微波技术与天线考试复习重点(含答案)讲课讲稿
微波技术与天线》复习提纲
《微波技术与天线件》复习提纲绪论:01、微波波段的波长和频率。
02、微波波段的特点。
第一章:1、传输线的概念。
2、传输线的分类及其传输电磁波的类型。
3、长线和电长度的概念。
4、传输线的等效电路模型。
5、传输线单位长度的串联阻抗和并联导纳,特性阻抗。
6、均匀传输线方程的定解。
7、传输线的特性参数:特性阻抗,传播常数,相速度和相波长。
8、传输线的输入阻抗,四分之一波长变换性,半波长的重复性。
9、长线上的阻抗能否直接测量?10、反射系数,终端反射系数。
11、驻波系数和行波系数,波腹点和波节点的位置,相邻波节(腹)点的距离,相邻波节点与波腹点的距离。
12、反射系数与驻波比的关系,反射系数的测量。
13、无耗长线的行波工作状态:条件,电压和电流的分布,输入阻抗,反射系数,驻波比,传输功率,在反射系数圆上的位置。
14、无耗长线的驻波工作状态:条件,电压和电流的分布,阻抗的分布,波腹(节)点位置,反射系数,驻波比,传输功率,在反射系数圆上的位置。
15、行驻波工作状态:条件,电压和电流的分布,阻抗的分布,在反射系数圆上的位置。
16、长线上传输功率与效率。
17、阻抗匹配的概念,共轭匹配和无反射匹配。
18、在圆波导中存在的波型和不存在的波型。
19、圆波导中的最低波型和该模式应用的场合。
20、带状线和微带线的结构及其传输的波型。
21、课堂上讲过的例题。
第二章:1、微波传输系统的组成。
2、端口和参考面。
3、归一化阻抗,归一化电压和归一化电流的概念,单位。
4、微波网络的特性。
5、双端口网络的Z和Y参数矩阵,性质(无耗,互易,对称)。
6、双端口网络的A参数矩阵,性质(无耗,互易,对称),应用。
7、S参数矩阵,各参数含义,性质。
8、各参数间的关系。
9、双端口网络S参数的讨论。
10、输入反射系数和负载反射系数的关系。
11、S参数的简单测量。
12、双口网络的功率增益。
13、双端口网络的工作特性参数。
14、矩形波导中的不连续性:膜片(电容和电感),谐振窗,销钉(电容和电感),波导阶梯(E面和H面)的结构及等效元件。
(完整版)微波技术与天线(重点)(可编辑修改word版)
微波:是电磁波中介于超短波与红外线之路中的电压和电流除了是时间的函数外,(频率最高)的波段,其频率范围从300Mhz分布参数电路的实际尺寸能和电路的工作(波长 Im)至 3000GHz (波长 0.1m) •微波的特性:1•似光性2•穿透性3•宽频带特对于分布参数电路市传输线理论对其进行集总参数.在一般的电路分析中,电路的所= [A 少'cos( t+ z)+ A € *CO8( t- z)]有参数,如阻抗、容抗.感抗都集中于空间 的各个点上,各个元件上,各点之间的信号特性阻抗:Z 尸曙# (无耗传输线这类电路所涉及电路元件的电磁过程都集中在元件内部进行。
用集总电路近似实位和电流都不相同。
这说明分布参数电间的波段,它属于无线电波中波长最短还是空间坐标的函数。
性4•热效应特性5•散射特性6•抗低频干扰 分析。
特性. 与低频区别:趋肤效应,辐射效应,长线 效应,分布参数。
微波传输线的三种类型:1•双导体传输线,2.均匀传输线方程(电报方程): 竺卫=用D + L 些宀>Qzdt E=Gfer ) + C 竺迪dzdt传输线瞬时电压电流:金属波导管3•介质传输线。
“(ZJ)=A [护"cos( t+ 2)+ A ^cos( t- z)是瞬间传递的,这种理想化的电路模型称为 R=G=0・)集总电路。
平行双导线(直径为d,间距为D ):波长相比拟。
际电路是有条件的,这个条件定实际电路 同轴线(内外导体半径a,b ) :Zo = #inL的尺寸要远小于电路工作时的电磁波长。
相移常数: 对于集总参数电路,由基尔霍夫定律唯输入阻抗:一地确定了电压电流。
分布参数:电路是指电路中同一瞬间相邻两点的电 反射系数:Z _^Z| + Zotan( z)E ° z(, + Zj tan( Z)Z| + Zo终端反射系数:r =Z L Z。
=|「I '"Z| + ZoRma 严 Z u //4阻抗变换性:任意距离为/4的两点处共轨阻抗匹配传输线上各点阻抗等于传输线特性阻抗。
微波技术与天线复习题答案
设特性阻抗为 Z °的无耗传输线的驻波比,第一个电压波节点离负载的距离为《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为50的均匀传输线终端接负载 R 100 ,求负载反射系数i,在离负载0.2 ,0.25及0.5处的输入阻抗及反射系数分别为多少?1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两 导体间填充介电常数r 2.25的介质,求其特性阻抗及f 300MHz 时的波长。
则空气同轴线 乙 60ln b65.9a 当 r 2.25时,z 。
-60ln b43.9V r a 当f 300MHz 时的波长:0.67m1.3题解:1 (Z 1 Z °).( Z 1 Z 0) 1 3 (0.2 )j2 z1 j0.8 1ee 3(0.5 )13(二分之一波长重复性) 1 (0.25 ) 3Z 1 jZ 0tan 丨Z in (0.2 ) z 。
