初三数学函数复习题含答案
中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
初中函数测试题及答案

初中函数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是函数的定义?A. 函数是数集到数集的映射B. 函数是一种特殊的关系C. 函数是一种运算D. 函数是数集到数集的对应关系答案:C2. 如果一个函数的自变量x的取值范围是x>0,那么下列哪个选项是正确的?A. 函数的定义域为所有实数B. 函数的定义域为非负实数C. 函数的定义域为正实数D. 函数的定义域为负实数答案:C3. 函数y=2x^2+3x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A4. 下列哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D5. 函数y=1/x的图像在第一象限内:A. 向右上方倾斜B. 向左上方倾斜C. 向右下方倾斜D. 向左下方倾斜答案:B6. 如果函数f(x)=x^2-4x+3,那么f(1)的值是多少?A. -2B. 0C. 2D. 4答案:A7. 函数y=3x-2的图像与y轴的交点坐标是:A. (0, -2)B. (0, 3)C. (2, 0)D. (-2, 0)答案:A8. 函数y=1/x的图像经过第几象限?A. 第一象限和第三象限B. 第二象限和第四象限C. 第一象限和第二象限D. 第三象限和第四象限答案:A9. 函数y=x+1与y=x-1的图像之间的距离是:A. 1B. 2C. 3D. 4答案:B10. 函数y=x^2的图像在x=0处的切线斜率是:A. 0B. 1C. 2D. -1答案:A二、填空题(每题4分,共20分)1. 函数y=2x+3的图像在x=2时的y值是_________。
答案:72. 如果函数f(x)=x^2-6x+8,那么f(3)的值是_________。
答案:13. 函数y=1/x的图像在x=-1处的切线斜率是_________。
答案:-14. 函数y=x^3-3x^2+2的图像在x=1处的切线斜率是_________。
初三函数测试题目及答案

初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。
答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。
答案:013. 函数y=1/x的图象在x=2处的斜率是________。
答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。
答案:115. 函数y=2x^2-4x+1的顶点坐标是________。
答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。
答案:顶点坐标为(1, 1)。
初中函数专题试题及答案

初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。
初三数学函数基础知识试题答案及解析

初三数学函数基础知识试题答案及解析1.函数y=中,自变量x的取值范围是【答案】x≠2.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.试题解析:要使分式有意义,即:x-2≠0,解得:x≠2.【考点】1.函数自变量的取值范围;2.分式有意义的条件.2.函数中自变量x的取值范围是()A.x>2B.x≥2C.x≤2D.x≠2【答案】C.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选C.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.函数y=的自变量x的取值范围为.【答案】x≥﹣1【解析】由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【考点】函数自变量的取值范围4.如图1,在平面直角坐标系中,将□ABCD放置在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为()A.4B.4C.8D.8【答案】C.【解析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=-x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选C.【考点】动点问题的函数图象.5.如图,在平面直角坐标系中,以点A(2,3)为顶点任作一直角∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P、Q,连接PQ,过点A作AH⊥PQ于点H,设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D.【解析】应用特殊元素法和排他法求解:如图1,当点P与点O重合时,x=0,y=2.故可排除选项C;如图2,当点Q与点O重合时, y=3.故可排除选项A;如图3,当x=2时,∵AH⊥PQ,∴,即,故可排除选项B.故选D.【考点】1.动态问题的函数图象分析;2.勾股定理;3.相似三角形的判定和性质;户4.特殊元素法和排他法的应用.6.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠1【答案】B.【解析】根据题意知:x-1≥0解得:x≥1.故选B.【考点】1.自变量的取值范围;2.二次根式有意义的条件.7.函数中,自变量x的取值范围是_________【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.8.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y 与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【解析】D.应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.【考点】1.动点问题的函数图象分析;2.排他法的应用.9.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.B.C.当0<t≤10时,D.当时,△PBQ是等腰三角形【答案】D【解析】(1)结论A正确,理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,,∴EF=8。
初三数学函数精选练习题及答案一

