二项式定理中展开式系数的六种类型

合集下载

二项式定理中常考的几种题型

二项式定理中常考的几种题型

二项式定理中常考的几种题型一、求二项式展开式中指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式,然后依据条件先确定r的值,进而求出指定的项。

1. 求常数项例1 (2006年山东卷)已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是()A. -45iB. 45iC. -45D. 45解:第三项、第五项的系数分别为,由题意有整理得解得n=10设常数项为则有得r=8故常数项为,选D。

2. 求有理项例2 已知的展开式中,前三项系数成等差数列,求展开式中所有的有理项。

解:展开式的前三项的系数分别为则由题意可得即解得n=8(n=1舍去)于是若为有理项,则,且,所以r=0,4,8。

故展开式中所有的有理项为3. 求幂指数为整数的项例3 (2006年湖北卷)在的展开式中,x的幂指数是整数的项共有()A. 3项B. 4项C. 5项D. 6项解:所以r=0,6,12,18,24时,x的幂指数为整数,故选C。

4. 求系数最大的项例4 已知的展开式中,只有第五项的二项式系数最大,求该展开式中系数最大的项。

解:由只有第五项的二项式系数最大,可知展开式共有9项,故n=8又设第r+1项的系数最大,则有解得又,所以r=2或r=3所以二项式的展开式中系数最大的项是二、求三项式或多项的和或积的展开式中指定项有些三项式展开问题可以先通过变形转化为二项式展开问题加以解决,对于多项的和或积的二项式问题,可通过“搭配”解决,但要注意不重不漏。

例5 (2005年湖北卷)的展开式中整理后的常数项为________。

解:对于二项式的展开式中要得到常数项需10-r=5,则r=5所以常数项为例6 (2005年浙江卷)在展开式中,含的项的系数是()A. 74B. 121C. -74D. -121解:的展开式中,含的项为,故选D。

三、求展开式中某一项的二项式系数或系数此类问题仍然是利用二项式的通项公式来加以求解,但在解题中要注意某一项的二项式系数与系数的区别。

二项式定理 练习题 求展开式系数的常见类型

二项式定理 练习题 求展开式系数的常见类型

二项式定理1.在()103x -的展开式中,6x 的系数为 .2.10()x -的展开式中64x y 项的系数是 .3.92)21(xx -展开式中9x 的系数是 . 4.8)1(xx -展开式中5x 的系数为 。

5.843)1()2(xx x x ++-的展开式中整理后的常数项等于 . 6.在65)1()1(x x ---的展开式中,含3x 的项的系数是 .7.在x (1+x )6的展开式中,含x 3项的系数为 .8.()()811x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。

10.54)1()1(-+x x 的展开式中,4x 的系数为 .11.在62)1(x x -+的展开式中5x 的系数为 .12.5)212(++xx 的展开式中整理后的常数项为 .13.求(x 2+3x -4)4的展开式中x 的系数.14.(x 2+x +y )5的展开式中,x 5y 2的系数为 .15.若 32()nx x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 .16.已知(124x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________.18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________.19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________.20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.。

(完整版)二项式展开式系数的性质

(完整版)二项式展开式系数的性质

(
2)n cos n
4
Cn1 Cn3 Cn5 Cn7 L
(
2)n sin n
4
证明:
2
cos
4
i sin
4
n
(
2)n cos n i(
4
2)n sin n
4
①又Βιβλιοθήκη 2cos4
i
sin
4
n
2
2 i 2
2 2
n
(1
i)n
1 Cn1i Cn2 Cn3i Cn4 Cn5i Cn6 Cn7i L
(Cn0 Cn1x Cn2 x2 L Cnn xn )(Cn0xn Cn1xn1 L Cnn1x Cnn )
令a 1,b 1,则0 Cn0 C1n Cn2 Cn3 (1)n Cnn
Cn0 Cn2 Cn2r C1n Cn3 Cn2r1 2n1
性质4:
4. (x y)n 展开式共有 n 1 项。二项式系数:小 大 小
当当nn为为偶奇数数时时,,中中间间项两为项第系数n2 最1大项,,它二们项是式第系n数C1 n项n2 最和大; 2
证明:Q kCnk nCnk11 ,
n
n
n
左边
kCnk
nCnk11 n
C k 1 n1
k 1
k 1
k 1
n 1
n
Ck n 1
n 2n1 右边
k 0
(2)
Cn0
1 2
Cn1
1 3
Cn2
L
1 n 1
Cnn
1 (2n1 1) n 1
证明:Q (k 1)Cnk11 (n 1)Cnk ,
的展开式中,按
1 2

超详细的.二项式展开式性质

超详细的.二项式展开式性质
r 9
1 9 3 变式:求( x 2 ) 展开式中含 x 的项 x
通项公式: Tr+1= Cnr an-rbr (r=0, 1, 2, …, n)
9 r r x 9r 3 r r 1 9r r Tr 1 C ( ) ( ) C9 ( ) 3 x 2 3 3 x 1 由9-r- r 0得r 6. 2 6 1 96 6 T7 C9 ( ) 3 2268 3
1 1
1
1 1 3
2
3
1
1
试一试:你能根据杨 辉三角形写出(a+b)5 的展开式吗?
4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1
杨辉三角形
(a+b) 5= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
(1 x ) C C x C x C x ;
n 0 n 1 n r n r n n n 0 1 r n (1 1)n Cn Cn Cn Cn ; 0 1 r n (1 x )n Cn Cn x (1)r C n x r (1)n C n x n ;
n 2 n
C
相等,且同时取得最大值。 n (3)各二项式系数的和 C0 C1 C2 Cn 2n n n n 且奇数项的二项式系数和等于偶数项的二项式系数和2n-1
C
n 1 2 n

C
n 1 2 n
特值思想、不可忽视
二项式定理对任意的数a、b都成
立,当然对特殊的a、b也成立!
2.已知( x
Байду номын сангаас

二项式定理中常考的几种题型

二项式定理中常考的几种题型

二项式定理中常考的几种题型一、求二项式展开式中指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式,然后依据条件先确定r的值,进而求出指定的项。

1. 求常数项例1 (2006年山东卷)已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是()A. -45iB. 45iC. -45D. 45解:第三项、第五项的系数分别为,由题意有整理得解得n=10设常数项为则有得r=8故常数项为,选D。

2. 求有理项例2 已知的展开式中,前三项系数成等差数列,求展开式中所有的有理项。

解:展开式的前三项的系数分别为则由题意可得即解得n=8(n=1舍去)于是若为有理项,则,且,所以r=0,4,8。

故展开式中所有的有理项为3. 求幂指数为整数的项例3 (2006年湖北卷)在的展开式中,x的幂指数是整数的项共有()A. 3项B. 4项C. 5项D. 6项解:所以r=0,6,12,18,24时,x的幂指数为整数,故选C。