一129.4323.79乙n (0.25 ) 502/100 25(四分之一波长阻抗变换性)乙 n (0.5 ) 100(二分之一波长重复性)解:同轴线的特性阻抗Z 0Z2Z in -2500R 11.5方。
证明:令传输线上任意一点看进去的输入阻抗为Z in ,与其相距处看进去的输入阻抗为4Z n ,则有:Z 1 jZ °tan zZ 0jZ 1 tan zl min1,试证明此时的终端负载应为乙 Z o证明:对于无耗传输线而言:Z1Zj tan丨 min 1 Z in( 1 min 1)Z 0ZZ1j tan丨 min 1Zin(l min1)Z/由两式相等推导出:乙Z 01 j tan lmin1jtan lmin 1传输线上的波长为:cf 2 g— 2mr因而,传输线的实际长度为:I -0.5m4终端反射系数为:R1 Z0 R1 Z49490.96151输入反射系数为:1ej2 1in 1490.96151根据传输线的4的阻抗变换性,输入端的阻抗为:试证明无耗传输线上任意相距入/4的两点处的阻抗的乘积等于传输线特性阻抗的平Z in1 j tan I minijtan 1min 11.4特性阻抗为Z 0 100长度为 /8的均匀无耗传输线,终端接有负载① ② ③ 解:传输线始端的电压。
微波技术与天线总复习题及其答案
微波技术与天线总复习题及其答案微波技术与天线基础总复习题⼀、填空题1、微波是⼀般指频率从⾄范围内的电磁波,其相应的波长从⾄。
并划为四个波段;从电⼦学和物理学的观点看,微波有、、、、等重要特点。
2、⽆耗传输线上的三种⼯作状态分别为:、、。
3、传输线⼏个重要的参数:(1)波阻抗:;介质的固有波阻抗为。
(2)特性阻抗:,或,Z 0=++I U 其表达式为Z 0= ,是⼀个复数;其倒数为传输线的 .(3)输⼊阻抗(分布参数阻抗): ,即Z in (d)= 。
传输线输⼊阻抗的特点是: a) b) c) d)(4)传播常数:(5)反射系数:(6)驻波系数:(7)⽆耗线在⾏波状态的条件是:;⼯作在驻波状态的条件是:;⼯作在⾏驻波状态的条件是:。
4、负载获得最⼤输出功率时,负载Z 0与源阻抗Z g 间关系:。
5、负载获得最⼤输出功率时,负载与源阻抗间关系:。
6、史密斯圆图是求街均匀传输线有关和问题的⼀类曲线坐标图,图上有两组坐标线,即归⼀化阻抗或导纳的的等值线簇与反射系数的等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有,⽽和,并没有在圆图上表⽰出来。
导纳圆图可以通过对旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表⽰或和或。
圆图上的电刻度表⽰,图上0~180°是表⽰。
7、阻抗匹配是使微波电路或系统⽆反射运载⾏波或尽量接近⾏波的技术措施,阻抗匹配主要包括三个⽅⾯的问题,它们是:(1);(2);(3)。
8、矩形波导的的主模是模,导模传输条件是,其中截⽌频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。
9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。
10、模式简并现象是指,主模也称基模,其定义是。
单模波导是指;多模传输是。
11、圆波导中的主模为,轴对称模为,低损耗模为。
12、微波元器件按其变换性质可分为、、三⼤类。
微波技术与天线复习要点
第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 300M Hz ~3000GHz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
2.微波具有如下主要特点:1) 似光性;2) 穿透性;3) 宽频带特性与与信息性;4) 热效应特性;5)散射特性;6)非电离特性;7)抗低频干扰特性;8)视距传输特性;9)分布参数的不确定性;10)电磁兼容和电磁环境污染。
3.微波技术的主要应用:1) 在雷达上的应用;2) 在通讯方面的应用;3) 在科学研究方面的应用;4) 在生物医学方面的应用;5) 微波能的应用。
4.长线与短线长线:指几何长度L 与工作波长λ可相比拟的传输线,采用分布参数电路描述。
电长度满足L/λ≥0.05的传输线 称为长线。
短线:指几何长度L 与工作波长λ相比可以忽略的传输线,采用集总参数电路描述。
电长度满足L/λ<0.05的传输线 称为短线。
5.传输线分类:双导体传输线;封闭金属波导;介质传输线。
6.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
2023年大学_微波技术与天线(王新稳著)课后答案下载
2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。
微波技术与天线部分课后答案讲解学习
微波技术与天线* 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 31)25.0(-=Γλ Ω-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯= 证明: 1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ* 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有:zjZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 20Z Z Z in in ='⨯故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。
