第2章-GIS中的空间数据
GIS的空间数据结构

GIS的空间数据结构GIS(地理信息系统)中的空间数据结构是指用来存储、组织和管理地理空间数据的方式和方法。
它们是构建GIS系统的基础,对于实现空间数据的高效查询、分析和可视化表示具有重要意义。
本文将介绍常见的空间数据结构,包括矢量数据结构、栅格数据结构和层次数据结构。
一、矢量数据结构(Vector Data Structure)是用点、线和面等几何要素来表示地理现象的空间数据结构。
常见的矢量数据结构包括点、线和面三种类型:1. 点(Point)是空间数据最基本的要素,它由一个坐标对(x, y)表示,常用于表示一个具体的地理位置或地物。
2. 线(Line)是由若干个连接起来的点所组成的线条,它可以用来表示道路、河流等线状地物。
3. 面(Polygon)是由若干个边界相连的线所围成的封闭区域,它可以用来表示国家、城市等面状地物。
矢量数据结构是一种拓扑结构,在存储空间数据时,常采用点-线-面的层次结构,以及节点、弧段和拓扑关系等数据结构来存储和组织地理空间数据。
二、栅格数据结构(Raster Data Structure)将地理空间数据划分为一系列均匀的像素或单元格,用像素值或单元格值来表示地物属性。
栅格数据结构适用于连续分布的地理现象,如温度、降雨等。
常见的栅格数据结构包括:1. 栅格图像(Raster Image)是将地理空间数据以图像的方式呈现,每个像素的灰度值或颜色代表了地物属性的强度或类型。
栅格图像可以通过数字遥感技术获取,并被广泛应用于地貌分析、图像处理等领域。
2. 数值地形模型(Digital Elevation Model,DEM)是一种栅格数据结构,用于表达地球表面的海拔高度。
DEM常用于地形分析、洪水模拟等应用中。
栅格数据结构的主要优点是简单、易于操作和处理,但由于其离散性,对于空间数据的存储和处理需求较大。
三、层次数据结构(Hierarchical Data Structure)是一种将地理空间数据按层次结构进行组织和管理的数据结构。
交通地理信息系统02_空间数据基础

即欧氏平面
地理实体:分布于地球表面的人文和自然现象的总称 实体必须符合三个条件:
可被识别
重要(与问题有关) 可被描述(有特征)
3.要素模型
嵌入式空间:是指空间对象存在于“空间”之中。空间对象的定义取 决于嵌入式空间的结构。
常用的嵌入式空间类型: 欧式空间(距离、方位) 量度空间(距离) 拓扑空间(拓扑关系) 面向集合的空间(只采用一般的基于集合的关系)
4.地理空间及其表达
2、空间实体的表达(计算机) 矢量表达 在矢量数据结构中,地理实体的形状和位置是由一组坐标对所确定。矢 量数据结构对地理实体的描述类似于地图对地理信息的描述,一般也把 地理实体分为点、线、面、体等四种,每种实体有不同的编码方法。 栅格表达 在栅格数据结构中,整个地理空间被规则地分为一个个小块(通常为 正方形),地理实体的位置是由占据小块的横排与竖列的位置决定,小 块的位置则由其横排竖列的数码决定,每个地理实体的形态是由栅格或 网格中的一组点来构成。这种数据结构和遥感图象的数据相同,因而数
在各向同性与各向异性场中的旅行时间面
强空间正负自相关模式
2. 场模型
栅格数据模型
栅格数据模型是基 于连续铺盖的,它 是用二维铺盖或划 分覆盖整个连续空 间;铺盖可以分为 规则的和不规则的, 后者可当做拓扑多 边形处理
三角形、方格和六角形划分
栅格数据模型
3.要素模型
1. 基本概念
欧氏空间:带坐标的可测量点之间的距离和方向的空间模型 欧氏平面:把空间特性转换成实数的元组特性,而形成的二维模型
点集拓扑学是拓扑描述的数学基础
空间关系数据
主要是指点-点、点-线、点-面、线-线、线-面、面-面之间的相互
地理信息系统 GIS 第二章 空间数据的表达

1 1 1 0 0 -
0 0 0 1 0 0 -
0 0 0 0 0 0 0 -
0 0 0 1 1 0 0 1 -
空间数据 的表达
关联性(节点与弧段的关系)
节点 1 2 3 4 5 6 弧段 8,9,5 5,7,10 1,2,6 4,7,9,12 2,3,4,11 1,11,8
多边形区域定义
4 6 5 A 3 5 C 2 多边形 多边形 A A B B C C D D 7 D 1 1
地理信息系统
空间数据 的表达
GIS描述现实世界的方法
地理信息系统
空间数据 的表达
地图描述现实世界的方法
空间数据 的表达
2.2.2 遥感影像对地理空间的描述
遥感影像对空间信息的描述主要是通过不同的颜色 和灰度来表示的。这是因为地物的结构、成份、分布等 的不同,其反射光谱特性和发射光谱特性也各不相同。 传感器记录的各种地物在某一波段的电磁辐射反射能量 也各不相同,反映在遥感影像上,则表现为不同的颜色 和灰度信息。
地理信息系统
空间数据 的表达
地图投影的变形
地图投影变形示意图
地理信息系统
空间数据 的表达
3、投影分类
1、按构成的方法分: 1)几何投影:把经纬网格投影到几何面上,再展开。
圆柱投影:投影面位圆柱面。 方位投影:投影面为平面。 圆锥投影:投影面为圆锥面。
2)非几何投影:不借助几何面,根据某些条件用数 学解析法确定球面与平面之间点与点的函数关系。
空间数据 的表达
2.2 地理空间的描述方法
2.2.1 地图对地理空间的描述方法
地图是现实世界的模型,它按照一定的比例,一定的投影原则, 有选择地将复杂的三维现实世界的某些内容投影到二维平面媒介上,并 用符号将这些内容要素表达出来。 点状要素 面积较小,不能按比例表示的地物。一般可用点状符号的形状和颜色 来表示其质量特征,用符号的尺寸来表示数量特征。 线状要素 对于地面上呈线状或带状分布的事物可用线状符号来表示。 面状要素 面状分布的地理事物较多,可分为连续分布的(如地形、气温等)和 不连续分布的(森林、居住区等)两种,可用相应的面状符号来表示。
第二章 空间数据模型