初三数学函数精选练习题及答案一
1. 函数定义和性质
题目
1. 函数f(x)在定义域[1, 4]上的最大值是多少?
2. 已知函数f(x)的定义域为[-2, 5],值域为[0, 3],则这个函数的性质是什么?
答案
1. 函数f(x)在定义域[1, 4]上的最大值可以通过求导数来确定。
首先,计算f'(x)的值,然后令f'(x)等于零,解得x的值为2。
再计算f(2)的值即可得到函数f(x)在定义域[1, 4]上的最大值。
2. 由于函数f(x)的定义域为[-2, 5],值域为[0, 3],则函数f(x)是有界函数且为增函数。
有界函数表示函数在特定区间内取值有上、下界;增函数表示当自变量增大时,函数值也随之增大。
2. 函数图像和性质
题目
1. 函数f(x)=x^2的图像是什么样的?
2. 函数f(x)=3^x的图像是什么样的?
答案
1. 函数f(x)=x^2的图像是一个开口向上的抛物线。
2. 函数f(x)=3^x的图像是逐渐上升的曲线,呈现指数增长的趋势。
3. 函数相关计算
题目
1. 已知函数f(x)=2x+5,求f(3)的值。
2. 已知函数f(x)=x^2-3x+2,求f(2)和f(0)的值。
答案
1. 将x=3代入函数f(x)=2x+5中,可以求得f(3)的值为
2×3+5=11。
2. 将x=2和x=0分别代入函数f(x)=x^2-3x+2中,可以求得f(2)的值为2^2-3×2+2=2,f(0)的值为0^2-3×0+2=2。
以上为初三数学函数精选练习题及答案一,请根据需要进行练习。
初中数学函数复习题及答案

初中数学函数复习题及答案初中数学函数复习题及答案函数作为数学中的重要概念,是学习数学的基础之一。
在初中数学中,函数的学习也是一个重要的内容。
通过复习函数的相关题目,可以帮助学生巩固对函数的理解和运用。
本文将为大家提供一些初中数学函数复习题及答案,希望对大家的学习有所帮助。
一、选择题1. 函数y = 2x + 3的图象是一条()。
A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:A解析:函数y = 2x + 3是一元一次函数,其图象是一条直线。
2. 函数y = x²的图象是一条()。
A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:B解析:函数y = x²是一元二次函数,其图象是一条抛物线。
3. 函数y = sin(x)的图象是一条()。
A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:C解析:函数y = sin(x)是正弦函数,其图象是一条正弦曲线。
二、填空题1. 函数y = 3x - 2的定义域是()。
答案:全体实数解析:一元一次函数的定义域为全体实数。
2. 函数y = x² - 4x + 3的值域是()。
答案:y ≤ 2解析:一元二次函数的值域可以通过求解函数的最值来确定,或者通过绘制函数的图象来观察。
三、解答题1. 已知函数y = 2x + 1和函数y = -x + 3,求两个函数的交点坐标。
解答:将两个函数相等,得到2x + 1 = -x + 3,整理得到3x = 2,解得x = 2/3。
将x的值代入任意一个函数中,求得y的值。
所以交点坐标为(2/3, 5/3)。
2. 已知函数y = x² - 4x + 3,求函数的顶点坐标。
解答:一元二次函数的顶点坐标可以通过求解函数的最值来确定。
首先求导函数,得到y' = 2x - 4。
令y' = 0,解得x = 2。
将x的值代入原函数中,求得y的值。
所以顶点坐标为(2, -1)。
中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
9年级学生函数试卷加答案【含答案】

9年级学生函数试卷加答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个函数是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = -x^32. 如果函数f(x) = x^3 3x + 2,那么f(-1)的值是?A. -2B. 0C. 2D. 43. 下列哪个函数是奇函数?A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)4. 函数y = 2^x的图像是?A. 上升的直线B. 下降的直线C. 上升的曲线D. 下降的曲线5. 如果函数f(x) = x^2 + 2x + 1,那么它的顶点坐标是?A. (-1, 0)B. (-1, 1)C. (1, 0)D. (1, 1)二、判断题(每题1分,共5分)1. 所有的线性函数都是一次函数。
()2. 函数y = x^3在x = 0处有极值。
()3. 偶函数的图像关于y轴对称。
()4. 如果函数f(x)在区间(a, b)上单调递增,那么它在整个实数域上也是单调递增的。
()5. 函数y = ax^2 + bx + c的图像是一个抛物线,无论a的值是正是负。
()三、填空题(每题1分,共5分)1. 如果函数f(x) = x^2 4x + 3,那么f(2)的值是______。
2. 函数y = 3x 2的图像是一条______。
3. 如果函数f(x) = x^3 6x^2 + 9x,那么f'(x)的值是______。
4. 函数y = |x|的图像在x = 0处______。
5. 如果函数f(x) = (x 1)^2,那么它的顶点坐标是______。
四、简答题(每题2分,共10分)1. 简述一次函数的定义及其图像特点。
2. 什么是函数的单调性?如何判断一个函数的单调性?3. 简述二次函数的定义及其图像特点。
4. 什么是函数的奇偶性?如何判断一个函数的奇偶性?5. 简述函数的极值概念及其求法。
2024年数学九年级上册函数基础练习题(含答案)

