器
停止按钮/(常闭点)
电机正反转控制电路及实际接线图
在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,电机开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。
为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。
图文精解电动机绕组的接线,接线不求人!
图文精解电动机绕组的接线,接线不求人!电机绕组的接线是一件相当头痛的事情,线圈都嵌入到铁心里以后,留出了许许多多的接线端子,都是一根根的线头,又没有标记,要把它们准确地联接起来,既异常麻烦,又很容易出错。
我于是自己在纸上进行了无数次的“接线”,终于摸出了一些规律,编写了一个顺口溜,还配了一首舞曲,称之为“接线舞曲”,学生们边唱边接线,非但迅速而准确,还格外地显得喜庆。
异步电动机的定子绕组1.绕组的结构异步电动机的定子绕组是用来产生旋转磁场的,其大致安排如图3-32a所示。
但实际的电动机里,总是把一相的绕组分成若干个较小的线圈,做成分布绕组,分布绕组里通入电流后,磁动势波形为阶梯形,如图3-32b所示。
则既可以提高铁心的利用率,还可以使磁动势的波形尽量地接近于正弦波,减小其谐波分量。
(微信公众号:全球电气资源)通常,每一个定子槽里都安置两个绕组边,称为双层绕组,其铁心的结构如图3-32c所示。
图3-32 三相异步电动机的绕组概况a)三相绕组特点 b)分布绕组 c)双层绕组的铁心2.绕组的展开图要了解绕组的电路,需要把定子展开,如图3-33a所示,把铁心切断,向左右展开。
展开后如图3-33b所示,如把铁心移去,就得到如图3-33c所示的绕组展开图。
如果是双层绕组,则在展开图中,每个定子槽的上层边用实线表示,下层边用虚线表示。
图3-33绕组的展开图a)铁心切开 b)展开平面 c)绕组展开图绕组的接线规律各极相组在定子上的分布如图3-35a所示。
在每个磁极下,都有三个极相组,分别属于三相。
因为各相之间,必须互差120°电角度,所以,在排列时,V相的起始边(常称为相头)和U相的起始边,以及W相的起始边之间,都要相隔两个相带,如图3-36所示。
图3-35 槽距角与相带a)槽距角 b)相带图3-36 定子双层绕组的接线规律a)极相组的安排 b)U相绕组的接线1.一相绕组的接线以U相绕组为例,说明其接线规律:因为两个相邻的极相组处在不同极性的磁极下,所以,它们的电流绕行方向是相反的。
三相异步电动机接线图及正反转接线实图讲解,一定要及时看
三相异步电动机接线图及正反转接线实图讲解,一定要及时看电工常见问题分享解答2019年12月11日关注三相异步电动机接线图及正反转接线实图讲解,三相异步电机,是感应电动机的一种,是靠同时接入380V三相交流电流(相位差120度)供电的一类电动机,由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电动机。
三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。
与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。
按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。
笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。
绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。
调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。
三相异步电动机的工作原理当向三相定子绕组中通入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。
由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。
由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。
转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。
电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转。
通过上述分析可以总结出电动机工作原理为:当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
电动机三相绕组的星形接线法和三角形接线法
电动机三相绕组的星形接线法和三角形接线法本文分享三相异步电动机三相绕组的星形接法和三角形接法的原理、注意事项和具体应用,是初级电工提升技能必读文章。
三相异步电动机的定子绕组由U、V、W三相绕组组成,这三相绕组有6个接线端,它们与接线盒的6个接线柱连接。
在接线盒上,可以通过将不同的接线柱短接,来将三相异步电动机定子绕组接成星形或三角形。
图1三相异步电动机接线盒1、星形接线法要将定子绕组接成星形,可按图2a所示的方法接线。
