随机变量序列的收敛特性

合集下载

随机变量序列的两种收敛

随机变量序列的两种收敛

概率论与数理统计
2)、设 n ,n 是两个随机变量序列, a,b为常数,
若 n P a,n Pb 且在g(x,y)在点(a,b)处连续, 则 g(n ,n ) P g(a,b), (n ). 证明略,方法类似于1) 3)、若 n P ,n P,
则n n P , (n )
nn P , (n )
1)、若 n P ,n P, 则P ( ) 1
证: n n
0
,由
则 n
2

n
2
中至
少有一个成立,即
n
2
n
2
于是
P(
) P(n
2
)
P(
n
) 0(n )
2
即 0,有P( ) 1,从而P( ) 1
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。
概率论与数理统计
定理5.6 随机变量序列 n P c(c为常数)
的充要条件为 Fn (x) W F (x)
这里 F(x)是 c 的分布函数,也就是退化分布
1, x c F(x) 0, x c

n P c
Fn (x) W F (x)
在F(x)的连续点.
当n P, (n ) 时,它们的分布函数之间就有
lim
n
Fn
(
x)
F
(
x)
成立.
1.定义
定义5.3
概率论与数理统计
设 Fx, F1(x), F2 (x), 是一列分布函数,如果对
F(x)的每一个连续点x,
都有
lim
n
Fn (x)
F ( x)
成立,
则称分布函数列 Fn (x) 弱收敛于分布函数F(x),

dvoretzky’s 收敛定理

dvoretzky’s 收敛定理

Dvoretzky’s 收敛定理一、概述Dvoretzky’s 收敛定理是概率论中的一个重要定理,它描述了随机变量序列的收敛性质,对于理解随机序列的极限行为具有重要意义。

本文将对Dvoretzky’s 收敛定理进行深入剖析,旨在帮助读者全面了解该定理的内容、证明过程和应用领域。

二、Dvoretzky’s 收敛定理的表述Dvoretzky’s 收敛定理描述了随机变量序列的收敛性质,在正式表述如下:对于一个随机变量序列X1, X2, …, Xn,在满足一定条件下,这个序列可以在概率意义下收敛于一个常数或者一个随机变量。

具体而言,若满足以下条件:1. 随机变量序列的方差有界:存在一个正数C,使得对于所有的n,有Var(Xn) <= C。

2. 随机变量序列的"距离"有限:对于任意的i≠j,有E|Xi - Xj| <=d(i,j),其中d(i,j)是一个随机变量序列的"距离"函数。

那么,这个随机变量序列在概率意义下收敛于一个常数或者一个随机变量。

三、Dvoretzky’s 收敛定理的证明Dvoretzky’s 收敛定理的证明是通过利用概率论和数学分析的方法来完成的。

主要思路是采用刻画随机变量序列的距离函数,配合方差有界的条件,最终利用概率的收敛性质来推断序列的收敛性。

具体证明过程如下:1. 定义随机变量序列的距离函数d(i,j),并使得该距离函数满足E|Xi - Xj| <= d(i,j)。

2. 利用方差有界的条件,推导出随机变量序列的均值序列收敛到一个常数。

3. 利用概率的性质,证明了随机变量序列在概率意义下的收敛性。

四、Dvoretzky’s 收敛定理的应用Dvoretzky’s 收敛定理在概率论和统计学中有着广泛的应用。

主要体现在以下几个方面:1. 随机变量序列的收敛性分析:Dvoretzky’s 收敛定理可以用来分析随机变量序列的收敛性,对于理解随机序列的极限行为具有重要意义。

迪利克雷收敛定理

迪利克雷收敛定理

迪利克雷收敛定理
一、迪利克雷收敛定理简介
迪利克雷收敛定理(Dirlikov Convergence Theorem)是概率论中一个重要的收敛性定理,主要用于研究随机变量序列的收敛性。

该定理由保加利亚数学家迪利克雷(Kolmogorov)提出,因此得名。

二、迪利克雷收敛定理的条件
迪利克雷收敛定理指出,当且仅当以下两个条件同时满足时,一个随机变量序列收敛:
1.单调性:序列中的每个随机变量具有单调性,即随着自变量的增加,随机变量值也单调增加或减少。