2.2栅格数据模型-离散化的方法 栅格数据模型规则的格网(常用三角形,方格,六角形) 规则的格网(常用三角形,方格,六角形),三角形 是最基本的不可再分的单元,根据角度和边长的 不同,可以取不同的形状,方格、三角形和六角 形可完整地铺满一个平面。 不规则的格网,可当做拓扑多边形处理,如按街 不规则的格网 区划分,社会经济分区等。 。
空间数据模型
本章描述的是整个GIS理论中最为核心的内容。 理论中最为核心的内容。 本章描述的是整个 理论中最为核心的内容 为了能够利用信息系统工具来描述现实世界, 为了能够利用信息系统工具来描述现实世界,并 解决其中的问题,必须对现实世界进行建模。 解决其中的问题,必须对现实世界进行建模。对 于地理信息系统而言,其结果就是空间数据模型。 于地理信息系统而言,其结果就是空间数据模型。 空间数据模型可以分为三种: 空间数据模型可以分为三种: 场模型:用于描述空间中连续分布的现象; 场模型:用于描述空间中连续分布的现象; 要素模型:用于描述各种空间地物; 要素模型:用于描述各种空间地物; 网络模型:可以模拟现实世界中的各种网络; 网络模型:可以模拟现实世界中的各种网络;
(一)空间结构特征和属性域 一 空间结构特征和属性域 空间” “空间”经常是指可以进行长度和角度 测量的欧几里德空间。 测量的欧几里德空间。空间结构可以是规 则的或不规则的。 则的或不规则的。 属性域的数值可以包含以下几种类型: 属性域的数值可以包含以下几种类型: 名称、序数、间隔和比率。 名称、序数、间隔和比率。属性域的另一 个特征是支持空值, 个特征是支持空值,如果值未知或不确定 则赋予空值。 则赋予空值。
2011-4-6
25
2.2栅格数据模型 2.2栅格数据模型
栅格模型把空间看作像 元的划分, 元的划分,每个像元都 记录了所在位置的某种 现象,用像元值表示。 现象,用像元值表示。 该值可以表示一个确定 的现象,也可以是一种 模糊的现象。但一个像 元应该只赋一个单一的 值。
GIS数据处理与空间分析教程

GIS数据处理与空间分析教程引言:地理信息系统(Geographic Information System,简称GIS)是一种将地理空间数据与属性数据进行捆绑组织、存储、查询、分析、可视化并生成可输出图形报告的系统。
在各个领域,如城市规划、环境管理、资源分配、农业发展等都有广泛的应用。
本教程将就GIS数据处理与空间分析的相关内容进行深入的介绍和讲解。
第一章:GIS数据处理的基础知识GIS数据由地理空间数据和属性数据组成,地理空间数据包括点、线、面等地理要素。
在这一章节,我们将学习地图投影的基本知识,了解常见的地理坐标系和地图投影方式,并介绍GIS数据的各种数据格式,如Shapefile、GeoJSON等。
第二章:GIS数据获取与预处理本章节将介绍如何获取地理空间数据,包括地理信息系统数据和其他来源的数据。
我们将探讨如何使用GPS设备采集地理数据,并学习如何使用影像处理软件提取图像中的地理信息。
另外,还将涉及数据预处理的工作,如数据清洗、数据转换和数据拓扑校正等。
第三章:GIS数据管理与存储GIS数据管理与存储是GIS应用中关键的一环,本章节将重点介绍如何进行数据管理和数据存储。
我们将学习如何使用数据库管理系统(DBMS)对GIS数据进行组织和存储,并了解属性数据表的设计和建立。
此外,还将介绍如何维护和更新数据,以及数据备份和恢复的相关策略。
第四章:GIS空间分析基础在进行GIS空间分析之前,我们需要了解一些基础概念和方法。
本章节将介绍GIS空间分析的基本概念,如空间关系、空间查询和空间操作等。
我们还将学习常见的空间分析方法,如缓冲区分析、叠加分析和网格分析等,并通过具体案例来加深理解。
第五章:GIS空间分析进阶本章节将介绍一些进阶的GIS空间分析方法和技术,如网络分析、三维分析和时空分析等。
我们将详细讲解这些方法的原理和应用场景,并通过实际案例来展示如何使用这些方法进行空间分析。
第六章:GIS可视化和报告生成通过可视化和报告生成,我们可以有效地展示和传达GIS数据和分析结果。
第二章 GIS空间数据结构1