4. 求系数最大的项例4 已知的展开式中,只有第五项的二项式系数最大,求该展开式中系数最大的项。

解:由只有第五项的二项式系数最大,可知展开式共有9项,故n=8又设第r+1项的系数最大,则有解得又,所以r=2或r=3所以二项式的展开式中系数最大的项是二、求三项式或多项的和或积的展开式中指定项有些三项式展开问题可以先通过变形转化为二项式展开问题加以解决,对于多项的和或积的二项式问题,可通过“搭配”解决,但要注意不重不漏。

例5 (2005年湖北卷)的展开式中整理后的常数项为________。

解:对于二项式的展开式中要得到常数项需10-r=5,则r=5所以常数项为例6 (2005年浙江卷)在展开式中,含的项的系数是()A. 74B. 121C. -74D. -121解:的展开式中,含的项为,故选D。

三、求展开式中某一项的二项式系数或系数此类问题仍然是利用二项式的通项公式来加以求解,但在解题中要注意某一项的二项式系数与系数的区别。

二项式定理应用的六种题型

二项式定理应用的六种题型

二项式定理的应用二项式定理)()(110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n ⑴这个公式叫做二项式定理.⑵展开式:等号右边的多项式叫做nb a )(+的二项展开式,展开式中一共有1+n 项.⑶二项式系数:各项的系数}),,2,1,0{(n k C kn ∈叫做二项式系数.展开式的通项n b a )(+展开式的第1+k 项叫做二项展开式的通项,记作k k n k n k b a C T -+=1.题型1求某项系数例1.二项式8312(xx-中展开式的常数项是)(答案:常数项为7)1()21(68627=-⋅=C T .例2.在62)1(xx +的展开式中,3x 的系数是)(答案:20.例3.若二项式7)1(xx -的展开式中的第四项等于7,则x 的值是)(答案:51-=x .题型2多个多项式例4.72)1()1()1(x x x ++++++ 的展开式中,3x 的系数是)(答案:3x 的系数为7048373433==+++C C C C .例5.设432231404321))()()((A x A x A x A x A a x a x a x a x ++++=++++则=2A ;=3A ;答案:4343243212)()(a a a a a a a a a A +++++=,4324314213212a a a a a a a a a a a a A +++=.例6.9)2(z y x -+的展开式中324z y x 的系数为)(.答案:324z y x 的系数为5040-.例7.求当52)23(++x x 的展开式中x 的一次项的系数为)(.分析:解法①:5252]3)2[()23(x x x x ++=++,r rrr x x C T )3()2(5251-++=,当且仅当1=r 时,1+r T 的展开式中才有x 的一次项,此时x x C T T r 3)2(421521+==+,所以x 的一次项为x C C 3244415⋅,它的系数为2403244415=⋅C C .解法②:)22)(()2()1()23(555415505554155055552C x C x C C x C x C x x x x ++++++=++=++ 故展开式中含有x 的项为x x C xC C 2402244555545=+,故展开式中x 的系数为240.例8.求式子3)21(-+xx 的常数项为)(答案:631()21(xx x x -=-+,设第1+r 项为常数项,则rr r r rr r r xC xxC T 266661)1(1()1(--+-=-=,得3026=⇒=-r r ,所以20)1(36313-=-=+C T .例9.52)1)(1(x x x -++的展开式中,4x 的系数是)(分析:已知表达式展开式中每一项由两部分相乘而成,要想凑得4x ,不妨从其中一个式子切入进行分类讨论(以)1(2x x ++为例)1:)1(2x x ++出1,则5)1(x -出4x ,该项为:44455)(11xx C =-⋅⋅⋅2:)1(2x x ++出x ,则5)1(x -出3x ,该项为:4323510)(1xx C x -=-⋅⋅⋅3:)1(2x x ++出2x ,则5)1(x -出2x ,该项为:42325210)(1x x C x =-⋅⋅⋅综上所述:合并同类项后4x 的系数是5.例10.102)1(+-x x 的展开式中3x 的系数是)(分析:本题不利于直接展开所有项,所以考虑将其转化为10个因式如何分配所出项的问题:若要凑成3x 有以下几种可能:⑴:1个2x ,1个)(x -,8个1,所得项为:3888192110901)(xC x C x C -=⋅-⋅⑵:3个)(x -,7个1,所得项为:377733101201)(x C x C -=⋅-,所以3x 的系数是210-.例11.求43)1()21(x x -+的展开式中2x 的系数是)(分析:因为3)21(x +的展开式的通项是3,2,1,0,2)2(33=⋅⋅=⋅m x C x C mmmmm,4)1(x -的展开式的通项是4,3,2,1,0,)1()(44=⋅-⋅=-⋅n x C x C n n nn n ,令2=+n m ,则有0=m 且2=n ,1=m 且1=n ,2=m 且0=n ,因此43)1()21(x x -+的展开式中2x 的系数等于6)1(2)1(2)1(20422311411322403-=-⋅⋅⋅+-⋅⋅⋅+-⋅⋅⋅C C C C C C .例12.求10463)11()1(xx ++展开式中的常数项是)(答案:4246例13.已知nxx x x 1)(1(32+++的展开式中没有常数项,*∈N n 且82≤≤n ,则=n 分析:n xx 1(3+的展开式的通项为rn r n r r n r n x C x x C 43---⋅=⋅⋅,通项分别与前面三项相乘可得24144,,+-+--⋅⋅⋅r n r n r n r n rn rn x C x C xC ,因为展开式中不含常数项,82≤≤n 所以r n 4≠且14-≠r n 且24-≠r n ,即8,4≠n 且7,3≠n 且6,2≠n ,所以5=n 题型3系数特征例14.在204)3(y x +的展开式中,系数为有理数的项有项.答案:6项例15.求二项式93)(x x -的展开式中的有理项.分析:62793192191)1()()(x r rrrrr xC x x C T --+-=-=,令)90(,627≤≤∈-r Z r得3=r 或9=r 当3=r 时,44393484)1(,4627x x C T r -=-==-,当9=r 时,3399910)1(,3627x x C T r -=-==-.例16.nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项,系数最大的项.分析:二项展开式的通项rrrn r x C T 21=+,由第6项与第7项的系数相等得,8226655=⇒=n C C n n ,所以展开式中二项式系数最大得项为44448511202x x C T ==,设第1+r 项系数最大,则⎩⎨⎧⋅≥⋅⋅≥⋅++--118811882222r r r r r r r r C C C C ,解之得65≤≤r 即5=r 或6,所以系数最大得项为55558617922x x C T ==或66668717922x x C T ==.例17.在nb a 2)(+的展开式中,求二项式系数最大的项.分析:二项式的幂指数是偶数n 2,则中间一项的二项式系数最大,即1122++=n nT T ,也就是第1+n 项.例18.在nxx)12(3-的展开式中,只有第5项的二项式最大,则展开式中的常数项是.分析:只有第5项的二项式最大,则512=+n,即8=n ,所以展开式中的常数项为第7项等于721(268=C .