2.矩条件:序列的任意阶矩存在且有限。

三、迪利克雷收敛定理的应用
迪利克雷收敛定理在概率论、统计学和随机过程等领域具有广泛的应用,例如:
1.用于研究随机变量序列的收敛性,判断其极限分布。

2.用于大数定律和中心极限定理的证明。

3.研究稳定分布和无穷可分分布的性质。

四、实例分析
以伯努利试验为例,设随机变量序列:X_n = B(n, p),其中n为试验次数,p为每次试验成功的概率。

1.判断单调性:随着n的增加,X_n的成功次数也单调增加或减少。

2.判断矩条件:计算序列的矩,如E[X_n] = np,Var[X_n] = np(1-p),可知任意阶矩存在且有限。

因此,根据迪利克雷收敛定理,序列X_n收敛。

五、总结与展望
迪利克雷收敛定理为研究随机变量序列的收敛性提供了一个有力的工具。

在实际应用中,判断序列的单调性和矩条件是关键。

通过对迪利克雷收敛定理的学习,我们可以更深入地理解随机变量序列的收敛性,并为后续的研究奠定基础。

5.2随机变量序列的两种收敛

5.2随机变量序列的两种收敛
n
(n )
i 1
根据定义即证 例1、设 n 是独立同分布的随机变量序列,且 2 lim P ( k a ) 0 2 E a , D n ( n 1 ) 1 1
n n
n 2 P (n ) k a 试证: n k ( n 1 ) k 1 n 2 n 2 n 2 k E a k a kk 证: E k ( n 1 ) n ( n 1 ) ) k1 n k 1 k 1 n(n1
随机变量序列依概率收敛与函数序列收敛也不一样.
P 0 , lim P ( ) 1 n n n n


i列 n 服从大 n n 1 1 数定律就可以表达为 0 , lim P ( E ) 1 i i n n n
0,有 如果
n
lim P ( ) 0 或 lim P ( ) 1 n n
n

P

则称随机变量序列 n 依概率收敛于 ,记作
lim n
n
,或
P , ( n ) n
由定义可知,
P n
0 , ( n )
W
证明 :略。
3.依概率收敛与按分布收敛间的关系
(1)
( n ) n
P
( n ) n
L
(2)
P c n n
L n
c n
分布函数列的弱收敛是一个很有用的概念,但要判 断一个分布函数序列是否弱收敛,有时很麻烦,而判 定相应的特征函数序列的收敛性却往往比较容易。

§4.3随机变量序列的两种收敛性

§4.3随机变量序列的两种收敛性

n
再令x ' x F ( x 0) lim Fn ( x )
n
8
同理可证: 当 x " x时,F ( x ") limFn ( x ),
n
再令x " x, F ( x 0) limFn ( x ) .
n
即有 F ( x 0) lim Fn ( x ) lim Fn ( x ) F ( x 0) . n
0, x c; 有 Fn (c / 2) F (c / 2) 1, F ( x ) 1 , x c . Fn (c ) F (c ) = 0 .
从而 P ( X n c ) (n ) 0
且 Fn ( x ) F ( x ) , 所以当 n 时,
n
若x是F ( x )的连续点,
则 Fn ( x ) F ( x ), 即X n X .
W L
TH2表明:依概率收敛是弱收敛的充分不必要条件,
由弱收敛不能得出依概率收敛。见下面的例子。
9
例2 设X
X P
1 1 2
1 1 2
令 Xn X ,
L
当然有 X n X . 则 X n 与X 同分布,
P P P X n a ,Yn b X n Yn a b; P P X n Yn a b , X n Yn a b(b 0). 证明: ( X n Yn ) (a b ) X n a Yn b ( X n Yn ) (a b ) X n a Yn b 2 2
0 P X Y

《概率论与数理统计课件》随机变量序列的收敛性

《概率论与数理统计课件》随机变量序列的收敛性
20
P
定理 4.3.3 若 C 为常数,则 X n C 的充
L
要条件是 X n C .
21
证明:
必要性已由定理 4.3.2 给出,下证充分性.
记随机变量 X n 的分布函数为 Fn x .而常数 X C
(退化分布)的分布函数为
F
x