二、矢量数据的特点
三、矢量数据结构的类型
1、简单数据结构 空间数据按照以基本的空间对象(点、线或多边形)为单元 进行单独组织,不含有拓扑关系数据,最典型的是面条 (Spaghetti)结构。
主要特点:
(1)数据按点、线或多边形为单元进行组织,数 据编排直观,数字化操作简单。 (2)每个多边形都以闭合线段存储,多边形的公 共边界被数字化两次和存储两次,造成数据 冗余和不一致。 (3)点、线和多边形有各自的坐标数据,但没有 拓扑数据,互相之间不关联。 (4)岛只作为一个单个图形,没有与外界多边形 的联系。
4、坐标系转换
x=f1(L,B) y=f2(L,B)
5、高程
指空间参考的高于或低于某基准平面的 垂直位置,主要用来提供地形信息。我国现 规定的高程基准面为“1985国家高程基准”, 比原“黄海平均海平面”高29mm。我国高程 的起算面是黄海平均海水面。1956年在青岛 设立了水准原点,称此为1956年黄海高程系。 1987年国家测绘局公布:中国的高程基准面 启用《1985国家高程基准》取代国务院1959 年批准启用的《黄海平均海水面》。《1985 国家高程基准》比《黄海平均海水面》上升 29毫米。
优、缺点
优点——文件结构简单,易于实现以多边形为单位的运 算和显示。 缺点—— (1)邻接多边形的公共边被数字化和存储两次(如图 2—19a中的7、8、9三个点),由此会产生数据冗余和 边界不重合(由于数字化误差等因素造成)。 (2) 每个多边形自成体系,缺少有关邻域关系的信 息,难以进行邻域处理。如合并同类时要消除公共边。 (3) 不能解决“洞”或“岛”之类的多边形嵌套问 题,岛只作为单个的图形建造,没有与外包多边形的 联系。 (4)不易检查多边形边界的拓扑关系是否正确,如 无法判断有无不完整的多边形。
第二章 地球空间与空间数据基础

遥感图像及地图表示
五、地理信息的数字化表述
地理信息的数字化表述,就是使计算机能够识别 地理事物的形状。
Open GIS对地理空间的认识模型
九个抽象层次
尺度世界 (尺度语言)
项目世界 (project)
地理点列世界 (坐标几何)
地理空间世界 (GIS语言)
地理几何 特征世界
概念世界
现实世界
(自然语言) (基本语言)
地理要素 集合世界
地理要素 世界
GIS的三个抽象层次
现实世界 地理实体或者现象
概念世界
2
4
12 24
48
96 192
1
4
16 144 576 2304 9216 36864
1
4
36 144 576 2304 9216
第二节 地理空间坐标系与地图投影
地理空间坐标系的主要目的,是确定空间 实体在地理空间中的位置,最直接的方法是用 地理坐标(经度、纬度)和高程来表示。
地理坐标系——球面坐标系
地图投影
平面直角坐标系 (笛卡尔平面直角坐标系、欧几里德空间系)
一、在椭球面上表示点位置的坐标系统
(一)大地坐标系
大地坐标系是大地测 量中以参考椭球面为 基准面的坐标系。
根据不同的应用,域可以表示二维和三维地理 空间。
三、地图对地理空间的描述
地图上各种内容要素之间的关系,是按照 地图投影建立的数学规则,使地面上各点和地 图平面上的相应点保持一定的函数关系,从而 在地图上准确地表达地表空间各要素的关系和
第2章 GIS的空间数据结构

矢量数据表达——拓扑数据结构
3、拓扑包含 : 拓扑包含是指空间图形的 同类 , 但 不同级 的 、 拓扑包含:拓扑包含是指空间图形的同类 同类, 不同级的 元素之间的拓扑关系。 元素之间的拓扑关系。
b
(a)简单包含 )
(b)多层包含 多层包含
(c)等价包含 等价包含
图 (a)中多边形 中包含多边形P2,图(b)中多边形P3包 中多边形P1中包含多边形 , )中多边形 包 中多边形 中包含多边形 含在多边形P2中 而多边形P2, 又都包含在多边形 又都包含在多边形P1中 含在多边形 中,而多边形 ,P3又都包含在多边形 中。 都包含在多边形P1中 多边形P2, 图 (c)多边形 ,P3都包含在多边形 中,多边形 ,P3 )多边形P2, 都包含在多边形 20 对P1而言是等价包含 . 而言是等价包含
3
第二章 GIS的空间数据结构 GIS的空间数据结构
第1节 地理实体及其表达 第2节 矢量数据结构 第3节 栅格数据结构 第4节 矢量与栅格数据结构的比较 第5节 矢-栅一体化数据结构和三维数据结构
4
第1 节
地理实体及其表达
一、地理实体
1. 地理实体与地理目标
地理实体:指一种在现实世界中不能再划分为同类现象的现象。 地理目标:实体在地理数据库中的表示
11
第2 节
空间数据结构
二、矢量数据结构
(二)矢量数据获取方式
通过外业测量获得,利用测量仪器(全站仪、GPS、常规测量等) 记录测量结果,然后转到地理数据库中 跟踪数字化,用跟踪数字化的方式把地图变成离散的矢量数据 间接获取 栅格数据转换 空间分析(叠置、缓冲等操作产生的新的矢量数据)
12
第2 节
特征( 2. 地理实体特征(空间特征、属性特征、时间特征) 地理实体特征 空间特征、属性特征、时间特征) 3. 地理实体的类型(点、线、面、体) 地理实体的类型 类型( 4. 地理目标的类型(0、1、2、3维) 地理目标的类型 、 、 、 维 的类型(
第二章 GIS的数据结构—2栅格结构