题型4求系数和常用赋值举例:⑴设nn n r r n r n n n nn nb C b a C b aC a C b a +++++=+-- 11)(,①令1==b a ,可得:nnn n n nC C C C ++++= 212②令1,1-==b a ,可得:nn n n n n n C C C C C )1(0321-+-+-= ,即13120-+++=+++n n n n n n n n C C C C C C (假设n 为偶数),再结合①可得:1131202--=+++=+++n n n n n n n n n C C C C C C ⑵设nn n xa x a x a a x x f ++++=+= 2210)12()(①令1=x ,则有:)1()112(210f a a a a nn =+⨯=++++ ,即展开式系数和②令0=x ,则有:)0()102(0f a n=+⨯=,即常数项③令1-=x ,设n 为偶数,则有:)1()1)1(2(3210-=+-⨯=++-+-f a a a a a nn ,所以)1(((13120-=+++-+++-f a a a a a a n n )),即偶次项系数和与奇次项系数和的差,由①③即可求出)n a a a +++ 20(和)131(-+++n a a a 的值例19.已知0199101052)123(a x a x a x a x x ++++=+- ,求29753121086420)()(a a a a a a a a a a a ++++-+++++的值.分析:令1=x ,得510102=+++a a a ,令1-=x ,得59753110864206)()(=++++-+++++a a a a a a a a a a a ,所以555297531210864201262)()(=⨯=++++-+++++a a a a a a a a a a a 求展开式系数和,充分利用赋值法.赋值时,一般地,对于多项式nn nx a x a x a a px x g ++++=+= 2210)1()(有以下结论:⑴)(x g 的二项式系数和为n2;⑵)(x g 的奇数项的二项式系数和=偶数项的二项式系数和12-=n ;⑶)(x g 的各项系数和为)1(g ;⑷)(x g 的奇数项的系数和为)]1()1([21-+g g ;⑸)(x g 的偶数项的系数和为)]1()1([21--g g .例20.已知1111221092)1()1()1()2)(1(-++-+-+=-+x a x a x a a x x ,则1121a a a +++ 的值为.分析:本题虽然等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2=x ,得到011210=++++a a a a ,只需要再求出0a 即可.令1=x 可得20-=a ,所以21121=+++a a a .例21.设443322104)22(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为.分析:所求))(()()(43210432102312420a a a a a a a a a a a a a a a +-+-++++=+-++,在恒等式中令1=x 可得443210)22(+=++++a a a a a ,令1-=x 可得44321022(-=+-+-a a a a a ,所以16)22(22()()(442312420=-+=+-++a a a a a 例22.若55443322105)32(x a x a x a x a x a a x +++++=-,则||||||||||||543210a a a a a a +++++等于.分析:虽然5)32(x -的展开式系数有正有负,但5)32(x -与5)32(x +对应系数的绝对值相同,且5)32(x +展开式的系数均为正数.所以只需计算5)32(x +的展开式系数和即可.1=x 可得系数和为55,所以55432105||||||||||||=+++++a a a a a a .例23.若)(2206220N n C C n n ∈=++,且n n n x a x a a x +++=- 10)2(,则n n a a a a )1(210-+-+- 等于.分析:由2206220++=n n C C 可得262+=+n n 或202)62(=+++n n ,解得4=n ,所求表达式只需令1-=x ,可得81)]1(2[)1(4210=--=-+-+-n na a a a .例24.已知nn nx a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-29121 ,则n 的值为.分析:在恒等式中令1=x 可得系数和12)12(222221210--=+++=++++-n nn a a a a ,与条件联系可考虑先求出0a ,n a ,令0=x ,可得n a =0,展开式中n a 为最高次项系数,所以1=n a ,所以12211210---=+++++-n a a a a n n ,所以n n n -=---+291221,即3221=+n ,解得4=n .例25.55443322105)32(x a x a x a x a x a a x +++++=-,则5432105432a a a a a a +++++的值是.分析:设55443322105)32()(x a x a x a x a x a a x x f +++++=-=所以45342321454322)32(5)(x a x a x a x a a x x f ++++=⋅-=',令1=x 可得54321543210a a a a a ++++=而在55443322105)32(x a x a x a x a x a a x +++++=-中,令0=x ,可得243350-=-=a ,所以2335432543210-=+++++a a a a a a .例26.已知10102210)(x a x a x a a x g ++++= ,9910)(x b x b b x h +++= ,若)()()1()21)(1(1019x h x g x x x +-=-+,则=9a .分析:由条件中恒等式的特点可得对应项的系数相等,在)()1(10x g x -中,与9a 相关的最高次项为19x ,故以此为突破口求9a ,等式左边19x 的系数为18181919)2()2(-+-C ,而右边19x 的系数为9910109)1(-⋅+C a a ,所以181819199910109)2()2()1(-+-=-⋅+C C a a ,只需再求出10a 即可,同样选取含10a 的最高次项,即20x ,左边20x 的系数为19)2(-,右边20x 的系数为10a ,所以1910)2(-=a ,从而解得18923⨯-=a .题型5逆用例27.=++⋅+⋅+-12321666n nn n n n C C C C .答案:)17(61-n例28.=++++-n n n n n n C C C C 1321393 .答案:314-n 题型6应用例29.证明:)(98322*+∈--N n n n 能被64整除分析:21111101211111011111211111011122888981)1(888898888898)18(989983-++++-+++++++-++++++++++=--++++++=--+++++=--+=--=--n n n n n n n n n n n n n n n n n n n n n n n n n C C C n n C C C n C C C C C n n n 由于各项均能被64整除所以)(98322*+∈--N n n n 能被64整除.例30.已知*∈N n ,求证:1522221-++++n 能被31整除.分析:132122121222155152-=-=--=++++-n n n n 113131311)131(111-+⨯++⨯+=-+=--n n n n n n C C )3131(311211---++⨯+⨯=n n n n n C C 显然括号内的数为正整数,故原式能被31整除.。

二项式定理中展开式系数的六种常见类型--学生版

二项式定理中展开式系数的六种常见类型--学生版

二项式定理中展开式系数的六种常见类型一 、)()(*∈+N n b a n 型例1.10()x 的展开式中64x y 项的系数是( )(A )840 (B )-840 (C )210 (D )-210例2.8)1(x x -展开式中5x 的系数为 。

评注:常用二项展开式的通项公式求二项展开式中某特定项的系数,由待定系数法确定r 的值。

二 、),()()(*∈+±+N m n d c b a m n 型例3.843)1()2(xx x x ++-的展开式中整理后的常数项等于 . 例4.在65)1()1(x x ---的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) 10- (D) 10三 、),()()(*∈++N m n d c b a m n 型 例5.72)2)(1(-+x x 的展开式中3x 项的系数是 。