接线时,用短路线把接线盒中W2、U2、V2接线柱短接起来,这样就将电机内部的绕组接成了星形。
图2a定子绕组按星形接法接线图2定子绕组按三角形接法接线2、三角形接线法要将电动机内部的三相绕组接成三角形,可用短路线将接线盒中的U1和W2、V1和U2、W1和V2接线柱按图2b接起来,然后从UI、VKW1接线柱分别引出导线,与三相交流电源的3根相线连接。
如果三相交流电源的相线之间的电压是380V,那么对于定子绕组按星形连接的电动机,其每相绕组承受的电压为220V;对于定子绕组按三角形连接的电动机,其每相绕组承受的电压为380V o所以三角形接法的电动机在工作时,其定子绕组将承受更高的电压。
3、三相异步电动机铭牌的识别三相异步电动机一般会在外壳上安装一个铭牌,铭牌就相当于简单的说明书,它标注了电动机的型号、主要技术参数等信息。
下面以图3的三相异步电动机铭牌为例来说明铭牌上各项内容的含义。
①电动机型号(Y112M4-4)。
型号通常由字母和数字组成,其含义说明如下:Y112M-4IIII ---------------------- 磁极数III ---------------------------- 机座类别(1为长机座; M为中机座;S为短机座)II ----------------------------------- 中心高度(mm)I ---------------------------------------- 异步电动机②额定功率(功率4.OkW)o该功率是在额定状态工作时电动机所输出的机械功率。
380V电动机的接线方式
220/380V电动机的接线方式1,先了解(电机)的两种接线方式电动机接线盒内两种接线方式示意图第一种为星形(Y)接法,如图,把电机内部三相定子绕组的Z、X、Y端连接在一起,成为一公共点O,再从始端A、B、C引出三条端线,在接线盒内,分别通入U.V.W三相交流电(380V),提(供电)机运行(电源),适用于3KW及以下的三相异步感应式电动机。
实物图如下:第二种为三角形(△)接法,即将三相定子绕组的首尾对应连接,如图第一相绕组的A端与第三相绕组的Z端连接可视为U相,第二绕组B端与第一绕组的X端相连接可为V相,第三绕组C端与第二绕组的Y端相连接可为W相,再通过三条线连入接线盒,分别通入U.V.W 三相交流电源(380V),提供给电机运行电源,适用于4kw及以上的三相异步感应式电动机。
但对电动机的接线方法应按实际铭牌接线为准。
电机实物三角形接法电动机接线简单示意图图中为什么W2下电动机接线盒接线示意图可以看出,在接三角形时,上面的线交叉了,实际操作中非常困难,也比较不安全,容易造成相间短路。
接线盒中六个接线头关系示意图如上面实物图中我们也看到了,三相电动机的接线盒内有上下两排接线柱,我们通过上面这个“接头关系示意图”来进一步说明它们的关系,暂且把三相绕组这六个接线头分别标记为符号D1 、D2 、D3 、D4 、D5 、D6 ,其中D1 和D4 、D2 和D5 、D3 和D6 各为一相,其实就是同一根线的两头而已,每一根线称为一相绕组,三根就称为A 、B 、C 三相绕组。
之所以重申这一点,是因为很多人容易被这里绕晕了。
2.220/380V电机如何接线380V是工业用电电压,220V是家庭用电电压。
如果铭牌上标着电压220/380V,接法△/Y,是告知使用者该电动机可以在三相220V 电源条件下接成三角接法,在三相380V的电源条件下以星形接法使用,适应两种不同的电压。
如果电源电压是220V,就应接成三角形。
电机接线方法课程设计
电机接线方法课程设计一、课程目标知识目标:1. 学生能够理解并描述电机的基本结构及其工作原理。
2. 学生能够掌握电机接线的步骤和注意事项,熟悉不同类型的电机接线图。
3. 学生能够解释并区分不同类型的电机启动方法和控制电路。
技能目标:1. 学生能够独立完成简单电机的接线操作,并确保接线的正确性和安全性。
2. 学生能够运用所学的电机接线知识,分析并解决实际问题。
3. 学生能够运用电机接线图,进行电机控制电路的设计与搭建。
情感态度价值观目标:1. 学生培养对电机工程领域的兴趣,激发对工程技术的热爱。
2. 学生在学习过程中,树立安全意识,养成严谨的科学态度和良好的工作习惯。
3. 学生通过小组合作,培养团队协作能力和沟通技巧,增强集体荣誉感。
课程性质:本课程为实践性较强的电机技术课程,注重理论知识与实际操作的结合。
学生特点:学生处于中等职业学校电机技术应用专业,具备一定的电机基础知识和动手能力。
教学要求:教师需运用直观演示、案例分析、小组合作等方法,引导学生主动参与,提高学生的实践操作能力和问题解决能力。
通过明确具体的课程目标,使学生在掌握电机接线技术的同时,培养良好的职业素养和安全意识。
二、教学内容1. 电机结构及工作原理- 介绍电机的基本结构,包括定子、转子、端盖、轴承等组成部分。
- 深入解析电机的工作原理,涵盖电磁感应定律在电机中的应用。
2. 电机接线步骤及注意事项- 按照教材相关章节,详细讲解电机接线的步骤,包括线缆选择、接线顺序、绝缘处理等。
- 强调接线过程中的安全事项,如断电操作、防止短路、正确使用绝缘材料等。
3. 电机接线图识读- 分析不同类型电机的接线图,如三相异步电动机、直流电动机等。
- 指导学生如何识读接线图,理解各符号代表的意义。