0 1
xC . xC
22
所以对于任意的 0 ,有
Fn x收敛到一个极限分布函数 Fx 是有实际意义的.现在的 问题是,如何定义分布函数序列 Fn x的收敛性?很自然,由 于 Fn x是实变量函数序列,我们的一个猜想是:对所有的 x , 要求 Fn x F x, n .这就是数学分析中的点点收敛.然
下面的定理说明了依概率收敛是一种比按分布收敛更 强的收敛性.
11
P
L
定理 4.3.2 如果 X n X ,则必有 X n X .
12
证明:
设随机变量 X n 的分布函数为 Fn x , n 1, 2, 3, ;
随机变量
X
的分布函数为
F x .为证
Xn
L
X
,只须证明:
对所有的 x ,有
写出随机变量 Yn

n k 1
Xk 2k
的特征函数n t ;⑶

明:当 n 时,随机变量序列Yn依分布收敛于随机变量Y .
33Leabharlann 解:⑴ 由于随机变量Y 服从区间 1, 1 上的均匀分布,因
此 Y 的特征函数为
t eit eit cost i sin t cost i sin t sin t .
(因为 x x 0).所以有
再令 x x ,得

概率论课件 第4章第2讲随机变量序列的两种收敛性

概率论课件  第4章第2讲随机变量序列的两种收敛性
证明:因f ( x, y)在点(a, b)连续, 故对 >0
0,当( x a)2 ( y b)2 2时有
| f ( x, y) f (a, b) |
于是 {| f (k ,k ) f (a, b) | } {( a)2 ( b)2 2 }
辛钦k 1n Nhomakorabeak
a | } 1
证明: {n } 同分布, 它们有相同的特征函数, 这个相同的特征函数记为 (t )
1 n 记 n k n k 1
a E ( k )
(0)
i
(t ) (0) (0)t o(t ) 1 iat o(t )
的分布函数Fn ( x) F ( x).
显然有 lim Fn ( x) F ( x)
n
L Xn Y
但对任意的0<ε<2,恒有
P{| n | } P{2 | | } 1
即不可能有{n }依概率收敛于
所以:依分布收敛依概率收敛不真
定理:随机变量序列依概率收敛于常数C 的充要条件是依分布收敛于常数C 证明:必要性已证,下面只证充分性
§4.2 随机变量序列的两种收敛性 上一节我们由大数定理可得,在贝努里试验中, 事件发生的频率稳定于概率,即
lim P{
n
n
n
P } 1
自然想到的是, 随机变量序列是否依 这种方式能稳定于一个随机变量呢 ?
这就是我们要讲的依概率收敛问题.
1
依概率收敛 定义:设{ n }是随机变量序列,若存在随机 变量 (或常数),对于任意ε>0,有
x x
令y x, z x,由x为F ( x)的连续点, 有

概率与数理统计 5.2 随机变量的收敛性与强大的数定律.ppt

概率与数理统计 5.2 随机变量的收敛性与强大的数定律.ppt
§5.2 随机变量的收敛性与强大数定律
一、概率收敛与分布收敛
Def.
1.
设随机变量序列{X
}
n n1
与随机变量X


0, lim n
P{|
Xn

X
|
}

0
则称随机变量序列
{
X
n
} n 1
依概率收敛于X,记作
P
Xn X
例 1. 设 X ,{Xn} 均为退化分布的随机变量,且
P( X 0) 1, P{X n 1/ n} 1, n 1, 2,L
P{|Xn-c|}= P{Xn c+ }+P{Xnc - }
=1-Fn(c+ -0)+ Fn(c-)
1-1+0=0
定理4. (连续性定理)分布函数列{Fn(x)}弱收敛于 分布函数{F(x)}的充分必要条件为:
{Fn(x)}的特征函数列 n (t) 收敛于F(x)的特征函数 (t).
N 1 nN
:|
Xn ()

X
()
|
1}} k

0


P{ I U { :| Xn () X () | }} 0, 0 N 1 nN

N
P{ U { :| Xn () X () | }} 0, 0
nN
概率的上连续性
N
P{Xn+Yn x} P{Xn x-c+}+P{|Yn-c|>} (1)
P{Xn+Yn x} P{Xn+Yn x,|Yn-c| } P{Xn x-c-,|Yn-c| }
P{Xn x-c-}- P{Xn x-c-,|Yn-c| >}

随机过程第01章 基础知识772.7 2.7 收敛性和极限定理

随机过程第01章 基础知识772.7 2.7 收敛性和极限定理

(3)若 X n 依概率收敛,则 X n 必为依分布收敛。
注 均方收敛与以概率1收敛不存在确定的关系。
二、极限定理
1.强大数定理
如果 X1,X 2, 独立同分布,
具有均值 ,则

首页
P{lim ( n
X1

X
2

X
n
)
/
n

}

1
2.中心极限定理 如果 X1,X 2, 独立同分布,
设 Fn (x),F(x)分别为随机变量 X n 及X 的
分布函数
如果 F(x) 对于的每一个连续点x,有
lim
n
Fn
(x)