例6.()()811x x -+的展开式中5x 的系数是( )(A )14- (B )14 (C )28- (D ) 28四 、)()(*∈++N n c b a n 型例7.5)212(++xx 的展开式中整理后的常数项为 .五 、1()()()(,,1)m m n a b a b a b m n N m n +*++++++∈≤< 型例8.在62)1()1()1(x x x ++++++ 的展开式中,2x 项的系数是 。

例9.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )(A) 74 (B) 121 (C) -74 (D) -121六 、求展开式中若干项系数的和或差 例10.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈, 则_______)()()()(20040302010=++++++++a a a a a a a a 。

(用数字作答)例11.423401234(2x a a x a x a x a x =++++,则2312420)()(a a a a a +-++的值为( )(A) 1 (B) -1 (C) 0 (D) 2。

二项式定理及其系数的性质

二项式定理及其系数的性质

03
这些性质在解决某些数学问题 时非常有用,如求和、求积等 。
03 系数性质分析
组合数性质回顾
组合数定义
$C_n^k = frac{n!}{k!(n-k)!}$,表示从 $n$个不同元素中选取$k$个元素的组合数。
VS
组合数性质
$C_n^k = C_n^{n-k}$(互补性), $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$(帕斯卡三角形), $C_n^0 + C_n^1 + ldots + C_n^n = 2^n$(二项式定理特例)。
根据二项式定理的通项公式,可以直接计算出展开式中 任意一项的系数。具体方法为:确定该项在展开式中的 位置(即序号$k$),然后代入通项公式计算即可。
若需要求多项式的某一项系数,可以先将多项式按照 二项式定理展开,然后找到对应位置的项并计算其系 数。
THANKS FOR WATCHING
感谢您的观看
常见问题一
根据二项式定理的通项公式,若某项 的系数为0,则该项不存在于展开式 中。因此,可以通过判断通项公式中 组合数或二项式系数的值是否为0来 确定某项是否存在。
VS
当$n<k$时,组合数$C_n^k=0$, 因此对应的二项式系数也为0。此时, 展开式中不存在该项。
常见问题二:如何求展开式中特定项系数?
在二项式定理的通项公式$T_{k+1}=C_n^k cdot a^{n-k} cdot b^k$中,混淆$n$、$k$、$a$、$b$的含义和取值范围。其 中,$n$表示二项式的次数,$k$表示项的序号(从0开始计数),$a$和$b$分别表示二项式中的两个实数。
错误地认为通项公式中的组合数$C_n^k$与二项式系数完全相同,实际上二者在数值上相等,但意义不同。组合数表示从 $n$个不同元素中取出$k$个元素的组合数,而二项式系数表示$(a+b)^n$展开后各项的系数。

二项式展开的公式

二项式展开的公式

二项式展开的公式二项式展开是代数学中的重要概念,指的是将一个二项式按照一定规律展开成多项式的过程。

二项式展开公式可以用于计算复杂的代数表达式,其应用广泛且具有重要意义。

二项式展开公式的形式为:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * a^0 * b^n其中,a和b为任意实数,n为非负整数,C(n,r)表示从n个元素中选取r个元素的组合数。

二项式展开公式的应用非常广泛,比如在概率论和组合数学中,它被用于计算事件发生的可能性;在统计学中,它被用于计算样本空间的大小;在计算机科学中,它被用于设计和分析算法的复杂度。

举个例子来说明二项式展开的具体计算过程。

假设我们要计算(2x + 3y)^3的展开式,根据二项式展开公式,展开式为:(2x + 3y)^3 = C(3,0) * (2x)^3 * (3y)^0 + C(3,1) * (2x)^2 * (3y)^1 + C(3,2) * (2x)^1 * (3y)^2 + C(3,3) * (2x)^0 * (3y)^3展开后化简得:8x^3 + 36x^2y + 54xy^2 + 27y^3可以看到,通过二项式展开公式,我们将一个三次二项式展开成了一个四项式。

除了计算展开式,二项式展开公式还可以用于证明数学定理。

例如,利用二项式展开公式可以证明二项式定理:(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n。

在实际应用中,二项式展开公式可以用于计算复杂的代数表达式。

例如,我们可以利用二项式展开公式将一个多项式乘以另一个多项式,从而得到它们的乘积。

二项式定理知识点和各种题型归纳带答案

二项式定理知识点和各种题型归纳带答案

二项式定理1•二项式定理:(a b)n=C0a n Ca n」b • ||「c n a n=b r•- C;;b n(n・ N ),2. 基本概念:①二项式展开式:右边的多项式叫做(a - b)n的二项展开式。

②二项式系数:展开式中各项的系数c n (r =0,1,2, , n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项c n a n-b r叫做二项式展开式的通项。

用丁i =C;a n」b r表示。

3. 注意关键点:①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a , b ,其顺序不能更改。

(a ■ b)n与(b ■ a)n是不同的。

③指数:a的指数从n逐项减到0,是降幕排列。

b的指数从0逐项减到n,是升幕排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是cnw’c:,…,C;,…,c n.项的系数是a与b的系数(包括二项式系数)。

4. 常用的结论:令a =1,b 二x, (1 - x)n=c0C:x C;x2十| • Qx r Fl C;x n(n N )令a =1,b = -x, (1 -x)n=C° -C:x C;x2-川C:x r ||( (-1)n C:x n(n N )5. 性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即c0 - c n , •••C n^Cn J②二项式系数和:令a=b=1,则二项式系数的和为c0 ■ c1 ■ Cn- C;Jll ■ c;-2n,变形式c n C2-Cn^H c; =2^1。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a =1,b = —1,贝y C0—c n +c2 —Cj+川+(_1)n c n =(1_1)n= 0 ,从而得到:C: +C: +C:…+- = cn +C;+IH+c:r41+ …二丄X2n= 2n_l2④奇数项的系数和与偶数项的系数和:n OnO 小Jn」2n _22[[. nOn 1 2』』L n(a x) C n a x C n a x C*a x . C*a x a。

二项式展开式系数的性质

二项式展开式系数的性质

(C ) C .
n 2 n n 2n
n 证明:从 2n 个不同元素中选取 n 个元素的取法数是 C2 n。
又我们也可将 2n 个元素平均分成甲、乙两组,那么,取法 也可按以下分类进行:
甲组 0个 1个 2个 n个
乙组 n个 n 1 个 n2个 0个
取法数
0 n Cn Cn 1 n 1 Cn Cn 2 n2 Cn Cn
令a 1, b 1, 则0 C C C C (1) C
0 n 1 n 2 n 3 n n
n n
0 2 2r 3 2 r 1 n 1 Cn Cn Cn C1 C C 2 n n n
性质4:
4. ( x y)n 展开式共有 n 1 项。二项式系数:小 大 小 n n 当 n 为偶数时,中间项为第 1 项,二项式系数 Cn2 最大; 2
2 n 4 n 6 n n
n n n n 证明: 2 cos i sin ( 2) cos i( 2) sin 4 4 4 4
2 2 n 又 2 cos i sin 2 i (1 i ) 4 4 2 2
n 0 Cn Cn
0 n 1 n1 2 n 2 由加法原理,Cn Cn Cn Cn Cn Cn
n 0 n Cn Cn C2 n,
0 2 1 2 2 2 即 (Cn ) (Cn ) (Cn )
n 2 n (Cn ) C2 n .
50 49 48 50 2
50
50
3 其中奇数项之和为实数,偶数项之和为纯虚数,故答案为 i。 2
4. 设 n 为偶数,求证: 1 1 1 1!(n 1)! 3!(n 3)! 5!(n 5)! 1 2n1 (n 1)!1! n!