1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。
微波技术与天线复习知识要点资料讲解
微波技术与天线复习知识要点资料讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
微波技术与天线考试复习重点含答案
微波技术与天线复习提纲(2011级)一、思考题1•什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ到3000GHZ,波长从0.1mm到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
2•试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。
3•均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义?4•均匀传输线方程通解的含义 5.如何求得传输线方程的解?6•试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长)答:传输线的工作特性参数主要有特征阻抗Z。
,传输常数•,相速及波长。
1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为Z0、R jWL,它仅由自身的分布参数决定而与负载及信号源无关;2)0Y G jwC传输常数j是描述传输线上导行波的衰减和相移的参数,其中,和分别称为衰减常数和相移常数,其一般的表达式为.(R jwL)(G jwC);3)传输线上电压、电Vp —流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即;4)传输线上电磁波的波长与自由空间波长0的关系7•传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Z in定义为该点的电压和电流之比,与导波系统的状态特性无关,ZMZ) Z o Zl jZ0tan ZZ0 jZ 1 tan z反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为(z) 乞Ze j2 z | i|j( 2 z)乙Z o驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。
微波技术与天线复习提纲 简答题及答案
1. 为什么空心的金属波导内不能传播TEM 波?空心金属波导内不能存在TEM 波。
这是因为:如果内部存在TEM 波,则要求磁场完全在波导的横截面内,而且是闭合曲线。
有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。
由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM 波的定义相矛盾,所以,规则金属内不能传输TEM 波。
2. 说明圆波导中TE01模为什么具有低损耗特性。
答:TE 01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有周向电流。
因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE 01模的圆波导用于毫米波的远距离传输或制作高Q 值的谐振腔。
3. 列出微波等效电路网络常用有 5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。
答:(1)阻抗参量当端口②开路时,I 2=0,网络阻抗参量方程变为:221111221112112111I I U Z I U Z I U U Z Z I I ======则当端口①开路时, I 1=0,网络阻抗参量方程变为:(2)导纳参量当端口②短路时,U 2=0,网络导纳参量方程变为:当端口①短路时,U 1=0,网络导纳参量方程变为:(3)转移参量当端口②开路时,I 2=0,网络转移参量方程变为:当端口②短路时,U 2=0,网络转移参量方程变为:A 11:端口②开路时,端口①到端口②电压传输系数的倒数; A 21:端口②开路时,端口①与端口②之间的转移导纳;111122222212122222I I U Z I U Z I U U Z Z I I ======则11122122Y Y Y Y Y ⎡⎤=⎢⎥⎣⎦2211112211121121110UUI Y U I Y U I I Y Y U U ======则11112222221212222200U U I Y U I Y U I I Y Y U U ======则11112221212222U A A U U A I A A I I ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦22111212121111212200I I U A U I A U U I A A U U ======则()()()()2211221222111222220UUU A I I A I U I A A I I ===-=-==--则A 22:端口②短路时,端口①到端口②电流传输系数的倒数; A 12:端口②短路时,端口①与端口②之间的转移阻抗。