F
(x)
则称 随机变量序列 X n 以分布收敛于X,记作
X n d X
首页
收敛性之间的关系
(1)若
X
均方收敛,则
n
X n 必为依概率收敛;
(2)若 X n 以概率1收敛,则 X n 必为依概率收敛;
具有均值 与方差 2 ,则
lim P X1 X n n a
n
n

a
1
x2
e 2 dx
2
n
注 若令 Sn X i ,其中 X1,X 2, 独立同分布 i 1
则 强大数定理 表明 Sn / n 以概率1收敛于 E[X i ];
中心极限定理 表明当n 时,S n 有

lim
n
E[|
Xn

X
|2 ]

0
则称 随机变量序列 X n 以均方收敛于X,记作
l.i.m n
Xn

X

随机变量序列的几种收敛性和关系毕业论文

随机变量序列的几种收敛性和关系毕业论文
然而 不趋于0.
由上面四种收敛性间的关系可得:
几乎处处收敛 依概率收敛 依分布收敛.
阶收敛 依概率收敛 依分布收敛.
3.
因为随机变量取值的统计规律可由它的分布函数完全确定,所以自然会考虑利用分布函数的收敛性来定义随机变量的收敛性,又分布函数和特征函数一一对应,而判断一个分布函数的序列的收敛是否弱收敛有时是很麻烦的,但判断相应的特征函数序列的收敛性却往往比较容易,下面给出弱收敛的充要条件,首先做一些准备:
后来我们引入了伯努利概型来刻画独立重复试验.将一成功(即A发生)概率为p的试验独立重复n次,其中成功 次,则 是二项分布随机变量.
因此成功的频率 也是随机变量.其期望为p与n无关,且方差 当 时趋于0.熟知,方差为0的随机变量恒等于它的期望,所以当 时频率 应以概率p为极限.另一方面,可以写 ,其中 相互独立,具有一样的伯努利分布,至此,问题转化为研究 时 的平均值序列 的极限行为.鉴于已在上面讨论过随机变量列的各种收敛性,因此我们可以给出大数定律的严格定义.
注:由于 连续,如 广义均匀收敛到 ,则 必定是连续函数.
系1设分布函数列 对应的特征函数列为 ,则下列四条件等价:
(1) 弱收敛于某分布函数 ,
(2) 收敛到某函数 , 在点0连续,
(3) 收敛到某连续函数 ,
(4) 广义均匀收敛到某函数 .
当任一条件满足时, 是 的特征函数.
下面说明系1中等价条件(2)中“ 在 的连续性”是不可缺少的条件.
则对任意的 ,有 成立.
证明:因为 有一样分布,所以也有一样的特征函数,记这个特征函数为 ,又因为 存在,从而特征函数 有展开式:
=
再由独立性知 的特征函数为
对任意取定的t,有
而 是退化分布的特征函数,相应的分布函数为

第五章随机变量的收敛性

第五章随机变量的收敛性

当极限分布为点分布时,记为 X n qm c
对应还有:L1收敛(converge to X in L1 )
lim
n
Xn X 0
if Xn X 0, as , then Xn L1 X
7
其他收敛
依概率收敛
lim
n
Xn X 0
或 lim n
: Xn X 0
随机变量序列 X1, X2..., Xn ,当对任意 0,
CDF
1、如果对每个 0 ,当 n
时,
Xn X
0
则Xn依概率收敛于X ,记为 Xn P X 。 2、如果对所有F的连续点t,有
lim
n
Fn
t
Ft
则Xn依分布收敛于X ,记为 Xn
同教材上
X。
5
两种收敛的定义
当极限分布为点分布时,表示为
依概率收敛:
X c 1, and Xn P X , then Xn Pc
Xn p 1 2, Xn 2 n p 1 p n 1 4n
0.4 Xn 0.6 1
Xn Xn
0.1 0.1
1
4n
1 0.12
1 25 0.7 n
1 25 n 0.7 n 84
17
中心极限定理 (Central Limit Theorem, CLT)
发生的频率 fn A nA n逐渐稳定到概率p 。
那么lim n
fn
A
p?
不对,若
则对于
lim
n
0
fn A p
,总存在 N
0
,当
n
N 时,有
fn
A p 成立
但若取 p , 由于
fn A 0 1 pn 0