2024年数学九年级上册函数基础练习题(含答案)试题部分一、选择题:1. 下列函数中,哪一个不是正比例函数?A. y = 2xB. y = 3x + 1C. y = 5x 2D. y = 4x2. 已知函数y = (2x + 3)²,则该函数的对称轴是:A. x = 3/2B. x = 3/2C. y = 3D. x = 03. 下列函数中,哪一个函数在x轴右侧是递增的?A. y = x²B. y = x²C. y = 2xD. y = 2x4. 若函数y = kx + b的图象经过一、二、四象限,则k和b的取值范围是:A. k > 0, b > 0B. k < 0, b > 0C. k > 0, b < 0D. k < 0, b < 05. 已知一次函数y = 3x 1,当x = 2时,y的值为:A. 5B. 6C. 7D. 86. 下列哪个函数是反比例函数?A. y = x²B. y = 1/xC. y = 2x + 3D. y = 3x² 2x7. 已知函数y = (1/2)x + 3,当x = 4时,y的值为:A. 5B. 6C. 7D. 88. 一次函数y = kx + b的图象与y轴的交点为(0,3),则b 的值为:A. 3B. 3C. 0D. 19. 已知反比例函数y = 6/x,当x = 2时,y的值为:A. 3B. 4C. 5D. 610. 下列哪个函数的图象是一个经过原点的直线?A. y = x²B. y = 2xC. y = 1/xD. y = 3x² 2x二、判断题:1. 一次函数的图象是一条直线。
()2. 反比例函数的图象是一个经过原点的直线。
()3. 一次函数y = kx + b中,k为斜率,b为截距。
()4. 两个一次函数的图象一定相交。
()5. 一次函数y = 2x的图象经过一、二、三象限。
2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。
中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
初中函数综合试题及答案