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率*围:300MHz~3000GHz ,其对应波长*围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)2、λ/4变换性:Z in(z)-Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)=|Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
微波技术与天线复习题答案
微波技术与天线复习题答案《微波技术与天线》习题答案章节微波传输线理路1.1设⼀特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输⼊阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ(⼆分之⼀波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之⼀波长阻抗变换性)Ω=100)5.0(λin Z (⼆分之⼀波长重复性)1.2求外导体直径分别为0.25cm 和0.75cm 的空⽓同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空⽓同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600aε当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的⽆耗传输线的驻波⽐ρ,第⼀个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--?=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--?=∴=++?=由两式相等推导出:对于⽆耗传输线⽽⾔:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因⽽,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输⼊反射系数为: 961.051Γ=Γ-lj in eβ根据传输线的4λ的阻抗变换性,输⼊端的阻抗为:Ω==2500120R ZZ in1.5试证明⽆耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平⽅。
微波技术与天线复习要点
微波技术与天线复习要点微波技术与天线是电子工程中非常重要的两个领域。
微波技术涉及了微波器件、微波电路和微波系统等方面的知识,而天线则涉及到电磁波传输和接收的技术。
下面将从微波技术和天线的基本原理、设计和应用等方面进行复习要点的总结。
一、微波技术的复习要点:1.微波的概念:微波是指频率在0.3GHz到300GHz之间的电磁波。
其特点是波长短、能量集中、穿透能力强。
2.微波器件:包括微波管、微波集成电路和微波半导体器件等。
微波管是一种用于产生、放大、调制和检波微波信号的器件。
微波集成电路是将微波器件集成在一块微波板上,实现微波信号的处理功能。
3.微波电路:包括微波传输线、微波滤波器和微波功率分配器等。
微波传输线用于在电路中传输微波信号,常用的微波传输线有阻抗线、共面波导和同轴线等。
微波滤波器用于选择性地通过或阻断特定频率范围内的微波信号。
微波功率分配器用于将微波信号分配到不同的传输线或输出端口。
4.微波系统:包括微波通信系统、微波雷达系统和微波遥感系统等。
微波通信系统是利用微波信号进行通信的系统,其特点是高速率、抗干扰性强。
微波雷达系统是利用微波信号检测目标的系统,其特点是高分辨率、远距离探测。
微波遥感系统是利用微波信号获取地球表面信息的系统,其特点是穿透云雾、对地物覆盖情况敏感。
二、天线的复习要点:1.天线的基本原理:天线是用于辐射电磁波或接收电磁波的装置。
其基本原理是由电流产生的电场和磁场辐射出去形成电磁波。
根据发射和接收的方式不同,天线分为发射天线和接收天线。
2.天线的参数:包括增益、方向性、波束宽度和极化等。
增益是指天线辐射能量的能力,方向性是指天线在不同方向上的辐射强度不同,波束宽度是指天线辐射的主瓣宽度,极化是指电场矢量的方向。
3.天线的设计:包括天线的结构设计和参数设计。
结构设计涉及到天线的形状和尺寸,参数设计涉及到天线的频率和阻抗匹配。
4.天线的应用:包括通信系统、雷达系统和无线电广播等。
微波技术与天线
《微波技术与天线》第二版傅文斌答案解析《微波技术与天线》是一本关于微波技术和天线设计的专业教材,由傅文斌教授编著。
该书深入浅出,系统地介绍了微波技术与天线的基本原理、设计方法和应用领域。
第二版在第一版的基础上进行了全面的修订和更新,使得内容更加丰富、系统。
本文将针对《微波技术与天线》第二版傅文斌答案进行解析,包括重点知识、难点问题和实际应用等方面。