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

第10页
特征函数的定理
定理4.1.1 一致连续性.
定理4.1.2 非负定性.
定理4.1.3 逆转公式.
定理4.1.4 定理4.1.5
分布函数的唯一性.
连续场合,求p(密x)度函21数. eitx(t)dt
第11页
定理4.1.5 设X为连续型随机变量,密度函数
为p(x),若 | (t) | dt ,则 p(x) 1 eitx(t)dt 2
二、给定 n 和概率,求 y
例4 P237 15 设一家有500间客房的大旅馆的每间 客房装有一台2kw的空调机.若开房率为80%, 问需要多少kw的电力才能有99%的可能性保证 有足够的电力使用空调机?
第53页
三、给定 y 和概率,求 n
例5 用调查对象中的收看比例 作为某电
视节目的收视率 p 的估计 pˆ . 要有 90% 的把握,使调查所得收视率 pˆ与实际收
第44页
练习 P238 6 某汽车销售点每天出售的汽车数服 从参数为λ=2的泊松分布,若一年365天都经 营汽车销售,且每天出售的汽车数相互独立, 求一年中售出700辆以上汽车的概率.
第45页
例2 P238 4 掷一颗骰子100次,记第i次掷出的点
数为Xi , i=1,2,…,100,试求概率
å P{3 # 1
性质4.1.1 |(t)| (0)=1
性质4.1.2 (t) (t)
性质4.1.3 aX b(t) eibtX (at)
第7页
性质4.1.4 若 X 与 Y 独立,则
X Y (t) X (t)Y (t)
性质4.1.5 若 E(X l )存在,则对0≤k≤l有
(k)(0) ik E(X k )

大数定律

大数定律
可见, 每个随机变量的数学期望都存在.
因为
2 Xn
0 1 1 2 n
na 2
检验是否 有有限方 差
1 P n2 2 na 2 1 a 2 所以 E X n n2
2 D X n E X n E X n 2 a 2
因此, 随机变量 X n n 1, 2,有有限的方差, 且有 公共上界.
P
三、常用的四种大数定理
定义4.5 设X 1 , X 2 ,, X n , 是随机变量序列 ,
1 n Yn X i n i 1

如果存在这样一个常数序列 a1 , a2 ,, an ,,
对任意的ε 0, 恒有
lim P Yn an 1
n
P 即Yn an
则称随机变量序列 {Yn } 依分布收敛于随机变量Y, 简记为
Yn Y
L
依分布收敛表示:当n充分大时,Yn 的分布函数
Fn ( x ) 收敛于Y 的分布函数 F ( x ), 它是概率论中
较弱的一种收敛性. 定义4.2 设随机变量序列 {Yn } 和随机变量Y,若对 任意实数 0, 有

简记为
Yn Y
a .e
下面定理揭示了三种收敛之间的关系。 定理 4.2 设随机变量序列 { X n } 和随机变量 X
X ; (1)若 X n X ,则 X n
(2) 若 X n X ,则

a .e
P
r
Xn X ;
Xn X .
L
P
X ,则 (3) 若 X n
因此定理 4.3 得证
注1 当 n 很大时, 随机变量 X 1 , X 2 ,, X n 的 1 n 算术 平均值 X i 接近于它们的数学期望的 n i 1

概率论与数理统计4-2 随机变量序列的收敛性

概率论与数理统计4-2 随机变量序列的收敛性

则P(

2 n

)
=P{( n n )(k M)} +P{( n n )(k M)}
P( 2 >M-1)+P( n 1)<2
P( n
(由例4.3给出例证,请大家看书!)
定理4.5 随机变量序列n P P c, (c为常数)
的充分必要条件是
Fn (x) W F (x)
这里的F
(x)是

c的分布函数,即
F(x)=
1,x>c 0,x
c
证明:下证充分性. 0,有
Pn c P(n c ). P(n c )
则对x x x, 有
F( x)

lim
n
Fn
(x)

lnimFn
(x)

F
(
x)
令x x, x x,得
F(
x-0)

lim
n
Fn
(
x)

lnimFn
(
x)

F
(
x+0)
若x是F(x)的连续点,则lim n
Fn
(x)

F
(x)
注:这个定理的逆命题不成立。
1 Fn (c ) Fn (c 0)
11 0 0, n
斯鲁茨定理:设{1n },{ 2n },...{ kn }是k个
随机变量序列,且in P ai , (i 1, 2...)
又R(x ,x 1
2
...xk
)是k元变量的有理函数,
如果F(x)的每一x,有