初中函数综合试题及答案一、选择题(每题3分,共30分)1. 函数y=2x+3的图象是一条直线,其斜率k和截距b分别是()A. k=2, b=3B. k=3, b=2C. k=-2, b=3D. k=-3, b=22. 若函数y=x^2-4x+3的最小值是-1,则x的值是()A. 2B. 3C. 4D. 53. 函数y=-2x+1与y=-x-1的交点坐标是()A. (0,1)B. (1,-1)C. (-1,-3)D. (2,-3)4. 函数y=x+1/x的值域是()A. (-∞,-2]∪[2,+∞)B. (-∞,-1]∪[1,+∞)C. (-∞,0)∪(0,+∞)D. (-∞,-1)∪(1,+∞)5. 函数y=x^3-3x^2+2在区间(1,2)上是()A. 增函数B. 减函数C. 先增后减D. 先减后增6. 若函数y=x^2+2x-3与x轴有两个交点,则这两个交点的横坐标之和是()A. -2B. 2C. -4D. 47. 函数y=1/x的图象关于()A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称8. 函数y=x^2-6x+8的顶点坐标是()A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)9. 函数y=2x-1与直线y=3x+2平行的条件是()A. 斜率不相等B. 斜率相等C. 截距不相等D. 截距相等10. 函数y=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()B. m<4C. m≥4D. m≤4二、填空题(每题3分,共15分)1. 函数y=x^2-6x+8的对称轴是直线x=______。
2. 若函数y=x^2-4x+3的图象向上平移2个单位,则新的函数解析式为y=______。
3. 函数y=-2x+1与y=-x-1的交点坐标是(1,-1),因此函数y=-2x+1的图象经过点______。
4. 函数y=x+1/x在x=1处的导数为______。
中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线L:y=x−3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中a的值为()A.7B.9C.12D.132.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm3.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁4.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ∠CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.95C.65D.15.将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.6.函数y= √x−1的自变量x的取值范围是()A.x=1B.x≠1C.x≥1D.x≤17.在函数y=√x+2x中,自变量x的取值范围为( )A.x≥-2B.x<-2且x≠0C.x≥-2且x≠0D.x≠0.8.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,89.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.51 1.52 2.53 3.54烤制时间/分406080100120140160180 A.140B.138C.148D.16010.下列各曲线中表示y是x的函数的是()A.B.C.D.11.下列函数中自变量x的取值范围是x>1的是().A.y=1√x−1B.y=√x−1C.y=1√x−1D.y=1√1−x12.习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,8二、填空题13.一棵树现在高60cm,每个月长高2cm,x月之后这棵树的高度为hcm,则h关于x的函数解析式为.14.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米.15.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是.,则自变量x的取值范围是.16.已知函数y= √2x+1x−217.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∠x轴.直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度y与平移的距离x的函数图象如图2所示,那么平行四边形ABCD的面积为.18.甲、乙两地相距360km,一辆货车从甲地以60km/ℎ的速度匀速前往乙地,到达乙地后停止在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程y(km)与货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,360),点D的坐标是(2,0),则点E的坐标是.三、综合题19.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系(2)A与B比较,速度快;(3)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(4)15分钟内B能否追上A?为什么?(5)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?20.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤,图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为,线段AB所在直线的解析式为;(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.21.已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.x···123579···y··· 1.98 3.95 2.63 1.58 1.130.88···与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.22.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)沙沙家到学校的路程是多少米?(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?(3)沙沙在书店停留了多少分钟?(4)本次上学途中,沙沙一共行驶了多少米?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?24.2022年3月23日“天宫课堂”第二课开讲.传播普及空间科学知识,激发了广大青少年不断追求“科学梦”的热情.小明在周末从家骑自行车到晋中市科技馆探索科技的奥秘,他骑行了一段时间后,在某路口等待红绿灯,待绿灯亮起后继续向科技馆方向骑行,在快到科技馆时突然发现钥匙不见了,于是他着急地原路返回,在刚刚等红绿灯的路口处找到了钥匙,使继续前往科技馆.小明离科技馆的距离(m)与离家的时间(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)小明家到晋中市科技馆的距离是m;(2)小明等待红绿灯所用的时间为min;(3)图中点C表示的意义是;(4)小明在整个途中,哪个时间段骑车速度最快?,最快速度是m/min.(5)小明在整个途中,共行驶了m.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】h=60+2x 14.【答案】100 15.【答案】时间 16.【答案】x≥﹣12且x≠217.【答案】12 18.【答案】(3,180) 19.【答案】(1)直线l 1(2)B(3)由题意可得k 1、k 2的实际意义是分别表示快艇B 的速度和可疑船只的速度 S 1=0.5t ,S 2=0.2t+5; (4)15分钟内B 不能追上A理由:当t =15时,S 2=0.2×15+5=8,S 1=0.5×15=7.5 ∵8>7.5∴15分钟内B 不能追上A ; (5)B 能在A 逃入公海前将其拦截 理由:当S 2=12时,12=0.2t+5,得t =35 当t =35时,S 1=0.5×35=17.5∵17.5>12∴B能在A逃入公海前将其拦截.20.【答案】(1)(7,0);y=-150x+1050(2)解:设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150−x)斤根据题意得:y=8x+12(150−x)=−4x+1800∵甲种方式的数量不低于乙种方式∴x≥150−x∴x≥75而−4<0∴y随x的增大而减小∴x=75时,y最大为−4×75+1800=1500答:该超市卖完全部糕点销售总额的最大值是1500元.21.【答案】(1)解:如下图:(2)2(2.1到1.8之间都正确);该函数有最大值(其他符合题意性质都可以).22.【答案】(1)解:根据图象,学校的纵坐标为1500,小明家的纵坐标为0故沙沙家到学校的路程是1500米(2)解:根据图象,12≤x≤14时,直线最陡故沙沙在12分钟到14分钟最快,最快的速度是1500−60014−12=450米/分(3)解:根据题意,沙沙在书店停留的时间为从8分到12分,12-8=4故沙沙在书店停留了4分钟.(4)解:读图可得:沙沙共行驶了1200+600+900=2700米.23.【答案】(1)解:∵对于每一个摆动时间t,都有一个唯一的ℎ的值与其对应∴变量h是关于t的函数。
2023年中考数学专题复习:二次函数综合题训练(含答案)

9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.
初三数学函数试题及答案

初三数学函数试题及答案一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = 3x + 2B. y = x^2 + 1C. y = 1/xD. y = √x2. 若函数y = 2x - 3的图象经过点(2,1),则该函数的解析式为()A. y = 2x - 5B. y = 2x - 3C. y = 2x + 1D. y = 2x - 13. 函数y = 3x + 1与y = -2x + 5的交点坐标是()A. (-1, 4)B. (1, 2)C. (-1, 2)D. (1, 4)4. 函数y = 4x - 1的图象在y轴上的截距为()A. 1B. -1C. 4D. -45. 函数y = 5x + 2的图象在x轴上的截距为()A. 0.4B. -0.4C. 2/5D. -2/56. 若一次函数y = kx + b的图象经过原点,则()A. k ≠ 0,b = 0B. k = 0,b ≠ 0C. k = 0,b = 0D. k ≠ 0,b ≠ 07. 函数y = 3x + 2的图象在x轴上的截距为()A. 2/3B. -2/3C. 2D. -28. 函数y = 2x - 3与x轴的交点坐标为()A. (1.5, 0)B. (-1.5, 0)C. (3, 0)D. (-3, 0)9. 函数y = -x + 4的图象在y轴上的截距为()A. 4B. -4C. 0D. -010. 函数y = x^2 - 4x + 3的顶点坐标为()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)二、填空题(每题4分,共20分)1. 函数y = 2x + 3的图象在x轴上的截距为______。
2. 函数y = -3x + 4的图象在y轴上的截距为______。
3. 函数y = 4x - 2的图象与x轴的交点坐标为______。
4. 函数y = 5x - 6的图象与y轴的交点坐标为______。
初三函数试题及答案