4. 电机启动方法与控制电路- 介绍直接启动、星角启动、自耦启动等常见的电机启动方法。
- 概述各类启动方法的特点及适用场合,结合教材内容分析控制电路的构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动机实物接线图
电动机可逆带限位控制电路实物接线图
三相异步电动机正反转电气控制线路
在图3.5中,(a)图为主电路,通过当接触器KM1三对主触点把三相电源和电动机的定子绕组按顺相序L1、L2、L3连接,,而KM2的三对主触点把三相电源和电动机的定子绕组按反相序L3、L2、L1连
接,使电动机可以实现正反两个方向上的运行。
而图3.5(b)中,按下正转起动按钮SB2,接触器KM1线圈通电且自锁,主触点闭合使电动机正转,按下停止按钮SB1,接触器KM1线圈断电,主触点断开,电动机断电停转。
再按下反转起动按钮SB 3,接触器KM2线圈通电且自锁,主触点闭合使电动机反转。
但是在(b)图中,若按下正转起动按钮S B2再按下反转起动按钮SB3,或者同时按下SB2和SB3,接触器KM1和KM2线圈都能通电,两个接触器的主触点都会闭合,造成主电路中两相电源短路,因此,对正反转控制线路最基本的要求是:必须保证两个接触器不能同时工作,以防止电源短路,即进行互锁,使同一时间里只允许两个接触器中一个接触
器工作。
所以在图3.5(c)中,接触器KM1 、KM2线圈的支路中分别串接了对方的一个常闭辅助触点。
工作时,按下正转起动按钮SB2,接触器KM1线圈通电,电动机正转,此时串接在KM2线圈支路中的KM1常闭触点断开,切断了反转接触器KM2线圈的通路,此时按下反转起动按钮SB3将无效。
除非按下停
止按钮SB1,接触器KM1线圈断电,KM1常闭触点
复位闭合,再按下反转起动按钮SB3实现电动机的反转,同时,串接在KM1线圈支路中的KM2常闭触
点断开,封锁了接触器KM1使它无法通电。
这样的控制线路可以保证接触器KM1 、KM2不会同时通电,这种作用称为互锁,这两个接触器的常闭触点称为互锁触点,这种通过接触器常闭触点实现互锁的控制方式称为接触器互锁,又称为电气互锁。
判断一台电动机的好坏,一般16KW以下使用万用表就可以,30KW以下可用电桥。
是可以用的。
50KW以上使用就很不准了,最好的方法是低电压接入测电流,有大功率2KVA以上三相变压器,380V/36V或更低电压变压器接入电机直接用钳形表测电
流平衡最好。
还可用交流电焊机,电机接成星形连接并联接入,测量三个绕组的电流是否一样。
另外还可用200vA变压器380V或220V/36V或更低电压串联一个大功率电灯泡100W以上,接入一组绕组测量另两组两头联灯泡电压是否一样然后换一组接入。
相差2%是正常的。
5%以上就有可能匝间短路。
试一试。
还有接电源380V
输出功率达不到接线正确如果电动机是修过的极有可能铁芯被火烧过退火了。
1、万用表测电流,三相不平衡率不大于10%;
2、2、摇表测绝缘,每相对地、相间均不小于0.5兆;
3、3、电桥测直流电阻,三相不平衡率不大于2%;
4、还有的话大概就是转速表测转速了,再有什么就想不出来了。
5、判断电动机是否好坏可从问、看、听、闻、摸、测几方面来判断,其实任何设备的
检修都可从这几方面入手
电机损坏用万用表、绝缘摇表和电桥测量是没有的,绝缘没损坏,三相直流电阻正常,可有匝间短路或转子断条。
电机异常,查电源正常,只好拆下电机解体检查,一查便知
除了楼上说的方法,检查其绕组是否正常的方法是在其中任意两根引线上接上万用表的小电流档(比如50微安),这时用用转动电机,万用表的表针应该是可以明显摆动(与转动快慢有关)。
这是利用电机的剩磁来检查绕组的“土”办法。
如果绕组烧了,表针肯定不会动了
三相电流不平衡率在±10%以内,电机正常。
三相电流不平有两种情况:一是电源电压引起的,如果不是很大的话是没问题的,如果不是这个问题那就是电机本身的质量问题了,一般是不能超过10%的。
就是三相之和除三与差距最大的一项电流比偏差不得超过10%。
内部线圈绝缘不良,有局部短路可能。
绕组内部局部短路,或者电压偏相较严重也会导致电流偏相。
三相电压不平衡电机线圈有砸间短路的所以不平衡
三相绕组电阻为0,三相对地电阻至少在0 .5兆欧以上,越大越好
如何检测换气扇电机的好坏
有万用表就可以啦,用万用表的电阻档(X10)分别测量电动机的三根线头,应该是互通的,只是阻值不一样,红(接火线)与黑(接零线)+蓝(接电容)与黑(接零线)=红与蓝蓝黑的电阻大于红黑的电阻,一般有可能是红与蓝是通的(有电阻),而黑色与红、蓝都不通的话,那就是电动机内部的过热保护烧掉了,有代换的就换掉,没有就不要了,直接跳过就可以了。
用500V兆欧表测量电动机绕组与外壳的绝缘电阻,不应小于0.5兆欧;用万用表测量绕组各引线,没有断线;上述都符合要求,电动机就是好的。
检测电容器的好坏用指针万用表方便些(也有带电容档的数字表,可直接测量)。
如何检测单相电机的好坏
将万用表拨到1K或10K电阻档,测电容器的2个引线,表针快速向右偏转后慢慢回到左侧电容器是好的;始终偏向右侧说明电容器被击穿了;指针不动则电容器内部断线或没有容量了。
用这种方法只能判断电容器的好坏,容量的大小就需要长期的经验积累进行估计了。