高考数学复习-二项式定理中展开式系数的六种常见类型

高考数学复习-二项式定理中展开式系数的六种常见类型

高考数学二项式定理中展开式系数的六种常见类型一 、)()(*∈+N n b a n 型例1.10()x -的展开式中64x y 项的系数是( )(A )840 (B )-840 (C )210 (D )-210解析:在通项公式1r T +=1010()r r r C x -中令r =4,即得10()x 的展开式中64x y 项的系数为4410(C =840,故选A 。

例2.8)1(x x -展开式中5x 的系数为 。

解析:通项公式r rr r r rr x C x x C T 2388881)1()1(--+-=-= ,由题意得5238=-r ,则2=r ,故所求5x 的系数为28)1(282=-C 。

评注:常用二项展开式的通项公式求二项展开式中某特定项的系数,由待定系数法确定r 的值。

二 、),()()(*∈+±+N m n d c b a m n 型例3.843)1()2(xx x x ++-的展开式中整理后的常数项等于 . 解析;342()x x-的通项公式为341241442()()(2)r r r r r r r T C x C x x --+=-=-,令0412=-r ,则3=r ,这时得342()x x-的展开式中的常数项为3342C -=-32, 81()x x+的通项公式为8821881()k k k k k k T C x C x x --+==,令028=-k ,则4=k ,这时得81()x x +的展开式中的常数项为48C =70,故843)1()2(x x x x ++-的展开式中常数项等于387032=+-。

例4.在65)1()1(x x ---的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) 10- (D) 10解析:5)1(x -中3x 的系数35C -=10-, 6)1(x --中3x 的系数为336(1)C -⋅-=20,故65)1()1(x x ---的展开式中3x 的系数为10,故选D 。

二项式定理(通项公式)

二项式定理(通项公式)