优 矢 量 数 据 结 构 栅 格 数 据 结 构
点
缺
点
1.便于面向现象的数据表示 1.便于面向现象的数据表示 2.数据结构紧凑 数据结构紧凑、 2.数据结构紧凑、冗余度低 3.有利于网络分析 3.有利于网络分析 4.图形显示质量好 图形显示质量好、 4.图形显示质量好、精度高 1.数据结构简单 1.数据结构简单 2.空间分析和地理现象的模 2.空间分析和地理现象的模 拟均比较容易 3.有利于与遥感数据的匹配 3.有利于与遥感数据的匹配 应用和分析 4.输出方法快速 输出方法快速, 4.输出方法快速,成本比较 低廉
Morton顺序和 顺序和Morton坐标 顺序和 坐标
Morton顺序: 顺序: 顺序
指栅格结构中的一种 扫描顺序, 扫描顺序,它将图像 中的像元按照“ 形 中的像元按照“Z”形 的 轨迹连接起来。 轨迹连接起来。
图2-6
Morton 扫 描 顺 序
Morton坐标:利用Morton顺序对影像中的像元建立索 Morton坐标:利用Morton顺序对影像中的像元建立索 坐标 Morton 引,将原来由行列坐标对表示的空间位置简化为一个简 单数值。 单数值。
0 4 4 0 0 0 4 4 4 0 4 4 4 4 8 0 0 7 4 4 8 8 8 8 0 8 8 8 7 8 8 8 8 7 4 8 7 7 7
四 叉 树 分 割
7
图 2- 8
编 码:
图2- 9
四叉树编码
根结点:最上面的结点, 根结点:最上面的结点,对应整个图形 叶结点: 叶结点:不能再分的结点 n n 对栅格矩阵的要求: 对栅格矩阵的要求: 2 ×2 n为象限分割次数,n+1为四叉树的最大高度或最大层树 为象限分割次数,n+1为四叉树的最大高度或最大层树
GIS课件 2空间数据的可视化表达

20112011-3-23
彭水县CBRE 彭水县CBRE band5
25
20112011-3-23
彭水县CBRE 彭水县CBRE band4
26
20112011-3-23
彭水县CBRE 彭水县CBRE band2
27
20112011-3-23
彭水县CBRE 彭水县CBRE band432
– 分级级数 – 分级方法
同矢量
将栅格数据对应的属性值进行分类,例如 高程、坡度、污染物浓度或人口密度等。
20112011-3-23
21
拉伸色彩(Stretched) 拉伸色彩(Stretched)
– 许多栅格反映的是诸如气温、降雨、光谱值、太阳照射角、 等连续型数据,则使用拉伸方式显示。 – 通常将栅格的属性值按照一定的方法拉伸到0-255,然后 通常将栅格的属性值按照一定的方法拉伸到0 255,然后 用灰度显示。通常使用的有线形拉伸方法、阶段线形拉伸 方法、非线形拉伸方法等。 – 将灰度转换为其他颜色。
矢量线图层
– 按照栅格尺寸的间距采样,通过提取栅格表面高 程从而获得高程(Z 程从而获得高程(Z值)。 – ArcGIS/ArcToolbox/3D Analyst Tools/Functional Surface/Interpolate Shape – ArcSence中显示 ArcSence中显示
20112011-3-23
39
6.3.1版面设计
地图模板操作 图面尺寸设置 图框与底色设置
20112011-3-23
40
6.3.2制图数据操作
制图数据
– 设置数据组属性 – 旋转数据组 – 图层上下顺序及透明度设置
第二章GIS的数据获取与处理