一、重点知识《微波技术与天线》第二版涵盖了以下重点知识:1. 微波技术基础:包括微波传输线、微波网络、微波元件等基本概念和原理。
2. 天线设计:包括天线的基本类型、天线参数、天线阵设计、天线馈电网络等。
3. 微波器件:包括微波放大器、振荡器、混频器、功率分配器等器件的工作原理和设计方法。
4. 微波系统:包括微波通信、雷达、遥感等系统的原理和设计。
二、难点问题在学习和应用《微波技术与天线》第二版的过程中,可能会遇到以下难点问题:1. 微波技术的数学模型:微波技术涉及到的数学模型较为复杂,需要理解和掌握相关的数学知识。
2. 天线设计中的电磁兼容性:天线设计需要考虑电磁兼容性,防止相互干扰,这对初学者来说可能比较困难。
3. 微波器件的调试与优化:微波器件的调试和优化需要具备一定的实践经验和技巧。
三、实际应用《微波技术与天线》第二版在实际应用中具有重要意义,可以应用于以下领域:1. 通信领域:在移动通信、卫星通信、光纤通信等领域中,微波技术和天线设计发挥着关键作用。
2. 雷达领域:在雷达系统中,微波技术和天线设计用于实现目标探测、跟踪和识别。
3. 遥感领域:在遥感技术中,微波技术和天线设计用于获取地球表面和大气的物理参数。
4. 电子对抗领域:在电子对抗中,微波技术和天线设计用于实现干扰和抗干扰。
四、结论与建议通过对《微波技术与天线》第二版傅文斌答案的解析,我们可以得到以下结论与建议:1. 《微波技术与天线》第二版是一本全面、系统的微波技术和天线设计教材,适合从事相关领域的技术人员学习和参考。
微波技术与天线考试重点复习归纳
微波技术与天线考试重点复习归纳第⼀章1.均匀传输线(规则导波系统):截⾯尺⼨、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线⽅程,也称电报⽅程。
3.⽆⾊散波:对均匀⽆耗传输线, 由于β与ω成线性关系, 所以导⾏波的相速v p 与频率⽆关, 称为⽆⾊散波。
⾊散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为⾊散特性。
11010010110cos()sin()tan()()tan()cos()sin()in U z jI Z z Z jZ z Z z Z U Z jZ z I z jz Z ββββββ++==++02p rv fλπλβε===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A ez eeZ Z A eββββ----Γ===Γ+ 1101110j Z Z eZ Z φ-Γ==Γ+ 终端反射系数均匀⽆耗传输线上, 任意点反射系数Γ(z)⼤⼩均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波⽐其倒数称为⾏波系数, ⽤K 表⽰5.⾏波状态就是⽆反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对⽆耗传输线的⾏波状态有以下结论: ①沿线电压和电流振幅不变, 驻波⽐ρ=1;②电压和电流在任意点上都同相; ③传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e-j2βz此时传输线上任意⼀点z 处的输⼊阻抗为0()tan in Z Z jZ zβ=①沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为⽆功功率, 即⽆能量传输; ②在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最⼤且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最⼤且等于2|A 1|, ⽽电流为零, 称这些位置为电压波腹点。
(2020年7月整理)微波技术与天线复习提纲终极整理.doc
“微波技术与天线”课程复习提纲一、微波基本概念 (3)1.了解微波的基本概念:频率、波长等 (3)2.了解微波的主要特性 (3)二、传输线基本理论 (4)1.了解传输线的特性参量(反射系数、驻波比、驻波相位、输入阻抗、输入导纳等),传输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。
(4)2.掌握传输线的工作状态与终端负载的关系,了解传输线的三种工作状态及相关特性参量的特点。
(6)3.熟悉圆图的基本特点(特殊点、线、半圆、圆) (6)4.掌握用圆图确定均匀无耗传输线任意截面的特性参量以及解决传输线的阻抗/导纳调配的问题。
(6)三、微波传输线 (7)1.熟练掌握三种主要微波传输线(矩形,圆柱形,同轴)的模式的场分布及其特点,能作出或判断传输线横截面的模式图。
(7)2.掌握各种传输线特性参量及其运用。
(8)3.了解波导传输线的截止波长分布图及其应用。
(9)四、微波网络参量 (10)1.了解散射参量S参量和转移参量A参量的基本概念 (10)2.了解S散射矩阵和A转移矩阵各参量的意义 (10)3.了解S参量和A参量的基本特性及应用 (11)4.掌握简单双端口网络S参量和A参量的确定 (11)五、微波谐振器 (11)1.了解微波谐振腔的基本概念及基本参数 (11)2.了解三种同轴腔的结构和特点以及谐振波长的确定 (11)3.掌握矩形腔和圆柱腔的特点及谐振波长的确定。