随机变量序列的几种收敛性

随机变量序列的几种收敛性

本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:薛永丽指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 12.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。

§4.1随机变量序列的两种收敛性§4.2特征函数§4.3大数定律

§4.1随机变量序列的两种收敛性§4.2特征函数§4.3大数定律

第8页
方法一:利用大数定律 例1 P215 18. 设随机变量序列{Xn }独立同分布, 2 期望、方差均存在,且 E( X n ) = 0,Var( X n ) = s
1 n P 2 2 X 揪 ? s 求证: å i n i= 1
思考题:P215 19
第9页
方法二:利用切比雪夫不等式 例2 P215 17. 设随机变量序列{Xn }独立同分布, 期望、方差均存在,且 E( X n ) = m.
注意:i 1 是虚数单位.
第20页
注 意 点(1)
(t ) e (1) 当X为离散随机变量时,
k 1


itxk
pk
itx ( t ) e (2) 当X为连续随机变量时, p( x)dx
这是 p(x) 的傅里叶变 换
第21页
注 意 点(2)
特征函数的计算中用到复变函数,为此注意: (1) 欧拉公式: eitx cos(tx) i sin(tx) (2) 复数的共轭: a bi a bi (3) 复数的模: a bi a2 b2
P
c 其中c为常数,并求c的值.
作业:习题4.1第12、15题
第13页
引例 设随机变量序列{ Xn } 服从以下的退化分布 1 P ( X n = ) = 1, n = 1, 2, L n 求{Xn }的分布函数,并求其极限函数. 它还是一个分布函数吗?
第14页
4.1.2
按分布收敛、弱Leabharlann 敛 lim P X X 若对任意的 >0,有 n n 0
则称随机变量序列{Xn}依概率收敛于X, 记为
Xn
P X
第4页