• 地图坐标系统的建立
• 由投影几何特征建立平面直角坐标系; • 自行规定坐标系(原点/横、纵轴).
• 大中比例尺地形图坐标系
• 1:50万为高斯-克吕格投影; • 中央经线和赤道投影后互为垂直的直线,
作为直角坐标轴; • 两种坐标网格:经纬网和公里网
地图投影的基本原理
• 一、地图投影的基本分类 • 1、根据投影面及其与球面相关位置的分类 • 2、根据投影变形性质的分类 • 3、根据投影探求的方法的分类
(3)数字化仪的其他输入功能 数字化仪主要以矢量数据形式输入各类实体的图形数据。除矢量数
据外数字化仪与适当程序配合允许操作员在数字化仪选择的位置输入文 本和特殊符号。
(4)矢量到栅格数据的转换 用适当的程序就可以实现矢量数据转换成任何一种分辨率的栅格数
据形式。当然,矢量到栅格的转换会不可避免地引起信息损失。
返回
1.数字化的方法与步骤
• 确定数字化路线; • 地图预处理; • 设置好数字化设备.
返回
2.手扶跟踪数字化
1)数字化过程: 2)数字化方式:流方式;点方式; 3)数字化仪的其它输入功能:定位文本;栅
格数据; 4)矢量到栅格数据的转换 5)数字化的精度:仪器分辨能力;数字化方
式;经验
返回
2.手扶跟踪数字化-数字化过程:
例尺,确定数字化范围,即用鼠标将左下角和右上角数字化,这两个点 确定的长方形范围内的所有后继数字化都不必键入任何坐标值且能自动 调整比例尺。
(2)数字化方式 数字化有两种基本方式:流方式和点方式。
流方式:等时间间隔或等距离间隔自动记录坐标。 缺点:如果操作员未按希望的移动速率工作就会记录过多的坐标, 后继处理必须删除多余坐标。等距离记录点则不能正确的数字化尖锐的 弯曲顶点,常常切割这类弯曲部分,误差较大。 点方式:操作员能选择最有利于表现曲线特征也使面积误差最小的 那些点位进行数字化。 缺点:每一个记录坐标的点位上,操作员都必须按键来告诉计算机 “记录该点坐标”。
GIS第二章总结

GIS第二章总结第一节地理空间及其表达1.地理空间定义不同学科对“空间”(Space)概念的解释:物理学,空间是指宇宙在三个相互垂直方向上所具有的广延性;天文学,空间是指时/空连续体的一部分;地理学,地理空间(Geographic space)是指物质、能量、信息的存在形式在空间形态、结构过程、功能关系上的分布、格局及其在时间上的延续。
地理信息系统中的“地理空间”,一般包括地理空间定位框架及其所关联的空间对象。
2.地理空间定位框架即大地测量控制,由平面控制网和高程控制网组成GIS的任何空间数据都必须纳入一个统一的空间参照系中,以实现不同来源数据的融合、连接与统一;2.1定位坐标系:平面控制网直接建立在球体上的地理坐标,用经度和纬度表达地理对象位置投影:建立在平面上的直角坐标系统,用(x,y)表达地理对象位置不同地理空间模型之间的关系固体地球表面、大地水准面和椭球体模型之间的关系2.2定位坐标系:高程控制网3.地图投影定义:将地球椭球面上的点映射到平面上的方法,称为地图投影(1)投影—为什么要进行投影将地球椭球面上的点映射到平面上的方法,称为地图投影地理坐标为球面坐标,不方便进行距离、方位、面积等参数的量算地球椭球体为不可展曲面地图为平面,符合视觉心理,并易于进行距离、方位、面积等量算和各种空间分析(2)投影实质建立地球椭球面上经纬线网和平面上相应经纬线网的数学基础,也就是建立地球椭球面上的点的地理坐标(λ,φ)与平面上对应点的平面坐标(x,y)之间的函数关系:当给定不同的具体条件时,将得到不同类型的投影方式(3)投影变形将不可展的地球椭球面展开成平面,并且不能有断裂,则图形必将在某些地方被拉伸,某些地方被压缩,故投影变形是不可避免的。
长度变形、面积变形、角度变形(4)投影方法(5)投影分类(6)投影影响因素制图区域的地理位置、形状和范围制图比例尺地图内容出版方式(7)GIS中的地图投影GIS以地图方式显示地理信息。
地理信息系统第二章

链码(chain Encoding)
直接栅格编码
游程长编码(Run_length Encoding)
块 码
四叉树编码(quarter_tree Encoding)
栅格结构编码方法
1、直接栅格编码
直接编码就是将栅格数据看作一个数据矩阵,逐行(或逐列)逐个记录代码,可以每行从左到右逐像元记录,也可奇数行从左到右而偶数行由右向左记录,为了特定的目的还可采用其他特殊的顺序。
比率量是间隔量的精确化。它提供的定量值是具有真零值而且测量单位的间隔是相等的数据
地理数据的基本特征
地理数据的来源
地理空间数据类型
第二节 地理空间数据类型
表示实体的空间位置或现在所处的地理位置。空间特征又称定位特征或几何特征,一般用坐标数据表示。
空间特征
表示实体的特征。如名称、分类、质量特征和数量特征等。
0 0 0 3 3 3 3 3
0 0 0 0 3 3 3 3
0,2,2,5,5,5,5,5;2,2,2,2,2,5,5,5;2,2,2,2,3,3,5,5;0,0,2,3,3,3,5,5;0,0,3,3,3,3,5,3;0,0,0,3,3,3,3,3;0,0,0,0,3,3,3,3;0,0,0,0,0,3,3,3。
P1 e1 t1
P2 e2 e5 t2
2 2 2 2 2 5 5 5
0 0 0 0 0 3 3 3
2 2 2 2 3 3 5 5
0 0 2 3 3 3 5 5
0 0 3 3 3 3 5 3
0 0 0 3 3 3 3 3
0 2 2 5 5 5 5 5
2 2 2 2 2 5 5 5
0 0 0 0 0 3 3 3
2 2 2 2 3 3 5 5
地理信息系统(GIS)-空间数据处理与转换