二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。

例析二项式定理的六种应用

例析二项式定理的六种应用

本文对二项式定理常见的六种应用进行总结,希望对同学们的学习有所帮助.一、求展开式中指定项例1 (x-1x)8的展开式中,常数项为 &nbsp; .(用数字作答)解:Tr+1=Cr8x8-r(-1x)r=(-1)rCr8x8-2r,由题意知,8-2r=0,r=4,即展开式的第5项为常数项,T5=C48=70.评析:直接利用通项公式进行求解,令x的幂指数等于0即可.例2 (|x|2+1|x|+2)5的展开式中整理后的常数项为 &nbsp; &nbsp;.解:(|x|2+1|x|+2)5=(|x2|+|1x|)10Tr+1=Cr10(|x2|)10-r(|1x|)r=Cr10(12)10-r(|x|)10-2r由题意知,(|x|2+1|x|)=0,r=5,即展开式的第6项为常数项,T6=C510(12)5=6322.评析:多项展开式往往化归为二项展开式,再利用通项公式去求解.本题亦可把(|x|2+1|x|)看作一个整体,再利用二项式定理展开.例3 (x+3x)12的展开式中,含x的正整数幂的项数共有 &nbsp; &nbsp;.解:设展开式中第r+1项的幂为正整数,则Tr+1=Cr12(x)12-r(3x)r=Cr12x12-r2+r3=Cr12x6-r6.依题意,r是6的倍数,且0≤r≤12,所以r共有3个值.即(x+3x)12的展开式中,含x的正整数幂的项数共有3个.小结:在求展开式中某个指定项时,利用二项展开式的通项公式求解是常规办法.首先要知道指定项都有哪些特点,再根据题意具体求解.例如常数项就是x的指数为0,而有理项就是x的指数为整数.二、求展开式中的系数或系数和例4 (x-2y)10的展开式中x6y4项的系数是 &nbsp; &nbsp;.解:Tr+1=Cr10x10-r(-2y)r由题意知,10-r=6,r=4,即展开式中x6y4项的系数为C410(2)4=840.评析:注意区别某一项的系数和它的二项式系数.例5 在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是 &nbsp; &nbsp;.法一:由等比数列求和公式得:原式=(1-x)5[1-(1-x)4]1-(1-x)=(1-x)5-(1-x)9x.要求展开式中含x3的项的系数.即求(1-x)5中的x4的系数与(1-x)9中x4的系数的差.而(1-x)5中含x4的项为T5=C45?1?(-x)4=5x4,(1-x)9中含x4的项为T5=C49?15?(-x)4=126x4,所以在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是5-126=-121.法二:(1-x)n的二项展开式通项为Tr+1=Crn(-x)r,令r=3得x3的系数为-C3n,故本题所求的项的系数为-(C35+C36+C37+C38)=-121.例6 (1)若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为 &nbsp; &nbsp;;(2)求(2x+1x)4的展开式中各项的二项式系数和及各项系数和.解:(1)因为展开式中的第3项和第7项的二项式系数相同,即C2n=C6n,所以n=6+2=8,所以展开式的通项为Tk+1=Ck8?x8-k?(1x)k=Ck8x8-2k,令8-2k=-2,解得k=5,所以T6=C58?(1x)2,所以1x2的系数为C58=56.(2)该展开式的各项二项式系数和为:C04+C14+C24+C34+C44=24=16.令二项式中变量x=1,得各项系数之和为34=81.小结:二项式系数和项的系数是二项式定理的基本概念,两者本质区别为:展开式中第r+1项的二项式系数是Crn(r=0,1,2,…,n),而第r+1项的系数是指经过化简整理后该项未知数前的最简系数(含正负).三、证明整除或余数问题例7 试证大于(1+3)2n(n∈N)的最小整数能被2n+1整除.证明:因为-1&lt;1-3&lt;0,所以(1-3)2n∈(0,1).由二项式定理可得(1+3)2n+(1-3)2n=2(3n+C22n3n-1+…)是偶数,记为2k(k∈N),则大于(1+3)2n的最小整数为2k.又因为2k=(1+3)2n+(1-3)2n=[(1+3)2]n+[(1-3)2]n=2n[(2+3)n+(2-3)n],由二项式定理知(2+3)n+(2-3)n是偶数,记为2k1(k1∈N),所以2k=2n+1k1.即命题得证.评析:本题的难点在于如何表示题中的最小整数.由(1+3)2n联想到其对偶式(1-3)2n∈(0,1),然后考虑二者之和即可.二项式定理在其中的用处为利用其展开式证明二者之和为偶数.例8 当n∈N*时,求证:32n+2-8n-9能被64整除.证明:32n+2-8n-9=9n+1-8n-9=(1+8)n+1-8n-9=C0n+1+C1n+1?8+C2n+1?82+C3n+1?83+…+Cnn+1?8n+Cn+1n+1?8n+1-8n-9 =1+(n+1)?8+C2n+1?82+C3n+1?83+…+Cnn+1?8n+Cn+1n+1?8n+1-8n-9=82(C2n+1+8C3n+1+…+8n-2?Cnn+1+8n-1?Cn+1n+1),因为C2n+1+8C3n+1+…+8n-2?Cnn+1+8n-1?Cn+1n+1是整数.所以32n+2-8n-9能被64整除.例9 今天是星期日,再过10100天后是星期几?解:10100=10050=(98+2)50=C0509850+C1509849×2+…+C495098×249+C5050250,因为前50项都能被7整除,只需考查250除以7所得余数.250=4×248=4×816=4×(7+1)16=4[C016716+C116715+…+C15167+C1616].于是得余数为4,故10100天后是星期四.小结:证明整除性问题,或求余数问题.关键是找准指数式中的底数和除数的联系,将指数式分拆成与除数有关联的两个数的和或差,再用二项式定理展开,要注意余数为非负数且不大于除数.四、求近似值例10 求(0.997)5的近似值(精确到0.001).分析:(0.997)5=(1-0.003)5,简单构造二项式定理模型,展开按精确度要求取前两项计算便得符合条件的结果.解:(0.997)5=(1-0.003)5=1-C150.003+C25(0.003)2-…-C55(0.003)5≈1-5×0.003=0.985.例11 某地现有耕地10000公顷.规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.结果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=总产量/耕地面积,人均粮食占有量=总产量/总人口数).解:设耕地平均每年至多只能减少x公项,又设该地区现有人口为P人,粮食单产为M 吨/公顷.依题意得不等式M×(1+22%)×(104-10x)P×(1+1%)10≥M×104P×(1+10%)化简得x≤103×[1-1.1×(1+0.01)101.22].因为103×[1-1.1×(1+0.01)101.22]=103×[1-1.11.22×(1+C110×0.01+C210×0.012+…)]≈103×[1-1.11.22×1.1045]≈4.1所以x≤4(公顷)答:按规则该地区耕地平均每年至多只能减少4公顷.小结:求近似值问题常用二项式定理展开,根据精确度决定所取项数.五、证明恒等式或不等式例12 证明:C0n+32C2n+34C4n+…+3nCnn=2?4n-1+2n-1(n为偶数,n∈N*).证明:因为n为偶数,所以(1+3)n=C0n+3C1n+32C2n+…+3nCnn,(1-3)n=C0n-3C1n+32C2n-…+3nCnn两式相加得4n+2n=2(C0n+32C2n+34C4n+…+3nCnn),所以C0n+32C2n+34C4n…+3nCnn=2?4n-1+2n-1.例13 求证C1n+2C2n+…+nCnn=n2n-1.证明:由二项式定理有:(1+x)n=xn+C1nxn-1+…+Cn-1nx+Cnn.对上式以x为自变量求导得:n(1+x)n-1=nxn-1+C1n(n-1)xn-2+C2n(n-1)xn-3+…+Cn-1n.取x=1有n2n-1=n+(n-1)C1n+(n-2)C2n+…+Cn-1n.又因组合数性质:Cmn=Cn-mn得n?2n-1=nCnn+(n-1)Cn-1n+(n-2)Cn-2n+…+2C2n+C1n,∴原式得证.小结:关于组合恒等式的证明,关键在于熟悉二项式定理的展开形式及结构特点,要善于把所证问题用数学方法合理的转化为二项式定理的表达式形式.例14 求证:2≤(1+1n)n≤3-12n-1,(n∈N*).证明:由二项式定理得(1+1n)n=C0n+C1n1n+C2n1n2+…+Cnn1nn=1+1+C2n1n2+…≥2.又(1+1n)n=C0n+C1n1n+C2n1n2+…+Cnn1nn=2+12!(1-1n)+13!(1-1n)(1-2n)+…+1n!(1-1n)(1-2n)?…?(1-n-1n)≤2+12!+13!+…+1n!≤2+12+122+123+…+12n-1=3-12n-1.例15 设a,b∈R+,n∈N,求证:an+bn2≥a+b2n.分析:设a=s+d,b=s-d,(s,d∈R+且s&gt;d),则a+b=2s,再用二项式定理解题.证明:设a=s+d,b=s-d,(s,d∈R+且s&gt;d),于是有an+bn=(s+d)n+(s-d)n=2[C0nsn+C2nsn-2d2+…]≥2sn.又因为a+b=2s,所以an+bn2≥2sn2=sn=a+b2n.即题目得证. 评析:此题表面看似与二项式定理无关,但换元后便露出其本质.它的结论也可以写成nan+bn2≥a+b2.二项式定理是证明这一不等式简捷且有效的方法.例16 设a,b∈R+,且1a+1b=1.求证:对每个n∈N*都有(a+b)n-an-bn≥22n-2n+1.分析:因为a,b∈R+,且1a+1b=1,所以ab≥2,(a+b)n-an-bn=12[(an-1b+abn-1)C1n+(an-2b2+a2bn-2)C2n+…+(abn-1+an-1b)Cn-1n],再利用均值不等式求证.证明:由1=1a+1b≥2abab≥2,及二项式定理得(a+b)n-an-bn=C0nan+C1nan-1b+…+Cn-1nabn-1+Cnnbn-an-bn=C1nan-1b+C2nan-2b2+…+Cn-2na2bn-2+Cn-1nabn-1=12[(an-1b+abn-1)C1n+(an-2b2+a2bn-2)C2n+…+(abn-1+an-1b)Cn-1n]≥(ab)n(C1n+C2n+…+Cn-1n)≥2n(2n-2)=22n-2n+1.小结:利用二项式定理证明不等式,是二项式定理的一个重要应用.一般情况,在二项式展开式中取舍若干项,即可将相等关系转化为不等关系,从而获得相关不等式.特别在有关幂不等式和组合不等式方面有独特作用.六、在求值问题中的应用例17 已知等式(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,其中ai(i=0,1,2,…,10)为实常数,求:(1)∑10n=1an的值;(2)∑10n=1nan的值.解:(1)令x=-1,得a0=1;令x=0,得a0+a1+a2+…+a9+a10=25=32.故∑10n=1an=a1+a2+…+a10=31.(2)等式(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10两边对x求导,得5(x2+2x+2)4?(2x+2)=a1+2a2(x+1)+…+9a9(x+1)8+10a10(x+1)9.在5(x2+2x+2)4?(2x+2)=a1+2a2(x+1)+…+9a9(x+1)8+10a10(x+1)9中,令x=0,整理得∑10n=1nan=a1+2a2+…+9a9+10a10=5?25=160.评析:“取特殊值法”是解决二项式系数问题常用的方法――根据题目要求,灵活赋给字母不同的值.第二问要先利用导数得到nan的形式,然后再赋值求解.例18 用{x}表示实数x的小数部分,若a=(513+18)99,则a{a}的值为多少?解:令b=(513-18)99,因为(513-18)∈(0,1),所以b∈(0,1),由二项式定理有a=(513+18)99=C099(513)99+C199(513)98×18+…+Cr99(513)99-r×18r+…+C9899(513)×1898+C99991899,b=(513-18)99=C099(513)99-C199(513)98×18+…+(-1)rCr99(513)99-r×18r+…+C9899(513)×1898-C99991899,因为a-b=2[C199(513)98×18+…+C99991899]是正整数,所以{a}=b,所以a{a}=(513+18)99(513-18)99=[(513+18)(513-18)]99=1.评析:此题表面看较为困难,但若能发现0&lt;513-18&lt;1,且(513+18)(513-18)=1,巧妙构造b=(513-18)99来替代{a},问题便能迎刃而解.本题所用方法与例7相同.(作者:李苇,江苏省黄桥中学)。