随机变量序列依概率收敛的几个性质_朱永生

随机变量序列依概率收敛的几个性质_朱永生

第24卷哈尔滨师范大学自然科学学报Vol .24,No .22008第2期NAT URAL SC I E NCES JOURNAL OF HARB I N NOR MAL UN I V ERSI TY随机变量序列依概率收敛的几个性质朱永生(哈尔滨师范大学)【摘要】 对随机变量序列依概率收敛的问题进行研究进而得出一些结论.关键词:依概率收敛;随机变量序列;连续函数收稿日期:2007-1-3 笔者在原有随机变量序列依概率收敛性质基础上进一步研究得出几个系统的结论.定义:设有随机变量序列ξ1,ξ2,ξ3,…,若对任意的ε>0,有li m n →∞P (|ξn -ξ|<ε)=1,则称随机变量序列{ξn }依概率收敛于ξ,并记作li m n →∞ξnPξ或ξnPξ(n →∞).引理1 设随机变量序列{ξn }、{ηn }分别依概率收敛于a 与b (其中a 与b 是两个常数),则有①ξn +-×ηnP a +-×b ②ξn ÷ηn Pa ÷b 进一步利用归纳法可证明上述引理在有限次的四则运算下也是成立的,从而可推广如下:定理1 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,并且ξinPa i ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (a 1,a 2,…,a k )≠±∞,则有Q (x 1,x 2,…,x k )PQ (a 1,a 2,…,a k ),n →∞成立.为了进一步推广上述定理,下面再给出一个定理.定理2 设随机变量序列{ξn }依概率收敛于ξ,f (x )为直线上的连续函数,则f (ξn )Pf (ξ).证明 ①若f (x )=∑mi =1a i x i是m 次多项式函数,由定理1知f (ξn )Pf (ξ)成立,结论为真.②现在证明一般情形.对任意的ε>0,δ>0,取M 充分大使得有P (|ξ|>M )>δ,又选取N 1充分大,使当n ≥N 1时,有P (|ξ-ξn |>1)<δ,于是有 P (|ξn |>M +1)≤P{(|ξ|>M )∪(|ξ-ξn |>1}<2δ对取定的M ,因为f (x )是连续函数,可以用多项式函数进行任意逼近,且在任意有限区间上是一致收敛的,从而有m 次多项式g m (x ),使有|f (x )-g m (x )|<ε3,x ∈[-(M +1),M +1].对取定的m 次多项式g m (x ),因为g m (ξn )Pg m (ξ),n →∞,故存在N 2,使当n ≥N 2时,有P (|g m (ξ)-g m (ξn )|≥ε3)<δ成立,又P (|f (ξ)-f (ξn )|≥ε)=P{(|f (ξ)-f (ξn )|≥ε)∩(A ∪B )}+P{(|f (ξ)-f (ξn )|≥ε)∩((A ∪B )}=I 1+I 2可以看出(A ∪B )∪(A ∪B )=(A ∪B )∪( A ∩ B )=Ω(A ∪B )∩(A ∪B )=Φ其中(A ∪B )=(|ξ|>M )∪(|ξn |>M +1)(A ∪B )=( A ∩ B )=(|ξ|≤M )∩(|ξn |≤M +1)那么当n ≥m ax {N 1,N 2}时,有I 1≤P (|ξ|>M )+P (|ξn |>M +1)<3δ,又|f (ξ)-f (ξn )|≥ε]|f (ξ)-g m (ξ)+g m (ξ)-g m (ξn )+g m (ξn )-f (ξn )|≥ε]|f (ξ)-g m (ξ)|≥ε3或|g m (ξ)-g m (ξn )|≥ε3或|g m (ξn )-f (ξn )|≥ε3.即(|f (ξ)-f (ξn )|≥ε)<{(|f (ξ)-g m (ξ)|≥ε3)∪(|g m (ξ)-g m (ξn )|≥ε3)∪(|g m (ξn )-f (ξn )|≥ε3)}.然而由上面可知,有下述事实成立P{(|f (ξ)-g m (ξ)|≥ε3)∩ A ∩ B }=P{(|f (ξ)-g m (ξ)|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0P{(|g m (ξn )-f (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0,所以I 2≤P{(|g m (ξ)-g m (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}≤P{|g m (ξ)-g m (ξn )|≥ε3)<δ从而有P (|f (ξ)-f (ξn )|≥ε)=I 1+I 2<4δ成立.由ε、δ的任意性即知f (ξn )Pf (ξ)成立.于是结论得证.进而可得定理3如下.定理3 若ξn Pc,则g (ξn )Pg (c ),其中c 是一个常数,g 是一个连续函数.从而可推广前述两个定理如下:定理4 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pξi ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(ξ1),g 2(ξ2),…,g k (ξk ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn ))PQ (g 1(ξ1),g 2(ξ2),…,g k (ξk ))(n →∞).例 若ξnPξ,ηnPη.则有(eξn+sinηn )/(1+e ξn)P(e ξ+sin η)/(1+e ξ)这是因为g 1(x )=e x,g 2(x )=sin x 为连续函数,Q (x,y )=x +y1+x为有理函数,从而易证.从定理3和上述定理4亦不难得出相应的下述定理5.定理5 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pc i ,n →∞(i =1,2,…,k,c i 为常数),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(c 1),g 2(c 2),…,g k (c k ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn )PQ (g 1(c 1),g 2(c 2),…,g k (c k ))(n →∞).