由栅格向矢量的转换
线状栅格数据矢量化
① 二值化
② 二值图像的预处理
③ 细化
1)剥皮法 2)骨架法
④ 跟踪
⑤ 拓扑化
面状栅格数据矢量化
双边界直接搜索算法 (Double Boundary Direct Finding - DBDF)
基本思路:通过边界 提取将边界弧段的左 右多边形信息保存在 边界点或结点上。
面状栅格数据矢量化
• 边界线搜索与拓扑信息生成
边界搜索由一个结点开始,选定与之相邻的任意一个边界 点或结点进行搜索。首先记录边界点两个多边形编号作为 被搜索边界的左右多边形,搜索的方向由当前点的进入方 向和下一步走向来确定:
aa
如图,若该边界点由下方搜索到的,则进
入点为下方,搜索方向则只能为右方,其
矢量数据转栅格数据 栅格数据转矢量数据
由矢量向栅格的转换
• 点的栅格化
设A为矢量图层中任一点,则该点在矢量和栅格数据中 分别表示为(x,y)和(I,J)
I
1
Y0 Y DY
J
1
X X0 DX
J
0 '( X0,Y0 )
y I
x
A
DX,DY分别表示栅格单元的宽和高
当栅格单元为正方形时,DX=DY
若没有,则本条线的追踪结束, 转(1)进行下条线的追踪。
③ 把搜索点移到新取的点上,转 (2)
拓扑化
• 为了存储拓扑信息,需找出线的端点和结点,以及 孤立点
⑴ 孤立点:8邻城中没有为1的象元 ⑵ 端点:8邻城中只有一个为1的象元 ⑶ 结点:8邻城中有三个或三个以上为1的象元
• 在追踪时加上以上信息,即可建立矢量数据的空间 拓扑关系。
1 10 00 1 0
第二章GIS空间分析的数据模型

第二章GIS空间分析的数据模型GIS(地理信息系统)空间分析的数据模型是指在GIS中用于描述和组织地理空间数据的结构和规则。
它主要包括向量数据模型和栅格数据模型两种形式。
以下将详细介绍这两种数据模型。
1.向量数据模型:向量数据模型是一种将地理现象表示为点、线、面等几何要素的数据模型。
它基于几何对象的坐标表示来描述地理空间位置和形状。
向量数据模型的核心要素包括点、线、面。
-点:表示地理要素的离散点,可以是一个地址、一座建筑物、一个村庄等。
-线:表示由多个点连接而成的可视化路径,可以是道路、河流、铁路等。
-面:由若干个线构成的闭合区域,通常表示土地利用类型、行政区域等。
向量数据模型具有描述空间位置精确、几何操作方便等优势,适合表示细节较为复杂的地理现象。
同时,向量数据模型也具备多种关联属性的能力,可以与属性数据进行链接,实现空间与属性信息的关联分析。
2.栅格数据模型:栅格数据模型是一种将地理现象表示为规则的网格单元的数据模型。
它将地理空间划分为规则的网格单元,将每个单元的值表示为一个矩阵中的元素。
栅格数据模型的主要特点是离散、均等和连续。
-离散:地理现象被离散的网格单元坐标所描述,且每个单元代表的是一个相同大小的空间区域。
-均等:每个单元的尺寸相等,表示的面积是均等的。
-连续:栅格中的每个单元都有一个与之对应的属性值,通过单元的连接和相邻单元的信息可以推断出地理现象的空间连续性。
栅格数据模型主要用于描述表面高程、者大气温度等连续变量,适合进行空间分布模拟、插值分析等。
总结来说,向量数据模型适用于描述细粒度且结构复杂的地理现象,同时具备几何对象的精确性和关联属性的优势。
而栅格数据模型则适用于描述连续变量的空间分布,可以进行均等离散和连续性推断。
在GIS空间分析中,根据不同的需求和数据特点,可以选择合适的数据模型来进行分析和建模。
2GIS数据结构