初三函数试题及答案在数学的学习过程中,函数是一个重要的概念。
对于初三的学生来说,掌握函数的基本概念和解题技巧是至关重要的。
以下是一份初三函数试题及答案,供同学们练习和参考。
1. 已知函数y=2x+3,求当x=1时,y的值。
答案:将x=1代入函数y=2x+3,得到y=2×1+3=5。
所以当x=1时,y的值为5。
2. 判断函数y=-3x+1是否为一次函数。
答案:一次函数的定义是y=kx+b的形式,其中k和b是常数,k不等于0。
函数y=-3x+1符合这个定义,因此它是一个一次函数。
3. 已知函数y=x^2-4x+4,求该函数的最小值。
答案:这是一个二次函数,可以通过配方的方法求得最小值。
将函数y=x^2-4x+4转化为y=(x-2)^2。
由于平方项(x-2)^2总是非负的,所以当x=2时,函数取得最小值,即y=0。
4. 判断函数y=1/x是否为反比例函数。
答案:反比例函数的定义是y=k/x的形式,其中k是常数,k不等于0。
函数y=1/x符合这个定义,因此它是一个反比例函数。
5. 已知函数y=2x-1与直线y=3x+2相交,求交点坐标。
答案:要求两直线的交点,需要解方程组:\begin{cases}y=2x-1 \\y=3x+2\end{cases}将第一个方程的y代入第二个方程,得到2x-1=3x+2,解得x=-3。
将x=-3代入任一方程求得y=-7。
所以交点坐标为(-3, -7)。
6. 已知函数y=x^3-3x+2,求导数y'。
答案:根据导数的定义,函数y=x^3-3x+2的导数为y'=3x^2-3。
7. 判断函数y=|x|+1的奇偶性。
答案:函数y=|x|+1的定义域为全体实数,且满足f(-x)=|-x|+1=|x|+1=f(x),因此该函数为偶函数。
8. 已知函数y=x^2+2x+1,求该函数的对称轴。
答案:这是一个二次函数,其对称轴为x=-b/2a。
将函数y=x^2+2x+1转化为y=(x+1)^2,可以看出对称轴为x=-1。
初中数学九年级总复习《函数》专项试卷含详解答案

AP,当点 P 满足 DP+AP的值最小时, P 点坐标为
.
第 11 题图
第 12 题图
第 13 题图
第 14 题图
12. 如图,在平面直角坐标系中,正方形 ABOC和正方形 DOFE的顶点 B,F 在 x
轴上,顶点
C,D 在 y 轴上,且
S△ADF= 4,反比例函数
??=
??
(
x>
0)的图象经
??
《函数》总复习试卷含答案
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分)
1.在函数 ??= √??+1中,自变量 x 的取值范围是(
)
??-2
A. x>﹣ 1 B .x≥﹣ 1 C .x>﹣ 1 且 x≠2 D .x≥﹣ 1 且 x≠ 2
2.如图,若一次函数 y=kx+b 的图象与两坐标轴分别交于 A,B 两点,点 A 的坐
22. (本小题满分 10 分) 某实验学校为开展研究性学习, 准备购买一定数量的两人学习桌和三人学习 桌,如果购买 3 张两人学习桌和 1 张三人学习桌需 220 元;如果购买 2 张两 人学习桌和 3 张三人学习桌需 310 元.
(1)求两人学习桌和三人学习桌的单价; (2)学校欲投入资金不超过 6000 元,购买两种学习桌共 98 张,以至少满足
第 23-24 题每小题 12 分, 25 题 14 分,共 96 分)
17. (本小题满分 8 分)
对于给定的两个函数,任取自变量 x 的一个值,当 x<1 时,它们对应的函
数值互为相反数:当 x≥1 时,它们对应的函数值相等,我们称这样的两个
函 数 互 为 相 关 函 数 , 例 如 : 一 次 函 数 y=x-4 , 它 的 相 关 函 数 为 ??=
初三涵数考试题及答案