(12)4.了解的环行腔的特点及谐振波长的确定。
(15)六、微波元器件 (17)1.了解阻抗与连接分支元件的结构,特点及工作原理。
(17)2.了解波的激励与耦合的基本方法,熟练掌握激励和耦合元件的结构与工作原理。
(22)3.了解微波铁氧体的三种主要效应(铁磁谐振、场移效应、法拉第旋转)及其相应器件(隔离器、环行器)的结构和工作原理。
(23)七、天线 (25)1.理解、掌握天线的常用参量及计算 (25)2.了解常见天线的基本类型,结构和特点 (27)八、微波测量(实验) (29)1.了解微波基本实验测量系统组成 (29)2.了解微波基本参量的测量方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波技术与天线复习提纲(2011级)一、思考题1. 什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ ,波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。
3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义?4. 均匀传输线方程通解的含义5. 如何求得传输线方程的解?6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数,相速及波长。
1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0R jwL Z G jwC+=+它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为()()R jwL G jwC γ=++传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即p v ωβ=;4)传输线上电磁波的波长λ与自由空间波长0λ的关系02rπλβε==。
7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ zββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。
反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。
驻波比与反射系数的关系:111||1||ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。
显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。
8. 均匀传输线输入阻抗的特性,与哪些参数有关?9. 均匀传输线反射系数的特性10. 简述传输线的行波状态,驻波状态和行驻波状态。
11. 什么是行波状态,行波状态的特点12. 什么是驻波状态,驻波状态的特性13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分布14. 介绍传输功率、回波损耗、插入损耗15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?16.负载获得最大输出功率时,负载与源阻抗间关系:*g in Z Z = 。
17.史密斯圆图是求解均匀传输线有关 阻抗匹配 和 功率匹配 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 实部和虚部 的等值线簇与 反射系数 的 幅和模角 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
导纳圆图可以通过对 阻抗圆图 旋转180°得到。
阻抗圆图的上半部分呈 感 性,下半部分呈 容 性。
Smith 圆图与实轴左边的交点为 短路 点,与横轴右边的交点为 开路 点。
Smith 圆图实轴上的点代表 纯电阻 点,左半轴上的点为电压波 节 点,右半轴上的点为电压波 腹 点。
在传输线上负载向电源方向移动时,对应在圆图上应 顺时针 旋转,反之在传输线上电源向负载方向移动时,对应在圆图上应 逆时针 旋转。
18. TEM 、TE 和TM 波是如何定义的?什么是波导的截止性?分别说明矩形波导、圆波导、同轴线、带状线和微带线的主模是什么?答:1)TE 波,TM 波,TEM 波是属于电磁波的三种模式。
TE 波指电矢量与传播方向垂直,或者说传播方向上没有电矢量。
TM 波是指磁矢量与传播方向垂直。
TEM 波指电矢量和磁矢量都与传播方向垂直;2)c k 是与波导横截面尺寸、形状及传输模式有关的一个参量,当相移常数β=0时,意味导波系统不再传播,亦称为截止, 此时k k c =, 故将c k 称为截止波数3)矩形波导的主模是TE 10模;圆波导的主模是TE 11模;同轴线的主模是TEM 模;带状线的主模是TEM 模;微带线的主模是准TEM 模。
19.简述述矩形波导传输特性的主要参数定义:相移常数,截至波长,截至波数,波导波长,相速度,TE 波和TM 波的波阻抗1) 相移常数和截止波数:相移常数β和截止波数c k的关系是β=2) 相速p v :电磁波的等相位面移动速度称为相速,即p v ωβ== 3) 波导波长g λ:导行波的波长称为波导波长,它与波数的关系式为22/12k k c k c r r g -==εμπβωλ 4) 波阻抗:某个波形的横向电场和横向磁场之比,即t t E Z H =20.导波系统中截止波长、工作波长和波导波长的区别。