6. 八叉树(三维空间信息的数据结构)
许多问题要求GIS能处理三维的空间信息。 例如,研究矿藏资源地下分布情况、研究不 同深度土壤肥力情况等。
在二维数据结构中,将第三维坐标,如高 程,作为属性值来处理。由于它只能对地形 表面进行模拟,无法对模型进行三维操作, 因此常称它为2.5维空间信息。
三) TIN结构
1、不规则三角网(TIN)——表达地形表面 Triangulated Irregular Network
4 3
C
B 5
D
6
AE
2
1
2、TIN的主要特征
1)TIN由一系列三角形组成 2)三角形顶点都是一些特征点 3)每个三角形的坡度、坡向均一 4)三角形大小随地形变化而变 5)尽可能是等边三角形 6)三角形外接圆内没有其它点 7)与Voronoi多边形(泰森多边形)对偶 8)以拓扑方式存储
二)栅格数据的编码方法
1.直接编码--无压缩编码 将栅格数据看作是一个数据矩阵,逐行或 逐列逐个记录代码
A,A,B,B,B A,C,C,C,A D,C,C,A,A D,D,C,A,A D,D,A,A,A
2.链式编码(边界链码):它是从某一起
点开始用沿八个基本方向前进的单位矢
量链来表示线状地物或多边形的边界。
N/6 WN / 5
EN /7
W/4
E/0
3,1,7,0,1,2,3,4,5,6
WS / 3
ES / 1
S/2
4,1,6,7,0,1,2,3,4,5
3.游程长度编码
• 所谓游程是指按行的顺序连续且属性值 相同的若干栅格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GIS基本功能的实现过程
文件图表
数据获取
原始数据
数据编辑 投影变换
数据的处理与应用 是GIS核心
结构化数据
空间查询 空间分析
数据输出
交互展示
存储检索
制图、表格
空间 数据库
本章内容
地理空间信息描述法 空间数据的基本特征
§1.地理空间信息描述法
地理空间 常规的地理空间信息描述法
◦ ◦ ◦ ◦
§3.GIS中的地理数学基础
地理基础是地理信息数据表示格式与规 范的重要组成部分。
◦ 统一的地图投影系统; ◦ 统一的地理网格坐标系 ◦ 统一的地理编码系统。
它为各种地理信息的输入和输出以及匹 配处理提供了一个统一的定位框架,从 而使各种地理信息和数据能够具有共同 的地理基础。
地图投影概述
A
的计算,为此,最好把地面上的点表示在平面上,采用平面坐 标系(笛卡儿平面直角坐标)。 由于地球表面是不可展开的曲面,也就是说曲面上的各点不能 直接表示在平面上,因此必须运用地图投影的方法,建立地球 S 表面和平面上点的函数关系,使地球表面上任一个由地理坐标 (x,y)确定的点,在平面上必有一个与它相对应的点
3 地图投影变形
由于要将不可展的地球椭球面展开成平面, 且不能有断裂,那么图形必将在某些地方被 拉伸,某些地方被压缩,因而投影变形是不 可避免的。
面积变形 角度变形 长度变形
4 地图投影分类
地图投影分类 基于投影面与球面相关位置的分类 基于投影变形的分类 基于投影方程的分类
基于投影方法的分类
4 地图投影分类
地图投影是保证地图 精确度的重要的数学 基础之一。
2 什么是地图投影?
可假设地球按比例尺缩小成一个透明的地球仪那样的球体 ,在其球心、球面或球外安放一个发光点,将地球仪上经 纬线(连同控制点及地形、地物)投影到球外的平面上, 即成为地图,如图所示:
局部投影
变形较大
投影面
2 什么是地图投影?
科学的投影方法是建立地球椭球面上的的经纬线网与平面 上相应的经纬线网相应的数学基础,其实质就是建立地球 椭球面上点的坐标(λ,φ)与平面上对应的坐标(x,y)的 函数关系。 x f , ; 投影函数表达式 y f , .
一幅遥感影像
遥感图像解译-地貌和地质信息
地理空间信息的数字化描述方法
对地理信息进行数字化描述,就是要使 计算机能够识别地理事物的形状,为此, 必须精确地指出空间模式如何处理、如 何显示等。在计算机内描述空间实体有 两种形式:显式描述和隐式描述。
一条河流的表示
◦ 显示表示,就是栅格中的一系列像元。 ◦ 隐式表示,是由一系列定义了始点和终点 的线及某种连接关系来描述,线的始点和 终点坐标定义为一条表示河流及其河心洲 形状的矢量
直接剥开,必然产生破 裂或褶皱,无法完整呈 现原本的地球实际形态
地图投影保证信息连续 性、完整性和可测度性
2 什么是地图投影?
简单地讲:地图投影的实质是将地球椭球面上的经纬网按 照一定的数学法则转移到平面上。
具体来说:由于球面上一点的位置是用地理坐标(经度、纬 度)表示,而平面上是用直角坐标(纵坐标、横坐标)或者极坐标 (极径、极角)表示,所以要想将地球表面上的点转移到平面上, 必须采用一定的数学方法来确定地理坐标与平面直角坐标或极 坐标之间的关系。 这种在球面和平面之间建立点与点之间函数关系的数学方法, 称为地图投影。
河流的显式和隐式表示
计算机对地理实体的显式描述也称栅格 数据结构,计算机对地理实体的隐式描 述也称矢量数据结构。 栅格和矢量结构是计算机描述空间实体 的两种最基本的方式。
地图的矢量和栅格表示
遥感图像中信息的矢量和栅格表示
§2.空间数据的基本特征
空间数据的类型 空间特征数据(定位数据)、时间属性数 据(尺度数据)和专题属性数据(非定 位数据)。 对于绝大部分地形信息系统的应用来说, 时间和专题属性数据结合在一起共同作 为属性特征数据,而空间特征数据和属 性特征数据统称为空间数据(或地理数 据)。