初三涵数考试题及答案一、选择题(每题2分,共20分)1. 函数y = 2x + 3的斜率是()A. 3B. 2C. 1D. 42. 函数y = 3x^2 + 2x - 1的顶点坐标是()A. (-1, -4)B. (1, -4)C. (-1, 0)D. (1, 0)3. 函数y = 1/x在x = 2处的值是()A. 0.5B. 1C. 2D. 0.254. 已知函数f(x) = x^2 - 4x + 3,求f(5)的值是()A. 18B. 14C. 8D. 45. 函数y = |x| + 1的图像是()A. 一个V形B. 一个倒V形C. 一个水平线D. 一个抛物线二、填空题(每题2分,共20分)6. 函数y = 2x - 1与x轴的交点坐标是________。
7. 函数y = x^2 + 1的最小值是________。
8. 如果函数y = kx + b的斜率为0,则k的值是________。
9. 函数y = 3x + 2与y轴的交点坐标是________。
10. 函数y = -x^2 + 4x - 3的顶点坐标是________。
三、解答题(每题10分,共30分)11. 已知函数f(x) = x^2 - 6x + 8,求f(x)的对称轴。
解答:f(x) = (x - 3)^2 - 1,对称轴为x = 3。
12. 已知函数y = 2x - 5,求当x = 3时,y的值。
解答:将x = 3代入函数y = 2x - 5,得y = 2 * 3 - 5 = 1。
13. 已知函数y = 1/x,求当x = 4时,y的值。
解答:将x = 4代入函数y = 1/x,得y = 1/4 = 0.25。
四、综合题(每题15分,共30分)14. 已知函数y = 3x^2 + 6x - 5,求顶点坐标和对称轴。
解答:首先将函数转化为顶点式:y = 3(x + 1)^2 - 8,顶点坐标为(-1, -8),对称轴为x = -1。
九年级数学中考复习:函数专题训练(含答案)