答:导行波的波长称为波导波长,用λg 表示,它与波数的关系式为22/1122k k k c g -==πβπλ其中,k /2π为工作波长。
21.为什么空心的金属波导内不能传播TEM 波?答:空心金属波导内不能存在TEM 波。
这是因为:如果内部存在TEM 波,则要求磁场完全在波导的横截面内,而且是闭合曲线。
有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。
由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM 波的定义相矛盾,所以,规则金属内不能传输TEM 波。
22.圆波导中的主模为 TE 11模 ,轴对称模为 TM 01模 ,低损耗模为 TE 01模 。
23.说明圆波导中TE01模为什么具有低损耗特性。
答:TE 01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有周向电流。
因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE 01模的圆波导用于毫米波的远距离传输或制作高Q 值的谐振腔。
24.什么叫模式简并现象?矩形波的和圆波导的模式简并有何异同? 答:波导中的电磁波是各种TM mn 模和TE mn 模的各种线性组合,m 为x 方向变化的半周期数,n 是y 方向变化的半周期数;如果当两个模式TM mn 和TE mn 的截止波长相等时,也就说明这两种模式在矩形波导里出现的可能性相同,这种现象就叫做简并。
25.解释圆波导中的模式简并和极化简并26.为什么一般矩形(主模工作条件下)测量线探针开槽开在波导宽壁的中心线上?27. 带状线传输主模TEM 模时,必须抑制高次模 TE 模 和 TM 模 ;微带线的高次模有 波导模式 和 表面波模式 。
28. 微带线的特性阻抗随着w/h 的增大而 减小 。
相同尺寸的条件下,εr 越大, 特性阻抗越 小 。
29. 微波网络基础中,如何将波导管等效成平行传输线的?30. 列出微波等效电路网络常用有5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。
31. S 参数如何测量。
32. 二端口网络的S 参数(S11,S12,S21,S22)的物理意义。
33.多口网络[]S 矩阵的性质:网络互易有[][]S S T =,网络无耗有[][][]I S S =+,网络对称时有[][]jj ii S S =。
34. 阻抗匹配元器件的定义,作用,并举例说明有哪些阻抗匹配元件。
35. 写出理想的双口元件的[]S 矩阵,理想衰减器的[]S =⎥⎦⎤⎢⎣⎡--00l l ee αα,理想相移器[]S =⎥⎦⎤⎢⎣⎡--00θθj j e e ,理想隔离器[]S =⎥⎦⎤⎢⎣⎡0100。
36. 功率分配元器件的定义,并举例说明有哪些?答:将一路微波功率按比例分成几路的元件称为功率分配元件,主要包括定向耦合器、功率分配器以及各种微波分支器件。
37. 简述双分支定向耦合器的工作原理,并写出3dB 双分支定向耦合器的[S]矩阵。
答:假设输入电压信号从端口“①”经A 点输入,则到的D 点的信号有两路,一路由分支线直达,其波行程为λg /4,另一路由A →B →C →D ,波行程为3λg /4,;故两条路径到达的波行程差为λg /2,相应的相位差为π,即相位相反。
因此若选择合适的特性阻抗,使到达的两路信号的振幅相等,则端口“④”处的两路信号相互抵消,从而实现隔离。
同样由A →C 的两路信号为同相信号,故在端口“③”有耦合输出信号,即端口“③”为耦合端。
耦合端输出信号的大小同样取决于各线的特性阻抗。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=01000110001021][j j j j S38. 简述天线的定义和功能答:用来辐射和接收无线电波的装置称为天线。
基本功能:1)天线应能将导波能量尽可能多地转变成电磁波能量;2)天线具有方向性;3)天线有适当的极化。
4)天线应有足够的工作频带。
39. 简述天线近场区和远场区的特点答:近区场:θπθωεπθωεπϕθsin 4sin 24cos 2420302rIl H r Il j E r Il j E r =⋅-=⋅-=,, ① 在近区, 电场θE 和r E 与静电场问题中的电偶极子的电场相似, 磁场ϕH 和恒定电流场问题中的电流元的磁场相似, 所以近区场称为准静态场。
② 由于场强与r /1的高次方成正比, 所以近区场随距离的增大而迅速减小, 即离天线较远时, 可认为近区场近似为零。
③ 电场与磁场相位相差90°,说明玻印廷矢量为虚数, 也就是说, 电磁能量在场源和场之间来回振荡, 没有能量向外辐射, 所以近区场又称为感应场。
远区场:jkr jkr e r Il j H e r Il j E --==θλθλπϕθsin 2sin 60,①在远场,电基本振子的场只有θE 和ϕH 两个分量,它们在空间上相互垂直,在时间上同相位,所以其玻印亭矢量*21H E S ⨯=是实数,且指向r 方向。