二项式定理中常考的几种题型

二项式定理中常考的几种题型

二项式定理中常考的几种题型一、求二项式展开式中指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式,然后依据条件先确定r的值,进而求出指定的项。

1. 求常数项例1 (2006年山东卷)已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是()A. -45iB. 45iC. -45D. 45解:第三项、第五项的系数分别为,由题意有整理得解得n=10设常数项为则有得r=8故常数项为,选D。

2. 求有理项例2 已知的展开式中,前三项系数成等差数列,求展开式中所有的有理项。

解:展开式的前三项的系数分别为则由题意可得即解得n=8(n=1舍去)于是若为有理项,则,且,所以r=0,4,8。

故展开式中所有的有理项为3. 求幂指数为整数的项例3 (2006年湖北卷)在的展开式中,x的幂指数是整数的项共有()A. 3项B. 4项C. 5项D. 6项解:所以r=0,6,12,18,24时,x的幂指数为整数,故选C。

4. 求系数最大的项例4 已知的展开式中,只有第五项的二项式系数最大,求该展开式中系数最大的项。

解:由只有第五项的二项式系数最大,可知展开式共有9项,故n=81又设第r+1项的系数最大,则有解得又,所以r=2或r=3所以二项式的展开式中系数最大的项是二、求三项式或多项的和或积的展开式中指定项有些三项式展开问题可以先通过变形转化为二项式展开问题加以解决,对于多项的和或积的二项式问题,可通过“搭配”解决,但要注意不重不漏。

例5 (2005年湖北卷)的展开式中整理后的常数项为________。

解:对于二项式的展开式中要得到常数项需10-r=5,则r=5所以常数项为例6 (2005年浙江卷)在展开式中,含的项的系数是()A. 74B. 121C. -74D. -121解:的展开式中,含的项为,故选D。

三、求展开式中某一项的二项式系数或系数此类问题仍然是利用二项式的通项公式来加以求解,但在解题中要注意某一项的二项式系数与系数的区别。

二项式展开式中x的系数

二项式展开式中x的系数

二项式定理是数学中一个重要的定理,它描述了在进行二项式展开时,每一项的系数如何计算。

根据二项式定理,x的系数是从n个不同的元素中选择k个元素的方案数,乘以(-1)^(n-k)的结果。

具体地,假设有一个二项式 (a+b)^n,它的第k项的系数为C(n,k),其中 C(n,k) = n! / (k! (n-k)!)。

因此,x的系数就是 C(n,k) * a^(n-k) * b^k。

举个例子,(a+b)^3的展开式是 a^3 + 3a^2b + 3ab^2 + b^3,其中x的系数分别为 1, 3, 3, 1。

总的来说,二项式展开式中x的系数是根据二项式定理算出来的,可以通过计算组合数来确定。

二项式展开式中x的系数可以通过使用二项式定理来确定。

二项式定理是一个数学公式,表示如何对二项式进行展开。

定义:二项式定理是一个数学公式,它描述了在进行二项式展开时,每一项的系数是如何计算的。

根据二项式定理,如果一个二项式的形式为(a + b)^n,那么每一项的系数就是C(n,k),其中C(n,k)表示从n个不同的元素中选择k个元素的方案数。

公式:C(n,k) = n! / (k! (n-k)!),其中n!表示n的阶乘,即n * (n-1) * (n-2) * ... * 2 * 1;k!表示k的阶乘,即k * (k-1) * (k-2) * ... * 2 * 1;(n-k)!表示(n-k)的阶乘,即(n-k) * (n-k-1) * (n-k-2) * ... * 2 * 1。

二项式级数展开公式

二项式级数展开公式

二项式级数展开公式
【实用版】
目录
1.二项式级数展开公式的概念
2.二项式级数展开公式的推导
3.二项式级数展开公式的应用
正文
1.二项式级数展开公式的概念
二项式级数展开公式,是数学中的一种用于计算多项式值的方法。

它是一种将一个多项式表达式通过二项式定理展开为一系列项的和的形式
的公式。

二项式级数展开公式可以用于计算各种多项式的值,特别是在计算机科学、物理学和工程学等领域有着广泛的应用。

2.二项式级数展开公式的推导
二项式级数展开公式的推导过程比较复杂,需要运用到一些高等数学的知识,如二项式定理、泰勒级数等。

这里我们简单介绍一下二项式定理,它是二项式级数展开公式的基础。

二项式定理是指:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +
C(n,2)a^(n-2)b^2 +...+ C(n,n)b^n,其中 C(n,k) 表示组合数,即从 n 个元素中选取 k 个元素的组合数。

通过二项式定理,我们可以将一个多项式表达式展开为一系列项的和的形式,这就是二项式级数展开公式。

3.二项式级数展开公式的应用
二项式级数展开公式在实际应用中有很多,这里我们举一个简单的例子来说明。

假设我们要计算一个多项式表达式:(x+2)^5,我们可以通过二项式级数展开公式来计算它的值。

根据二项式定理,(x+2)^5 = C(5,0)x^5 + C(5,1)x^4*2 + C(5,2)x^3*2^2 +...+ C(5,5)2^5,将各项的系数代入计算,我们可以得到该多项式的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理中展开式系数的六类题型
求展开式中的系数是高考常考题型之一,本文以高考题为例,对二项式定理试题中求展开式系数的问题加以归类与解析,供读者参考。