中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学函数复习题含答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】《函数》复习题.●坐标1.P (1-m,3m+1)到x ,y 轴的的距离相等,则P 点坐标为 2.A (4,3),B 点在坐标轴上,线段AB 的长为5,则B 点坐标为 3.正方形的两边与x,y 轴的负方向重合,其中正方形一个顶点为C(a-2,2a-3),则点C 的坐标为.4.点A (2x,x-y )与点B (4y,12Cos60°)关于原点对称,P (x ,y )在双曲线xk y 1-=上,则k 的值为5.点A (3x-4,5-x )在第二象限,且x 是方程12510432=+---x x x 的解,则A 点的坐标为6.(2006年芜湖市)如图,在平面直角坐标系中,A 点坐标为(34),,将OA 绕原点O 逆时针旋转90得到OA ',则点A '的坐标是() A.(43)-,B.(34)-,C.(34)-, D.(43)-,●函数概念和图象:1.已知等腰三角形周长是20,⑴底边长y 与腰长x 的函数关系是;⑵自变量x 的取值范围是;⑶画出函数的图象(坐标轴方向,原点,关系式,自变量范围) 2.已知P (tanA ,2)为函数图象xy 332=上一点,则Q )sin ,cos 3(A A (答在、不在)在函数y=x-1图象上;Q )sin ,cos 3(A A 关于x 轴y 轴、关于原点的对称点到直线y=x-1的距离分别是3.(05甘肃兰州)四边形ABCD 为直角梯形,CD ∥AB ,CB ⊥AB ,且CD=BC=,21AB 若直线l⊥AB ,直线l 截这个所得的位于此直线左方的图形面积为y ,点A 到直线1的距离为x ,则y 与x 的函数关系的大致图象为()4.(05北京)在平行四边形ABCD 中,∠DAB=60°,AB=5,BC=3,点P 从起点D 出发,沿DC ,CB 向终点B 匀速运动,设点P 走过的路程为x 点P 经过的线段与线段AD ,AP 围成图形的面积为y,y 随x 的变化而变化,在下列图象中,能正确反映y 与x 的函数关系的是()5.(05江苏徐州)有一根直尺的短边长2厘米,长边长10厘米,还有一块锐角为45°的直角三角形纸板,它的斜边长12厘米,如图①,将直尺的短边DE 放置与直角三角形纸板的斜边AB 重合,且点D 与点A 重合,将直尺沿AB 方向平移如图②,设平移的长度为x 厘米(0≤x ≤10),直尺和角三角形纸板的重叠部分(图中阴影部分)的面积为S , (1)当x=0时(如图①),S=;当x=10时,S= (2)当0<x ≤4时,(如图②),求S 关于x 的函数关系式;(3)当4<x<10时,求S 关于x 的函数关系式;并求出S 的最大值(同学可在图③④中画草图) 6.(05河南课改)Rt △PMN 中,∠P=90°,PM=PN ,MN=8厘米,矩形ABCD 的长和宽分别为8厘米和2厘米,C 点和M 点重合,BC 和MN 在一条直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1厘米的速度移动,直到C 点与N 点重合为止,设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y 平方厘米,则y 与x 之间的函数关系是 7.(2006重庆)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1)当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2)设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14. 若存在,求x 的值;若不存在,请说明理由.8.(07西城期末试题)在等腰梯形ABCD 中AB ∥DC ,已知AB=12,BC=42,∠DAB=45°,以AB 所在直线为x 轴,A 为坐标原点建立直角坐标系,将等腰梯形ABCD 绕A 点按逆时针方向旋转90°,得到等腰梯形OEFG (0、E 、F 、G 分别是A 、B 、C 、D 旋转后的对应点) (1) 写出C 、F 两点坐标(2) 将等腰梯形ABCD 沿x 轴的负半轴平行移动,设移动后的OA 的长度是x 如图2,等腰梯形ABCD 与等腰梯形OEFG 重合部分的面积为y ,当点D 移动到等腰梯形OEFG 的内部时,求y 与x 之间的函数关系式并写出自变量x 的取值范围(3) 在直线CD 上是否存在点P ,使△EFP 为等腰三角形,若存在,求P 点坐标,若不存在,说明理由.●几类函数: 一次函数1.直线2-=x y 不过第象限2.(06陕西)直线323+-=x y 与x 轴,y 轴围的三角形面积为3.直线y=kx+b 与直线x y 45-=平行且与直线)6(3--=x y 的交点在y 轴上,则直线y=kx+b 与两轴围成的三角形的面积为 4.直线k kx y 221-=只可能是() 5.(06昆明)直线32+=x y 与直线L 交于P 点,P 点的横坐标为-1,直线L 与y 轴交于A (0,-1)点,则直线L 的解析式为6.(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点,,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式; (2)若S 梯形OBCD =433,求点C 的坐标;(3)在第一象限内是否存 在点P ,使得以P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.反比例函数1.直线x y -=1与双曲线x k y =只有一个交点P ⎪⎭⎫ ⎝⎛n ,81则直线y=kx+n 不经过第象限2.(05四川)如图直线AB 与x 轴y 轴交于B 、A ,与双曲线的一个交点是C ,CD ⊥x 轴于D ,OD=2OB=4OA=4,则直线和双曲线的解析式为3.(06南京)某种灯的使用寿命为1000小时,它可使用天数y 与平均每天使用小时数x 之间的函数关系是4.(06北京)直线y=-x 绕原点O 顺时针旋转90°得到直线l ,直线1与反比例函数xky =的图象的一个交点为A (a,3),则反比例函数的解析式为 5.(06天津)正比例函数)0(≠=k kx y 的图象与反比例函数)0(≠=m x my 的图象都经过A(4,2)(1)则这两个函数的解析式为 (2)这两个函数的其他交点为6.点P (m,n )在第一象限,且在双曲线xy 6=和直线上,则以m,n 为邻边的矩形面积为;若点P (m,n )在直线y=-x+10上则以m,n 为邻边的矩形的周长为二次函数1.(06大连)如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________2.(06陕西)抛物线的函数表达式是() A .22+-=x x y B .22+--=x x y C .22++=x x y D .22++-=x x y3.(06南通)已知二次函数34922++=x x y 当自变量x 取两个不同的值21,x x 时,函数值相等,则当自变量x 取21x x +时的函数值与()A .1=x 时的函数值相等B .0=x 时的函数值相等C .41=x 时的函数值相等D .49-=x 时的函数值相等 4.(06山东)已知关于x 的二次函数2122++-=m mx x y 与2222+--=m mx x y ,这两个二次函数的图象中的一条与x 轴交于A ,B 两个不同的点, (1)过A ,B 两点的函数是; (2)若A (-1,0),则B 点的坐标为(3)在(2)的条件下,过A ,B 两点的二次函数当x 时,y 的值随x 的增大而增大5.(05江西)已知抛物线()12+--=m x y 与x 轴交点为A 、B (B在A 的右边),与y 轴的交点为C.(1)写出m=1时与抛物线有关的三个结论;(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由;(3)请你提出一个对任意的m 值都能成立的正确命题.6.(2006年长春市)如图二次函数c bx x y ++=2的图象经过点M (1,-2)、N (-1,6).