引理2 设ξnPa,ηnPb,又设函数g (x,y )在点(a,b )连续,则g (ξn ,ηn )Pg (a,b )证明 由函数g (x,y )在(a,b )的连续性知,对于任给的ε>0,必存在δ>0,使当|x -a |+|y -b |<δ时,|g (x,y )-g (a,b )|<ε,于是{|g (ξn ,ηn )-g (a,b )|≥ε}<{|ξn -a |+|ηn -b |≥δ}<{|ξn -a |≥δ2}∪{|ηn -b |≥δ2}因此,P{|g (ξn ,ηn )-g (a,b )|≥ε}≤P{|ξn -a |≥δ2}+P{|ηn -b |≥δ2}→0(n →∞)亦即li m n →∞P{|g (ξn ,ηn )-g (a,b )|<ε}=1.进而得出下述定理:定理6 设{ξ1n },{ξ2n },…,{ξkn }与{η1n },{η2n },…,{ηkn }分别是k 个随机变量序列g i (x,y )是一组二元连续函数,并且ξinPa i ,ηinPb i ,n →∞(i =1,2,…,k,a i ,b i 为常数),又Q (x 1,x 2,…,x k )是k 元变量有理函数,并且Q (g 1(a 1,b 1),…,g 2(a 2,b 2),…,g k (a k ,b k ))≠±∞,则有Q (g 1(ξ1n ,η1n ),g 2(ξ2n ,ξ2n ),g k (ξkn ,ηkn ))PQ (g 1(a 1,b 1),g 2(a 2,b 2),…,g k (a k ,b k ))(n →∞).例 若ξnPξ,ηnPη.则有(e ξn+ηn+sin ξnηn )/(1+e ξn ηn )P(eξ+η+sinξη)/(1+e ξη)83哈尔滨师范大学自然科学学报 2008年此例题由上述定理6很容易看出.由上述的引理2还可以推出引理1.分别取g (x,y )为x ±y,xy,xy(y ≠0),则可由引理2推论得到引理1,因此,引理1可以看作是引理2的特例.最后,还应该注意的是,依概率收敛不同于通常意义上的极限,随机变量序列ξnPξ不一定有ξn (ω)→ξ(ω),(ω∈Ω),甚至可能对每一个ω,ξn (ω)ξ(ω),(ω∈Ω).如取Ω=[0,1],R 是包含[0,1]中一切左闭右开区间的事件域,P 是定义在R 上的概率,且对于[a,b )<[0,1],满足P ([a,b ))=b -a,定义随机变量序列如下:η11(ω)≡1,η21(ω)=1,ω∈[0,12);0,ω∈[12,1)η22(ω)=1,ω∈[0,12);0,ω∈[12,1) …一般地,将[0,1)分成K 个等长的区间,定义ηk i (ω)=1,ω∈[i -1K ,iK);0,ω[i -1K ,iK). (i =1,2,…,K;K =1,2,…)显然,对任意ε>0,P (|ηk i |≥ε)≤1K,将ηk i 重新编号,令ξ1=η11,ξ2=η21,ξ3=η22,ξ4=η31,ξ5=η32,…则由上式可知,ξnP0,但对每一个ω∈Ω,由{ξn }的定义知,数列{ξn (ω)}中皆有无穷多个1和无穷多个0,因而{ξn (ω)}不收敛.参 考 文 献[1] 来向荣.简明概率论教程[M ].北京:北京工业大学出版社,2004.[2] 魏宗舒.概率论与数理统计教程[M ].北京:高等教育出版社,1983.[3] 严士健,王隽骧,刘秀芳.概率论基础[M ].北京:科学出版社,1983.[4] 王梓坤.概率论基础及其应用[M ].北京:科学出版社,1979.[5] Laha ,R.G .and Rohatgi ,B.K .Pr obability theory[M ].JohnW iley &s ons,1985.S OM E CONCLUSIONS OF THE CONVERGENTCHARACTER B Y PR OBABIL I T YZhu Yongsheng(Harbin Nor mal University )ABSTRACTA series of conclusi ons are given according t o researching int o the convergent character by p r obability in this paper .Keywords:Convergent character by p r obability;Random variable;Continuity functi on(责任编辑:王丹红)93第2期 随机变量序列依概率收敛的几个性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率空间
•几乎必然收敛(almost sure convergence)
–随机变量序列收敛到,同时
}{n X X {li – a.s. 1
}{lim ==∞→X X P n n X X =lim X
X −→−.
s .a 表示为或者n n ∞→n →)}
()(lim :{ςςςX X n n =∞→
•依概率收敛(convergence in probability)
–随机变量序列以及满足对任意
}{n X X li ε
–p. 0}||{lim
=>-∞→εX X P n n X X =lim X
X −→−.
p 表示为p 或者
n n ∞→n →也有可能的数值极大
|X X n -|
•均方收敛(mean square convergence)
–随机变量序列以及满足,同时
}{n X X li ∞<}{2n
X E –m.s. 0}){(lim
2
=-∞→X X E n n X X =lim X
X −→−m.s.
表示为或者n n ∞→n →
•均方收敛(mean square convergence)
–随机变量序列以及满足,同时
}{n X X li ∞<}{2n
X E –m.s. 0}){(lim
2
=-∞→X X E n n X X =lim X
X −→−m.s.
表示为或者则n n ∞→n →m s •若,则X X n −→−m.s.∞
<}{2
X E 几乎必然收敛或依概率收敛都不能确保均方收敛
•以概率分布收敛(convergence in distribution)
–随机变量序列以及满足在任意连续的x
}{n X X li )()(lim
x F x F X X n n =∞→–表示为 d. 或者X X n n =∞→lim X
X n −→−d.
•依据特征函数判断收敛–X
X n −→−d.
––)}({)}({X f E X f E n →)
t ()t (X
X n
Φ→Φ
.
s .a ⇒
X
X −→−.
p
(Cauthy criteria)
在不知道极限的情况下,判定随机变量序列收敛
随机变量序列的收敛特性。

相关文档
最新文档