一 、)()(*∈+N n b a n 型
例1.10()x -的展开式中64x y 项的系数是( )
(A )840 (B )-840 (C )210 (D )-210
解析:在通项公式1r T +=1010()r r r C x -中令r =4,即得10()x 的展
开式中64x y 项的系数为4410(C =840,故选A 。

例2.8)1
(x x -展开式中5x 的系数为 。

解析:通项公式r r
r r r r
r x C x x C T 2388881)1()1
(--+-=-= ,由题意得52
38=-r ,则2=r ,故所求5x 的系数为28)1(282=-C 。

评注:常用二项展开式的通项公式求二项展开式中某特定项的系数,由待定系数法确定r 的值。

二 、),()()(*
∈+±+N m n d c b a m n 型
例3.843)1()2(x
x x x ++-的展开式中整理后的常数项等于 . 解析;342()x x
-的通项公式为341241442()()(2)r r r r r r r T C x C x x --+=-=-,令0412=-r ,则3=r ,这时得342()x x
-的展开式中的常数项为3342C -=-32, 81()x x
+的通项公式为8821881()k k k k k k T C x C x x --+==,令028=-k ,则4=k ,这时得81()x x +的展开式中的常数项为48C =70,故843)1()2(x x x x ++-的展开式中常数项等于387032=+-。

例4.在65)1()1(x x ---的展开式中,含3x 的项的系数是( )
(A)5- (B) 5 (C) 10- (D) 10
解析:5)1(x -中3x 的系数35C -=10-, 6)1(x --中3x 的系数为336(1)C -⋅-=20,故65)1()1(x x ---的展开式中3x 的系数为10,故选D 。

评注:求型如),()()(*∈+±+N m n d c b a m n 的展开式中某一项的系数,可分别展开两个二项式,由多项式加减法求得所求项的系数。

三 、
),()()(*∈++N m n d c b a m n 型 例5.72)2)(1(-+x x 的展开式中3x 项的系数是 。

解析:7)2(-x 的展开式中x 、3x 的系数分别为617
)2(-C 和437)2(-C ,故72)2)(1(-+x x 的展开式中3x 项的系数为617
)2(-C +437)2(-C =1008。

例6.()()811x x -+的展开式中5x 的系数是( )
(A )14- (B )14 (C )28-
(D ) 28
略解:8)1(+x 的展开式中4x 、5x 的系数分别为48C 和58C ,故()()811x x -+ 展开式中5x 的系数为458814C C -=,故选B 。

评注:求型如),()()(*∈++N m n d c b a m n 的展开式中某一项的系数,可分别展开两个二项式,由多项式乘法求得所求项的系数。

四 、)()(*∈++N n c b a n 型
例7.5)212(++x
x 的展开式中整理后的常数项为 . 解法一:5)212(++x x =5
2)12(⎥⎦⎤⎢⎣⎡++x x ,通项公式521512()2k k k k x T C x -+=+, 51()2k x x
-+的通项公式为5(5)152r r k r k r r k T C x x ------+-=52552r r k k r k C x --+--=,令025=--k r ,则52=+r k ,可得2,1==r k 或1,3==r k 或0,5==r k 。

当2,1==r k 时,得展开式中项为11
2225422C C -=;
当1,3==r k 时,
,得展开式中项为311522C C -=
当0,5==r k
时,得展开式中项为55C =。

综上,5)212(++x
x
的展开式中整理后的常数项为22+=。

解法二:5)212(++x x =52)2222(x x x ++=[]552)2()2(x x +=510)
2()2(x x +,对于二项式10)2(+x 中,r r r r x C T )2(10101-+=,要得到常数项需510=-r ,即5=r 。

所以,常数项为22632
)2(55510=⋅C 。

解法三:5)212(++x x 是5
个三项式1(2x x
+相乘。

常数项的产生有三种情况:在5
个相乘的三项式1(2x x +中,从其中一个取2
x ,从另外4个三项式中选一个取1x
,从剩余的3个三项式中取常数项相乘,可
得113354312C C C ⋅⋅⋅⋅=从其中两个取2x ,从另外3个三项式中选两个取1x
,从剩余的1
个三项式中取常数项相乘,可得222531()2C C ⋅⋅=5个相
乘的三项式1(2x x
+
中取常数项相乘,可得555C ⋅
=。

综上,5)212(++x
x 的展开式中整理后的常数项
为22
+=。

评注:解法一、解法二的共同特点是:利用转化思想,把三项式转化为二项式来解决。

解法三是利用二项式定理的推导方法来解决问题,本质上是利用加法原理和乘法原理,这种方法可以直接求展开式中的某特定项。

五 、1()()()(,,1)m m n a b a b a b m n N m n +*++++++∈≤< 型
例8.在62)1()1()1(x x x ++++++ 的展开式中,2x 项的系数是 。

(用数字作答)
解析:由题意得2x 项的系数为352625242322
=++++C C C C C 。

例9.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )
(A) 74 (B) 121 (C) -74 (D) -121 解析:(1-x )
5+(1-x )6+(1-x )7+(1-x )8=5459
(1)[1(1)](1)(1)1(1)x x x x x x
------=-- 5)1(x -中4x 的系数为455C =,9)1(x --中4x 的系数为-49126C =-,-126+5= -121,故选D 。

评注:例8的解法是先求出各展开式中2x 项的系数,然后再相加;例9则从整体出发,把原式看作首相为(1-x )5,公比为(1-x )的等比数列的前4项和,用等比数列求和公式减少项数,简化了运算。

例8和例9的解答方法是求1()()()(,,1)m m n a b a b a b m n N m n +*++++++∈≤<的展开式中某特定项系数的两种常规方法。

六 、求展开式中若干项系数的和或差
例10.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,
则_______)()()()(20040302010=++++++++a a a a a a a a 。

(用数字作答)
解析:在2004200422102004...)21(x a x a x a a x ++++=-中,令0=x ,则10=a , 令1=x ,则1)1(200420043210=-=+++++a a a a a
故)()()()(20040302010a a a a a a a a ++++++++
=20030a +200420043210=+++++a a a a a 。

例11.423401234(2x a a x a x a x a x =++++,则2312420)()(a a a a a +-++的值为( )
(A) 1 (B) -1 (C) 0 (D) 2
解析:在423401234(2x a a x a x a x a x =++++中,
令1=x ,可得=++++43210a a a a a 4)32(+,
令1-=x ,可得=+-+-43210a a a a a 4)32(-
所以,2312420)()(a a a a a +-++=))((3142031420a a a a a a a a a a --++++++
=))((4321043210a a a a a a a a a a +-+-++++=4)32(+4)32(-=1,故选A 。

评注:求展开式中若干项系数的和或差常采用“赋值法”。

赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的,它普遍适用于恒等式,是一种重要的解题方法。

实际上赋值法所体现的是从一般到特殊的转化思想,在高考题中屡见不鲜,特别是在二项式定理中的应用尤为明显,巧赋特值可减少运算量。

相关文档
最新文档