(1)求二次函数c bx x y ++=2的关系式.(2)把Rt △ABC 放在坐标系内,其中∠CAB =90°,点A 、B 的坐标分别为(1,0)、(4,0),BC =5.将△ABC 沿x 轴向右平移,当点C 落在抛物线上时,求△ABC 平移的距离. 7.(2006湖南长沙)如图1,已知直线12y x =-与抛物线2164y x =-+交于A B ,两点.(1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.8.(2006吉林长春)如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A .动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S . (1)求点A 的坐标.(2)试求出点P 在线段OA 上运动时,S 与运动时间t (秒)的关系式.(3)在(2)的条件下,S 是否有最大值?若有,求出t 为何值时,S 有最大值,并求出最大值;若没有,请说明理由.(4)若点P 经过点A 后继续按原方向、原速度运动,当正方形PQMN 与△OAB 重叠部分面积最大时,运动时间t 满足的条件是____________.9.⊙M 交x,y 轴于A(-1,0),B(3,0),C(0,3)(1)求过A,B,C 三点的抛物线的解析式;(2)求过A,M 的直线的解析式;(3)设(1)(2)中的抛物线与直线的另一个交点为P,求△PAC 的面积.10.(00上海)已知二次函数c bx x y ++=221的图象经过A (-3,6),并与x 轴交于点B(-1,0)和点C ,顶点为P (1)求这个二次函数的解析式;(2)设D 为线段OC 上一点,且∠DPC=∠BAC ,求D 点坐标11.(06北京)已知抛物线)0(222>++-=m m mx x y 与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上一个动点(点C 与点A 、B 不重合),D 是OC 的中点,连结BD 并延长,交AC 于点E ,(1)用含m 的代数式表示点A 、B 的坐标;(2)求AECE 的值;(3)当C 、A 两点到y 轴的距离相等,且58=∆CEDS 时,求抛物线和直线BE 的解析式.《函数》复习题答案.● 坐标 1.(1,1);(2,-2)2.B(0,0);B(6,0);(8,0) 2. (-1,-1);()0,21(-3. K=-7 4. (-7,6)函数概念及图象1.(1)y=-2x+20,(2)5<x<10,(3)略 2.在,2,223,22 3.A 4.A5.104;)106(222)64(49),40(22222==⎪⎩⎪⎨⎧<<-≤<+=≤<+=最大时,当,,S x x x x x S x x S 6.)86(5218)62(22),20(2122≤≤-+-=<<-=≤≤=x x x y x x y x x y7.[解](1)12D E D F =.因为1122C D C D ∥,所以1C AFD ∠=∠又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD ===所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x ==在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=-又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==.所以234,55PC x PF x ==,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=---CBDA图1 C 2D 2C 1BD 1A图2 A 1 D 21所以21824(05)255y x x x =-+≤≤ (3)存在.当14ABC y S ∆=时,即218246255x x -+=整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的148.略 一次函数 1.2 2.3 3.D6.[解](1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD . ∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3). 当∠OPB =Rt ∠时③过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一:在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵在Rt △P MO 中,∠OPM =30°, ∴OM =21OP =43;PM =3OM =433.∴3P (43,433).方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433). ④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标).当∠OPB =Rt ∠时,点P 在x轴上,不符合要求. 综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43). 反比例函数 1.四2.x y x y 4241-=+= 3.x y 1000=4.x y 9=5.)2,4(8,21'--==A x y x y6.6,20 二次函数 1.12≤≤-x 2.D 3.B4.(1)2222+--=m mx x y(2).(3,0) (3).X<15.(1)顶点(1,1);对称轴为x=1;顶点到y 轴的距离为1 (2)m=-2-22 (3)最大值为16.51)2(14)1(2++-=x x y7.[解](1)解:依题意得216412y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解之得12126432x x y y ==-⎧⎧⎨⎨=-=⎩⎩(2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M (如图1) 由(1)可知:OA OB == 过B 作BE x ⊥轴,E 为垂足 由BEO OCM △∽△,得:54OC OM OC OB OE =∴=,, 同理:55500242OD C D ⎛⎫⎛⎫=∴- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为(0)y kx b k =+≠AB ∴的垂直平分线的解析式为:522y x =-.(3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上,并设该直线与x 轴,y 轴交于G H ,两点(如图2).抛物线与直线只有一个交点,2114(6)024m ⎛⎫∴--⨯-= ⎪⎝⎭,在直线12524GH y x =-+:中,设O 到GH 的距离为d ,P ∴到AB 的距离等于O 到GH 的距离d .∴S最大面积111255224AB d ==⨯=.8.[解](1)由⎪⎩⎪⎨⎧+-==,621,x y x y 可得⎩⎨⎧==.4,4y x ∴A (4,4).(2)点P 在y =x 上,OP =t ,则点P 坐标为).22,22(t t 图1图2点Q 的纵坐标为t 22,并且点Q 在621+-=x y 上. ∴t x x t 212,62122-=+-=, 即点Q 坐标为)22,212(t t -. t PQ 22312-=. 当t t 2222312=-时,23=t . 当时230≤<t , 当点P 到达A 点时,24=t ,当2423<t<时, 144236292+-=t t . (3)有最大值,最大值应在230≤<t 中, 当22=t 时,S 的最大值为12.(4)212≥t . 9.(1))3)(1(-+-=x x y(2)2121+=x y (3)S △PAC=83510.23212--=x x y )0,35(11.(1)A(-m,0)B(2m,0)(2).32=AE CE (3)BE:31634+-=x y抛物线:822++-=x x y。