1)帮助数据生产单位有效地管用和维护空间数据、 建立数据文档,并保证即使其主要工作人员离退时, 也不会失去对数据情况的了解; 2)提供有关数据生产单位数据存储、数据分类、数 据内容、数据质量、数据交换网络及数据销售等方 面的信息、便于用户查询检索地理空间数据; 3)帮助用户了解数据,以便就数据是否能满足其需 求作出正确的判断; 4)提供有关信息,以便户处理和转换有用的数据。 元数据是使数据充分发挥作用的重要条件之一,它 可以用于许多方面,包括数据文档建立、数据发布、 数据浏览、数据转换等。元数据对于促进数据的管 理、使用相共享均有重要的作用。
空间数据的基本特征
1、空间特征 空间特征又称定位特征或几何特征。数据的空间 性是指这些数据反映现象的空间位臵及空间位臵关系。 通常以坐标数据形式来表示空间位臵,以拓扑关系来 表示空间位臵关系。
2、属性特征
数据的属性是指描述实体的特征,如实体的名称、 类别、质量特征和数量特征等。属性数据本身属于非 空间数据,但它是空间数据中的重要数据成分。
遥感影像对地理空间的描述
遥感影像对空间信息的描述主要是通过 不同的颜色和灰度来表示的。这是因为 地物的结构;成分、分布等的不同,其 反射光谱特性和发射光诺特性也各不相 同,传感器记录的各种地物在某一波段 的电磁辐射反射能量也各不相同,反映 在遥感影像上,则表现为不同的颜色和 灰度信息。所以说,通过遥感影像可以 获取大量的空间地物的特征信息。
数学模型
水准面
铅垂线
地球表面 大地水准面
地球椭球体
地理空间坐标系
N
确定地面点的位臵,最直截了当的方法就是用地理坐标(纬度、 经度)来表示 地理坐标系
直接建立在球体上用经度和纬度表达地理对象位臵 本 以地理极(北极、南极)为极点。地理极是地轴 初 子 (地球椭球体的旋转轴)与椭球面的交点 E 含有地轴的平面,称为子午面 午 子午面与地球椭球体的交线,称为经线 线 垂直地轴的平面与椭球体的交线为纬线 地理坐标是一种球面坐标,难以进行距离、方向、面积等参数
地球表面的几何模型
地球自然表面
相对抽象的面-大地水准面 地球椭球体模型
以大地水准面为基准建立起来的地球椭球体模型
• •
扁率 α=(a-b)/b 平均椭球体——全球范围内贴合大地基准面 参考椭球体——局部范围内贴合大地基准面
1954 北京坐标系——克拉索夫斯基椭球体 1980 西安坐标系
二、地理数据的基本特征 3、时间特征 空间数据的时间性是指空间数据的空间特征和属性
特征随时间而变化。它们可以同时随时间变化,也可
以分别独立随时间变化。 实体随时间的变化具有周期性,其变化的周期有超
短周期的、短期的、中期的和长期的。
空间特征是地理信息区别于其他信息的最重要的 特征之一,地理信息的定位特征与时间过程相结合, 大大提高了地理信息的应用价值。
第2章:GIS中的空间数据
空间数据
表征地理空间内事物的数量、质量、分 布、内在联系和变化规律的图形、图像、 符号、文字和数据等统称为空间(地理) 数据。 空间数据是GIS的核心,也有人称它是 GIS的血液,因为GIS操作对象是地理数 据,因此,设计和使用GIS的第一步工 作就是根据系统的功能,获取所需要的 地理数据,并创建空间数据库 。
面状要素 面状分布的地理事物很多。其分布状况并不 一样,有连续分布的,如气温、土壤等,有 不连续分布的,如森林、油田、农作物等 对于不连续分布或连续分布的面状事物的分 布范围和质量特征,一般可以用面状符号表 示。 对于连续分布的面状事物的数量特征及变化 趋势,常常可以用一组线状符号——等值线 表示,如等温线、等降水量线、等深线、等 高线等,其中等高线是以后GIS建库中经常用 到的一种数据表示方式。
点状要素
线状要素 208 25 206 206 207
街道
航线
.
20 5
20 6
空间数据的元数据
Metadata可以译成元数据,是描述数据 的数据。在地理空间数据中,元数据说 明数据内容、质量、状况扣其他有关特 征的背景信息。
元数据的主要作用
地图投影分类
投影面及球面的 位置 •圆锥投影 •圆柱投影 •方位投影
投影变形性质 •等角投影 •等积投影 •任意投影
线状要素 对于地面上呈线状或带状的事物如交通 线、河流、境界线、构造线等,在地图 上均用线状符号来表示。当然,对于线 状和面状实体的区分,也和地图的比例 尺有很大的关系。如河流,在小比例尺 的地图上,被表示成线状地物,而在大 比例尺的地图上,则被表示成面状地物。 通常用线状符号的形状和颜色表示质量 的差别,用线状符号的尺寸变化(线宽 的变化)表示数量特征。
在地图学上,把地理空间的实体分为点、 线、面三种要素,分别用点状、线状、 面状符号来表示。具体分述如下: 点状要素。指那些占面积较小,不能按 比例尺表示,又要定位的事物。因此, 面状事物和点状事物的界限并不严格。 如居民点,在大、中比例尺地图上被表 示为面状地物,在小比例尺地图上则被 表示为点状地物。 对点状要素的质量和数量特征,用点状 符号表示。
摊开在平面上的地球
1 为什么要进行地图投影?
地理坐标为球面坐标,不方便进 行距离、方位、面积等参数的量 算与分析。
地球椭球体为不可展曲面
地 图 投 影
地图为平面,符合视觉心理,并易于 进行距离、方位、面积等量算和各种 空间分析
地球椭球体是不 可展曲面,而地 图是一个平面, 当球面展开为平 面时必然产生破 裂或褶皱。“地 图投影”就是要 解决球面不可展 的矛盾。